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Fernando De Terána,∗, Froilán M. Dopicob, D. Steven Mackeyc
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Abstract

The development of new classes of linearizations of square matrix polynomials that generalize the classical
first and second Frobenius companion forms has attracted much attention in the last decade. Research in
this area has two main goals: finding linearizations that retain whatever structure the original polynomial
might possess, and improving properties that are essential for accurate numerical computation, such as
eigenvalue condition numbers and backward errors. However, all recent progress on linearizations has
been restricted to square matrix polynomials. Since rectangular polynomials arise in many applications, it
is natural to investigate if the new classes of linearizations can be extended to rectangular polynomials. In
this paper, the family of Fiedler linearizations is extended from square to rectangular matrix polynomials,
and it is shown that minimal indices and bases of polynomials can be recovered from those of any
linearization in this class via the same simple procedures developed previously for square polynomials.
Fiedler linearizations are one of the most important classes of linearizations introduced in recent years,
but their generalization to rectangular polynomials is nontrivial, and requires a completely different
approach to the one used in the square case. To the best of our knowledge, this is the first class of new
linearizations that has been generalized to rectangular polynomials.
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1. Introduction

We consider in this paper m× n matrix polynomials with degree k ≥ 2 of the form

P (λ) =
k∑
i=0

λiAi , A0, . . . , Ak ∈ Fm×n, Ak 6= 0 , (1)

where F is an arbitrary field and λ is a scalar variable in F. Our main focus is on rectangular matrix
polynomials, i.e., with m 6= n, although new results for square polynomials are also presented. A matrix
polynomial P (λ) is said to be singular either if it is rectangular, or it is square and detP (λ) is identically
zero, i.e., if all the coefficients of detP (λ) are zero; otherwise P (λ) is regular.

Matrix polynomials arise in many applications like systems of differential-algebraic equations, vibra-
tion analysis of structural systems, acoustics, fluid-structure interaction problems, computer graphics,
signal processing, control theory, and linear system theory [4, 18, 24, 25, 29, 30, 31, 32]. Rectangular
matrix polynomials appear mainly in control theory and linear system theory. The magnitudes that are
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usually relevant in the applications of regular matrix polynomials are their finite and infinite eigenval-
ues and the corresponding eigenvectors [18], while in applications of singular polynomials their minimal
indices and bases also play an important role [15, 24].

A standard way of dealing, both theoretically and numerically, with a matrix polynomial P (λ) is to
convert it into an equivalent matrix pencil. This process is known as linearization [18], and is explained
in Section 2. The classical approach uses the first and second Frobenius companion forms (4) and (5)
as linearizations. However, these companion forms usually do not share any algebraic structure that
P (λ) might have, and their use in numerical computations, via well-established algorithms for pencils
[3, 7, 8, 19, 33], may destroy important qualitative features of the eigenvalues/eigenvectors and minimal
indices/bases as a consequence of rounding errors. In addition, the condition numbers of the eigenvalues in
the Frobenius companion linearizations may be much larger than in P (λ), and small eigenvalue backward
errors in the linearization do not guarantee small backward errors in the polynomial [21, 22].

These difficulties have motivated intense activity in the last decade towards the development of new
classes of linearizations. At first, only linearizations for regular matrix polynomials were considered [1, 2,
23, 27, 28], while more recently square singular polynomials have also received attention [10, 11, 12, 34].
However, all this recent progress on linearizations has been restricted to square matrix polynomials. The
main goal of this paper is to extend one of the most relevant new classes of linearizations from square to
rectangular matrix polynomials. This is the family of Fiedler pencils, which was originally introduced by
Fiedler for scalar polynomials in [14], generalized to regular matrix polynomials over C in [2], and then
extended and further analyzed in [11] for both regular and singular square matrix polynomials over an
arbitrary field F.

Fiedler pencils of square matrix polynomials P (λ) =
∑k
i=0 λ

iAi enjoy a number of important proper-
ties that make them attractive candidates for generalization to rectangular polynomials. They are strong
linearizations for any square polynomial, regular or singular, over an arbitrary field, and the coefficients
of these pencils are simply constructed as block partitioned matrices whose blocks are either 0, ±I, or
±Ai, i = 0, 1, . . . , k [11]. This means that they are all companion forms in the sense of [12, Definition
1.1]. Fiedler pencils allow us to very easily recover not only the eigenvalues, but also the eigenvectors,
minimal indices, and minimal bases of P (λ) from the corresponding magnitudes of the pencil [11]. These
pencils can also be generalized to preserve structures of polynomials that are important in applications,
like symmetry and palindromicity [2, 12, 34]. No other class of linearizations introduced in recent years
simultaneously satisfy all these properties. In fact, for other important classes of new linearizations [27],
it is very easy to find pencils that cannot be extended to rectangular matrix polynomials as a consequence
of obvious size constraints.

We remark that the extension of Fiedler pencils from square to rectangular matrix polynomials is not
direct, since the original definition cannot be applied to rectangular polynomials. This issue is discussed in
Section 3.2. Consequently we follow an approach completely different than the one considered in [2, 11, 14]
for square polynomials. This approach is based on the construction presented in Algorithm 2, which
provides the foundation for the main Definition 3.8. With this definition in hand, and after considerable
technical effort, we prove in Theorem 4.5 that Fiedler pencils of rectangular matrix polynomials are
always strong linearizations over arbitrary fields, again using new techniques. Finally, simple recovery
procedures for minimal indices and bases are presented in Corollaries 5.4 and 5.7. These recovery rules
are essentially the same as the ones derived for square polynomials in [11]. Although the new proofs and
definitions may seem complicated, we emphasize that the key idea is very simple: we perform the same
operations that we would do in the square case, but proving that the rectangular matrices that appear
are always conformable for multiplication. This requires a substantial amount of care. Another essential
difference between Fiedler pencils for rectangular and square polynomials is that when a polynomial
P (λ) is rectangular, there are always associated Fiedler pencils of several different sizes. Indeed the two
Frobenius companion forms are always the Fiedler pencils with largest and smallest sizes, while the other
Fiedler pencils have intermediate sizes. This always makes one of the two Frobenius companion forms a
privileged choice to use when working with rectangular matrix polynomials, although the low band-width
structure of some other Fiedler pencils might make them preferable in certain situations.

The paper is organized as follows. In Section 2 we introduce the basic definitions and notation
used throughout the paper. In Section 3 we recall first the notion of Fiedler pencils for square matrix
polynomials, then present an algorithm to construct these pencils in a manner that readily generalizes to
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rectangular matrix polynomials. It is by means of this algorithm that we are then able to extend the notion
of Fiedler pencils to rectangular polynomials. In the last part of Section 3, we establish the relationship
between the reversal of a polynomial and the reversal of any of its Fiedler pencils (Theorem 3.14).
This relationship is needed to prove that Fiedler pencils of rectangular polynomials are always strong
linearizations in Section 4. Section 5 establishes very simple formulae for the recovery of the minimal
indices and bases of a matrix polynomial from the minimal indices and bases of any of its Fiedler pencils.
Finally, Section 6 gives some conclusions and describes possible future work motivated by the results in
this paper.

2. Basic notation and definitions

We present in this section some basic concepts related to rectangular matrix polynomials. The reader
can find more information in [10, Section 2] and [11, Section 2], where these concepts are presented in
greater detail for square polynomials. In the rest of the paper we adopt the following notation: 0d and Id
are used to denote the d×d zero and identity matrices, respectively. If there is no risk of confusion, then
the sizes are not indicated and we simply write 0 or I. Two m×n matrix polynomials P (λ) and Q(λ) are
strictly equivalent if there exist two constant nonsingular matrices E and F such that P (λ) = EQ(λ)F .
We emphasize that any equation in this paper involving expressions in λ is to be understood as a formal
algebraic identity, and not just as an equality of functions on the field F. For finite fields F this distinction
is important, and we will always intend the stronger meaning of a formal algebraic identity.

Let F(λ) denote the field of rational functions with coefficients in F, so that F(λ)n×1 is the vector
space of column n-tuples with entries in F(λ). The normal rank of a matrix polynomial P (λ), denoted
nrankP (λ) , is the rank of P (λ) considered as a matrix with entries in F(λ), or equivalently, the size of
the largest non-identically zero minor of P (λ) [16]. A finite eigenvalue of P (λ) is an element λ0 ∈ F such
that

rank P (λ0) < nrankP (λ) .

