MULTI-CHANNEL SAMPLING ON SHIFT-INvariant SPACES WITH FRAME GENERATORS

A. G. GARCÍA, J. M. KIM, K. H. KWON, AND G. J. YOON

Abstract. Let φ be a continuous function in $L^2(\mathbb{R})$ such that the sequence $\{\varphi(t - n)\}_{n \in \mathbb{Z}}$ is a frame sequence in $L^2(\mathbb{R})$ and assume that the shift-invariant space $V(\varphi)$ generated by φ has a multi-banded spectrum $\sigma(V)$. The main aim in this paper is to derive a multi-channel sampling theory for the shift-invariant space $V(\varphi)$. By using a type of Fourier duality between the spaces $V(\varphi)$ and $L^2[0, 2\pi]$ we find necessary and sufficient conditions allowing us to obtain stable multi-channel sampling expansions in $V(\varphi)$.

Key words: shift-invariant spaces, multi-channel sampling, frames
Mathematics Subject Classification 2010: 42C15, 94A20

1. Introduction

As a natural extension of the classical Shannon sampling theorem, Papoulis introduced in [17] generalized sampling for arbitrary multi-channel sampling in Paley-Wiener spaces $PW_{\pi\sigma}$ of band-limited signals: In many common situations the available data are samples of some filtered versions of the signal itself. Following [17], there have been many generalizations and applications of the multi-channel sampling. See, for example, [6, 7, 16, 19, 20] and references therein.

Although Shannon’s sampling theory has had an enormous impact, it has a number of problems, as pointed out by Unser in [18]: It relies on the use of ideal filters; the band-limited hypothesis is in contradiction with the idea of a finite duration signal; the band-limiting operation generates Gibbs oscillations; and finally, the sinc function has a very slow decay, which makes computation in the signal domain very inefficient.

Moreover, many applied problems impose different a priori constraints on the type of functions. For this reason, sampling and reconstruction problems have been investigated in spline spaces, wavelet spaces, and general shift-invariant spaces. Indeed, in many practical applications, signals are assumed to belong to some shift-invariant space of the form: $V(\varphi) := \text{span}_{L^2(\mathbb{R})} \{\varphi(t - n) : n \in \mathbb{Z}\}$ where the function φ in $L^2(\mathbb{R})$ is called the generator of $V(\varphi)$. In most of cases in the mathematical literature, it is supposed that the sequence $\{\varphi(t - n)\}_{n \in \mathbb{Z}}$ forms a Riesz basis for $V(\varphi)$. See, for instance, [1, 2, 3, 4, 12, 15, 18, 21, 22] and the references therein. Throughout this paper we assume that the sequence $\{\varphi(t - n)\}_{n \in \mathbb{Z}}$ is a frame for $V(\varphi)$ and that the spectrum of $V(\varphi)$ is multi-banded in $[0, 2\pi]$ (see Section 3 infra).

On the other hand, suppose that N linear time-invariant systems (filters) L_j, $j = 1, 2, \ldots, N$, are defined on the shift-invariant subspace $V(\varphi)$ of $L^2(\mathbb{R})$. In mathematical terms we are dealing with continuous operators which commute with shifts. The recovery of any function $f \in V(\varphi)$ from samples of the functions $L_j f$, $j = 1, 2, \ldots, N$, leads to a generalized sampling in $V(\varphi)$.

1
Our challenge problem is the following: Given \(r, N \) positive integers and \(N \) real numbers \(0 \leq a_j < r \) for \(1 \leq j \leq N \), find multi-channel sampling expansions like

\[
f(t) = \sum_{j=1}^{N} \sum_{n \in \mathbb{Z}} (\mathcal{L}_j f)(a_j + rn) S_{j,n}(t), \quad t \in \mathbb{R},\]

valid for any \(f \in V(\varphi) \), where the sequence of sampling functions \(\{ S_{j,n}(t) : 1 \leq j \leq N, n \in \mathbb{Z} \} \) forms a frame or a Riesz basis for \(V(\varphi) \).

Recently, García et al. (\[8, 9, 10\]) introduced a novel idea for developing a sampling theory on a shift-invariant space \(V(\varphi) \) by using an analogous of the Fourier duality between the spaces \(V(\varphi) \) and \(L^2[0, 2\pi] \). In particular, García and Pérez-Villalón [9] (see also [14]) developed a multi-channel sampling procedure on a shift-invariant space \(V(\varphi) \), where \(\varphi \) is a continuous Riesz generator. Unlike the author’s claim (see section 4.1 in [9]), the arguments used in [9] for the case of Riesz generator cannot be directly extended to the case of a frame generator.

In the present paper, by assuming that the sequence \(\{ \varphi(t - n) \}_{n \in \mathbb{Z}} \) is a frame for \(V(\varphi) \) and that the spectrum of \(V(\varphi) \) is multi-banded in \([0, 2\pi]\), and allowing more general filters than those used in [9], we obtain necessary and sufficient conditions under which there exists a stable multi-channel sampling expansion on \(V(\varphi) \) like that in (1.1). We also provide some illustrating examples. All these tasks will be carried out throughout the remaining sections.

2. Shift-invariant spaces and Fourier duality type

We start this section by introducing some notation and preliminaries used in the sequel. Let \(\{ \varphi_n \}_{n \in \mathbb{Z}} \) be a sequence of elements in a separable Hilbert space \(\mathcal{H} \). We say that

- the sequence \(\{ \varphi_n \}_{n \in \mathbb{Z}} \) is a Bessel sequence (with Bessel bound \(B \)) in \(\mathcal{H} \) if there exists a constant \(B > 0 \) such that
 \[
 \sum_{n \in \mathbb{Z}} |\langle \varphi, \varphi_n \rangle|^2 \leq B \| \varphi \|^2 \quad \text{for all } \varphi \in \mathcal{H};
 \]

- the sequence \(\{ \varphi_n \}_{n \in \mathbb{Z}} \) is a frame for \(\mathcal{H} \) (with frame bounds \(A \) and \(B \)) if there exist constants \(0 < A \leq B \) such that
 \[
 A \| \varphi \|^2 \leq \sum_{n \in \mathbb{Z}} |\langle \varphi, \varphi_n \rangle|^2 \leq B \| \varphi \|^2 \quad \text{for all } \varphi \in \mathcal{H};
 \]

- the sequence \(\{ \varphi_n \}_{n \in \mathbb{Z}} \) is a Riesz basis for \(\mathcal{H} \) (with Riesz bounds \(A \) and \(B \)) if it is a complete set in \(\mathcal{H} \) and there exist constants \(0 < A \leq B \) such that
 \[
 A \| \mathbf{c} \|^2 \leq \sum_{n \in \mathbb{Z}} |c(n) \varphi_n| \leq B \| \mathbf{c} \|^2 \quad \text{for all } \mathbf{c} = \{c(n)\}_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z}),
 \]

where \(\| \mathbf{c} \|^2 := \sum_{n \in \mathbb{Z}} |c(n)|^2 \).

For \(\varphi \in L^1(\mathbb{R}) \cap L^2(\mathbb{R}) \) we take its Fourier transform to be normalized as

\[
\mathcal{F}[\varphi](\xi) = \hat{\varphi}(\xi) := \int_{-\infty}^{\infty} \varphi(t) e^{-it\xi} dt,
\]
so that \(\frac{1}{\sqrt{2\pi}} F : L^2(\mathbb{R}) \rightarrow L^2(\mathbb{R}) \) becomes a unitary operator. For any \(\varphi \in L^2(\mathbb{R}) \) consider its related functions

\[
C_\varphi(t) := \sum_{n \in \mathbb{Z}} |\varphi(t + n)|^2 \quad \text{and} \quad G_\varphi(\xi) := \sum_{n \in \mathbb{Z}} |\hat{\varphi}(\xi + 2\pi n)|^2.
\]

It is known that the 1-periodic function \(C_\varphi \) belongs to \(L^1[0, 1] \) and the \(2\pi \)-periodic function \(G_\varphi \) belongs to \(L^1[0, 2\pi] \); moreover,

\[
\|\varphi\|_{L^2(\mathbb{R})}^2 = \|C_\varphi\|_{L^1[0, 1]} = \frac{1}{2\pi} \|G_\varphi\|_{L^1[0, 2\pi]}.
\]

Let \(V(\varphi) := \overline{\sigma(2\pi)} \{ \varphi(t - n) : n \in \mathbb{Z} \} \) be the shift-invariant space generated by \(\varphi \), that is, the closed subspace of \(L^2(\mathbb{R}) \) spanned by \(\{ \varphi(t - n) \}_{n \in \mathbb{Z}} \) and supp \(G_\varphi \) the support of the locally integrable function \(G_\varphi \) as a distribution on \(\mathbb{R} \). Let \(\sigma(V) := \text{supp } G_\varphi \cap [0, 2\pi] \) be the spectrum of \(V(\varphi) \) and \(\tau(V) := [0, 2\pi] \setminus \sigma(V) \). For any \(c = \{c(n)\}_{n \in \mathbb{Z}} \) in \(\ell^2(\mathbb{Z}) \), let

\[
\hat{c}(\xi) := \sum_{n \in \mathbb{Z}} c(n)e^{-in\xi}
\]

be the discrete Fourier transform of the sequence \(c \). In [5] we find the following result:

Proposition 2.1. Let \(\varphi \in L^2(\mathbb{R}) \) and \(0 < A \leq B \). The following statements hold:

(a) The sequence \(\{\varphi(t - n)\}_{n \in \mathbb{Z}} \) is a Bessel sequence with a Bessel bound \(B \) for \(V(\varphi) \) if and only if \(G_\varphi(\xi) \leq B \) a.e. on \([0, 2\pi] \).

