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Abstract
The classical Kramer sampling theorem, which provides a method for obtaining or-

thogonal sampling formulas, can be formulated in a more general nonorthogonal setting.
In this setting, a challenging problem is to characterize the situations when the obtained
nonorthogonal sampling formulas can be expressed as Lagrange-type interpolation series.
In this article a necessary and sufficient condition is given in terms of the zero removing
property. Roughly speaking, this property concerns the stability of the sampled functions
on removing a finite number of their zeros.
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1 Statement of the problem

The classical Kramer sampling theorem provides a method for obtaining orthogonal sampling
theorems [5, 13, 15, 22]. The statement of this general result is as follows. Let K be a complex
function defined on D× I, where I ⊂ R is an interval and D is an open subset of R, and such
that for every t ∈ D the sections K( · , t) are in L2(I). Assume that there exists a sequence of
distinct real numbers {tn} ⊂ D, indexed by a subset of Z, such that {K(x, tn)} is a complete
orthogonal sequence of functions for L2(I). Then for any f of the form

f(t) =
∫
I
F (x)K(x, t) dx , t ∈ D , (1)

where F ∈ L2(I), we have

f(t) =
∑
n

f(tn)Sn(t) , t ∈ D , (2)
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with

Sn(t) :=

∫
I K(x, t)K(x, tn) dx∫

I |K(x, tn)|2 dx
. (3)

The series in (2) converges absolutely and uniformly on subsets of D where ‖K(·, t)‖L2(I) is
bounded.

For instance, taking I = [−π, π], K(x, t) = eitx and {tn = n}n∈Z, we get the well–known
Whittaker–Shannon–Kotel’nikov sampling formula

f(t) =
∞∑

n=−∞
f(n)

sinπ(t− n)
π(t− n)

, t ∈ R ,

for functions in L2(R) whose Fourier transform has support in [−π, π].
Now, if we take I = [0, 1], K(x, t) =

√
xtJν(xt) and {tn}, the sequence of the positive

zeros of the Bessel function Jν of ν-th order with ν > −1, then

f(t) =
∑
n

f(tn)
2
√
tntJν(t)

J ′ν(tn)(t2 − t2n)
, t ∈ R ,

for every f of the form f(t) =
∫ 1
0 F (x)

√
xtJν(xt)dx, where F ∈ L2(0, 1) (see [13, p. 83]).

The Kramer sampling theorem has played a very significant role in sampling theory,
interpolation theory, signal analysis and, generally, in mathematics (see, for instance, the
survey articles [3, 4]).

In [6] an extension of the Kramer sampling theorem has been obtained to the case when the
kernel is analytic in the sampling parameter t ∈ D ⊆ C. Namely: Assume that the Kramer
kernel K is an entire function for any fixed x ∈ I, and that the function h(t) =

∫
I |K(x, t)|2dx

is locally bounded on D ⊆ C. Then any function f defined by (1) is an entire function, as
are all the sampling functions (3).

A straightforward discrete version of Kramer’s theorem can be obtained. Namely, let
K(n, z) be a kernel such that, as function of n, the sequence {K(n, z)} ∈ `2(I) for any
z ∈ D ⊆ C, where I is a countable index set. Assume that, for a suitable sequence {zn} ⊂ D,
the sequence {K(·, zn)} is an orthogonal basis for `2(I). Then, any function of the form
f(z) =

∑
n∈I cnK(n, z), where {cn} ∈ `2(I), can be expanded by means of a sampling series

like (2) (see [8]). As examples of discrete kernels for which a sampling formula works we can
consider discrete kernels K(n, z) := Pn(z), n ∈ N0 := N ∪ {0} and z ∈ C, where {Pn(z)}n∈N0

denotes a sequence of orthonormal polynomials associated with an indeterminate Hamburger
or Stieltjes moment problem (see [8, 9] for the details).

The Kramer sampling theorem has been the cornerstone for a significant mathematical
literature of sampling theory associated with differential or difference problems. See, among
others, [1, 5, 8, 9, 13, 22] and the references therein.

Thus an abstract analytic formulation of the Kramer sampling theorem raises in a natural
way: LetH be a complex, separable Hilbert space with inner product 〈·,−〉H, and let {xn}∞n=1

be a Riesz basis forH. Suppose K is aH-valued function defined on C. For each x ∈ H, define
the function fx(z) = 〈K(z), x〉H on C, and let HK denote the collection of all such functions
fx. Furthermore, each element in HK is an entire function if and only if K is analytic on C.
In this setting, an abstract version of the analytic Kramer theorem is obtained assuming the
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existence of two sequences, {zn}∞n=1 in C and {an}∞n=1 in C \ {0}, such that K(zn) = anxn
for each n ∈ N. Namely, for any fx ∈ HK we have

fx(z) =
∞∑
n=1

fx(zn)
Sn(z)
an

, z ∈ C ,

where Sn(z) = 〈K(z), yn〉, n ∈ N, being {yn}∞n=1 the dual Riesz basis of {xn}∞n=1 (see Sections
2 and 4 infra for all the details).