We say that P (λ) with degree k has an infinite eigenvalue if the reversal polynomial

revP (λ) := λkP (1/λ) =

k∑
i=0

λiAk−i (2)

has zero as an eigenvalue.
An m × n singular matrix polynomial P (λ) may have right (column) and/or left (row) null vectors,

that is, vectors x(λ) ∈ F(λ)n×1 and y(λ)T ∈ F(λ)1×m such that P (λ)x(λ) ≡ 0 and y(λ)TP (λ) ≡ 0,
respectively, where y(λ)T denotes the transpose of y(λ). This leads to the following definition.

Definition 2.1. The right and left nullspaces of the m× n matrix polynomial P (λ), denoted by Nr(P )
and N`(P ), respectively, are the following subspaces:

Nr(P ) :=
{
x(λ) ∈ F(λ)n×1 : P (λ)x(λ) ≡ 0

}
,

N`(P ) :=
{
y(λ)T ∈ F(λ)1×m : y(λ)TP (λ) ≡ 0T

}
.

Note that the identities nrankP (λ) = n− dimNr(P ) = m− dimN`(P ) hold.
It is well known that the elementary divisors of P (λ) corresponding to its finite eigenvalues, as well as

the dimensions of Nr(P ) and N`(P ), are invariant under unimodular equivalence [16], i.e., under pre- and
post-multiplication of P (λ) by unimodular matrices (square matrix polynomials with nonzero constant
determinant). The elementary divisors of P (λ) corresponding to the infinite eigenvalue are defined as
the elementary divisors corresponding to the zero eigenvalue of the reversal polynomial [20, Definition 1],
and may be altered by unimodular equivalence [26].

Next we define linearizations and strong linearizations of matrix polynomials.

Definition 2.2. A matrix pencil L(λ) = λX +Y is a linearization of an m×n matrix polynomial P (λ),
if for some s ≥ 0 there exist unimodular matrices U(λ) and V (λ) such that

U(λ)L(λ)V (λ) =

[
Is 0

0 P (λ)

]
, (3)
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i.e., if L(λ) is unimodularly equivalent to diag
[
Is, P (λ)

]
. A linearization L(λ) is called a strong lin-

earization if revL(λ) is also a linearization of revP (λ).

The definition of linearization was introduced in [18], while the notion of strong linearization was
introduced in [17] and later named in [26]. In [17, 18, 26] only regular (square) matrix polynomials
were considered. These definitions were extended to any matrix polynomial in [9], that is, including
rectangular and square (regular or singular) polynomials. The original definition in [18, p. 12] for n× n
regular polynomials considers linearizations with sizes (n+ s)× (n+ s) and s ≥ 0 arbitrary. However, for
n× n matrix polynomials with degree k, the definition of linearization presented in most references fixes
the size of the linearizations to be nk×nk, which corresponds to s = (k− 1)n in Definition 2.2. Perhaps
the reason for this commonly encountered size restriction lies in the fact that all linearizations of a matrix
polynomial with nonsingular leading coefficient have sizes at least nk×nk and that, moreover, all strong
linearizations of regular matrix polynomials have size exactly nk × nk [9]. However, if P (λ) is an n× n
singular polynomial with degree k, then there are strong linearizations with size strictly less than nk×nk
[9] that have interest in applications [6]. For these and other reasons, the size of the matrix pencil L(λ)
in Definition 2.2 is not fixed. In fact, when P (λ) is rectangular there always exist strong linearizations
for P (λ) with different sizes. This is illustrated by the two most common linearizations used in practice,

i.e., the first and second Frobenius companion forms, which for the n× n polynomial P (λ) =
∑k
i=0 λ

iAi
are

C1(λ) := λ

 Ak
In

. . .
In

+


Ak−1 Ak−2 · · · A0

−In 0 · · · 0
...

. . .
. . .

...
0 · · · −In 0

 (4)

and

C2(λ) := λ

 Ak
In

. . .
In

+


Ak−1 −In · · · 0

Ak−2 0
. . .

...
...

...
. . . −In

A0 0 · · · 0

 , (5)

and both have size nk × nk. However, if P (λ) is rectangular with size m× n, then the identity matrices
in C2(λ) must now have size m × m. Thus C1(λ) has size

(
m + (k − 1)n

)
× kn, while C2(λ) has size

km×
(
(k − 1)m+ n

)
. Clearly these sizes are different when m 6= n.

It is well known that strong linearizations are relevant in the study of both regular and singular
square matrix polynomials, because they are the only matrix pencils preserving the dimension of the
left and right nullspaces as well as the finite and infinite elementary divisors of P (λ) [10, Lemma 2.3].
Since the arguments used to prove this fact do not depend on P (λ) being square or rectangular (see the
proof of Lemma 2.3 in [10]), the same result holds in the rectangular case. Thus for rectangular matrix
polynomials we have the following analogue of Lemma 2.3 in [10].

Lemma 2.3. Let P (λ) be an m×n matrix polynomial and let L(λ) be an (m+ s)× (n+ s) matrix pencil
for some s ≥ 0, and consider the following conditions on L(λ) and P (λ):

(a) dimNr(L) = dimNr(P ) ,

(b) L(λ) and P (λ) have exactly the same finite elementary divisors,

(c) L(λ) and P (λ) have exactly the same infinite elementary divisors.

Then L(λ) is

• a linearization of P (λ) if and only if conditions (a) and (b) hold,

• a strong linearization of P (λ) if and only if conditions (a), (b) and (c) hold.

Note that condition (a) in Lemma 2.3 is equivalent to dimN`(L) = dimN`(P ).
A vector polynomial is a vector whose entries are polynomials in the variable λ. For any subspace of

F(λ)n×1, it is always possible to find a basis consisting entirely of vector polynomials. The degree of a
vector polynomial is the greatest degree of its components, and the order of a polynomial basis is defined
as the sum of the degrees of its vectors [15, p. 494]. Then the following definition makes sense.
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Definition 2.4. [15] Let V be a subspace of F(λ)n×1. A minimal basis of V is any polynomial basis of
V with least order among all polynomial bases of V.

It can be shown [15] that for any given subspace V of F(λ)n×1, the ordered list of degrees of the vector
polynomials in any minimal basis of V is always the same. These degrees are then called the minimal
indices of V. Given a matrix polynomial P (λ), the minimal indices and bases of the subspace Nr(P )
are called the right minimal indices and bases of P (λ), while the minimal indices and bases of N`(P )
are called the left minimal indices and bases of P (λ). These magnitudes have important applications in
Linear System Theory [24].

The left (right) minimal indices of a matrix pencil can be read off from the sizes of the left (right)
singular blocks of the Kronecker canonical form of the pencil [16, Chap. XII]. Consequently, the minimal
indices of a pencil can be stably computed via the GUPTRI form [7, 8, 13, 33]. Therefore it is natural to
look for relationships between the minimal indices of a singular matrix polynomial P (λ) and the minimal
indices of a given linearization of P (λ), since this would lead to a numerical method for computing the
minimal indices of P (λ). In the case of square singular matrix polynomials, such relationships were found
in [10] for the pencils introduced in [27], in [11] for Fiedler pencils, and in [5] for generalized Fiedler
pencils. In the case of Fiedler pencils of rectangular polynomials, we will develop analogous relationships
in Section 5.

3. Fiedler pencils: definition and structural properties

In this section we first recall the notion of Fiedler pencils for square matrix polynomials, introduced
in [2] and named later in [11], and in Section 3.1 we present Algorithm 1 to construct these pencils. In
Section 3.2 we extend the notion of Fiedler pencils to rectangular m × n matrix polynomials by means
of Algorithm 2, which is a slight modification of Algorithm 1. This motivates the main definition in
this paper, Definition 3.8, which includes the one for the square case by just considering n = m. Also
in Section 3.2 we present some structural properties of Fiedler pencils that will be used later. Finally
in Section 3.3 we show the connection between the reversal of a Fiedler pencil and the reversal of its
associated polynomial.

To introduce the Fiedler pencils of an n × n matrix polynomial P (λ) =
∑k
i=0 λ

iAi, we need the
following block-partitioned matrices:

Mk :=

[
Ak

I(k−1)n

]
, M0 :=

[
I(k−1)n

−A0

]
, (6)

and

Mi :=


I(k−i−1)n

−Ai In
In 0

I(i−1)n

 , i = 1, . . . , k − 1 . (7)

Notice that
MiMj = MjMi for |i− j| 6= 1. (8)

Now we introduce Fiedler pencils in the same way as in [11].