(b) The sequence \(\{\varphi(t - n)\}_{n \in \mathbb{Z}} \) is a frame for \(V(\varphi) \) with frame bounds \(A, B \) if and only if \(A \leq G_\varphi(\xi) \leq B \) a.e. on \(\sigma(V) \).

(c) The sequence \(\{\varphi(t - n)\}_{n \in \mathbb{Z}} \) is a Riesz basis for \(V(\varphi) \) with Riesz bounds \(A, B \) if and only if \(A \leq G_\varphi(\xi) \leq B \) a.e. on \([0, 2\pi] \).

For any \(\varphi \in L^2(\mathbb{R}) \) and \(c = \{c(k)\}_{k \in \mathbb{Z}} \in \ell^2(\mathbb{Z}) \), let \(T(c) := (c * \varphi)(t) = \sum_{k \in \mathbb{Z}} c(k)\varphi(t - k) \) be the pre-frame operator of \(\{\varphi(t - n)\}_{n \in \mathbb{Z}} \). Proposition 2.1 can be restated as (cf. [5]):

- The sequence \(\{\varphi(t - n)\}_{n \in \mathbb{Z}} \) is a Bessel sequence with a Bessel bound \(B \) if and only if \(T \) is a bounded linear operator from \(\ell^2(\mathbb{Z}) \) into \(V(\varphi) \) with \(\|T\| \leq \sqrt{B} \).
- The sequence \(\{\varphi(t - n)\}_{n \in \mathbb{Z}} \) is a frame for \(V(\varphi) \) with frame bounds \(A, B \) if and only if \(T \) is a bounded linear operator from \(\ell^2(\mathbb{Z}) \) onto \(V(\varphi) \) and

\[
A\|c\|^2 \leq \|T(c)\|_{L^2(\mathbb{R})}^2 \leq B\|c\|^2, \quad c \in N(T)^{\perp},
\]

where \(N(T) := \{c \in \ell^2(\mathbb{Z}) : T(c) = 0\} \) and \(N(T)^{\perp} \) is the orthogonal complement of \(N(T) \) in \(\ell^2(\mathbb{Z}) \).
- The sequence \(\{\varphi(t - n)\}_{n \in \mathbb{Z}} \) is a Riesz basis for \(V(\varphi) \) with Riesz bounds \(A, B \) if and only if \(T \) is an isomorphism from \(\ell^2(\mathbb{Z}) \) onto \(V(\varphi) \) and

\[
A\|c\|^2 \leq \|T(c)\|_{L^2(\mathbb{R})}^2 \leq B\|c\|^2, \quad c \in \ell^2(\mathbb{Z}) .
\]
Lemma 2.2. Let $\varphi \in L^2(\mathbb{R})$ such that the sequence $\{\varphi(t - n)\}_{n \in \mathbb{Z}}$ is a Bessel sequence in $L^2(\mathbb{R})$. Then for any $c = \{c(n)\}_{n \in \mathbb{Z}}$ in $\ell^2(\mathbb{Z})$,

$$T(c)(\xi) = \hat{c}(\xi)\hat{\varphi}(\xi),$$

so that

$$\|T(c)\|^2_{L^2(\mathbb{R})} = \frac{1}{2\pi} \int_{-\infty}^{\infty} |\hat{c}(\xi)|^2 |\hat{\varphi}(\xi)|^2 d\xi = \frac{1}{2\pi} \int_{0}^{2\pi} |\hat{c}(\xi)|^2 G_{\varphi}(\xi) d\xi. \tag{2.1}$$

In what follows, we always assume that the function $\varphi \in L^2(\mathbb{R}) \cap C(\mathbb{R})$ is a continuous frame generator (i.e., the sequence $\{\varphi(t - n)\}_{n \in \mathbb{Z}}$ is a frame for $V(\varphi)$), and satisfying the condition: $\sup_{\mathbb{R}} C_{\varphi}(t) < \infty$. Thus $V(\varphi) = \{(c * \varphi)(t) : c \in \ell^2(\mathbb{Z})\}$ is a reproducing kernel Hilbert space (RKHS in short) and any $f(t) = (c * \varphi)(t)$ in $V(\varphi)$ converges both in the $L^2(\mathbb{R})$ sense, and absolutely and uniformly on \mathbb{R} to a continuous function on \mathbb{R} (see [15, 22]).

By using (2.1), we have that $N(T) = \{c \in \ell^2(\mathbb{Z}) : \hat{c}(\xi) = 0$ a.e. on $\sigma(V)\}$ and consequently

$$N(T) \perp = \{c \in \ell^2(\mathbb{Z}) : \hat{c}(\xi) = 0$ a.e. on $\tau(V)\}. \tag{2.2}$$

Now, we introduce a Fourier duality for $V(\varphi)$ useful for sampling purposes as we will see in the next section.

Let $T_{\varphi} : L^2[0, 2\pi] \to V(\varphi)$ be the linear operator defined by

$$(T_{\varphi} F)(t) := \frac{1}{2\pi} \sum_{k \in \mathbb{Z}} \langle F(\xi), e^{-ik\xi} \rangle_{L^2[0, 2\pi]} \varphi(t - k) = \langle F(\xi), \frac{1}{2\pi} Z_{\varphi}(t, \xi) \rangle_{L^2[0, 2\pi]},$$

where Z_{φ} denotes the Zak transform of φ given as $Z_{\varphi}(t, \xi) := \sum_{k \in \mathbb{Z}} \varphi(t + k)e^{-ik\xi}$ (see [12]).

Notice that $\{\varphi(t - n)\}_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z})$ for each $t \in \mathbb{R}$. By using (2.2), T_{φ} is a bounded linear operator from $L^2[0, 2\pi]$ onto $V(\varphi)$ with kernel

$$N(T_{\varphi}) = \{F(\xi) \in L^2[0, 2\pi] : F(\xi) = 0$ a.e. on $\sigma(V)\}.$$

Thus, the operator $T_{\varphi} : L^2[\sigma(V)] \to V(\varphi)$ becomes an isomorphism. We also note the following useful properties of T_{φ}:

- $T_{\varphi} F(\xi) = F(\xi)\hat{\varphi}(\xi)$;
- $T_{\varphi}[F(\xi)e^{-in\xi}](t) = (T_{\varphi} F)(t - n), n \in \mathbb{Z}$.

3. Multi-channel sampling theory

For $1 \leq j \leq N$, let L_j be an LTI (linear time-invariant) system with impulse response h_j, that is,

$$L_j[f](t) := (f * h_j)(t) = \int_{\mathbb{R}} f(s)h_j(t - s)ds.$$

Here, we assume that each system L_j belongs to one of the following three types:

- (i) Its impulse response $h_j(t) = \delta(t + a_j)$, $a_j \in \mathbb{R}$, or
- (ii) $h_j \in L^2(\mathbb{R})$, or
- (iii) $\hat{h}_j \in L^\infty(\mathbb{R})$ whenever $H_{\varphi}(\xi) := \sum_{n \in \mathbb{Z}} |\hat{\varphi}(\xi + 2n\pi)| \in L^2[0, 2\pi]$.

For type (i), \(\mathcal{L}[f](t) = f(t + a) \) for any \(f \in L^2(\mathbb{R}) \), so that \(\mathcal{L} : L^2(\mathbb{R}) \rightarrow L^2(\mathbb{R}) \) becomes a unitary operator. In particular, consider \(\psi(t) := \mathcal{L}[\varphi](t) = \varphi(t + a) \); for any \(f(t) = (c \ast \varphi)(t) \in V(\varphi) \) we have that \(\mathcal{L}[f](t) = (c \ast \psi)(t) \) converges absolutely and uniformly on \(\mathbb{R} \) since \(\sup_\mathbb{R} C_\psi(t) = \sum_{n \in \mathbb{Z}} |\psi(t + n)|^2 < \infty \). For types (ii) and (iii) the following result holds:

Lemma 3.1. Let \(\mathcal{L} \) be an LTI system with impulse response \(h \) of type (ii) or (iii) as above and consider the function \(\psi(t) := \mathcal{L} [\varphi](t) = (\varphi \ast h)(t) \). Then we have:

(a) The function \(\psi \) belongs to the space \(C^\infty(\mathbb{R}) := \{ u(t) \in C(\mathbb{R}) : \lim_{|t| \rightarrow \infty} u(t) = 0 \} \).
(b) \(\sup_\mathbb{R} C_\psi(t) < \infty \).
(c) For any \(f(t) = (c \ast \varphi)(t) \in V(\varphi) \) with \(c \in \ell^2(\mathbb{Z}) \), \(\mathcal{L}[f](t) = (c \ast \psi)(t) \) converges absolutely and uniformly on \(\mathbb{R} \).
(d) For each fixed \(t \in \mathbb{R} \), \(\text{supp } Z_\psi(t, \cdot) \cap [0, 2\pi] \subset \sigma(V) \).

