Sampling in reproducing kernel Banach spaces

Antonio G. García and Alberto Portal

Departamento de Matemáticas, Universidad Carlos III de Madrid Departamento de Matemática Aplicada, ETSIT, Universidad Politécnica de Madrid

Hilbert spaces

Consider a Hilbert space \mathcal{H} of functions $f: \Omega \longrightarrow \mathbb{C}$.

 \mathcal{H} is a **reproducing kernel** Hilbert **space (RKHS)** if for each $t \in \Omega$ the evaluation functional at t, $\mathcal{E}_t(f) := f(t)$ for $f \in \mathcal{H}$, is continuous on \mathcal{H} .

Banach spaces

New framework

Consider a Banach space \mathcal{B} of functions $f : \Omega \longrightarrow \mathbb{C}$ such that for each $f \in \mathcal{B}$, its norm $||f||_{\mathcal{B}}$ vanishes if and only if, as a function, f(t) = 0 for all $t \in \Omega$.

A **reproducing kernel Banach space** on Ω is a reflexive Banach space \mathcal{B} of functions on Ω (**RKBS**) for which \mathcal{B}^* is isometric to a Banach space $\tilde{\mathcal{B}}$ of functions on Ω and the point evaluation functionals are continuous on both \mathcal{B} and $\tilde{\mathcal{B}}$.

The identification $\widetilde{\mathcal{B}}$ of \mathcal{B}^* is not unique [5]. Denote the chosen identification as \mathcal{B}^* and define the bilinear form on $\mathcal{B} \times \mathcal{B}^*$

Sampling in an RKBS: The case of *L^p* **shift-invariant spaces**

Preliminaries

A measurable function $f : \mathbb{R} \to \mathbb{C}$ belongs to $\mathcal{L}^{p}(\mathbb{R})$, where $1 \le p \le \infty$, whenever the function $\tilde{f}(t) := \sum_{n \in \mathbb{Z}} |f(t-n)|$ is an element of $L^{p}[0,1]$. In this case, we define $|f|_{p} := \|\tilde{f}\|_{L^{p}[0,1]}$. Endowed with this norm, the space $(\mathcal{L}^{p}(\mathbb{R}), |\cdot|_{p})$ becomes a Banach space (see [3]). Given a function φ in $\mathcal{L}^{\infty}(\mathbb{R})$, for $1 \le p < \infty$ we consider the L^{p} shift-invariant space

 $V_{\varphi}^{p} := \overline{\operatorname{span}}_{L^{p}(\mathbb{R})} \{\varphi(t-n)\}_{n \in \mathbb{Z}} \subset L^{p}(\mathbb{R}).$ If in addition the sequence $\{\varphi(t-n)\}_{n \in \mathbb{Z}}$ is an An average sampling formula in V_{φ}^{p} For any $f \in V_{\varphi}^{p}$, consider the sequence of samples $\{(Cf)(n)\}_{n \in \mathbb{Z}}$, where the **convolution system** C satisfies:

(a) $(Cf)(t) := [f * h](t), t \in \mathbb{R}$, with $h \in \mathcal{L}^{q}(\mathbb{R}^{d})$ and *q* satisfying 1/p + 1/q = 1; or

(b) (Cf)(t) := f(t + a) for some fixed $a \in \mathbb{R}$.

Note that $\{(Cf)(n)\}_{n\in\mathbb{Z}} \in \ell^p(\mathbb{Z}) \text{ since the in-equalities } \|\{h * f(n)\}_{n\in\mathbb{Z}}\|_p \leq \|h\|_q \|f\|_p \text{ (see [3, p. 220]) in the first case, and } \|a * b\|_{\ell^p} \leq \|a\|_{\ell^p} \|b\|_{\ell^1} \text{ in the second one.}$

The Riesz representation theorem gives a unique function $k: \Omega \times \Omega \longrightarrow \mathbb{C}$ such that

• { $k(\cdot, t) : t \in \Omega$ } $\subset \mathcal{H}$, and

• $f(t) = \langle f, k(\cdot, t) \rangle_{\mathcal{H}}, \quad t \in \Omega,$ $f \in \mathcal{H}.$

The function k is called the **re-producing kernel** of \mathcal{H} .