Definition 3.1 (Fiedler Pencils for square matrix polynomials). Let P (λ) =
∑k
i=0 λ

iAi be an n × n
matrix polynomial over an arbitrary field F, and let Mi, i = 0, 1, . . . , k, be the matrices defined in (6) and
(7). Given any bijection σ : {0, 1, . . . , k − 1} → {1, . . . , k} , the Fiedler pencil of P (λ) associated with σ
is the nk × nk matrix pencil

Fσ(λ) := λMk −Mσ−1(1) · · ·Mσ−1(k) . (9)

Note that σ(i) describes the position of the factor Mi in the product Mσ−1(1) · · ·Mσ−1(k) defining the
zero-degree term in (9): i.e., σ(i) = j means that Mi is the jth factor in the product. For brevity, we
denote this product by

Mσ := Mσ−1(1) · · ·Mσ−1(k) , (10)

so that Fσ(λ) := λMk −Mσ.
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As in [11], sometimes we will write the bijection σ using the array notation
σ = (σ(0), σ(1), . . . , σ(k − 1)). Unless otherwise stated, the matrices Mi, i = 0, . . . , k, Mσ, and the
Fiedler pencil Fσ(λ) refer to the matrix polynomial P (λ) in (1). When necessary, we will explicitly indi-
cate the dependence on a certain polynomial Q(λ) by writing Mi(Q), Mσ(Q) and Fσ(Q). In this situation,
the dependence on λ is dropped in the Fiedler pencil Fσ(Q) for simplicity. Since matrix polynomials will
always be denoted by capital letters, there is no risk of confusion between Fσ(λ) and Fσ(Q).

The set of Fiedler pencils includes the first and second companion forms [18, 11]. More precisely, the
first companion form corresponds to the bijection σ1 = (k, k− 1, . . . , 2, 1) and the second to the bijection
σ2 = (1, 2, . . . , k − 1, k). Other significant Fiedler pencils are the pentadiagonal Fiedler pencils that are
described in detail in [11, Example 3.2].

It is shown in [11] that the relative positions of the matrices Mi and Mi+1, for i = 0, 1, . . . , k − 2, in
the product Mσ determine most of the relevant properties of the Fiedler pencil Fσ(λ). This motivates
Definition 3.2, that was introduced in [11, Definition 3.3].

Definition 3.2. Let σ : {0, 1, . . . , k − 1} → {1, . . . , k} be a bijection.

(a) For i = 0, . . . , k − 2, we say that σ has a consecution at i if σ(i) < σ(i + 1), and that σ has an
inversion at i if σ(i) > σ(i+ 1).

(b) Denote by c(σ) the total number of consecutions in σ, and by i(σ) the total number of inversions
in σ.

(c) For i ≤ j, we denote by c(σ(i : j)) the total number of consecutions that σ has at i, i+ 1, . . . , j, and
by i(σ(i : j)) the total number of inversions that σ has at i, i+ 1, . . . , j. Observe that c(σ) = c(σ(0 :
k − 2)) and i(σ) = i(σ(0 : k − 2)).

(d) The consecution-inversion structure sequence of σ, denoted by CISS(σ), is the tuple (c1, i1, c2, i2, . . . ,
c`, i`), where σ has c1 consecutive consecutions at 0, 1, . . . , c1 − 1; i1 consecutive inversions at
c1, c1 + 1, . . . , c1 + i1 − 1 and so on, up to i` inversions at k − 1− i`, . . . , k − 2.

We want to point out that, though the notions introduced in Definition 3.2 depend only on the
bijection σ and not on the Fiedler pencil Fσ(λ), they are closely related to the definition of Fσ(λ), as is
shown in the following remark.

Remark 3.3. The following simple observations on Definition 3.2 will be used freely.

1. σ has a consecution at i if and only if Mi is to the left of Mi+1 in Mσ, while σ has an inversion at
i if and only if Mi is to the right of Mi+1 in Mσ.

2. Either c1 or i` in CISS(σ) may be zero (in the first case σ has an inversion at 0, in the second it has
a consecution at k− 2), but i1, c2, i2, . . . , i`−1, c` are all strictly positive. These conditions uniquely
determine CISS(σ) and, in particular, the parameter `.

3. c(σ) =
∑`
j=1 cj , i(σ) =

∑`
j=1 ij , and c(σ) + i(σ) = k − 1.

The reader may find in [11, Example 3.5] explicit examples of CISS(σ) for some relevant Fiedler
pencils.

3.1. A multiplication free algorithm to construct Fiedler pencils of square matrix polynomials

We focus only on how to construct the zero-degree term Mσ in the Fiedler pencil (9), since the first-
degree term is already known. The obvious option is to directly perform the multiplication of all factors,
but this is not convenient if the degree is large.1 Theorem 3.4 shows how to construct Fiedler pencils
without performing any arithmetic operation. Throughout this paper, we will use MATLAB notation for
submatrices on block indices; that is, if A is a matrix partitioned into blocks, then A(i : j, :) indicates the
submatrix of A consisting of block rows i through j and A(:, k : l) indicates the submatrix of A consisting
of block columns k through l.

1Polynomials with large degrees may appear, for instance, in the computation of the roots of scalar polynomials as the
eigenvalues of a Fiedler pencil [14].
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Theorem 3.4. Let P (λ) =
∑k
i=0 λ

iAi be an n × n matrix polynomial with degree k ≥ 2, let σ :
{0, 1, . . . , k − 1} → {1, . . . , k} be a bijection, and let Mσ be the zero-degree term of the Fiedler pencil
of P (λ) associated with σ. Consider the matrices W0,W1, . . . ,Wk−2 constructed by Algorithm 1 below,
partitioned, respectively, into 2 × 2, 3 × 3, . . . , k × k blocks of size n × n. Then Algorithm 1 constructs
Mσ, more precisely, Mσ = Wk−2.

Algorithm 1. Given P (λ) =
∑k
i=0 λ

iAi with size n × n and a bijection σ, the following
algorithm constructs Mσ.

if σ has a consecution at 0 then

W0 =

[
−A1 In
−A0 0

]
else

W0 =

[
−A1 −A0

In 0

]
endif
for i = 1 : k − 2

if σ has a consecution at i then

Wi =

[
−Ai+1 In 0

Wi−1(:, 1) 0 Wi−1(:, 2 : i+ 1)

]
else

Wi =

−Ai+1 Wi−1(1, :)
In 0
0 Wi−1(2 : i+ 1, :)


endif

endfor
Mσ = Wk−2

Proof. The proof proceeds by induction on the degree k. The result is obvious for k = 2, because in this
case there are only two possible options for Mσ, namely, Mσ = M0M1 if σ has a consecution at 0 or
Mσ = M1M0 if σ has an inversion at 0. A direct computation shows that

M0M1 =

[
−A1 In
−A0 0

]
and M1M0 =

[
−A1 −A0

In 0

]
for k = 2, (11)

and the result follows.
Assume now that the result is valid for matrix polynomials of degree k − 1 ≥ 2, and let us prove it

for the polynomial P (λ) =
∑k
i=0 λ

iAi and the bijection σ : {0, 1, . . . , k− 1} → {1, . . . , k}. Note first that
the matrices Mi(P ) defined in (6) and (7) for P (λ) satisfy

Mi(P ) = diag(In,Mi(Q)), for i = 0, . . . , k − 2, (12)

where Mi(Q) are the n(k − 1)× n(k − 1) matrices corresponding to the polynomial Q(λ) =
∑k−1
i=0 λ

iAi.
We need to distinguish two cases in the proof.

Case 1. If σ has a consecution at k−2, then the commutativity relations (8) of the Mi matrices allow
us to write

Mσ(P ) = Mi0(P ) · · ·Mik−2
(P )Mk−1(P ),

where (i0, i1, . . . , ik−2) is a permutation of (0, 1, . . . , k − 2). By using (12), we can write

Mσ(P ) = diag(In,Mσ̃(Q))Mk−1(P ), (13)

where σ̃ : {0, 1, . . . , k−2} → {1, . . . , k−1} is a bijection such that, for i = 0, . . . , k−3, σ̃ has a consecution
(resp., inversion) at i if and only if σ has a consecution (resp., inversion) at i. Therefore, by the induction
hypothesis, Mσ̃(Q) = Wk−3. Finally, we perform the simple block product in (13) as follows

Mσ(P ) =

[
In 0n 0
0 Wk−3(:, 1) Wk−3(:, 2 : k − 1)

]−Ak−1 In
In 0n

I(k−2)n


=

[
−Ak−1 In 0

Wk−3(:, 1) 0 Wk−3(:, 2 : k − 1)

]
,
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which is precisely the matrix Wk−2 constructed by Algorithm 1 when σ has a consecution at k − 2.
Case 2. If σ has an inversion at k − 2 the proof is similar, but with Mk−1(P ) placed on the left, i.e.,

Mσ(P ) = Mk−1(P )Mi0(P ) · · ·Mik−2
(P ) = Mk−1(P ) diag(In,Mσ̃(Q)).