Proof. First assume \(h \in L^2(\mathbb{R}) \). Since \(\hat{\psi}(\xi) = \hat{\varphi}(\xi) \hat{h}(\xi) \in L^1(\mathbb{R}) \), the function \(\psi \in C^\infty(\mathbb{R}) \) by using the Riemann-Lebesgue Lemma. The Poisson summation formula (cf. Lemma 5.1 in [15]) gives:

\[
C_\psi(t) = \sum_{n \in \mathbb{Z}} |\psi(t + n)|^2 = \frac{1}{2\pi} \left\| \sum_{n \in \mathbb{Z}} \psi(t + n)e^{-int} \right\|^2_{L^2(0, 2\pi)} \\
= \frac{1}{2\pi} \left\| \sum_{n \in \mathbb{Z}} \hat{\psi}(\xi + 2n\pi)e^{it(\xi + 2n\pi)} \right\|^2_{L^2(0, 2\pi)} \\
\leq \frac{1}{2\pi} \|G^\frac{1}{2}\|L^2(0, 2\pi)\|G_\varphi\|_{L^\infty(\mathbb{R})}\|h\|_{L^2(\mathbb{R})}.
\]

Hence \(\sup_\mathbb{R} C_\psi(t) < \infty \). Since \(f(t) = (c \ast \varphi)(t) \) converges in \(L^2(\mathbb{R}) \) for any \(c \in \ell^2(\mathbb{Z}) \) and the operator \(\mathcal{L} : L^2(\mathbb{R}) \rightarrow L^\infty(\mathbb{R}) \) is bounded by using Young’s inequality on the convolution product, we have that \(\mathcal{L}[f](t) = \sum_{k \in \mathbb{Z}} c(k)\mathcal{L}[\varphi(t - k)] = \sum_{k \in \mathbb{Z}} c(k)\psi(t - k) = (c \ast \psi)(t) \) converges absolutely and uniformly on \(\mathbb{R} \) by using (b).

Now assume that \(H_\varphi \in L^2[0, 2\pi] \) and let \(\hat{h} \in L^\infty(\mathbb{R}) \). Since \(\hat{\varphi} \in L^1(\mathbb{R}) \cap L^2(\mathbb{R}) \), we obtain that \(\hat{\psi} = \hat{\varphi} \hat{h} \in L^1(\mathbb{R}) \cap L^2(\mathbb{R}) \) and consequently, \(\psi \in C^\infty(\mathbb{R}) \cap L^2(\mathbb{R}) \). Since \(\sum_{n \in \mathbb{Z}} |\hat{\psi}(\xi + 2n\pi)|^2 \leq \|\hat{h}\|^2_{L^\infty(\mathbb{R})}\|H_\varphi\|^2_{L^2[0, 2\pi]} \), we have that \(C_\psi(t) \leq \frac{1}{2\pi} \left\| \sum_{n \in \mathbb{Z}} \psi(t + n)e^{it(\xi + 2n\pi)} \right\|^2_{L^2(0, 2\pi)} \leq \frac{1}{2\pi} \|\hat{h}\|^2_{L^\infty(\mathbb{R})}\|H_\varphi\|^2_{L^2[0, 2\pi]} \), so that \(\sup_\mathbb{R} C_\psi(t) < \infty \). For any \(f \in L^2(\mathbb{R}) \),

\[
\|\mathcal{L}[f]\|_{L^2(\mathbb{R})} = \|f \ast h\|_{L^2(\mathbb{R})} = \frac{1}{\sqrt{2\pi}} \left\| \hat{f}(\xi)\hat{h}(\xi) \right\|_{L^2(\mathbb{R})} \leq \|\hat{h}\|_{L^\infty(\mathbb{R})}\|f\|_{L^2(\mathbb{R})}.
\]

Hence, \(\mathcal{L} : L^2(\mathbb{R}) \rightarrow L^2(\mathbb{R}) \) is a bounded linear operator so that, for any \(f(t) = (c \ast \varphi)(t) \in V(\varphi) \), \(\mathcal{L}[f](t) = (c \ast \psi)(t) \) converges in \(L^2(\mathbb{R}) \). Condition (b) implies that \((c \ast \psi)(t) \) also converges absolutely and uniformly on \(\mathbb{R} \) which proves (c).

Finally to prove (d), consider any \(F \in L^2[0, 2\pi] \) with \(\text{supp } F \subseteq \tau(V) \) and let

\[
F(\xi) = \sum_{k \in \mathbb{Z}} c(k)e^{-ik\xi} \quad \text{where} \quad c(k) = \frac{1}{2\pi} \langle F(\xi), e^{-ik\xi} \rangle_{L^2[0, 2\pi]}, \; k \in \mathbb{Z}.
\]

The sequence \(c \in N(T) \) so that \(T(c) = (c \ast \varphi)(t) = 0 \). Since

\[
\langle F(\xi), Z_\psi(t, \xi) \rangle_{L^2[0, 2\pi]} = 2\pi \langle c \ast \psi)(t) \rangle = 2\pi \mathcal{L}[c \ast \varphi](t) = 0,
\]
we finally obtain that $\text{supp } Z_\psi(t, \cdot) \cap [0, 2\pi] \subset \sigma(V)$. \hfill \Box

In particular, given an LTI system \mathcal{L} of type (i), (ii) or (iii), for any $f = (T_\varphi F) \in V(\varphi)$, where $F \in L^2[\sigma(V)]$, we have

$$
(3.1) \quad \mathcal{L}[f](t) = \frac{1}{2\pi} \sum_{k \in \mathbb{Z}} \langle F(\xi) \chi_{\sigma(V)}(\xi), e^{i k \xi} \rangle_{L^2[0,2\pi]} \psi(t - k) = \langle F(\xi), \frac{1}{2\pi} Z_\varphi(t,\xi) \rangle_{L^2[\sigma(V)]}.
$$

Here $\chi_E(\xi)$ denotes the characteristic function of a measurable set E in \mathbb{R}.

As it was said before, in this work we are involved in the following problem: Given r, N positive integers and N real numbers $0 \leq a_j < r$ for $1 \leq j \leq N$, find multi-channel sampling formulas in $V(\varphi)$ such that, for any $f \in V(\varphi)$,

$$
(3.2) \quad f(t) = \sum_{j=1}^{N} \sum_{n \in \mathbb{Z}} (L_j f)(a_j + rn) S_{j,n}(t), \quad t \in \mathbb{R},
$$

where the sequence of sampling functions $\{S_{j,n}(t) : 1 \leq j \leq N, n \in \mathbb{Z}\}$ forms a frame or a Riesz basis for $V(\varphi)$.

First of all, notice that convergence in the $L^2(\mathbb{R})$-sense in the sampling series (3.2) implies pointwise convergence since $V(\varphi)$ is a RKHS, which is absolute and uniform on \mathbb{R}. Indeed, let $\{\tilde{\varphi}(t - n)\}_{n \in \mathbb{Z}}$ be the canonical dual frame of $\{\varphi(t - n)\}_{n \in \mathbb{Z}}$. Then the reproducing kernel of $V(\varphi)$ is

$$
q(s, t) := \sum_{n \in \mathbb{Z}} \tilde{\varphi}(s - n) \overline{\varphi(t - n)}.
$$

Since $\sup_{\mathbb{R}} C_{\varphi}(t) < \infty$ the function $q(t, t)$ is uniformly bounded on \mathbb{R}. Hence, the convergence in the $L^2(\mathbb{R})$-sense implies uniform convergence on \mathbb{R}. The pointwise convergence is also absolute due to the unconditional convergence of a frame or Riesz basis expansion.

In this work we solve this problem for the case where $V(\varphi)$ is a shift-invariant space having a continuous frame generator φ and the spectrum $\sigma(V)$ of $V(\varphi)$ is a multi-banded region such that

$$
\sigma(V) = \bigcup_{k=1}^{M} [\alpha_k, \beta_k], \quad \text{where } 0 \leq \alpha_1 < \beta_1 < \alpha_2 < \beta_2 < \cdots < \alpha_M < \beta_M \leq 2\pi.
$$

Notice that through (3.1) and the isomorphism $T_\varphi : L^2[\sigma(V)] \rightarrow V(\varphi)$, the sampling expansion (3.2) on $V(\varphi)$ is equivalent to the expansion in $L^2[\sigma(V)]$:

$$
F(\xi) = \sum_{j=1}^{N} \sum_{n \in \mathbb{Z}} (F(\xi), \frac{1}{2\pi} Z_\psi(a_j, \xi) e^{-i n \xi})_{L^2[\sigma(V)]} s_{j,n}(\xi), \quad F \in L^2[\sigma(V)],
$$

where $\{s_{j,n}(\xi) : 1 \leq j \leq N, n \in \mathbb{Z}\}$ is a frame or a Riesz basis for $L^2[\sigma(V)]$.