 $(u, v^*)_{\mathcal{B}} := v^*(u), \quad u \in \mathcal{B}, v^* \in \mathcal{B}^*.$

Suppose that \mathcal{B} is an RKBS on Ω . Then there exists a unique function $k : \Omega \times \Omega \longrightarrow \mathbb{C}$ such that the following statements hold: (a) For every $t \in \Omega$, $k(\cdot, t) \in \mathcal{B}^*$ and $f(t) = (f, k(\cdot, t))_{\mathcal{B}}$ for all $f \in \mathcal{B}$. (b) For every $t \in \Omega$, $k(t, \cdot) \in \mathcal{B}$ and $f^*(t) = (k(t, \cdot), f^*)_{\mathcal{B}}$ for all $f^* \in \mathcal{B}^*$.

(c) $\overline{\text{span}}\{k(t, \cdot) : t \in \Omega\} = \mathcal{B}$ and $\overline{\text{span}}\{k(\cdot, t) : t \in \Omega\} = \mathcal{B}^*$. (d) For all $t, s \in \Omega$, $k(t, s) = (k(t, \cdot), k(\cdot, s))_{\mathcal{B}}$. This unique function k is the **reproducing kernel** for the RKBS \mathcal{B} . See [5, Th. 2].

Semi-inner products

A **semi-inner-product** on a Banach space \mathcal{B} is a function $[\cdot, \cdot] : \mathcal{B} \times \mathcal{B} \longrightarrow \mathbb{C}$, such that [6], for all $x_1, x_2, x_3 \in \mathcal{B}$ and $\alpha \in \mathbb{C}$:

1. $[x_1 + x_2, x_3] = [x_1, x_3] + [x_2, x_3].$ 2. $[\alpha x_1, x_2] = \alpha [x_1, x_2]$ and $[x_1, \alpha x_2] = \overline{\alpha} [x_1, x_2].$ 3. $[x_1, x_1] > 0$ for all $x_1 \neq 0.$

4. $|[x_1, x_2]|^2 \le [x_1, x_1][x_2, x_2].$

Every normed vector space \mathcal{B} has a semi-innerproduct that **induces its norm** [2, 4]. We assume that for all $x, y \in \mathcal{B}$ with $x \neq 0$, $\lim_{\mathbb{R} \ni t \to 0} \frac{1}{t} (\|x + ty\|_{\mathcal{B}} - \|x\|_{\mathcal{B}})$ exists and the limit is uniform on $\mathcal{S}(\mathcal{B}) \times \mathcal{S}(\mathcal{B})$ where $\mathcal{S}(\mathcal{B}) := \{x \in \mathcal{B} : \|x\|_{\mathcal{B}} = 1\}$. This guarantee the uniqueness of the semi-inner-product.

If we also assume that \mathcal{B} is uniformly convex, i.e., it is reflexive and strictly convex, then **a Riesz representation theorem holds** [2]: For each $f \in \mathcal{B}^*$ there exists a unique $x \in \mathcal{B}$ such that $f(y) = [y, x]_{\mathcal{B}}$ for all $y \in \mathcal{B}$. Moreover, $\|f\|_{\mathcal{B}^*} = \|x\|_{\mathcal{B}}$. ℓ^p -**Riesz basis** for V_{φ}^p , i.e., there exist constants $0 < A \le B$ such that

 $A\|a\|_{\ell^{p}} \le \|\sum_{n \in \mathbb{Z}} a_{n} \varphi(t-n)\|_{L^{p}(\mathbb{R})} \le B\|a\|_{\ell^{p}}$ (1)

for all $a \in \ell^p(\mathbb{Z})$, then V_{φ}^p can be expressed as

 $V_{\varphi}^{p} = \left\{ \sum_{n \in \mathbb{Z}} a_{n} \varphi(t-n) : \{a_{n}\} \in \ell^{p}(\mathbb{Z}) \right\} \subset L^{p}(\mathbb{R}).$

Since V_{φ}^{p} is a closed subspace of $L^{p}(\mathbb{R})$, it is a uniformly Fréchet differentiable and uniformly convex Banach space [6].

Assume that the functions in V_{φ}^{p} are continuous on \mathbb{R} .