3.2. Fiedler pencils of rectangular matrix polynomials

The extension of equation (9) to a rectangular m× n matrix polynomial P (λ) =
∑k
i=0 λ

iAi presents
difficulties, because it is not clear how to define the sizes of all the identity blocks on the main block
diagonal of the factors Mi. A tentative approach is simply to try to choose the sizes of the diagonal
identities in both (6) and (7) so that all the factors in (10) are conformal for multiplication (notice that
the non-diagonal identity blocks in the central 2 × 2 block submatrix of (7) are determined by the size
of Ai ∈ Fm×n). This can be done, but it is not immediate and is cumbersome, because the presence of
the block −Ai in the matrix Mi imposes restrictions on the sizes of the diagonal identity blocks of the
factors to both the left and the right of Mi in the product defining Mσ. To proceed in this way requires
a very careful determination of the sizes of the Mi matrices, as well as the sizes of all the identity blocks
in each Mi. Furthermore, these sizes all depend on the position of the Mi factor in the product defining
Mσ. In other words, the Mi factors themselves are dependent on the choice of bijection σ. These issues
are better explained with an example.

Example 3.5. With Ai ∈ Fm×n, let P (λ) = A0 + λA1 + λ2A2 + λ3A3 be a matrix polynomial of degree
3, and let σ1 = (1, 3, 2) and σ2 = (2, 3, 1) be bijections from {0, 1, 2} to {1, 2, 3}. Let us see how to give a
meaning to the symbolic expressions

Fσ1
(λ) = λM3 −M0M2M1 and Fσ2

(λ) = λM3 −M ′2M ′0M ′1

by properly defining the factors in the Fiedler pencils for P (λ) associated with the bijections σ1 and σ2.
When P (λ) is square (n = m), the commutativity relations (8) immediately imply that Fσ1

(λ) = Fσ2
(λ).

However, if m 6= n, then the factors in the zero degree term of Fσ1
(λ) will be conformal for multiplication

if and only if they are

M0 =

 Im 0 0
0 In 0
0 0 −A0

 , M1 =

 In 0 0
0 −A1 Im
0 In 0

 , M2 =

 −A2 Im 0
In 0 0
0 0 In

 ,
while the factors in the zero degree term of Fσ2

(λ) are conformal for multiplication if and only if they are

M ′0 =

 In 0 0
0 Im 0
0 0 −A0

 , M ′1 =

 In 0 0
0 −A1 Im
0 In 0

 , M ′2 =

 −A2 Im 0
In 0 0
0 0 Im

 .
Note that the size of M2 is different than the size of M ′2. However, the reader is invited to check that
Fσ1

(λ) = Fσ2
(λ) still holds. This example shows that defining Fiedler pencils for rectangular polynomials

in a similar way as in the square case would force the sizes of the Mi matrices to depend on the specific
choice of bijection σ. It is easy to devise examples of rectangular matrix polynomials of degree higher
than 3 and bijections σ1 and σ2 where the sizes differ for more than one factor Mi.

A first option to extend Fiedler pencils from square to rectangular polynomials that is not affected by
the difficulties illustrated in Example 3.5 would be the following. In the square case, use the commutativity
relations (8) to order the factors Mi in Mσ (10) in a certain canonical order that is exactly the same for
all Fiedler pencils with the same CISS(σ). (Note that two Fiedler pencils with the same CISS(σ) are in
fact the same pencil, by Theorem 3.4). One possible order may be found in [2, eqn. (2.9)]. Then use this
order and force the conformability of all Mi factors for multiplication in this canonical order, by properly
choosing the sizes of their identity blocks, to extend the Fiedler pencil to rectangular matrix polynomials.
Again, this can be done, but it requires one to prove, for each different CISS(σ), that the sizes of the Mi

factors can always be properly chosen, and to determine these sizes. This is not obvious, and is certainly
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tedious. In addition, the reader may easily check that the sizes of the Mi factors may be different for
different CISS(σ), so that this unpleasant issue still remains.

Another option for extending Fiedler pencils from square to rectangular polynomials, bypassing all the
difficulties mentioned above, is simply to avoid the use of the factors Mi in the rectangular case altogether.
To this end, we might start by symbolically performing the product defining Mσ in (10) in the square
case, in order to obtain an explicit expression for the block-entries of Mσ in terms of the coefficients Ai of
the polynomial P (λ). This can be done by using CISS(σ), although it is rather complicated and requires
a cumbersome notation. Once this explicit expression is known, we would then replace the square n× n
blocks Ai, i = 0, 1, . . . , k − 1, by rectangular m× n blocks Ai, and check that the sizes of the block rows
and block columns fit together properly with an appropriate assignment of either a size n× n or m×m
to every identity block that appears in Mσ. Unfortunately this again requires a tedious proof.

Therefore, we will follow a simpler approach based on adapting Algorithm 1 to rectangular matrix
polynomials. This approach is developed in Theorem 3.6 and Definition 3.8, and is, in fact, equivalent
to the process described above of obtaining an explicit expression of the block-entries of Mσ in terms of
the coefficients Ai. Note that in Algorithm 2 we again use MATLAB notation for submatrices on block
indices.

Theorem 3.6. Let P (λ) =
∑k
i=0 λ

iAi be an m × n matrix polynomial with degree k ≥ 2, let σ :
{0, 1, . . . , k − 1} → {1, . . . , k} be a bijection, and consider the following algorithm:

Algorithm 2. Given P (λ) =
∑k
i=0 λ

iAi with size m × n and a bijection σ, the following
algorithm constructs a sequence of matrices {W0,W1, . . . ,Wk−2}, where each matrix Wi for
i = 1, 2, . . . , k − 2 is partitioned into blocks in such a way that the blocks of Wi−1 are blocks
of Wi.

if σ has a consecution at 0 then

W0 =

[
−A1 Im
−A0 0

]
else

W0 =

[
−A1 −A0

In 0

]
endif
for i = 1 : k − 2

if σ has a consecution at i then

Wi =

[
−Ai+1 Im 0

Wi−1(:, 1) 0 Wi−1(:, 2 : i+ 1)

]
else

Wi =

−Ai+1 Wi−1(1, :)
In 0
0 Wi−1(2 : i+ 1, :)


endif

endfor

Then the matrices W0,W1, . . . ,Wk−2 are partitioned in 2 × 2, 3 × 3, . . . , k × k blocks, respectively, and
satisfy the following properties:

(a) The size of Wi is(
m+m c(σ(0 : i)) + n i(σ(0 : i))

)
×
(
n+m c(σ(0 : i)) + n i(σ(0 : i))

)
.

(b) The first diagonal block of Wi is −Ai+1, and so has size m× n. The rest of the diagonal blocks of
Wi are square zero matrices, more precisely

Wi(i+ 2− j, i+ 2− j) =

{
0m if σ has a consecution at j
0n if σ has an inversion at j

, for j = 0, 1, . . . , i.
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Proof. The proof is elementary. We simply sketch the main points. First, notice that the matrix W0 is
well-defined in Algorithm 2. Therefore W1 is also well-defined, either when σ has a consecution at 1 or
an inversion at 1, because in both cases W1(1, 1) = −A2, W0(:, 1) has n columns, and W0(1, :) has m
rows. The same argument can be applied inductively to show that W2, . . . ,Wk−2 are also well-defined.
The fact that Wi is partitioned into (i+ 2)× (i+ 2) blocks is true by definition for W0, and for the rest of
the matrices in the sequence it follows from the fact that one block row and one block column are added
in each step of the “for” loop of Algorithm 2. Part (a) is again true for W0, and for obtaining the result
for the rest of the matrices in the sequence note that: (1) if σ has a consecution at i, then Wi has m
rows and m columns more than Wi−1; (2) if σ has an inversion at i, then Wi has n rows and n columns
more than Wi−1. Finally, let us prove part (b). The result is true for W0. For the rest of the matrices
in the sequence, assume that it is true for Wi−1 and let us prove it for Wi. Note that by construction
Wi(1, 1) = −Ai+1 and

Wi(2, 2) =

{
0m if σ has a consecution at i
0n if σ has an inversion at i

,

which is part (b) for j = i. Observe also that

Wi(3 : i+ 2, 3 : i+ 2) = Wi−1(2 : i+ 1, 2 : i+ 1),

which implies Wi(i+ 2− j, i+ 2− j) = Wi−1((i− 1) + 2− j, (i− 1) + 2− j) for j = 0, 1, . . . , i− 1. This
proves the result since we are assuming that the result is true for Wi−1.