From now on we assume that $\sigma(V) = \bigcup_{k=1}^{M} [\alpha_k, \beta_k]$ and we set

$$
s_k := \alpha_k - \left[\frac{\alpha_k}{2\pi} \right] \frac{2\pi}{r}, \quad \text{and} \quad r_k := \beta_k - \left[\frac{\beta_k}{2\pi} \right] \frac{2\pi}{r},
$$

so that $0 \leq s_k, r_k < \frac{2\pi}{r}, \ 1 \leq k \leq M$ ($[x]$ denotes the integer part of $x \geq 0$).

Next consider the set of points $\{t_k\}_{k=0}^{m}$ such that $0 = t_0 < t_1 < \cdots < t_m = \frac{2\pi}{r}$ where
\[\{ t_k \}_{k=1}^{m-1} = \{ s_k, r_k : 1 \leq k \leq M \} \setminus \{ 0 \}. \]

Then,
\[I := [0, \frac{2\pi}{r}] = \bigcup_{k=1}^{m} \mathcal{B}_k, \quad B_k = (t_{k-1}, t_k). \]

Lemma 3.2. For each \(1 \leq k \leq m \) and each \(1 \leq n \leq r \), we have that
\[\text{either } \left(B_k + (n - 1) \frac{2\pi}{r} \right) \cap \sigma(V) = \emptyset \quad \text{or} \quad \left(B_k + (n - 1) \frac{2\pi}{r} \right) \subset \sigma(V). \]

Proof. See Lemma 1 in [20]. \(\square\)

For each \(1 \leq k \leq m \) we consider \(L(k) \), the subset of \(\{1, 2, \ldots, r\} \) defined by
\[L(k) := \{ 1 \leq n \leq r : B_k + (n - 1) \frac{2\pi}{r} \subset \sigma(V) \} , \]
and \(l(k) := \# L(k) \), i.e., its number of elements. Let \(\mathcal{P} := \{ 1 \leq k \leq m : l(k) > 0 \} \); for each \(k \in \mathcal{P} \), there are \(l(k) \) positive integers \(\{ n_{k,j} \}_{j=1}^{l(k)} \) such that \(1 \leq n_{k,1} < n_{k,2} < \cdots < n_{k,l(k)} \leq r \) and
\[B_k + (n_{k,j} - 1) \frac{2\pi}{r} \subset \sigma(V) , \quad 1 \leq j \leq l(k) . \]

For \(k \in \mathcal{P} \), let \(\tilde{B}_k := \bigcup_{j=1}^{l(k)} (B_k + (n_{k,j} - 1) \frac{2\pi}{r}) \). These sets \(\tilde{B}_k \) are disjoint and \(\sigma(V) = \bigcup_{k \in \mathcal{P}} \tilde{B}_k \); hence, \(|\sigma(V)| = \sum_{k \in \mathcal{P}} l(k) |B_k| \), where \(|E| \) denotes the Lebesgue measure of \(E \).

For each \(k \in \mathcal{P} \), consider the unitary operator \(D_k : L^2(\tilde{B}_k) \to L^2_{l(k)}(B_k) \) defined by
\[D_k(F)(\xi) := \left[F\left(\xi + \left(n_{k,1} - 1 \right) \frac{2\pi}{r} \right) , \ldots , F\left(\xi + \left(n_{k,l(k)} - 1 \right) \frac{2\pi}{r} \right) \right]^T, \quad F \in L^2{\tilde{B}_k} , \]
where \(L^2_{l(k)}(B_k) \) denotes the Hilbert product space \(L^2(B_k) \times \cdots \times L^2(B_k) \) \((l(k) \text{ times}) \).

Now, for each \(k \in \mathcal{P} \) we consider the \(N \times l(k) \) matrix with entries in \(L^2(B_k) \)
\[G_k(\xi) := [D_k(g_1)(\xi), \ldots , D_k(g_N)(\xi)]^T = \left[g_i(\xi + (n_{k,j} - 1) \frac{2\pi}{r}) \right]_{1 \leq i \leq N, 1 \leq j \leq l(k)} , \]
and the \(l(k) \times l(k) \) matrix with entries in \(L^4(B_k) \)
\[H_k(\xi) := G_k^*(\xi)G_k(\xi) , \]
where \(G_k^*(\xi) \) denotes the adjoint of the matrix \(G_k(\xi) \), being
\[g_i(\xi) := \frac{1}{2\pi} Z_{\psi_i}(a_i, \xi) \in L^2[\sigma(V)] , \quad 1 \leq i \leq N . \]

Let \(\lambda_{\min,k}(\xi) \) (respectively \(\lambda_{\max,k}(\xi) \)) be the smallest (respectively the largest) eigenvalue of the positive semidefinite matrix \(H_k(\xi) \) and the constants
\[\alpha_G := \min_{k \in \mathcal{P}} \| \lambda_{\min,k} \|_{L^0(B_k)} \quad \text{and} \quad \beta_G := \max_{k \in \mathcal{P}} \| \lambda_{\max,k} \|_{L^\infty(B_k)} . \]

Here \(\|u\|_{L^0(E)} \) and \(\|u\|_{L^\infty(E)} \) denote the essential infimum and the essential supremum of a measurable function \(u \) on \(E \). We are now ready to state and prove our main sampling results.

Theorem 3.3. Assume that the function \(Z_{\psi_j}(a_j, \xi) \in L^\infty[\sigma(V)] \) for \(1 \leq j \leq N \). Then the following statements are equivalent:
(iii) \(\alpha_G > 0 \).

Proof. Condition (i) implies condition (ii) trivially. Assume condition (ii): applying the isomorphism \(T_\varphi^{-1} : V(\varphi) \rightarrow L^2[\sigma(V)] \) to (3.5) gives:

\[
(3.6) \quad F(\xi) = \sum_{j=1}^{N} \sum_{n \in \mathbb{Z}} \langle F(\xi), g_j(\xi)e^{-irn\xi} \rangle_{L^2[\sigma(V)]} s_j,n(\xi), \quad F \in L^2[\sigma(V)],
\]

where \(\{s_j,n(\xi) : 1 \leq j \leq N, n \in \mathbb{Z}\} \) is a frame for \(L^2[\sigma(V)] \). By using Lemma 3.5 (i) below, the sequence \(\{g_j(\xi)e^{-irn\xi} : 1 \leq j \leq N, n \in \mathbb{Z}\} \) is a Bessel sequence in \(L^2[\sigma(V)] \). The expansion (3.6) on \(L^2[\sigma(V)] \) implies that the sequence \(\{g_j(\xi)e^{-irn\xi} : 1 \leq j \leq N, n \in \mathbb{Z}\} \) must be a frame for \(L^2[\sigma(V)] \) (see Lemma 5.6.2 in [5]). Hence, condition (iii) holds by using Lemma 3.5 (ii) below.

Finally assume condition (iii): the sequence \(\{g_j(\xi)e^{-irn\xi} : 1 \leq j \leq N, n \in \mathbb{Z}\} \) with \(g_j(\xi) = \frac{1}{2\pi}Z_\psi(a_j, \xi) \) is a frame for \(L^2[\sigma(V)] \) by Lemma 3.5 (ii) below. Let \(\{s_j(\xi)e^{-irn\xi} : 1 \leq j \leq N, n \in \mathbb{Z}\} \) be a dual frame of \(\{g_j(\xi)e^{-irn\xi} : 1 \leq j \leq N, n \in \mathbb{Z}\} \) (cf. Lemma 3.6 below). Thus we have the following frame expansion in \(L^2[\sigma(V)]\):

\[
(3.7) \quad F(\xi) = \sum_{j=1}^{N} \sum_{n \in \mathbb{Z}} \langle F(\xi), g_j(\xi)e^{-irn\xi} \rangle_{L^2[\sigma(V)]} s_j(\xi)e^{-irn\xi}, \quad F \in L^2[\sigma(V)].
\]

Applying the isomorphism \(T_\varphi : L^2[\sigma(V)] \rightarrow V(\varphi) \) to (3.7) gives (3.4) with \(S_j = T_\varphi(s_j) \), \(1 \leq j \leq N \), which proves condition (i). \(\square \)

For later use, notice that \(\alpha_G > 0 \) implies \(l(k) \leq N \) for all \(k \in \mathcal{P} \). For \(N = r = 1 \) in Theorem 3.3, we obtain:

Corollary 3.4. Let \(\mathcal{L} \) be an LTI system of type (i), (ii) or (iii). There is a frame \(\{S(t-n) : n \in \mathbb{Z}\} \) for \(V(\varphi) \) such that for each \(f \in V(\varphi) \)

\[
(3.8) \quad f(t) = \sum_{n \in \mathbb{Z}} (\mathcal{L}f)(a+n)S(t-n), \quad t \in \mathbb{R}
\]

if and only if

\[
(3.9) \quad 0 < \|Z_\psi(a, \xi)\|_{L^p[\sigma(V)]} \leq \|Z_\psi(a, \xi)\|_{L^\infty[\sigma(V)]} < \infty.
\]
Moreover, in this case,

\begin{equation}
\hat{S}(\xi) = \frac{\hat{\varphi}(\xi)}{Z_\psi(a, \xi)} \chi_{\text{supp} G_\varphi(\xi)}.
\end{equation}