Thus, the shift-invariant space V_{φ}^{p} becomes a RKBS, and the **convergence in the** L^{p} **sense implies pointwise convergence** which is uniform on \mathbb{R} since Hölder's inequality shows that

 $|f(t)| \le ||a||_{\ell^p} || \{ \varphi(t-n) \}_{n \in \mathbb{Z}} ||_{\ell^q} \le A^{-1} K ||f||_{L^p(\mathbb{R})},$

for $f \in V_{\varphi}^{p}$ and $t \in \mathbb{R}$. Following [3], there exists a dual function φ^{*} to φ (regardless p) such that

 $k(t,s) := \sum_{n \in \mathbb{Z}} \varphi(s-n) \varphi^*(t-n),$

is the **reproducing kernel** for V_{φ}^{p} . All the spaces V_{φ}^{p} , 1 have the same reproducing kernel*k*although they are not isomorphic.

Let \mathcal{A} be the Wiener algebra of the functions of the form $f(x) = \sum_{n \in \mathbb{Z}} a_n e^{-2\pi i n x}$ with $a \in \ell^1(\mathbb{Z})$. The space \mathcal{A} , normed by $||f||_{\mathcal{A}} := ||a||_1$ and with pointwise multiplication becomes a commutative Banach algebra. If $f \in \mathcal{A}$ and $f(x) \neq 0$ for every $x \in \mathbb{R}$, the function 1/f is also in \mathcal{A} by Wiener's lemma.

Assume that $G(x) := \sum_{n \in \mathbb{Z}} (\mathcal{C}\varphi)(n) e^{-2\pi i nx}$ does not vanish for any $x \in [0,1]$. Then there exists a function $S \in \mathcal{L}^{\infty}(\mathbb{R}) \cap V_{\varphi}^{p}$ such that, for any $f \in V_{\varphi}^{p}$, the following sampling formula holds:

$$f(t) = \sum_{n \in \mathbb{Z}} (\mathcal{C}f)(n) S(t-n), \qquad t \in \mathbb{R}.$$
 (2)

The convergence of the series is in the L^p -sense and uniform on \mathbb{R} .

The sequence of reconstruction functions $\{S(\cdot - n)\}_{n \in \mathbb{Z}}$ is a ℓ^p -Riesz basis for the Banach space $(V_{\varphi}^p, \|\cdot\|_p)$.

As a consequence of the Corollary above, the convergence of the series in (2) is also absolute due to the unconditional character of an ℓ^p -Riesz basis expansion.

Let \mathcal{B} be an s.i.p. RKBS on Ω and k its reproducing kernel. Then there exists a unique function $G : \Omega \times \Omega \longrightarrow \mathbb{C}$ such that $\{G(t, \cdot) : t \in \Omega\} \subset \mathcal{B}, k(\cdot, t) = (G(t, \cdot))^*, t \in \Omega$ and

> $f(t) = [f, G(t, \cdot)]_{\mathcal{B}} \text{ for all } f \in \mathcal{B}, \quad t \in \Omega,$ $f^*(t) = [k(t, \cdot), f]_{\mathcal{B}} \text{ for all } f \in \mathcal{B}, \quad t \in \Omega.$

G is the s.i.p. kernel of the s.i.p. RKBS \mathcal{B} . When G = k, we call *G* an s.i.p. reproducing kernel. An s.i.p. reproducing kernel *G* satisfies that $G(t, s) = [G(t, \cdot), G(s, \cdot)]_{\mathcal{B}}, t, s \in \Omega$.

Preliminaries

- Consider a uniformly Fréchet differentiable and uniformly convex Banach space \mathcal{B} . Its dual \mathcal{B}^* has these properties as well.
- Let $[\cdot, \cdot]_{\mathcal{B}}$ be the unique compatible semi-inner product on \mathcal{B} .
- Let X_d be a reflexive BK-space on \mathbb{N} such that
- If $\sum_{n=1}^{\infty} c_n d_n$ converges for every $c \in X_d$, then $d \in X_d^*$.
- If $\sum_{n=1}^{\infty} c_n d_n$ converges for every $d \in X_d^*$, then $c \in X_d$.
- The canonical unit vectors $\{\delta_n\}_{n=1}^{\infty}$ form a **Schauder basis** for both X_d and X_d^* .