A challenging problem is to give a necessary and sufficient condition to ensure that the
above sampling formula can be written as a Lagrange-type interpolation series, that is

fx(z) =
∞∑
n=1

fx(zn)
P (z)

(z − zn)P (zn)
, z ∈ C ,

where P denotes an entire function having only simple zeros at all the points of the sequence
{zn}∞n=1. Roughly speaking, the aforesaid necessary and sufficient condition concerns the
stability of the functions belonging to the space HK on removing a finite number of their
zeros; this is an ubiquitous algebraic property in the mathematical literature (see Section 3
infra) and it will be called the zero-removing property along the paper.

Let us consider the following toy example: Given a basis {e1, e2} in C2, for the kernel
K(z) := z2(e2 − e1) + e1 consider the corresponding space HK which coincides with

{
az2 +

b | a, b ∈ C
}

. Obviously, this space has not the zero-removing property: if we remove a
zero from an element in HK the resulting polynomial does not belong to HK . Besides, the
sampling formula f(z) = f(0)(1 − z2) + f(1)z2 which holds in HK cannot be written as a
Lagrange interpolation formula. The study of all these topics will be carried out throughout
the remaining sections.

2 Some preliminaries on the space HK

Suppose we are given a separable complex Hilbert space H and an abstract kernel K which
is nothing but a H-valued function on C. Set fx(z) := 〈K(z), x〉H and denote by HK the
collection of all such functions fx, x ∈ H. It is a reproducing kernel Hilbert space (RKHS in
short) coming from the transforms K(z), z ∈ C, and corresponding to the reproducing kernel
(z, w) 7→ 〈K(z),K(w)〉H. Notice that the mapping T given by

H 3 x T7−→ fx ∈ HK (4)

is an antilinear mapping fromH ontoHK (henceforth we omit the subscript x for denoting the
elements in HK). The mapping T is injective if and only if the set {K(z)}z∈C is a complete
set in H. In particular, if there exists a sequence {zn}∞n=1 in C such that {K(zn)}∞n=1 is a
Riesz basis for H, then T is an antilinear isometry from H onto HK . Recall that a Riesz basis
in a separable Hilbert space H is the image of an orthonormal basis by means of a boundedly
invertible operator. Any Riesz basis {xn}∞n=1 has a unique biorthonormal (dual) Riesz basis
{yn}∞n=1, i.e., 〈xn, ym〉H = δn,m, such that the expansions

x =
∞∑
n=1

〈x, yn〉H xn =
∞∑
n=1

〈x, xn〉H yn
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hold for every x ∈ H (see [21] for more details and proofs).
The convergence in the norm ‖ · ‖HK

implies pointwise convergence which is uniform on
those subsets of C where the function z 7→ ‖K(z)‖H is bounded.

Like in the classical case the following result holds: The space HK is a RKHS of entire
functions if and only if the kernel K is analytic in C ([20, p. 266]). Another characterization
of the analyticity of the functions in HK is given in terms of Riesz bases. Suppose that a
Riesz basis {xn}∞n=1 for H is given and let {yn}∞n=1 be its dual Riesz basis; expanding K(z),
for each fixed z ∈ C, with respect to the basis {xn}∞n=1 we obtain

K(z) =
∞∑
n=1

〈K(z), yn〉H xn ,

where the coefficients 〈K(z), yn〉H as functions in z are in HK . The following result holds:
The space HK is a RKHS of entire functions if and only if all the functions

Sn(z) := 〈K(z), yn〉H, z ∈ C (5)

are entire and ‖K(·)‖H is bounded on compact sets of C (see [11]).

3 The zero-removing property

In this section we introduce the zero-removing property for classes of entire functions.

Definition 1 (Zero-removing property) A set A of entire functions has the zero-removing
property (ZR property hereafter) if for any g ∈ A and any zero w of g the function g(z)/(z−w)
belongs to A.

The ZR property is ubiquitous in mathematics; for instance, the set PN (C) of polynomials
with complex coefficients of degree less or equal N has the ZR property. Another more
involved examples sharing this property are:

• The entire functions in the Pólya class have the ZR property [2, p. 15]. Recall that an
entire function E(z) is said to be of Pólya class if it has no zeros in the upper half-plane,
if |E(x− iy)| ≤ |E(x+ iy)| for y > 0, and if |E(x+ iy)| is a nondecreasing function of
y > 0 for each fixed x.

• The entire functions in the Paley-Wiener class PWπ of bandlimited functions to [−π, π],
i.e., PWπ :=

{
f ∈ L2(R) ∩ C(R), supp f̂ ⊆ [−π, π]

}
, where f̂ stands for the Fourier

transform of f , satisfy the ZR property; it follows from the classical Paley-Wiener theo-
rem [21, p.101] which says that this space can be written as PWπ =

{
f entire function :

|f(z)| ≤ Aeπ|z| , f|R ∈ L2(R)
}

. From this characterization the ZR property immedi-
ately comes out.

• In general, de Branges spaces H(E) with strict de Branges function E have the ZR
property [2, p. 52]. Let E be an entire function verifying |E(x− iy)| < |E(x+ iy)| for
all y > 0. The de Branges space H(E) is the set of all entire functions F such that

‖F‖2E :=
∫ ∞
−∞

∣∣∣F (t)
E(t)

∣∣∣2 dt <∞,
4



and such that both ratios F/E and F ∗/E, where F ∗(z) := F (z̄), are of bounded type
and of non-positive mean type in the upper half-plane.