Proof. Whenever \(r = 1 \), \(L(k) = \{1\} \) and \(\tilde{B}_k = B_k \) for all \(k \in \mathcal{P} \); thus \(D_k \) becomes the identity operator. Therefore, \(G_k(\xi) = g(\xi) = \frac{1}{2\pi} Z_\psi(a, \xi) \) and \(H_k(\xi) = \frac{1}{(2\pi)^2} |Z_\psi(a, \xi)|^2 \) for \(k \in \mathcal{P} \) and \(\xi \in B_k \). Hence \(0 < \alpha_G \leq \beta_G < \infty \) if and only if condition (3.9) holds. As a consequence, (3.9) implies (3.8) by Theorem 3.3. Conversely, assume that (3.8) holds. Then \(\varphi(t) = \sum_{n \in \mathbb{Z}} \psi(a + n) S(t - n) \) so that \(\hat{\varphi}(\xi) = Z_\psi(a, \xi) \hat{S}(\xi) \) and \(G_\varphi(\xi) = |Z_\psi(a, \xi)|^2 G_S(\xi) \) from which (3.9) and (3.10) follow. \(\square \)

When the impulse response \(h \) is the Dirac delta distribution \(\delta(t) \), the system \(\mathcal{L} \) is the identity operator, and Corollary 3.4 reduces to a regular shifted sampling in \(V(\varphi) \) (see Theorem 1 in [22] and Theorem 3.4 in [15]). The next technical lemma used in the proof of Theorem 3.3 enlarges the results of Lemma 3 in [9]:

Lemma 3.5. Let \(g_j \) be in \(L^2[\sigma(V)] \) for \(1 \leq j \leq N \) and let \(\alpha_G, \beta_G \) be the constants given by (3.3). Then we have:

(i) The sequence \(\{g_j(\xi)e^{-\imath n \xi} : 1 \leq j \leq N, n \in \mathbb{Z}\} \) is a Bessel sequence in \(L^2[\sigma(V)] \) if and only if \(\beta_G < \infty \), that is, \(g_j(\xi) \in L^\infty[\sigma(V)] \) for each \(1 \leq j \leq N \).

(ii) The sequence \(\{g_j(\xi)e^{-\imath n \xi} : 1 \leq j \leq N, n \in \mathbb{Z}\} \) is a frame for \(L^2[\sigma(V)] \) if and only if

\begin{equation}
0 < \alpha_G \leq \beta_G < \infty.
\end{equation}

Proof. First note that for any \(F \in L^2[\sigma(V)] \) we have

\[
(F(\xi), \overline{g_j(\xi)e^{-\imath n \xi}})_{L^2[\sigma(V)]} = \int_{\sigma(V)} F(\xi) g_j(\xi) e^{\imath n \xi} d\xi
\]

\[
= \sum_{k \in \mathcal{P}} \int_{B_k} [D_k(g_j)]^T D_k(F_k)(\xi)e^{\imath n \xi} d\xi
\]

\[
= \sum_{k \in \mathcal{P}} [D_k(g_j)]^T D_k(F_k) \chi_{B_k}(e^{\imath n \xi})_{L^2(I)},
\]

where \(F_k(\xi) := F(\xi) \chi_{B_k}(\xi) \). Since \(\{\sqrt{2\pi} e^{-\imath n \xi}\}_{n \in \mathbb{Z}} \) is an orthonormal basis for \(L^2(I) \) and the sets \(B_k \) are disjoint, we have

\[
\sum_{n \in \mathbb{Z}} |(F(\xi), \overline{g_j(\xi)e^{-\imath n \xi}})_{L^2[\sigma(V)]}|^2 = \frac{2\pi}{r} \left\| \sum_{k \in \mathcal{P}} D_k(g_j)^T D_k(F_k) \chi_{B_k}(\xi) \right\|^2_{L^2(I)}
\]

\[
= \frac{2\pi}{r} \sum_{k \in \mathcal{P}} \left\| D_k(g_j)^T D_k(F_k) \right\|^2_{L^2(B_k)}
\]

\[
= \frac{2\pi}{r} \sum_{k \in \mathcal{P}} \langle D_k(g_j)^T D_k(F_k), D_k(F_k) \rangle_{L^2(I)}.
\]
satisfies

\[\sum_{j=1}^{N} \sum_{n \in \mathbb{Z}} |\langle F(\xi), g_{j}(\xi)e^{-irn\xi} \rangle|^2 \]

Moreover, if \(\beta \in \mathbb{B} \) can be constructed as in [13, Lemma 2.4]. Extend Lemma 3.6.

For (i), assume that \(\beta_G < \infty \). By using (3.12), for any \(F \in L^2[\sigma(V)] \) we have

\[
\sum_{j=1}^{N} \sum_{n \in \mathbb{Z}} |\langle F(\xi), g_{j}(\xi)e^{-irn\xi} \rangle| L^2[\sigma(V)]^2 \leq \frac{2\pi}{r} \beta_G \sum_{k \in \mathcal{P}} \langle D_k(F_k), D_k(F_k) \rangle L^2_{l(\mathcal{B})}(B_k)
\]

so that \(\left\{ g_{j}(\xi)e^{-irn\xi} : 1 \leq j \leq N, n \in \mathbb{Z} \right\} \) is a Bessel sequence with bound \(\frac{2\pi}{r} \beta_G \).

On the other hand, for any constant \(K \) with \(0 \leq K < \beta_G \) we have that \(K < \|\lambda_{\max,k}(\xi)\|_\infty \) for some \(k \in \mathcal{P} \). Then there is a measurable set \(E \subset B_k \) of positive measure such that \(\lambda_{\max,k}(\xi) \geq K \) on \(E \). Choose a measurable vector-valued function \(F_k(\xi) := \{ F_{k,j}(\xi) \} \) on \(E \) such that \(\sum_{j=1}^{l(k)} \| F_{k,j}(\xi) \|^2 = 1 \) on \(E \) and \(H_k(\xi)F_k(\xi) = \lambda_{\max,k}(\xi)F_k(\xi) \) on \(E \). This function can be constructed as in [13, Lemma 2.4]. Extend \(F_k(\xi) \) over \(B_k \) by setting \(F_k(\xi) = 0 \) on \(B_k \setminus E \). Thus \(F_k \in L^\infty_{l(\mathcal{B})(B_k)} \) and \(H_k(\xi)F_k(\xi) = \lambda_{\max,k}(\xi)F_k(\xi) \) on \(B_k \). Let \(F \) be such that \(F = D_k^{-1}(F_k) \) on \(\tilde{B}_k \) and \(F(\xi) = 0 \) on \(\sigma(V) \setminus \tilde{B}_k \). This function \(F \) belongs to \(L^\infty[\sigma(V)] \) and satisfies

\[
\sum_{j=1}^{N} \sum_{n \in \mathbb{Z}} |\langle F(\xi), g_{j}(\xi)e^{-irn\xi} \rangle| L^2[\sigma(V)]^2 \leq \frac{2\pi}{r} \beta_G \sum_{k \in \mathcal{P}} \langle H_k(\xi)F_k(\xi), F_k(\xi) \rangle L^2_{l(\mathcal{B})}(B_k)
\]

As a consequence, \(\frac{2\pi}{r} \beta_G \) is the optimal Bessel bound for \(\left\{ g_{j}(\xi)e^{-irn\xi} : 1 \leq j \leq N, n \in \mathbb{Z} \right\} \). Moreover, if \(\beta_G = \infty \), the sequence \(\left\{ g_{j}(\xi)e^{-irn\xi} : 1 \leq j \leq N, n \in \mathbb{Z} \right\} \) cannot be a Bessel sequence. Finally, note that the spectral norm of a matrix is equivalent to its Frobenius norm. Hence \(\beta_G < \infty \) if and only if all entries of \(H_k(\xi) \) for \(k \in \mathcal{P} \) are essentially bounded which is also equivalent to \(g_j \in L^\infty[\sigma(V)] \) for \(1 \leq j \leq N \).

For (ii), assume that \(0 < \alpha_G \leq \beta_G < \infty \). A similar reasoning as the one in (i) gives that \(\left\{ g_{j}(\xi)e^{-irn\xi} : 1 \leq j \leq N, n \in \mathbb{Z} \right\} \) is a frame for \(L^2[\sigma(V)] \), where \(\frac{2\pi}{r} \beta_G \geq \frac{2\pi}{r} \alpha_G \) are the optimal upper and lower bounds. In particular, if either \(\alpha_G = 0 \) or \(\beta_G = \infty \), then \(\left\{ g_{j}(\xi)e^{-irn\xi} : 1 \leq j \leq N, n \in \mathbb{Z} \right\} \) cannot be a frame for \(L^2[\sigma(V)] \).