Remark 3.7. In part (b) of Theorem 3.6 we assume, as in the rest of the paper, that the block indices
of Wi run from 1 to i+ 2. Thus the diagonal blocks of Wi are Wi(1, 1), . . . ,Wi(i+ 2, i+ 2). If we let the
block indices of Wi run from k − i− 1 to k, the result in part (b) is expressed as

Wi(k − j, k − j) =

{
0m if σ has a consecution at j
0n if σ has an inversion at j

, for j = 0, 1, . . . , i,

which shows that the sizes of these blocks only depend on j and not on i, as long as 0 ≤ j ≤ i.

Observe that Algorithm 2 differs from Algorithm 1 only in the sizes of the identity blocks added at
each step of the construction, that are chosen to fit the size m × n of the coefficients of the polynomial
P (λ). This fact and Theorem 3.4 motivate Definition 3.8, which is the main definition in this paper.

Definition 3.8 (Fiedler Pencils for rectangular matrix polynomials). Let P (λ) =
∑k
i=0 λ

iAi be an m×n
matrix polynomial with degree k ≥ 2, let σ : {0, 1, . . . , k − 1} → {1, . . . , k} be a bijection, and denote by
Mσ the last matrix of the sequence constructed by Algorithm 2, that is,

Mσ := Wk−2 .

The Fiedler pencil of P (λ) associated with σ is the
(
m+m c(σ) +n i(σ)

)
×
(
n+m c(σ) +n i(σ)

)
matrix

pencil

Fσ(λ) := λ

[
Ak

Imc(σ)+ni(σ)

]
−Mσ . (14)

Remark 3.9. Some remarks on Definition 3.8 may be useful for the reader.

1. The leading coefficient
[
Ak

I

]
of the Fiedler pencil Fσ(λ) introduced in Definition 3.8 has the same

structure as the matrix Mk in (6), but the size of the block diagonal identity is different when
m 6= n.

2. If m 6= n, then there are Fiedler pencils associated with P (λ) with several different sizes, because
the sum c(σ) + i(σ) = k − 1 is fixed for all σ, and so different pairs (c(σ), i(σ)) produce different
sizes of Fσ(λ). For instance, if m > n, then the Fiedler pencil with smallest size corresponds to
c(σ) = 0, i.e., to the first companion form, and the one with largest size corresponds to i(σ) = 0,
i.e., to the second companion form [11]. If n > m, then the opposite situation holds.
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3. In Theorem 3.6 and Definition 3.8 we use a bijection σ only for the purpose of keeping a parallelism
with the standard definition of Fiedler pencils for square polynomials. However, a bijection is not
really needed, since we do not actually use the factors Mi anywhere in our definition. Observe that
Algorithm 2 only needs a sequence of decisions that we have identified with σ having a consecution
or inversion.

4. A comparison between Algorithms 1 and 2 shows that, for the same bijection σ, Fiedler pencils of
square and rectangular matrix polynomials look symbolically the same, except for the sizes of the
identity blocks. Thus a fundamental consequence of Theorems 3.4 and 3.6 is that in every Fiedler
pencil of a square n×n matrix polynomial P (λ) =

∑k
i=0 λ

iAi, the identity blocks are positioned in
such a way that if the polynomial P (λ) becomes rectangular with size m × n, then these identity
blocks may always be consistently transformed into Im or In matrices so as to produce a Fiedler
pencil for the m × n polynomial P (λ). Let us examine a specific example to see how this works.

Consider P (λ) =
∑k
i=0 λ

iAi with degree k = 6 and size n×n, and the bijection τ = (1, 2, 5, 3, 6, 4).
In this case

Mτ = M0M1M3M5M2M4 =


−A5 −A4 In 0 0 0
In 0 0 0 0 0
0 −A3 0 −A2 In 0
0 In 0 0 0 0
0 0 0 −A1 0 In
0 0 0 −A0 0 0

 , (15)

which can be constructed by direct multiplication of the factors Mi or via Algorithm 1, since τ has
consecutions at 0, 1, 3 and inversions at 2, 4. If the size of P (λ) becomes m× n, then Algorithm 2

produces

Mτ =


−A5 −A4 Im 0 0 0
In 0 0 0 0 0
0 −A3 0 −A2 Im 0
0 In 0 0 0 0
0 0 0 −A1 0 Im
0 0 0 −A0 0 0

 , (16)

which is nothing other than (15), but with the sizes of three of the identity blocks modified in order
to be compatible with the size m× n of the coefficients −Ai.

Theorem 3.10 is a direct consequence of Theorem 3.6, and establishes that the zero-degree term Mσ

of any Fiedler pencil of P (λ) has as non-zero blocks exactly one copy of each of −A0,−A1, . . . ,−Ak−1, as
well as (k− 1) identities of size n× n or m×m. This property is very well known in the case of the first
and second companion forms, that are particular cases of Fiedler pencils. Theorem 3.10 also includes
additional information on the structure of Mσ that will be used later.

Theorem 3.10. Let P (λ) =
∑k
i=0 λ

iAi be an m × n matrix polynomial with degree k ≥ 2 and let

σ : {0, 1, . . . , k− 1} → {1, . . . , k} be a bijection. Suppose that Fσ(λ) = λ
[
Ak

I

]
−Mσ is the Fiedler pencil

of P (λ) associated with σ, and consider Mσ partitioned into k × k blocks according to Algorithm 2.
Then:

(a) Mσ has k blocks equal to −A0,−A1, . . . ,−Ak−1, with exactly one copy of each.

(b) Mσ has k − 1 identity blocks: c(σ) blocks equal to Im, and i(σ) blocks equal to In.

(c) The rest of the blocks of Mσ are equal to 0 matrices of size n× n, m×m, n×m, or m× n.

(d) The k − 1 identity blocks in part (b) satisfy the following:

1. None of them is on the main block diagonal of Mσ.
2. Two of these blocks are never in the same block row (or in the same block column) of Mσ.
3. If an identity block is in the (i, j) block-entry of Mσ, then one and only one of the following

two properties holds: (a) the rest of the blocks in the ith block row of Mσ are equal to 0 and
at least one of the matrices −A0,−A1, . . . ,−Ak−1 is in the jth block column of Mσ; (b) the
rest of the blocks in the jth block column of Mσ are equal to 0 and at least one of the matrices
−A0,−A1, . . . ,−Ak−1 is in the ith block row of Mσ.
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4. If {i1, i2, . . . , it} (resp., {jt+1, jt+2, . . . , jk−1}) are the block indices of the block rows (resp.,
block columns ) of Mσ containing one identity block and having the remaining blocks equal to
zero, then the (unordered ) set {i1, i2, . . . , it, jt+1, jt+2, . . . , jk−1} is equal to {2, 3, . . . , k}.

Proof. Parts (a), (b), and (c) are obvious from Algorithm 2. Part (d)-1 follows from Theorem 3.6(b).
The proofs of parts (d)-2, (d)-3, and (d)-4 proceed by induction on the matrices W0, . . . ,Wk−2(= Mσ)
constructed by Algorithm 2. A direct inspection shows that parts (d)-2, (d)-3, and (d)-4 hold for W0

with k = 2. Let us assume that they hold for Wk−3 with k − 1 instead of k. Next partition Wk−3 as
follows:

Wk−3 =

[
−Ak−2 Z12

Z21 Z22

]
.

Then Algorithm 2 gives for Wk−2 = Mσ either

Wk−2 =

−Ak−1 Im 0
−Ak−2 0 Z12

Z21 0 Z22

 or Wk−2 =

−Ak−1 −Ak−2 Z12

In 0 0
0 Z21 Z22

 , (17)

and observe that the main block diagonal of Z22 is on the main block diagonal of Wk−2. The structure
of Mσ in (17) and the fact that Wk−3 satisfies parts (d)-2 and (d)-3 make evident that Mσ also satisfies
parts (d)-2 and (d)-3. The block indices of the identity blocks of Wk−3 in part (d)-4 are {2, 3, . . . , k− 1},
and observe that the induction hypothesis implies that if an identity block is a block-entry of Z12 (resp.,
Z21) then the corresponding block column (resp., block row) in Z22 is zero. This fact and the structure
of Mσ in (17) imply that the block indices in part (d)-(4) of the identity blocks of Wk−3 as block entries
of Mσ are {3, 4, . . . , k}. Finally, note that the identity block that is added to construct Wk−2 from Wk−3
always has index 2 in the set of indices in part (d)-4.