The structure function or de Branges function E has no zeros in the upper half plane. A
de Branges function E is said to be strict if it has no zeros on the real axis. We require
that F/E and F ∗/E be of bounded type and nonpositive mean type in C+. A function
is of bounded type if it can be written as a quotient of two bounded analytic functions
in C+ and it is of nonpositive mean type if it grows no faster than e εy for each ε > 0
as y → ∞ on the positive imaginary axis {iy : y > 0}. Note that the Paley-Wiener
space PWπ is a de Branges space for the structure function Eπ(z) = exp(−iπz).

Assume that the spaceHK in Section 2 comes from a polynomial kernel K with coefficients
in H; concerning the ZR property in HK , the following result holds:

Theorem 1 The space HK associated with a polynomial kernel K(z) :=
∑N

n=0 pnz
n, where

pn ∈ H and pN 6= 0, has the ZR property if and only if the set {p0, p1, . . . , pN} is linearly
independent in H.

Proof: Consider f(z) = aNz
n + · · ·+ a1z + a0 ∈ HK with aN 6= 0; there exists x ∈ H such

that f(z) = 〈K(z), x〉 and, consequently, aj = 〈pj , x〉 for j = 0, 1, . . . , N . If the space HK has
the ZR property and α0, α1, . . . , αN are the roots of the polynomial f then the constant aN
and the polynomials aN (z−αN ), aN (z−αN )(z−αN−1), . . . , aN (z−αN )(z−αN−1) · · · (z−α1)
belong to HK . Let b0, b1, . . . , bN ∈ C such that

bNpN + bN−1pN−1 + · · ·+ b0p0 = 0 . (6)

The vector (bN , . . . , b0) is orthogonal in CN+1 to any vector (cN , . . . , c0) ∈ CN+1 with cNzN +
· · · + c0 ∈ HK . As a consequence, since aN ∈ HK , b0aN = 0, which implies that b0 = 0.
Analogously, since aN (z − αN ) belongs to HK we have that aNb1 − (aNαN )b0 = 0 and
consequently b1 = 0. Proceeding iteratively it is straightforward to obtain that b2 = · · · =
bN−1 = 0; finally, from (6) we conclude that bN = 0.

Now suppose that the set {p0, p1, . . . , pN} is linearly independent in H. In this case,
the mapping Φ : H → CN+1 given by Φ(x) = (〈p0, x〉, . . . , 〈pN , x〉) is surjective. As a
consequence, any complex polynomial of degree less than or equal to N belongs to HK . Let
f(z) = aNz

n + · · · + a1z + a0 ∈ HK and let w ∈ C be a root of f . Hence f(z)/(z − w) =
c0 + c1z + · · ·+ cN−1z

N−1 is a polynomial of degree less than or equal to N − 1. Since Φ is
onto there exists x ∈ H such that Φ(x) = (c0, c1, . . . , cN−1, 0). From the definition of Φ we
conclude that f(z)/(z − w) = 〈K(z), x〉, that is, the function f(z)/(z − w) ∈ HK .

�
Giving a necessary and sufficient for a general analytic kernel K remains as an open prob-

lem. It is worth to mention that a straightforward application of Cauchy-Schwarz inequality
shows that entire functions in HK inherit the finite order and the type of the vector-valued
entire function K provided it has finite order.

As examples of spaces HK where the ZR property does not hold let us mention the
following:

• Consider the spaces HKi , i = 1, 2, associated with the analytic kernels Ki : C→ L2[0, π]
defined by K1(z)[x] := sin zx and K2(z)[x] := cos zx. The space HK1 corresponds to
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the space of odd bandlimited functions in PWπ while HK2 corresponds to the space of
even bandlimited functions in PWπ. It is clear that the ZR property does not hold in
these spaces.

• Let K : C → H be an analytic kernel such that K(z0) = 0 for some z0 ∈ C. Then all
the functions in the associated space HK have a zero at z0 and the ZR property does
not hold in HK . Indeed, let f be a nonzero entire function in HK and let r denote the
order of its zero z0. The function f(z)/(z − z0)r is not in HK since it does not vanish
at z0.

• A little more sophisticated example is the following: For m ≥ 2 let Km : C→ L2[−π, π]
be defined as Km(z) = 1√

2π
eizm· ∈ L2[−π, π]. It is straightforward to show that Km

is an analytic kernel; the corresponding space HKm does not have the ZR property.
Indeed, expanding Km(z) as power series around the origin we obtain

[Km(z)](x) =
∞∑
k=0

(ix)kzmk

k!
= 1 + ixzm − x2z2m

2!
− i

x3z3m

3!
+ · · · .

Thus, for any function f(z) = 〈Km(z), F 〉 with F ∈ L2[−π, π] we have

f(z) =
∞∑
k=0

ckz
mk ,

where ck = 〈(ix)k/k!, F 〉, k = 0, 1, . . . . Let G ∈ L2[−π, π] \ {0} be such that G is
orthogonal to K(0) and let g(z) = 〈Km(z), G〉. Since 〈K(0), G〉 = 0 we have g(0) = 0.
Hence, the Taylor expansion of g(z)/z around the origin has the form

g(z)
z

= d1z
m−1 + d2z

2m−1 + · · ·

where dk = 〈(ix)k/k!, G〉, k = 1, 2, . . . . Since G is not the zero function the function
g(z)/z does not belong to HKm .