It is useful to note that condition (3.11) is equivalent to \(g_j \in L^\infty[\sigma(V)] \) for \(1 \leq j \leq N \) and \(\min_{k \in \mathcal{P}} \| \det H_k(\xi) \|_{L^0(\mathcal{B}_k)} > 0 \).

Lemma 3.6. Let \(g_j \) be in \(L^2[\sigma(V)] \) for \(1 \leq j \leq N \) such that \(\left\{ g_{j}(\xi)e^{-irn\xi} : 1 \leq j \leq N, n \in \mathbb{Z} \right\} \) is a frame for \(L^2[\sigma(V)] \). Then any dual frame of \(\left\{ g_{j}(\xi)e^{-irn\xi} : 1 \leq j \leq N, n \in \mathbb{Z} \right\} \) having
the form \(\{ s_j(\xi)e^{-irn\xi} : 1 \leq j \leq N, n \in \mathbb{Z} \} \) is obtained from the equation
\[
(3.13) \quad \frac{2\pi}{r}S_k(\xi)^\top = G_k(\xi)^\dagger + E_k(\xi)(I_N - G_k(\xi)G_k(\xi)^\dagger), \quad k \in \mathcal{P},
\]
where \(I_N \) is the \(N \times N \) identity matrix, \(E_k(\xi) \) is any arbitrary \(l(k) \times N \) matrix with entries in \(L^\infty(B_k) \), \(G_k(\xi)^\dagger := [G_k(\xi)^*G_k(\xi)]^{-1}G_k(\xi) \) is the pseudo-inverse matrix of \(G_k(\xi) \),
\[
(3.14) \quad S_k(\xi) := [D_k(s_{1,k})(\xi), \ldots, D_k(s_{N,k})(\xi)]^\top
\]
and \(s_{j,k}(\xi) = s_j(\xi)\chi_{\mathbb{R}_k}(\xi) \) for \(1 \leq j \leq N \).

Proof. Assume that the sequence \(\{ s_j(\xi)e^{-irn\xi} : 1 \leq j \leq N, n \in \mathbb{Z} \} \) is a dual frame of the sequence \(\{ g_j(\xi)e^{-irn\xi} : 1 \leq j \leq N, n \in \mathbb{Z} \} \). Then \(s_j \in L^\infty[\sigma(V)] \) for \(1 \leq j \leq N \). For any \(F_1 \) and \(F_2 \) in \(L^2[\sigma(V)] \) we also have (cf. Lemma 5.6.2 in [5]):
\[
\langle F_1, F_2 \rangle_{L^2[\sigma(V)]} = \sum_{j=1}^{N} \sum_{n \in \mathbb{Z}} \langle F_1, s_j e^{-irn\xi} \rangle_{L^2[\sigma(V)]} \langle g_j e^{-irn\xi}, F_2 \rangle_{L^2[\sigma(V)]}
\]
\[
(3.15) \quad = \frac{2\pi}{r} \sum_{k \in \mathcal{P}} \langle D_k(F_1,k), S_k(\xi)G_k(\xi)D_k(F_2,k) \rangle_{L^2[\sigma(V)]}
\]
with \(S_k(\xi) \) as in (3.14). Since
\[
\langle F_1, F_2 \rangle_{L^2[\sigma(V)]} = \sum_{k \in \mathcal{P}} \langle D_k(F_1,k), D_k(F_2,k) \rangle_{L^2[\sigma(V)]},
\]
(3.15) implies that \(\frac{2\pi}{r}S_k(\xi) \) must be a left inverse of the matrix \(G_k(\xi) \). Finally, the right hand side of (3.13) is a left inverse of \(G_k(\xi) \) and any left inverse \(\frac{2\pi}{r}S_k(\xi)^\top \) of \(G_k(\xi) \) is obtained from (3.13) by choosing \(E_k(\xi) = \frac{2\pi}{r}S_k(\xi)^\top \). \(\square \)

One can easily check that the canonical dual frame of \(\{ g_j(\xi)e^{-irn\xi} : 1 \leq j \leq N, n \in \mathbb{Z} \} \) is obtained from (3.13) by choosing \(E_k(\xi) = 0 \) for each \(k \in \mathcal{P} \).

Next we give the Riesz basis counterpart to Theorem 3.3:

Theorem 3.7. There exists a Riesz basis \(\{ S_{j,n}(t) : 1 \leq j \leq N, n \in \mathbb{Z} \} \) for \(V(\varphi) \) for which the sampling expansion (3.5) holds on \(V(\varphi) \) if and only if
\[
(3.16) \quad 0 < \alpha_G \leq \beta_G < \infty \quad \text{and} \quad l(k) = N \quad \text{for all} \quad 1 \leq k \leq m.
\]
Moreover, in this case,
\[
(3.17) \quad S_{j,n}(t) = S_j(t-rn), \quad 1 \leq j \leq N \quad \text{and} \quad n \in \mathbb{Z};
\]
\[
(3.18) \quad (L_jS_k)(at+rn) = \delta_{j,k}\delta_{n,0}, \quad 1 \leq j,k \leq N \quad \text{and} \quad n \in \mathbb{Z};
\]
\[
(3.19) \quad |\sigma(V)| = 2\pi \frac{N}{r} \quad \text{(which implies} \quad N \leq r \text{).}
\]

Proof. Assuming (3.16), Lemma 3.8 below proves that the sequence \(\{ g_j(\xi)e^{-irn\xi} : 1 \leq j \leq N, n \in \mathbb{Z} \} \) is a Riesz basis for \(L^2[\sigma(V)] \). Thus we have the Riesz basis expansion (3.7), where \(\{ s_j(\xi)e^{-irn\xi} : 1 \leq j \leq N, n \in \mathbb{Z} \} \) is the dual Riesz basis of \(\{ g_j(\xi)e^{-irn\xi} : 1 \leq j \leq N, n \in \mathbb{Z} \} \). The isomorphism \(T_\varphi \) gives the sampling expansion (3.5), where \(S_{j,n}(t) = S_j(t-rn) \) and \(S_j(t) = T_\varphi(s_j(\xi))(t) \). Conversely assume that the Riesz basis expansion (3.5) holds on \(V(\varphi) \). Applying the isomorphism \(T_\varphi^{-1} \) to (3.5) gives the Riesz basis expansion (3.6) on \(L^2[\sigma(V)] \).
Then \(\{g_j(\xi)e^{-irn\xi} : 1 \leq j \leq N, n \in \mathbb{Z} \} \) must be the dual Riesz basis of \(\{s_{j,n}(\xi) : 1 \leq j \leq N, n \in \mathbb{Z} \} \) so that (3.16) holds by Lemma 3.8 below. Since \(\{s_{j,n}(\xi) : 1 \leq j \leq N, n \in \mathbb{Z} \} \) is the dual Riesz basis of \(\{g_j(\xi)e^{-irn\xi} : 1 \leq j \leq N, n \in \mathbb{Z} \} \), \(s_{j,n}(\xi) = s_j(\xi)e^{-irn\xi} \) where \(s_j \in L^\infty[\sigma(V)] \) (cf. Lemma 3.6). Therefore, \(S_{j,n}(t) = T_{\varphi}(s_j(\xi)e^{-irn\xi})(t) = S_j(t - r n) \), where \(S_j = T_{\varphi}(s_j) \), \(1 \leq j \leq N \), so that (3.17) holds. Applying the sampling formula (3.4) to \(S_k \) gives

\[
S_k(t) = \sum_{j=1}^{N} \left(\mathcal{L}_{j}S_k \right) (a_j + r n) S_j(t - r n), \quad t \in \mathbb{R},
\]

from which (3.18) follows. Finally (3.19) follows immediately from (3.16) having in mind that \(|\sigma(V)| = \sum_{k \in \mathcal{P}} l(k)|B_k| \).

Choose \(\sigma(V) = [0, 2\pi] \), \(\varphi \) becomes a Riesz generator for \(V(\varphi) \). As a consequence, Theorems 3.3 and 3.7 are the extended frame versions of Theorem 2 and Corollary 1 in [9]; there \(\varphi \) is a Riesz generator and the LTI system \(\mathcal{L}_j \) has impulse response \(h_j \) in \(L^1(\mathbb{R}) \cap L^2(\mathbb{R}) \) for \(1 \leq j \leq N \).