Let $\{x_n^*\}_{n=1}^{\infty} \subset \mathcal{B}^*$ be an X_d^* -**Riesz basis** for \mathcal{B}^* . This means that 1. $\overline{\text{span}}\{x_n^*: n \in \mathbb{N}\} = \mathcal{B}^*$.

- 2. $\sum_{n=1}^{\infty} c_n x_n^*$ converges in \mathcal{B}^* for all $c \in X_d^*$.
- 3. There exist $0 < A \le B < \infty$ such that

u ∞ u

Average sampling in \mathcal{B}_K

• Write $\{x_n^*\}_{n \in \mathbb{N}} = \bigcup_{m=1}^M \{x_{m,n}^*\}_{n \in \mathbb{N}} \text{ and } \{y_n^*\}_{n \in \mathbb{N}} = \bigcup_{m=1}^M \{y_{m,n}^*\}_{n \in \mathbb{N}}.$ • For $0 \le \ell \le L$, consider functions $K_\ell : \Omega \longrightarrow \mathcal{B}$ and define, for each $x \in \mathcal{B}$ and $0 \le \ell \le L$, the functions

$f_{\ell,x}(z) := [x, K_{\ell}(z)]_{\mathcal{B}}.$

• We have L + 1 transforms $\mathcal{T}_{\ell} : \mathcal{B} \longrightarrow \mathbb{C}^{\Omega}$ such that $\mathcal{T}_{\ell} x = f_{\ell,x}$. • Assume that $M \leq L$.

• For each $z \in \Omega$, we have

$$K_{\ell}(z)^* = \sum_{n=1}^{\infty} \sum_{m=1}^{M} S_{m,n}^{\ell}(z) x_{m,n}^*, \quad 0 \le \ell \le L,$$

where $S_{m,n}^{\ell}(z) := [y_{m,n}, K_{\ell}(z)]_{\mathcal{B}} = f_{\ell, y_{m,n}}(z).$

• Suppose that there exist *L* sequences $\{z_n^\ell\}_{n=1}^\infty$ in Ω , with $\ell \in \{1, 2, ..., L\}$, such that

$$S_{m,n}^{\ell}(z_k^{\ell}) = a_{\ell,m}^n \delta_{n,k}, \quad n,k \in \mathbb{N},$$
(6)

where $1 \le m \le M$, $1 \le \ell \le L$ and the coefficients $a_{\ell,m}^n$ are complex numbers such that the matrices

$$A_{n} := \begin{pmatrix} a_{1,1}^{n} & a_{1,2}^{n} & \cdots & a_{1,M}^{n} \\ a_{2,1}^{n} & a_{2,2}^{n} & \cdots & a_{2,M}^{n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{L,1}^{n} & a_{L,2}^{n} & \cdots & a_{L,M}^{n} \end{pmatrix} \in \mathbb{C}^{L \times M}, \qquad (n \in \mathbb{N})$$
(7)

Each function $f \in \mathcal{B}_{K_0}$ can be recovered from the *L* sequences of samples $\{f_{\ell}(z_n^{\ell})\}_{n=1}^{\infty}, 1 \leq \ell \leq L$, by means of the following sampling formula

$$f(z) = \sum_{n=1}^{\infty} \mathbb{S}_n(z)^{\top} \left(A_n^{[M]} \right)^{-1} \mathbf{F}_n, \quad z \in \Omega,$$
(8)

where \mathbf{F}_n and $\mathbb{S}_n(z)$ denote, respectively, $[f_1(z_n^1), \dots, f_L(z_n^L)]^\top$ and $[S_{0,1}^n(z), \dots, S_{0,M}^n(z)]^\top$. The convergence of the series in (8) is uniform in subsets of Ω where the function $z \mapsto ||K(z)||_{\mathcal{B}}$ is bounded.

An illustrative example

In theorem above, for L = M = 1 we obtain a generalization of **Kramer sampling theorem.** Next, we give an example where $\mathcal{B} := L^p\left[\frac{-1}{2}, \frac{1}{2}\right]$ for $p \in (1, 2]$, with the compatible semi-inner product

$$[f,g]_p := \|g\|_p^{2-p} \int_{-1/2}^{1/2} f(x)\overline{g(x)}|g(x)|^{p-2} dx.$$

Take $X_d := \ell^q(\mathbb{Z})$ and consider $e_n(\xi) := e^{2\pi i n\xi}$ and $e_n^*(\xi) = e^{-2\pi i n\xi}$ for $n \in \mathbb{Z}$. Easy computations show that $||e_n^*||_q = ||e_n||_p = 1$. See [5] for details.