4 Lagrange-type interpolation series

In this section we introduce the analytic Kramer kernels K for which a nonorthogonal sam-
pling theorem in HK holds. We prove a converse result: from a sampling formula in HK we
deduce when K is an analytic Kramer kernel. Finally, we prove the main result: a neces-
sary and sufficient condition ensuring that the Kramer sampling result can be expressed as
a Lagrange-type interpolation series.

4.1 The abstract Kramer sampling result

Consider the data
{zn}∞n=1 ∈ C and {an}∞n=1 ∈ C \ {0}. (7)

Definition 2 (Analytic Kramer kernel) An analytic kernel K : C −→ H is said to be an
analytic Kramer kernel (with respect to the data (7)) if it satisfies K(zn) = anxn, n ∈ N, for
some Riesz basis {xn}∞n=1 of H.
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A sequence {Sn}∞n=1 of functions in the space HK is said to have the interpolation property
(with respect to the data (7)) if

Sn(zm) = an δn,m . (8)

Thus, an analytic kernel K is an analytic Kramer one if and only if the sequence of functions
{Sn}∞n=1 in HK given by (5), where {yn}∞n=1 is the dual Riesz basis of {xn}∞n=1, has the
interpolation property with respect to the same data (7).

Concerning the existence of analytic Kramer kernels, it has been proved in [11] that,
associated with any arbitrary sequence of complex numbers {zn}∞n=1 such that limn→∞ |zn| =
+∞, there exists an analytic Kramer kernel K.

Under the notation introduced so far an abstract version of the classical Kramer sampling
theorem sampling [15] holds in HK ; this is a slight modification of a sampling result in [14].
For notational purposes we include its proof.

Theorem 2 (Kramer sampling theorem) Let K : C −→ H be an analytic Kramer ker-
nel, and assume that the interpolation property (8) holds for some sequences {zn}∞n=1 in C
and {an}∞n=1 in C \ {0}. Let HK be the corresponding RKHS of entire functions. Then any
f ∈ HK can be recovered from its samples {f(zn)}∞n=1 by means of the sampling series

f(z) =
∞∑
n=1

f(zn)
Sn(z)
an

, z ∈ C , (9)

where the reconstruction functions Sn are given in (5). The series converges absolutely and
uniformly on compact subsets of C.

Proof: First notice that limn→∞ |zn| = +∞; otherwise the sequence {zn}∞n=1 contains a
bounded subsequence and hence, the entire function Sn ≡ 0 for all n ∈ N which contradicts
(8). The anti-linear mapping T given by (4) is a bijective isometry between H and HK . As
a consequence, the functions {Sn = T (yn)}∞n=1 form a Riesz basis for HK ; let {Tn}∞n=1 be its
dual Riesz basis. Expanding any f ∈ HK in this basis we obtain

f(z) =
∞∑
n=1

〈f, Tn〉HK
Sn(z) .

Moreover,

〈f, Tn〉HK
= 〈x, xn〉H =

〈
K(zn)
an

, x

〉
H

=
f(zn)
an

. (10)

Since a Riesz basis is an unconditional basis, the sampling series will be pointwise uncondi-
tionally convergent and hence, absolutely convergent. The uniform convergence is a standard
result in the setting of the RKHS theory since z 7→ ‖K(z)‖H is bounded on compact subsets
of C.

�
Riesz bases theory (see, for instance, [21]) assures the existence of two positive constants

0 < A ≤ B such that

A‖f‖2HK
≤
∞∑
n=1

|f(zn)/an|2 ≤ B‖f‖2HK
for all f ∈ HK , (11)
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i.e., ‖f‖s :=
(∑∞

n=1 |f(zn)/an|2
)1/2

defines an equivalent norm in HK . Following [12] we
can say that the data (7) is a sampling set for HK ; here the sequence of samples belongs to
a weighted `2 space. In [12] the authors characterize the reproducing kernel Hilbert spaces
having a fixed sampling set.

The Whittaker-Shannon-Kotel’nikov sampling formula in PWπ becomes a particular case
of formula (9) in Theorem 2. Indeed, any f ∈ PWπ can be written as

f(z) =
1√
2π

∫ π

−π
f̂(w)eizw dw = 〈 eizw√

2π
, f̂ 〉L2[−π,π] , z ∈ C .

The Fourier kernel K(z) :=
eiz·
√

2π
∈ L2[−π, π] is an analytic Kramer kernel for the data

{zn = n}n∈Z and {an = 1}n∈Z. In this case, as {einw/
√

2π}n∈Z is an orthonormal basis for
L2[−π, π] we get

Sn(z) =
1

2π
〈eiz·, ein·〉L2[−π,π] =

sinπ(z − n)
π(z − n)

, z ∈ C .