3.3. The reversal of a Fiedler pencil

The main result in this section is Theorem 3.14, which establishes that for a rectangular matrix
polynomial P (λ), the reversal of any of its Fiedler pencils is strictly equivalent to a Fiedler pencil of
revP (λ). We think that this result is interesting in its own right; in this paper, though, its main role
will be to help prove in Section 4 that every Fiedler pencil of a rectangular matrix polynomial P (λ) is a
strong linearization of P (λ). The proof of Theorem 3.14 is long and can be skipped on a first reading.
The proof is based on the technical Lemmas 3.11, 3.12, and 3.13 that are presented next.

Lemma 3.11. Let P (λ) be an m× n matrix polynomial with degree k ≥ 2 and let Fσ(P ) be the Fiedler
pencil of P (λ) associated with the bijection σ. Then the Fiedler pencil Fσ(−P ) of −P (λ) is strictly
equivalent to Fσ(P ).

Proof. Let P (λ) =
∑k
i=0 λ

iAi. Throughout this proof, we view Fσ(P ) = λ diag(Ak, I) −Mσ(P ) and
Fσ(−P ) = λ diag(−Ak, I) −Mσ(−P ) as k × k block-matrices, with the sizes of the blocks determined
by the way Algorithm 2 constructs Mσ(P ) and Mσ(−P ). In particular, we consider the block I in
diag(Ak, I) and diag(−Ak, I) as I = diag(Ir2 , Ir3 , . . . , Irk), where ri = m or n by Theorem 3.6(b). Note,
in the first place, that Fσ(−P ) is strictly equivalent to −Fσ(−P ). On the other hand, according to
Algorithm 2 and Theorem 3.10, the only difference between the pencils −Fσ(−P ) = λ diag(Ak,−I) −
(−Mσ(−P )) and Fσ(P ) = λ diag(Ak, I)−Mσ(P ) are the signs of the k− 1 identity blocks of Mσ(P ) and
the signs of the k−1 diagonal identity blocks of diag(Ak, I). Let {i1, i2, . . . , it} and {jt+1, jt+2, . . . , jk−1}
be the indices defined in Theorem 3.10(d-4), and define now the matrices

U := diag(Im, η2Ir2 , η3Ir3 , . . . , ηkIrk), where ηi =

{
−1 if ηi ∈ {i1, i2, . . . , it}
1 otherwise

,

and

V := diag(In, α2Ir2 , α3Ir3 , . . . , αkIrk), where αi =

{
−1 if αi ∈ {jt+1, jt+2, . . . , jk−1}
1 otherwise

.
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According to Theorem 3.10(d-4) and the previous discussion

UFσ(P )V = λUdiag(Ak, I)V − UMσ(P )V = λ diag(Ak,−I)− (−Mσ(−P )) = −Fσ(−P ),

which concludes the proof.

Fiedler pencils for revP (λ) can be easily constructed by applying Algorithm 2 to the reversal poly-
nomial. Lemma 3.12 shows us another way to construct Fiedler pencils for revP (λ) that is useful in
proving Theorem 3.14. According to Definition 3.8, we only need to pay attention in Lemma 3.12 to the
construction of the zero-degree term of the pencil. In addition, for technical reasons that will be clear
later, we construct pencils for the polynomial −revP (λ).

Lemma 3.12 (Construction of Fiedler pencils for −revP (λ) via block reverse identities).

Let P (λ) =
∑k
i=0 λ

iAi be an m × n matrix polynomial with degree k ≥ 2, let σ : {0, 1, . . . , k − 1} →
{1, . . . , k} be a bijection, and consider the following algorithm:

Algorithm 3. Given P (λ) =
∑k
i=0 λ

iAi with size m × n and a bijection σ, the following
algorithm constructs a sequence of matrices {Y0, Y1, . . . , Yk−2}, where each matrix Yi for i =
1, 2, . . . , k − 2 is partitioned into blocks in such a way that the blocks of Yi−1 are blocks of Yi.

if σ has a consecution at 0 then

Y0 =

[
0 Ak
Im Ak−1

]
else

Y0 =

[
0 In
Ak Ak−1

]
endif

for i = 1 : k − 2
if σ has a consecution at i then

Yi =

[
Yi−1(:, 1 : i) 0 Yi−1(:, i+ 1)

0 Im Ak−i−1

]
else

Yi =

 Yi−1(1 : i, :) 0
0 In

Yi−1(i+ 1, :) Ak−i−1


endif

endfor

Then the matrices Y0, Y1, . . . , Yk−2 are partitioned in 2×2, 3×3, . . . , k×k blocks, respectively, and satisfy
the following properties:

(a) The size of Yi is(
m+m c(σ(0 : i)) + n i(σ(0 : i))

)
×
(
n+m c(σ(0 : i)) + n i(σ(0 : i))

)
.

(b) The last diagonal block of Yi is Ak−i−1, and so has size m × n. The rest of the diagonal blocks of
Yi are square zero matrices, more precisely

Yi(j, j) =

{
0m if σ has a consecution at j − 1
0n if σ has an inversion at j − 1

, for j = 1, 2, . . . , i+ 1.

(c) Let dj × dj be the size of Yi(j, j) for j = 1, 2, . . . , i+ 1, and define the (i+ 2)× (i+ 2) block reverse
identities

R
(i)
` :=


Im

Idi+1

. .
.

Id1

 and R(i)
r :=


Id1

. .
.

Idi+1

In

 .
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Then we have
R

(i)
` YiR

(i)
r = Wi(−revP ), for i = 0, 1, . . . , k − 2, (18)

where Wi(−revP ) are the matrices constructed by Algorithm 2 for the polynomial −revP (λ) and
the bijection σ. In particular, according to Definition 3.8,

R
(k−2)
` Yk−2R

(k−2)
r = Mσ(−revP ).

Proof. The proof of the lemma up through part (b) is analogous to the inductive proof of Theorem 3.6,
and so is omitted. We only indicate that part (b) for the block Yi(i+ 1, i+ 1) is a direct consequence of
the way Algorithm 3 constructs Yi, while the expressions for the remaining Yi(j, j) blocks follow from
Yi(1 : i, 1 : i) = Yi−1(1 : i, 1 : i) via induction. It is important to note that the size of Yi(j, j) only
depends on j and not on i, whenever 1 ≤ j ≤ i+ 1.

Before proving part (c), it is convenient to pay close attention to the structure of the matrices R
(i)
`

and R
(i)
r . First, note that the upper-right (resp., lower-left) block of R

(i)
` (resp., R

(i)
r ) is special because

it is always equal to Im (resp., In), independently of the consecutions/inversions that σ may have. The
reason for the presence of these special blocks is to make the product in (18) conformable, since the last

diagonal block of Yi has size m×n. This motivates the definition of two matrices, R̂
(i)
` and R̂

(i)
r , obtained

from R
(i)
` and R

(i)
r by removing these special blocks and the corresponding rows/columns, that is,

R
(i)
` =:

[
Im

R̂
(i)
`

]
and R(i)

r =:

[
R̂

(i)
r

In

]
. (19)

Observe that the matrices R̂
(i)
` and R̂

(i)
r enjoy the following embedding properties,

R̂
(i)
` =

[
Idi+1

R̂
(i−1)
`

]
and R̂(i)

r =

[
R̂

(i−1)
r

Idi+1

]
, (20)

that do not hold for the un-hatted matrices R
(i)
` and R

(i)
r .

We are now in a position to prove (18) by induction on i. The definitions of R
(i)
` and R

(i)
r guarantee

that the three factors in the left-hand side of (18) are conformal for multiplication. The initial step i = 0
is proved directly, because for i = 0 we have:

• If σ has a consecution at 0, then

R
(0)
` Y0R

(0)
r =

[
Im

Im

] [
0 Ak
Im Ak−1

] [
Im

In

]
=

[
Ak−1 Im
Ak 0

]
= W0(−revP ).

• If σ has an inversion at 0, then

R
(0)
` Y0R

(0)
r =

[
Im

In

] [
0 In
Ak Ak−1

] [
In

In

]
=

[
Ak−1 Ak
In 0

]
= W0(−revP ).