Lemma 3.8. Let \(g_j \) be a function in \(L^2[\sigma(V)] \) for \(1 \leq j \leq N \) and let \(\alpha_G, \beta_G \) be the constants given by (3.3). Then, the sequence \(\{g_j(\xi)e^{-irn\xi} : 1 \leq j \leq N, n \in \mathbb{Z} \} \) is a Riesz basis for \(L^2[\sigma(V)] \) if and only if

\[
0 < \alpha_G \leq \beta_G < \infty \quad \text{and} \quad l(k) = N \quad \text{for all} \quad 1 \leq k \leq m.
\]

Proof. Note that \(\{g_j(\xi)e^{-irn\xi} : 1 \leq j \leq N, n \in \mathbb{Z} \} \) is a Riesz basis for \(L^2[\sigma(V)] \) if and only if it is complete set in \(L^2[\sigma(V)] \) and there are constants \(0 < A \leq B \) such that

\[
A\|\mathbf{c}\|^2 \leq \left\| \sum_{j=1}^{N} \sum_{n \in \mathbb{Z}} c_j(n)g_j(\xi)e^{-irn\xi} \right\|^2_{L^2[\sigma(V)]} \leq B\|\mathbf{c}\|^2,
\]

where \(\mathbf{c} = (c_1, \ldots, c_N) \in \ell^2_N(\mathbb{Z}) \) and \(\|\mathbf{c}\|^2 := \sum_{j=1}^{N} \sum_{n \in \mathbb{Z}} |c_j(n)|^2 \). For the middle term in (3.21) we have

\[
\left\| \sum_{j=1}^{N} \sum_{n \in \mathbb{Z}} c_j(n)g_j(\xi)e^{-irn\xi} \right\|^2_{L^2[\sigma(V)]} = \int_{\sigma(V)} \left\| \sum_{j=1}^{N} g_j(\xi)\tilde{c}_j(r\xi) \right\|^2 \, d\xi
\]

\[
= \sum_{k \in \mathcal{P}} \sum_{j=1}^{l(k)} \int_{B_k} |g^*(\xi + (n_{k,j} - 1)\frac{2\pi}{r})\tilde{c}(r\xi)|^2 \, d\xi
\]

\[
= \sum_{k \in \mathcal{P}} \left(\sum_{j=1}^{l(k)} g(\xi + (n_{k,j} - 1)\frac{2\pi}{r})g^*(\xi + (n_{k,j} - 1)\frac{2\pi}{r})\tilde{c}(r\xi)\tilde{c}(r\xi) \right)_{L^2(B_k)}
\]

\[
= \sum_{k \in \mathcal{P}} \langle \tilde{H}_k(\xi)\tilde{c}(r\xi), \tilde{c}(r\xi) \rangle_{L^2(B_k)}
\]

where \(g(\xi) := [g_1(\xi), \ldots, g_N(\xi)]^\top, \tilde{c}(\xi) := [\tilde{c}_1(\xi), \ldots, \tilde{c}_N(\xi)]^\top \) and \(\tilde{H}_k(\xi) := G_k(\xi)G_k^*(\xi) \).

On the other hand,

\[
\|\mathbf{c}\|^2 = \frac{r}{2\pi} \|\tilde{c}(r\xi)\|^2_{L^2(\mathbb{R})} = \frac{r}{2\pi} \sum_{k=1}^{m} \|\tilde{c}(r\xi)\|^2_{L^2(B_k)}
\]
Hence, condition (3.21) is equivalent to
\begin{equation}
A_r \sum_{k=1}^{m} \|\tilde{c}(r\xi)\|_{L^{2}_{B_k}(B_k)}^2 \leq \sum_{k \in \mathcal{P}} \langle \tilde{H}_k(\xi)\tilde{c}(r\xi), \tilde{c}(r\xi) \rangle_{L^{2}_{B_k}(B_k)} \leq B_r \sum_{k=1}^{m} \|\tilde{c}(r\xi)\|_{L^{2}_{B_k}(B_k)}^2,
\end{equation}
which holds if and only if $\mathcal{P} = \{1, 2, \ldots, m\}$ and $0 < \tilde{\alpha}_G \leq \tilde{\beta}_G < \infty$, where $\tilde{\alpha}_G := \min_{1 \leq k \leq m} \lambda_{\min,k} \|0\|$, $\tilde{\beta}_G := \max_{1 \leq k \leq m} \lambda_{\max,k} \|0\|$, and $\lambda_{\min,k}$ (respectively $\lambda_{\max,k}$) is the smallest (respectively the largest) eigenvalue of the matrix $\tilde{H}_k(\xi)$.

Now assume that $\{\tilde{g}_j(\xi)e^{-i\pi n\xi} : 1 \leq j \leq N, n \in \mathbb{Z}\}$ is a Riesz basis for $L^2[\sigma(V)]$. Since (3.11) holds, we deduce that $l(k) \leq N$ for any $k \in \mathcal{P}$; but we also have (3.22) so that $N \leq l(k)$ for any $1 \leq k \leq m$. Hence, $l(k) = N$ for all $1 \leq k \leq m$. Conversely, assume that (3.20) holds. Thus, $\{\tilde{g}_j(\xi)e^{-i\pi n\xi} : 1 \leq j \leq N, n \in \mathbb{Z}\}$ is a complete set in $L^2[\sigma(V)]$ since it is a frame for $L^2[\sigma(V)]$. For each $1 \leq k \leq m$, since $\alpha_G I_N \leq \tilde{H}_k(\xi) \leq \beta_G I_N$, for any $\mathbf{F}_k \in L^2_N(B_k)$ we have
\begin{equation}
\alpha_G \|\mathbf{F}_k\|_{L^2_N(B_k)}^2 \leq \|G_k(\xi)\mathbf{F}_k(\xi)\|_{L^2_N(B_k)}^2 \leq \beta_G \|\mathbf{F}_k\|_{L^2_N(B_k)}^2,
\end{equation}
and there exists the inverse matrix $G_k(\xi)^{-1}$ a.e. with entries essentially bounded. Then $G_k(\xi)$ and $G_k^*(\xi)$ are isomorphisms from $L^2_N(B_k)$ onto $L^2_N(B_k)$. Hence, for any $k = 1, 2, \ldots, m$ we have
\begin{equation}
\alpha_G \|\mathbf{F}_k\|_{L^2_N(B_k)}^2 \leq \|G_k^*(\xi)\mathbf{F}_k(\xi)\|_{L^2_N(B_k)}^2 = (\tilde{H}_k(\xi)\mathbf{F}_k(\xi), \mathbf{F}_k(\xi))_{L^2_N(B_k)} \leq \beta_G \|\mathbf{F}_k\|_{L^2_N(B_k)}^2,
\end{equation}
for any $\mathbf{F}_k \in L^2_N(B_k)$. Thus (3.22) or, equivalently, (3.21) holds, from which we deduce that the sequence $\{\tilde{g}_j(\xi)e^{-i\pi n\xi} : 1 \leq j \leq N, n \in \mathbb{Z}\}$ is a Riesz basis for $L^2[\sigma(V)]$.

For the particular case $N = 1$, Theorem 3.7 reads:

Corollary 3.9. Let \mathcal{L} be an LTI system of type (i), (ii) or (iii). Then, there exists a Riesz basis $\{S_n(t) : n \in \mathbb{Z}\}$ for $V(\varphi)$ such that, for any $f \in V(\varphi)$, the sampling formula
\begin{equation}
f(t) = \sum_{n \in \mathbb{Z}} (\mathcal{L}f)(a + rn) S_n(t), \quad t \in \mathbb{R},
\end{equation}
holds if and only if
\begin{equation}
0 < \|Z_0(a, \xi)\|_{L^0[\sigma(V)]} \leq \|Z_0(a, \xi)\|_{L^\infty[\sigma(V)]} < \infty \quad \text{and} \quad l(k) = 1 \text{ for all } 1 \leq k \leq m.
\end{equation}
Moreover, in this case:
\begin{itemize}
 \item $S_n(t) = \delta(t - rn), ~ n \in \mathbb{Z}$;
 \item $(\mathcal{L}S)(a + rn) = \delta_{0,0}, ~ n \in \mathbb{Z}$;
 \item $|\sigma(V)| = \frac{2\pi}{r}$.
\end{itemize}

Proof. Assume $l(k) = 1$ for all $1 \leq k \leq m$; for each $k = 1, 2, \ldots, m$, there is a unique integer n_k with $1 \leq n_k \leq r$ such that $\tilde{B}_k = B_k + (n_k - 1)\frac{2\pi}{r} \subseteq \sigma(V)$. Thus, $G_k(\xi) = D_k(g)(\xi) = \frac{1}{2\pi}Z_0(a, \xi + (n_k - 1)\frac{2\pi}{r})$ and $H_k(\xi) = \frac{1}{(2\pi)^2}Z_0(a, \xi + (n_k - 1)\frac{2\pi}{r})$ for $\xi \in B_k$. Hence, $0 < \alpha_G \leq \beta_G < \infty$ if and only if $0 < \|Z_0(a, \xi)\|_{L^0[\sigma(V)]} \leq \|Z_0(a, \xi)\|_{L^\infty[\sigma(V)]} < \infty$ and, as a consequence, Corollary 3.9 follows from Theorem 3.7.