As a consequence, we obtain the WSK sampling formula in PWπ:

f(z) =
∞∑

n=−∞
f(n)

sinπ(z − n)
π(z − n)

, z ∈ C . (12)

The series converges absolutely and uniformly on horizontal strips of the complex plane.
It is worth to remark that a kernel K can be an analytic Kramer kernel with respect to

different data (7). For instance, the Fourier kernel is also an analytic Kramer kernel with
respect to the data {zn = n+ α}n∈Z where α ∈ R and {an = 1}n∈Z. More generally, it is an
analytic Kramer kernel with respect to any data {tn}n∈Z ⊂ R and {an = 1}n∈Z, where the
points tn satisfy Kadec’s condition supn |tn − n| < 1/4 since the sequence {eitnw/

√
2π}n∈Z is

a Riesz basis for L2[−π, π] [21, p. 42].

4.2 A converse result

An interesting converse problem is to decide whether a sampling formula as (9), pointwise
convergent in HK , implies the Kramer kernel condition in definition 2 for K. From formula
(9) in Theorem 2 we derive that:

• From (5), for each z ∈ C, the sequence {Sn(z)}∞n=1 ∈ `2(N).

• The sequence
{
f(zn)/an

}∞
n=1

belongs to `2(N) for any f ∈ HK , and

•
∑∞

n=1 αnSn(z) = 0 for all z ∈ C and {αn}∞n=1 ∈ `2(N) implies αn = 0 for all n ∈ N, due
to the uniqueness of a Riesz basis expansion in the RKHS HK .

It is worth to point out that these conditions are also sufficient to prove that K is an analytic
Kramer kernel.

Theorem 3 Let HK be the range of a mapping T as in (4) considered as a RKHS with
reproducing kernel k(z, w) = 〈K(z),K(w)〉H. Let {Sn}∞n=1 be a sequence in HK such that
{Sn(z)}∞n=1 belongs to `2(N) for each z ∈ C. Suppose that the following conditions are fulfilled:
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(i)
∑∞

n=1 αn Sn(z) = 0 for all z ∈ C and {αn}∞n=1 in `2(N) implies αn = 0 for all n.

(ii) There exist sequences {zn}∞n=1 in C and {an}∞n=1 in C \ {0} such that{
f(zn)
an

}∞
n=1

∈ `2(N) and f(z) =
∞∑
n=1

f(zn)
Sn(z)
an

, for any f ∈ HK ,

where the sampling series is pointwise convergent in C.

Then, the sequence {Sn}∞n=1 is a Riesz basis for HK and the kernel K of the mapping T
evaluated at z ∈ C can be expressed as K(z) =

∑∞
n=1 Sn(z) yn, where {yn}∞n=1 is the dual

Riesz basis of the Riesz basis {xn = T −1(Sn)}∞n=1 in H. In particular, K(zn) = anyn for any
n ∈ N.

Proof: By defining k̃(z, w) :=
∑∞

n=1 Sn(z)Sn(w), we obtain a positive definite function which
defines a RKHS H̃, such that H̃ ⊆ HK . Condition (i) implies that the sequence {Sn}∞n=1 is
an orthonormal basis for H̃ (see [18]).

Now we prove that H̃ = HK and that the identity mapping H̃ ↪→ HK is continuous. Take
f ∈ HK , by condition ii), the sequence {f(zn)a−1

n }∞n=1 is in `2(N). As a consequence, the
series

∑∞
n=1 f(zn)a−1

n Sn converges in the norm of H̃. By the reproducing kernel property, we
have that the series

∑∞
n=1 f(zn)a−1

n Sn(z) is pointwise convergent. Comparing this with what
we get from the sampling formula for f we deduce that f =

∑∞
n=1 f(zn)a−1

n Sn, where the
convergence is in H̃ and, consequently, f ∈ H̃.

Next we show the continuity of the identity mapping by applying the closed graph theo-
rem. Indeed, let {fn}∞n=1 be a sequence such that fn → f in H̃ and fn → g in HK as n→∞.
Using the reproducing property in both HK and H̃, for z ∈ C we have

|fn(z)− f(z)| ≤ ‖fn − f‖ eH
√
k̃(z, z) ;

|fn(z)− g(z)| ≤ ‖fn − g‖HK

√
k(z, z) .

Therefore, limn→∞ fn(z) = f(z) = g(z) for each z ∈ C, and hence f = g.
Since it is also surjective, we infer that the norms ‖ · ‖HK

and ‖ · ‖ eH are equivalent from
the open mapping theorem. As a consequence, the orthonormal basis {Sn}∞n=1 in H̃ is a Riesz
basis for HK .