Assume now that (18) is true for some i− 1, such that 0 ≤ (i− 1) ≤ k− 3, and we will prove it for i. We
need to distinguish two cases according to whether σ has a consecution or an inversion at i.
Case 1: σ has a consecution at i. In this case di+1 = m. Then (19) and (20) imply

R
(i)
` YiR

(i)
r =

[
Im

R̂
(i)
`

] [
Yi−1(:, 1 : i) 0 Yi−1(:, i+ 1)

0 Im Ak−i−1

] R̂
(i−1)
r

Im
In


=

[
Ak−i−1 Im 0

R̂
(i)
` Yi−1(:, i+ 1) 0 R̂

(i)
` Yi−1(:, 1 : i)R̂

(i−1)
r

]
. (21)
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Observe that di+1 = m, together with (19) and (20), imply that R
(i−1)
` = R̂

(i)
` . Now we use the induction

assumption, that is, that (18) is true for (i− 1).

Wi−1(−revP ) = R
(i−1)
` Yi−1R

(i−1)
r = R̂

(i)
`

[
Yi−1(:, 1 : i) Yi−1(:, i+ 1)

] [ R̂
(i−1)
r

In

]
=
[
R̂

(i)
` Yi−1(:, i+ 1) R̂

(i)
` Yi−1(:, 1 : i)R̂

(i−1)
r

]
. (22)

We substitute equation (22) in (21) to get

R
(i)
` YiR

(i)
r =

[
Ak−i−1 Im 0

[Wi−1(−revP )] (:, 1) 0 [Wi−1(−revP )] (:, 2 : i+ 1)

]
= Wi(−revP ),

where the last step follows from applying Algorithm 2 to −revP (λ) and σ. This concludes the proof of
Case 1.
Case 2: σ has an inversion at i. In this case di+1 = n. Then (19) and (20) imply

R
(i)
` YiR

(i)
r =

 Im
In

R̂
(i−1)
`

 Yi−1(1 : i, :) 0
0 In

Yi−1(i+ 1, :) Ak−i−1

[ R̂
(i)
r

In

]

=

 Ak−i−1 Yi−1(i+ 1, :)R̂
(i)
r

In 0

0 R̂
(i−1)
` Yi−1(1 : i, :)R̂

(i)
r

 . (23)

Observe that di+1 = n, together with (19) and (20), imply that R
(i−1)
r = R̂

(i)
r . Now we use the induction

assumption.

Wi−1(−revP ) = R
(i−1)
` Yi−1R

(i−1)
r =

[
Im

R̂
(i−1)
`

] [
Yi−1(1 : i, :)
Yi−1(i+ 1, :)

]
R̂(i)
r

=

[
Yi−1(i+ 1, :)R̂

(i)
r

R̂
(i−1)
` Yi−1(1 : i, :)R̂

(i)
r

]
. (24)

We substitute equation (24) in (23) to get

R
(i)
` YiR

(i)
r =

 Ak−i−1 [Wi−1(−revP )] (1, :)
In 0
0 [Wi−1(−revP )] (2 : i+ 1, :)

 = Wi(−revP ).

This concludes the proof of Case 2.

Lemma 3.13 shows the result of certain matrix multiplications that are used in the proof of Theorem
3.14 to perform strict equivalences on the reversals of Fiedler pencils when the degree k of the polynomial
satisfies k ≥ 3.

Lemma 3.13. Let σ, τ : {0, 1, . . . , k − 1} → {1, . . . , k} be two bijections such that σ has a consecution

at i − 1 if and only if τ has a consecution at k − i − 1 for i = 1, . . . , k − 1. Let P (λ) =
∑k
i=0 λ

iAi be

an m× n matrix polynomial with degree k ≥ 3, let {Wi}k−2i=0 be the sequence of block partitioned matrices
constructed by Algorithm 2 for P (λ) and σ, and let {Yi}k−2i=0 be the sequence of block partitioned matrices
constructed by Algorithm 3 for P (λ) and τ . Also define W−1 := −A0 and Y−1 := Ak. Let us define two

sequences, {Ĩi}k−1i=0 and {Îi}k−1i=0 , of partitioned matrices as follows: Ĩ0 and Î0 are 0 × 0 empty matrices,
and

Ĩi :=


Is1

Is2
. . .

Isi

 and Îi :=


Itk−i+1

Itk−i+2

. . .

Itk

 , for i = 1, . . . , k − 1,
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where {sj}ij=1 are the sizes of the square diagonal blocks {Yi−1(j, j)}ij=1, and {tj}kj=k−i+1 are the sizes

of the square diagonal blocks {Wi−1(j, j)}i+1
j=2. Then the following statements hold.

(a) For each i = 0, 1, . . . , k − 1, the matrices

W̃i−1 :=

[
Ĩk−i−1

Wi−1

]
and Ỹk−i−2 :=

[
Yk−i−2

Îi

]
are partitioned into k× k blocks and the size of the block W̃i−1(p, q) is equal to the size of the block

Ỹk−i−2(p, q) for all 1 ≤ p, q ≤ k. In addition, W̃i−1 and Ỹk−i−2 both have size(
m+m c(σ) + n i(σ)

)
×
(
n+m c(σ) + n i(σ)

)
,

that is, the same size as the Fiedler pencil of P (λ) associated with σ.

(b) Define a sequence of matrices {Si}k−1i=1 as follows:

S1 :=

 Ĩk−2
0 In
Im A1

 , Si :=



Ĩk−i−1
0 In
Im Ai

Itk−i+2

. . .

Itk


, i = 2, . . . , k − 1.

Then for each i = 1, . . . , k − 1, the following statements hold:

(b1) If σ has a consecution at i−1, then Si has size
(
n+m c(σ) +n i(σ)

)
×
(
n+m c(σ) +n i(σ)

)
,

and
W̃i−1Si = W̃i−2 and Ỹk−i−2Si = Ỹk−i−1 .

(b2) If σ has an inversion at i−1, then Si has size
(
m+m c(σ)+n i(σ)

)
×
(
m+m c(σ)+n i(σ)

)
,

and
SiW̃i−1 = W̃i−2 and SiỸk−i−2 = Ỹk−i−1 .

Proof. Part (a). Ĩk−i−1 has (k− i− 1)× (k− i− 1) blocks, by definition, and by Theorem 3.6, Wi−1 has

(i+1)×(i+1) blocks. So W̃i−1 has k×k blocks. Analogously, by Lemma 3.12, Yk−i−2 has (k−i)×(k−i)
blocks and, by definition, Îi has i× i blocks. So Ỹk−i−2 has k × k blocks.

Next we prove that the sizes of the blocks of W̃i−1 are equal to the sizes of the corresponding blocks of

Ỹk−i−2. Assume first that 1 ≤ i ≤ k−2, and recall that Wi−1(1, 1) = −Ai and Yk−i−2(k−i, k−i) = Ai+1.
Then

W̃i−1 =

Ĩk−i−1 −Ai ∗
∗ Wi−1(2 : i+ 1, 2 : i+ 1)

 , (25)

Ỹk−i−2 =

Yk−i−2(1 : k − i− 1, 1 : k − i− 1) ∗
∗ Ai+1

Îi

 . (26)

By definition, Ĩk−i−1 is partitioned into blocks exactly as Yk−i−2(1 : k − i − 1, 1 : k − i − 1), and Îi is

partitioned exactly as Wi−1(2 : i + 1, 2 : i + 1). Therefore W̃i−1 and Ỹk−i−2 have corresponding blocks

with equal sizes. For i = 0 we have W̃−1 = diag(Ĩk−1,−A0), Ỹk−2 = Yk−2, and the definition of Ĩk−1
together with Lemma 3.12(b) guarantee that the sizes of corresponding blocks are equal. For i = k − 1

we have W̃k−2 = Wk−2, Ỹ−1 = diag(Ak, Îk−1), and the definition of Îk−1 together with Theorem 3.6(b)
imply the result.