Furthermore, if $r = 1$ in Corollary 3.9, then φ must be a Riesz generator since $\sigma(V) = [0, 2\pi]$ and $\tilde{S}(\xi) = \tilde{\varphi}(\xi)/[Z_0(a, \xi)]$.
Finally, it is worth to notice that in sampling formula (3.2) we may allow a rational sampling period \(r = \frac{p}{q} \), where \(p \) and \(q \) are coprime positive integers, since

\[
\{(L_j f)(a_j + rn) : n \in \mathbb{Z}\} = \{(L_j f)(a_j + r(k - 1) + pm) : 1 \leq k \leq q \text{ and } n \in \mathbb{Z}\}.
\]

4. An illustrative example

Let \(\varphi(t) = \frac{1}{2} \sin\left(\frac{t}{2}\right) = \frac{\sin\pi t}{\pi t} \) so that \(\hat{\varphi}(\xi) = \chi_{[-\frac{\pi}{2}, \frac{\pi}{2}]}(\xi) \). On \([0, 2\pi]\) we have,

\[
G_\varphi(\xi) = \begin{cases}
1 & \text{on } [0, \frac{\pi}{2}] \cup [\frac{3\pi}{2}, 2\pi] \\
0 & \text{on } (\frac{\pi}{2}, \frac{3\pi}{2})
\end{cases}
\]

so that \(\varphi \) is a continuous frame generator of \(V(\varphi) \) and \(\sigma(V) = [0, \frac{\pi}{2}] \cup [\frac{3\pi}{2}, 2\pi] \). By the Poisson summation formula, we also have

\[
C_\varphi(t) = \sum_{n \in \mathbb{Z}} |\varphi(t + n)|^2 = \frac{1}{2\pi} \left\| Z_{\varphi}(t, \cdot) \right\|_{L^2[0, 2\pi]}^2 \leq \frac{1}{2\pi} \left\| \sum_{n \in \mathbb{Z}} \hat{\varphi}(\cdot + 2n\pi) e^{it(\cdot + 2n\pi)} \right\|_{L^2[0, 2\pi]}^2 = \frac{1}{2}, \quad t \in \mathbb{R}.
\]

(a) First take \(N = 2 \), \(\hat{h}_j(\xi) = (i\xi)^{-1} \chi_{[-\frac{\pi}{2}, \frac{\pi}{2}]}(\xi) \) for \(j = 1, 2 \), \(r = 4 \) and \(a_1 = a_2 = 0 \). For any \(f \in V(\varphi) \)

\[
L_j[f](t) = f^{(j-1)}(t) \text{ for } j = 1, 2.
\]

For \(\psi_j(t) = L_j[\varphi](t) \), the Poisson summation formula gives

\[
Z_{\psi_j}(0, \xi) = \sum_{n \in \mathbb{Z}} \psi_j(n) e^{-in\xi} = \sum_{n \in \mathbb{Z}} \hat{\psi}_j(\xi + 2n\pi), \quad j = 1, 2,
\]

so that

\[
Z_{\psi_1}(0, \xi) = \begin{cases}
1 & \text{on } [0, \frac{\pi}{2}] \cup [\frac{3\pi}{2}, 2\pi] \\
0 & \text{on } (\frac{\pi}{2}, \frac{3\pi}{2})
\end{cases}
\]

and

\[
Z_{\psi_2}(0, \xi) = \begin{cases}
i\xi & \text{on } [0, \frac{\pi}{2}] \\
0 & \text{on } (\frac{\pi}{2}, \frac{3\pi}{2}) \\
i(\xi - 2\pi) & \text{on } [\frac{3\pi}{2}, 2\pi]
\end{cases}
\]

Hence, \(Z_{\psi_j}(0, \xi) \in L^\infty[0, 2\pi] \) for \(j = 1, 2 \).

On the other hand, since \(\sigma(V) = [0, \frac{\pi}{2}] \cup [\frac{3\pi}{2}, 2\pi] \) and \(I = [0, \frac{\pi}{2}] \), \(m = 1 \) and \(L(1) = \{1, 4\} \) so that \(l(1) = 2 \). Hence,

\[
2\pi G_1(\xi) = \begin{bmatrix} 1 & 1 \\ i\xi & i(\xi - \frac{\pi}{2}) \end{bmatrix}, \quad 0 \leq \xi \leq \frac{\pi}{2}
\]

and consequently,

\[
(2\pi)^2 H_1(\xi) = \begin{bmatrix} 1 & \xi^2 \\ 1 + \xi(\xi - \frac{\pi}{2}) & 1 + (\xi - \frac{\pi}{2})^2 \end{bmatrix}, \quad 0 \leq \xi \leq \frac{\pi}{2}.
\]

Hence, \(\det H_1(\xi) = \det G_1(\xi)^2 = 1/(64\pi^2) \) and we deduce that \(\alpha_G > 0 \). Therefore, by using Theorem 3.7, there exists a Riesz basis \(\{S_j(t - 4n) : j = 1, 2 \text{ and } n \in \mathbb{Z}\} \) for \(V(\varphi) \) such that, for any \(f \in V(\varphi) \)

\[
f(t) = \sum_{n \in \mathbb{Z}} \{f(4n)S_1(t - 4n) + f'(4n)S_2(t - 4n)\}, \quad t \in \mathbb{R}.
\]
(b) We now take \(N = 3, \hat{h}_j(\xi) = (i\xi)^{j-1}\chi_{[-\frac{\pi}{2}, \frac{\pi}{2}]}(\xi) \) for \(j = 1, 2, 3, r = 5 \) and \(a_1 = a_2 = a_3 = 0 \). For \(f \in V(\varphi) \),
\[
\mathcal{L}_j[f](t) = f^{(j-1)}(t) \quad \text{for} \quad j = 1, 2, 3,
\]
and
\[
Z_{\psi_j}(0, \xi) = \begin{cases}
-\xi^2 & \text{on } [0, \frac{\pi}{2}] \\
0 & \text{on } (\frac{\pi}{2}, \frac{3\pi}{2}) \\
-(\xi - 2\pi)^2 & \text{on } [\frac{3\pi}{2}, 2\pi].
\end{cases}
\]
so that \(Z_{\psi_j}(0, \xi) \in L^\infty[0, 2\pi] \) for \(j = 1, 2, 3 \).

Since \(\sigma(V) = [0, \frac{\pi}{2}] \cup [\frac{3\pi}{2}, 2\pi] \) and \(I = [0, \frac{3\pi}{2}] \), \(m = 3 \) and \(\{t_j\}_{j=0}^3 = \{0, \frac{\pi}{10}, \frac{3\pi}{10}, \frac{\pi}{5}\} \), so that \(L(1) = \{1, 2, 5\}, L(2) = \{1, 5\}, L(3) = \{1, 4, 5\} \). We then have
\[
2\pi G_1(\xi) = \begin{bmatrix} 1 & i\xi & 1 \\
-\xi^2 & -(\xi + \frac{2\pi}{5})^2 & -(\xi - \frac{2\pi}{5})^2
\end{bmatrix}, \quad \xi \in B_1 = (0, \frac{\pi}{10});
\]
\[
2\pi G_2(\xi) = \begin{bmatrix} 1 & i\xi \xi(\frac{2\pi}{5}) \\
-\xi^2 & -(\xi + \frac{2\pi}{5})^2 & -(\xi - \frac{2\pi}{5})^2
\end{bmatrix}, \quad \xi \in B_2 = (\frac{\pi}{10}, \frac{3\pi}{10});
\]
\[
2\pi G_3(\xi) = \begin{bmatrix} 1 & i\xi & 1 \\
-\xi^2 & -(\xi + \frac{2\pi}{5})^2 & -(\xi - \frac{2\pi}{5})^2
\end{bmatrix}, \quad \xi \in B_3 = (\frac{3\pi}{10}, \frac{2\pi}{5}).
\]
Thus, for \(H_j(\xi) = G_j^*(\xi)G_j(\xi), j = 1, 2, 3 \), we have \(\det H_1(\xi) = \det H_3(\xi) = (2/125)^2 \) and
\[
(2\pi)^4 \det H_2(\xi) = (x^2 - \xi^2)^2 + (x^2 - \xi^2)^2 + (x - \xi)^2 \geq (x - \xi)^2 = \frac{4\pi^2}{25},
\]
where \(x = \xi - \frac{2\pi}{5} \); hence \(\alpha_G > 0 \). Therefore, by Theorem 3.3, there exists a frame \(\{S_j(t-5n) : j = 1, 2, 3 \text{ and } n \in \mathbb{Z}\} \) for \(V(\varphi) \) such that, for each \(f \in V(\varphi) \) we have
\[
f(t) = \sum_{n \in \mathbb{Z}} \{f(5n)S_1(t - 5n) + f'(5n)S_2(t - 5n) + f''(5n)S_3(t - 5n)\}, \quad t \in \mathbb{R}.
\]

Acknowledgments. The first author is supported by the grant MTM2009-08345 from the Spanish Ministerio de Ciencia e Innovaci´on (MICINN). The 3rd author is partially supported by Korea Research Foundation (Grant No. 2009-0084583).

References

1Departamento de Matemáticas, Universidad Carlos III de Madrid
28911 Leganés, Madrid, Spain
e-mail: agarcia@math.uc3m.es

2Department of Bio and Brain Engineering, KAIST
Daejeon 305-701, Korea
e-mail: franzkim@gmail.com

3National Institute of Mathematical Sciences
Daejeon 305-340, Korea
e-mail: khhkwon@kaist.edu, ykj@nims.re.kr