Assuming that the mapping T is one-to-one, the sequence {xn = T −1(Sn)}∞n=1 is a Riesz
basis for H; denote by {yn}∞n=1 its dual Riesz basis. Expanding K(z) with respect to {yn}∞n=1,
for each fixed z ∈ C we obtain

K(z) =
∞∑
n=1

〈K(z), xn〉H yn =
∞∑
n=1

Sn(z) yn ,

i.e., the required expansion for K(z).
Notice that the interpolatory condition Sn(zm) = amδn,m comes out of a direct application

of condition (ii) to Sn, followed by condition (i).
As to the case when, a priori, T is not known to be one-to-one, let {xn}∞n=1 be a sequence

in H with P (xn) 6= 0 for all n, where P denotes the orthogonal projection onto the closed
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subspace (Ker T )⊥. Consider Sn = T (xn) ∈ HK , and suppose that these functions satisfy
the hypotheses in Theorem 3. In this case, {Sn}∞n=1 is a Riesz basis for HK . Consequently,
since Sn = T [P (xn)]and T |P (Ker T ) = 0, we obtain that {P (xn)}∞n=1 is a Riesz basis for
P (H) = (Ker T )⊥. The result comes out taking into account the orthogonal sum H =
(Ker T )⊥ ⊕ (Ker T ). �

4.3 Lagrange-type interpolation series

A more difficult question concerns whether the sampling expansion (9) can be written, in
general, as a Lagrange-type interpolation series. For instance, for f ∈ PWπ the WSK formula
(12) can be written as the Lagrange-type interpolation series

f(z) =
∞∑

n=−∞
f(n)

P (z)
(z − n)P ′(n)

, z ∈ C ,

by taking P (z) = (sinπz)/π, an entire function having only simple zeros at Z.
The case where the sequence {xn}∞n=1 in Definition 2 is an orthonormal basis for H was

studied in [7]: A necessary and suficient condition involves the ZR property. Next we prove
that the same necessary and sufficient condition holds in the general case of analytic Kramer
kernels K involving Riesz bases.

Theorem 4 Let HK be a RKHS of entire functions obtained from an analytic Kramer kernel
K with respect to the data {zn}∞n=1 ⊂ C and {an}∞n=1 ∈ C \ {0}, i.e., K(zn) = an xn, n ∈ N,
for some Riesz basis {xn}∞n=1 for H. Then, the sampling formula (9) for HK can be written
as a Lagrange-type interpolation series

f(z) =
∞∑
n=1

f(zn)
P (z)

(z − zn)P ′(zn)
, z ∈ C , (13)

where P denotes an entire function having only simple zeros at {zn}∞n=1 if and only if the
space HK satisfies the ZR property.

Proof: For the sufficient condition we have to prove that sampling formula (9) can be written
as a Lagrange-type interpolation series (13) for some entire function P . First, we prove that
the only zeros of the sampling function Sn are given by {zr}r 6=n. Suppose that Sn(w) = 0,
then by hypothesis the function Sn(z)/(z − w) is in HK . Hence, the function

z − zn
z − w

Sn(z) = Sn(z) +
w − zn
z − w

Sn(z)

also belongs to HK . If w /∈ {zr}r 6=n, the function z−zn
z−w Sn(z) in HK vanishes at the sequence

{zr}∞r=1 which implies that Sn ≡ 0, to give a contradiction. In addition, the zeros of Sn are
simple; indeed, suppose that zm is a multiple zero of Sn. Proceeding as above, the function
z−zn
z−zm

Sn(z) belongs to HK and vanishes at {zr}∞r=1 which again implies that Sn ≡ 0.
Consequently, choosing an entire function Q having only simple zeros at {zn}∞n=1, for each

n ∈ N there exists an entire function An without zeros such that (z− zn)Sn(z) = Q(z)An(z),
z ∈ C. Next, we prove that there exists an entire function A without zeros and a sequence
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{σn}∞n=1 in C\{0} such that An(z) = σnA(z) for all z ∈ C. For m 6= n the function z−zn
z−zm

Sn(z)
in HK has its zeros at {zr}r 6=m. Thus the sampling formula (9) gives

z − zn
z − zm

Sn(z) = [(zm − zn)S′n(zm)]
Sm(z)
am

, z ∈ C .

Fixing m = 1, we conclude that An(z) = σnA(z) where A = A1 and σn = (z1−zn)S′n(z1) 6= 0
for n ∈ N \ {1} and σ1 = 1. Hence, Sn(z) = σnQ(z)A(z)

z−zn
for z 6= zn and Sn(zn) = an =

σnQ
′(zn)A(zn). Substituting in (9) we obtain the Lagrange-type interpolation series (13)

where P (z) = A(z)Q(z).

For the necessary condition, assume that the sampling formula in HK takes the form
of a Lagrange-type interpolation series (13). Given g ∈ HK , there exists x ∈ H such that
g(z) = 〈K(z), x〉, z ∈ C. Assuming that g(w) = 0, we have to prove that the function
g(z)/(z − w) belongs to HK . The sampling expansion for g at w gives

∞∑
n=1

g(zn)
P (w)

(w − zn)P ′(zn)
= 0 . (14)

We distinguish two cases:
(i) w ∈ C \ {zn}∞n=1. As P (w) 6= 0, from (14) we obtain

∞∑
n=1

g(zn)
1

(w − zn)P ′(zn)
= 0 .

Thus,

g(z) =
∞∑
n=1

g(zn)
P (z)

(z − zn)P ′(zn)
−
∞∑
n=1

g(zn)
P (z)

(w − zn)P ′(zn)

= (z − w)
∞∑
n=1

g(zn)
P (z)
P ′(zn)

1
(z − zn)(zn − w)

.