For M = L = 1 and $K(z) = K_0(z) = K_1(z) = e^{2\pi i z \xi}$. we obtain the following s.i.p. RKBS

 $\mathcal{B}_{K} := \left\{ f(z) = \left[F, e^{2\pi i z \xi} \right]_{p}, \ z \in \mathbb{C}, \text{ where } F \in L^{p}[-1/2, 1/2] \right\},\$

$$A \| c \|_{X_d^*} \le \left\| \sum_{n=1}^{\infty} c_n x_n^* \right\|_{\mathcal{B}^*} \le B \| c \|_{X_d^*} \quad \text{for all } c \in X_d^*.$$
(3)

There exists a unique (dual) X_d -Riesz basis $\{y_n\}_{n=1}^{\infty}$ for \mathcal{B} such that (see [6, Th. 2.15]) $[y_m, x_n]_{\mathcal{B}} = \delta_{m,n}$ for $m, n \in \mathbb{N}$, and satisfying the expansions:

 $x = \sum_{n=1}^{\infty} [x, x_n]_{\mathcal{B}} y_n \quad (\text{for } x \in \mathcal{B})$ $x^* = \sum_{n=1}^{\infty} [y_n, x]_{\mathcal{B}} x_n^* \quad (\text{for } x^* \in \mathcal{B}^*).$ (5)

have full rank for $n \in \mathbb{N}$, i.e., rank $(A_n) = M$ for every $n \in \mathbb{N}$.

• Suppose the **compatibility condition:** ker $\mathcal{T}_0 \subseteq \bigcap_{\ell=1}^L \ker \mathcal{T}_\ell$ which implies that the mapping \mathcal{T}_0 is one-to-one.

• Denote by $A_n^{[M]}$ any regular $M \times M$ submatrix of A_n .

We have the following results:

For every
$$z \in \Omega$$
, the sequence $\bigcup_{m=1}^{M} \{S_{m,n}^0\}_{n \in \mathbb{N}}$ is an element of X_d^* .

endowed with the norm $||f||_{\mathcal{B}_{K}} := ||F||_{L^{p}[-1/2,1/2]}$.

We have the following sampling formula for any $f \in \mathcal{B}_K$:

 $f(z) = \operatorname{sinc}^{(2-p)/p}(iyp) \sum_{n \in \mathbb{Z}} f(n) \operatorname{sinc} \left[(z-n) - iy(p-2) \right], \quad (9)$

where $z = x + iy \in \mathbb{C}$. The convergence of the series in (9) is uniform on horizontal strips of \mathbb{C} . Observe that, if p = 2 or $z \in \mathbb{R}$, formula (9) coincides with the cardinal series.

References

[1] A. G. García and A. Portal. Sampling in reproducing kernel Banach spaces. Preprint, 2012.

[2] J. R. Giles. Classes of semi-inner-product spaces. *Trans. Amer. Math. Soc.*, 129: 436–446, 1967.

[3] R. Q. Jia and C. A. Micchelli. Using the refinement equations

for the construction of pre-waveles II: Powers of two. In *Curves and Surfaces*, P. J. Laurent, A. Le Méhauté, L. L. Schumaker (eds.), Academic Press, Boston, pp. 209–246, 1991.

[4] G. Lumer. Semi-inner-product spaces. *Trans. Amer. Math. Soc.*, 100:29–43, 1961. [5] H. Zhang, Y. Xu, and J. Zhang. Reproducing Kernel Banach Spaces for Machine Learning. *Journal of Machine Learning Research*, 10:2741–2775, 2009.

[6] H. Zhang and J. Zhang. Frames, Riesz Bases, and Sampling Expansions in Banach Spaces via Semi-inner Products. *Appl. Comput. Harmon. Anal.*, 31:1–25, 2011.

Acknowledgments: This work has been supported by the grant MTM2009–08345 from the D.G.I. of the Spanish Ministerio de Ciencia y Tecnología.