Therefore, the entire function G(z) := g(z)/(z − w) can be recovered from its samples at
{zn}∞n=1 through the formula

G(z) =
∞∑
n=1

G(zn)
P (z)

(z − zn)P ′(zn)
, z ∈ C . (15)

Moreover, the function G is inHK because G(z) = 〈K(z), y〉H, where y ∈ H has the expansion
y =

∑∞
n=1〈y, xn〉yn with respect to the dual Riesz basis {yn}∞n=1 of {xn}∞n=1 where the

coefficients are given by {
〈y, xn〉 :=

1
zn − w

〈x, xn〉
}∞
n=1

∈ `2(N) .

Indeed, sampling formula (13) for Sn gives Sn(z) = an
P (z)

(z−zn)P ′(zn) . Hence, by using the
biorthogonality 〈xn, yn〉 = δn,m , we obtain

〈K(z), y〉 =
∞∑
n=1

Sn(z)〈x, xn〉
w − zn

= G(z) , z ∈ C ,
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where we have used (15), and the result that 〈x, xn〉 = g(zn)/an, n ∈ N.

(ii) w = zm for some m ∈ N. As g(zm) = 0, the sampling expansion for g reads

g(z) =
∞∑
n=1
n6=m

g(zn)
P (z)

(z − zn)P ′(zn)
, z ∈ C .

Setting P (z) = (z − zm)Qm(z) we have P ′(z) = Qm(z) + (z − zm)Q′m(z) and hence

P ′(zk) =

{
(zk − zm)Q′m(zk) if k 6= m

Qm(zm) if k = m

Hence,
g(z)
z − zm

=
∞∑
n=1
n6=m

g(zn)
zn − zm

Qm(z)
(z − zn)Q′m(zn)

, z ∈ C . (16)

Using the uniform convergence of the series in (16) we deduce that this series defines a
continuous function. Hence, taking the limit as z → zm we obtain

g′(zm) =
∞∑
n=1
n6=m

g(zn)
zn − zm

Qm(zm)
(zm − zn)Q′m(zn)

(17)

Now we prove that

g(z)
z − zm

=
∞∑
n=1
n6=m

g(zn)
zn − zm

P (z)
(z − zn)P ′(zn)

+ g′(zm)
P (z)

(z − zm)P ′(zm)
. (18)

Indeed, substituting (17) into (18) we obtain

∞∑
n=1
n6=m

[ g(zn)
zn − zm

P (z)
(z − zn)P ′(zn)

+
g(zn)
zn − zm

Qm(z)
(zm − zn)Q′m(zn)

]

=
∞∑
n=1
n6=m

g(zn)
zn − zm

Qm(z)
Q′m(zn)

[ z − zm
(zn − zm)(z − zn)

− 1
zn − zm

]

=
∞∑
n=1
n6=m

g(zn)
zn − zm

Qm(z)
(z − zn)Q′m(zn)

=
g(z)
z − zm

.

Thus, defining y ∈ H by the expansion y =
∑∞

n=1〈y, xn〉yn where the coefficients {〈y, xn〉}∞n=1

in `2(N) are given by

〈y, xn〉 :=


〈x,xn〉
zn−zm

if n 6= m

g′(zm)
am

if n = m
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and proceeding as in case (i), it may be shown that

g(z)
z − zm

= 〈K(z), y〉 , z ∈ C ,

which proves that the function g(z)/(z− zm) belongs to HK . This concludes the proof of the
theorem.

�
Some comments concerning Theorem 4 are in order:

1. In the proof of Theorem 4 we have found that the entire function P satisfies:

(z − zn)Sn(z) = σnP (z) , z ∈ C ,

for some sequence {σn}∞n=1 ∈ C \ {0}. In the case where P can be factorized as
P (z) = A(z)Q(z) where Q denotes a canonical product having its simple zeros at
{zn}∞n=1 and A is an entire function without zeros, then the Lagrange-type interpolation
series (13) can be expressed as

f(z) =
∞∑
n=1

f(zn)
A(z)
A(zn)

P (z)
(z − zn)P ′(zn)

, z ∈ C .

2. In particular, as de Branges space satisfy the ZR property the orthogonal sampling
formulas in these spaces, first proved in [16], can be expressed as Lagrange-type inter-
polation series (see [11] for some nontrivial examples).

3. It is worth to mention that if one particular sampling formula (9) can be written as a
Lagrange-type interpolation formula, then the same occurs for all the sampling formulas
(9) obtained from other compatible data (7). Besides, if the space HK does not satisfy
the ZR property, we conclude that it does not exist any data (7) for which the kernel
K is an analytic Kramer kernel and the associated sampling formula (9) can be written
as a Lagrange-type interpolation series.

4.4 Some illustrative examples

Closing the paper we show some examples illustrating Theorems 2 and 4.

4.4.1 Classical polynomial interpolation

Let PN (C) be the set of polynomials with complex coefficients of degree less or equal N . As
we proved in Theorem 1, PN (C) coincides with the corresponding HK space where K(z) :=∑N

n=0 pnz
n being {p0,p1, · · · ,pN} any basis for the euclidean space H := CN+1. Consider

N + 1 different points {zn}Nn=0 in C; it is easy to prove that K is an analytic Kramer kernel
with respect the data {zn}Nn=0 and {an = 1}Nn=0. Indeed, the set {K(zn) = qn}Nn=0 is linearly
independent in CN+1 by using Vandermonde determinants, i.e., it forms a (Riesz) basis for
CN+1. Thus, Theorems 2 and 4 give, for any f ∈ PN (C)

f(z) =
N∑
n=0

f(zn)Sn(z) =
N∑
n=0

f(zn)
P (z)

(z − zn)P ′(zn)
, z ∈ C ,

where Sn(z) = 〈K(z),q∗n〉, being {q∗n}Nn=0 the dual basis of {qn}Nn=0 in CN+1, and P (z) =∏N
n=0(z − zn).
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4.4.2 The Paley-Wiener-Levinson theorem revisited

Let {zn}n∈Z be a sequence in C for which supn |Re zn − n| < 1/4 and supn |Im zn| <∞. It is
known that the system {eiznw/

√
2π}n∈Z is a Riesz basis for L2[−π, π] (see [21, p. 196]). The

Fourier kernel K(z) =
eiz·√
2π
∈ L2[−π, π] is an analytic Kramer kernel for the data {zn}n∈Z

and {an = 1}n∈Z. Thus, Theorems 2 and 4 give, for any f ∈ PWπ

f(z) =
∞∑

n=−∞
f(zn)Sn(z) =

∞∑
n=−∞

f(zn)
P (z)

(z − zn)P ′(zn)
, z ∈ C ,

where, for n ∈ Z, the sampling function Sn(z) = 〈K(z), hn〉L2[−π,π], being {hn(w)}n∈Z the
dual Riesz basis of {eiznw/

√
2π}n∈Z in L2[−π, π], and P is the entire function having only

simple zeros at {zn}n∈Z. Since a result from Titchmarsh [19] assures that the functions in
PWπ are completely determined by their zeros, we derive that, up to a constant factor, the
entire function P coincides with the infinite product

(z − z0)
∞∏
n=1

(
1− z

zn

)(
1− z

z−n

)
.

Indeed, the function S0 ∈ PWπ has only simple zeros at {zm}m6=0 (S0(zm) = δ0,m). Suppose
on the contrary that s /∈ {zm}m 6=0 is a zero of S0. According to the classical Paley-Wiener
theorem, the function S(z) := (z − z0)S0(z)/(z − s) belongs to PWπ and vanishes at every
zn. If we take into account the completeness of the Riesz basis {eiznw/

√
2π}n∈Z, this implies

that S ≡ 0, a contradiction. Therefore, by using the Titchmarsh’s result, the function S0

coincides, up to a constant factor, with the (convergent) product
∏∞
n=1

(
1 − z

zn

)(
1 − z

z−n

)
.

Since Theorem 4 gives (z − zn)Sn(z) = σnP (z) for all n ∈ Z, we obtain the desired result.

4.4.3 Finite cosine transform

It is known that any function f(z) = 〈cos zx, F (x)〉L2[0,π], z ∈ C, where F ∈ L2[0, π], can be
expanded as the sampling formula [13, p. 5]

f(z) = f(0)
sinπz
πz

+
2
π

∞∑
n=0

f(n)
(−1)nz sinπz
z2 − n2

, z ∈ C .

This sampling formula cannot be expressed as a Lagrange-type interpolation series since, as
we noticed in Section 3, the corresponding HK space does not satisfy the ZR property.

4.4.4 An example involving a Sobolev space

Finally, we give an example taken from [10] of a RKHS HK , built from the Sobolev Hilbert
space H := H1(−π, π), where the ZR property fails. Namely: consider the Sobolev Hilbert
space H1(−π, π) with its usual inner product

〈f, g〉1 =
∫ π

−π
f(x) g(x) dx+

∫ π

−π
f ′(x) g′(x) dx , f, g ∈ H1(−π, π) .
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The sequence {einx}n∈Z∪{sinhx} forms an orthogonal basis for H1(−π, π): It is straightfor-
ward to prove that the orthogonal complement of {einx}n∈Z in H1(−π, π) is a one-dimensional
space for which sinhx is a basis. For a fixed a ∈ C \ Z we define a kernel

Ka : C −→ H1(−π, π)
z −→ Ka(z) ,

by setting
[Ka(z)](x) = (z − a) eizx + sinπz sinhx , for x ∈ (−π, π) .

Clearly, Ka defines an analytic Kramer kernel. Expanding Ka(z) ∈ H1(−π, π) in the former
orthogonal basis we obtain

Ka(z) = [1− i(z − a)] sinπz sinhx+ (z − a)
∞∑

n=−∞

1 + zn

1 + n2
sinc(z − n)einx .

As a consequence, Theorem 2 gives the following sampling result in HKa : Any function
f ∈ HKa can be recovered from its samples {f(a)} ∪ {f(n)}n∈Z by means of the sampling
formula

f(z) = [1− i(z − a)]
sinπz
sinπa

f(a) +
∞∑

n=−∞
f(n)

z − a
n− a

1 + zn

1 + n2
sinc(z − n) .

The function (z− a) sinc z belongs to HKa since (z− a) sinc z = 〈Ka(z), 1/2π〉1 for all z ∈ C.
However, by using the sampling formula for HKa it is straightforward to check that the
function sinc z does not belong to HKa ; as a consequence, the above sampling formula cannot
be expressed as a Lagrange-type interpolation series.
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