We consider now the total size of the matrices W̃i−1 and Ỹk−i−2. Note first that c(σ) = c(τ) and

i(σ) = i(τ). For i = 0, we get from the previous discussion that W̃−1 and Ỹk−2 = Yk−2 both have the
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size of Yk−2, that is
(
m + m c(σ) + n i(σ)

)
×
(
n + m c(σ) + n i(σ)

)
according to Lemma 3.12(a). For

i = k − 1, we get from the previous discussion that W̃k−2 = Wk−2 and Ỹ−1 both have the size of Wk−2,
that is

(
m+m c(σ) + n i(σ)

)
×
(
n+m c(σ) + n i(σ)

)
according to Theorem 3.6(a). For 1 ≤ i ≤ k − 2,

we get again from the previous discussion that W̃i−1 and Ỹk−i−2 both have the same size. This size is
the sum of the sizes of the three diagonal blocks in (25) (or (26)), which according to Theorem 3.6 and
Lemma 3.12 is (m+ r)× (n+ r) with

r = m
[
c
(
τ(0 : k − i− 2)

)
+ c
(
σ(0 : i− 1)

) ]
+ n

[
i
(
τ(0 : k − i− 2)

)
+ i
(
σ(0 : i− 1)

) ]
.

From the definition of τ , we see that r is equal to

r = m
[
c
(
σ(i : k − 2)

)
+ c
(
σ(0 : i− 1)

) ]
+ n

[
i
(
σ(i : k − 2)

)
+ i
(
σ(0 : i− 1)

) ]
= m c(σ) + n i(σ).

This concludes the proof of Part (a).
Part (b). For brevity, we prove only (b1). The proof of (b2) is similar and is omitted. Let us establish
the size of Si, which is clearly a square matrix for each i. So we only pay attention to the number of
rows. Consider first the number of rows of S1. Note that if σ has a consecution at 0, then

W̃0 =

[
Ĩk−2

W0

]
=

Ĩk−2 −A1 Im
−A0 0

 .
This makes evident that the number of columns of W̃0 is equal to the number of rows of S1, and therefore
this number is (n + m c(σ) + n i(σ)) by part (a). Note that we have also shown that the partitions of

W̃0 and S1 are conformal for the product W̃0S1; by part (a), the same happens for the product Ỹk−3S1.
Consider next the number of columns of Si, for i = 2, . . . , k−1. Note that if σ has a consecution at i−1,
then

W̃i−1 =

[
Ĩk−i−1

Wi−1

]
=

Ĩk−i−1 −Ai Im 0
Wi−2(:, 1) 0 Wi−2(:, 2 : i)

 .
By definition, tk−i+2, . . . , tk are the number of columns of the block columns of Wi−1(:, 3 : i+ 1), which
have the same number of columns as the block columns of Wi−2(:, 2 : i). Therefore the number of columns

of W̃i−1 is equal to the number of rows of Si, and this number is (n+m c(σ)+n i(σ)) by part (a). Observe

that we have also proved that the partitions of W̃i−1 and Si are conformal for the product W̃i−1Si. This

implies, by part (a), that the partitions of Ỹk−i−2 and Si are conformal for the product Ỹk−i−2Si.

To prove that W̃i−1Si = W̃i−2 for i = 1, . . . , k−1, we first need to deal separately with the case i = 1,

because W̃−1 has a structure different from W̃i for i > −1. A direct block multiplication shows that

W̃0S1 =

Ĩk−2 −A1 Im
−A0 0

 Ĩk−2
0 In
Im A1

 =

 Ĩk−2
Im 0
0 −A0

 = W̃−1,

where we have used that Ĩk−1 = diag(Ĩk−2, Im). This latter fact holds because, according to Lemma
3.12(b), the sizes of the blocks {Yk−3(j, j)}k−2j=1 are equal to the sizes of the blocks {Yk−2(j, j)}k−2j=1 , and
Yk−2(k − 1, k − 1) = 0m because σ has a consecution at 0, that is, τ has a consecution at k − 2. Let us
now consider i = 2, . . . , k − 1. Then

W̃i−1Si =

Ĩk−i−1 −Ai Im 0
Wi−2(:, 1) 0 Wi−2(:, 2 : i)



Ĩk−i−1

0 In
Im Ai

Itk−i+2+···+tk


=

 Ĩk−i−1
Im 0 0
0 Wi−2(:, 1) Wi−2(:, 2 : i)

 =

[
Ĩk−i

Wi−2

]
= W̃i−2,
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where we have used that Ĩk−i = diag(Ĩk−i−1, Im). This holds because, according to Lemma 3.12(b),
the sizes of the blocks {Yk−i−2(j, j)}k−i−1j=1 are equal to the sizes of the blocks {Yk−i−1(j, j)}k−i−1j=1 , and
Yk−i−1(k − i, k − i) = 0m because σ has a consecution at i− 1, that is, τ has a consecution at k − i− 1.

Next we proceed to show that Ỹk−i−2Si = Ỹk−i−1. Here we need to deal separately at the end with

the case i = k − 1, because Ỹ−1 has a structure different from the remaining Ỹi. We consider first
i = 1, . . . , k − 2. Since σ has a consecution at i − 1, we have that Wi−1(2, 2) = 0m by Theorem 3.6(b),

and the first block of Îi is Itk−i+1
= Im. In addition, note that Îi = diag(Im, Îi−1) because the sizes of

the blocks {Wi−1(j, j)}i+1
j=3 are equal to the sizes of the blocks {Wi−2(j, j)}ij=2 by Theorem 3.6(b) (recall

also Remark 3.7). Therefore

Ỹk−i−2Si =

Yk−i−2 Im
Itk−i+2+···+tk



Ĩk−i−1

0 In
Im Ai

Itk−i+2+···+tk



=

Yk−i−2(:, 1 : k − i− 1) Yk−i−2(:, k − i)
Im

Îi−1



Ĩk−i−1

0 In
Im Ai

Îi−1


=

Yk−i−2(:, 1 : k − i− 1) Yk−i−2(:, k − i)
Im Ai

Îi−1

 =

[
Yk−i−1

Îi−1

]
= Ỹk−i−1,

where we have used Algorithm 3, taking into account that τ has a consecution at k − i− 1. We finally
cover the case i = k− 1. Since σ has a consecution at k− 2, an argument similar to the one above shows
that Îk−1 = diag(Im, Îk−2). Therefore,

Ỹ−1Sk−1 =

[
Ak

Îk−1

] 0 In
Im Ak−1

It3+···+tk

 =

Ak Im
Îk−2

 0 In
Im Ak−1

Îk−2


=

 0 Ak
Im Ak−1

Îk−2

 =

[
Y0

Îk−2

]
= Ỹ0,

where we have used Algorithm 3, taking into account that τ has a consecution at 0. This concludes the
proof of (b1).

Now we are in a position to prove the main result of this section.

Theorem 3.14. Let P (λ) be an m×n matrix polynomial with degree k ≥ 2, and let Fσ(P ) be the Fiedler
pencil of P (λ) associated with a bijection σ. Then revFσ(P ) is strictly equivalent to a Fiedler pencil
of revP (λ). More precisely, revFσ(P ) is strictly equivalent to Fτ (revP ), where τ : {0, 1, . . . , k − 1} →
{1, . . . , k} is any bijection such that τ has a consecution (resp., inversion) at k−i−1 if σ has a consecution
(resp., inversion) at i− 1, for i = 1, . . . , k − 1.

Proof. Let P (λ) =
∑k
i=0 λ

iAi. If the degree is k = 2, then Algorithm 2 shows that there are only two
different Fiedler pencils. These are the two companion forms

C1(P ) = λ

[
A2 0
0 In

]
+

[
A1 A0

−In 0

]
and C2(P ) = λ

[
A2 0
0 Im

]
+

[
A1 −Im
A0 0

]
.

For k = 2, direct matrix multiplications show that[
Im A1

0 −In

]
( revC1(P ) )

[
0 In
In 0

]
= C1(revP ) and[

0 Im
Im 0

]
( revC2(P ) )

[
In 0
A1 −Im

]
= C2(revP ),
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which proves the result because the matrices multiplying revC1(P ) and revC2(P ) are always nonsingular.
Observe that for k = 2 the bijections σ and τ are identical.

For k ≥ 3, the proof relies on Lemma 3.13, so for the rest of the proof we use exactly the same
definitions and notation as in Lemma 3.13. Note that W̃k−2 = Wk−2 = Mσ, where −Mσ is the zero
degree term of Fσ(P ) according to Definition 3.8. Then

Fσ(P ) = λ

[
Ak

Imc(σ)+ni(σ)

]
−Mσ = λ Ỹ−1 − W̃k−2 and revFσ(P ) = Ỹ−1 − λ W̃k−2.

Next we use the nonsingular matrices Sk−1, Sk−2, . . . , S1 introduced in Lemma 3.13(b), and multiply
revFσ(P ) first by Sk−1, second by Sk−2, and so on until we multiply by S1. The multiplications are
performed on the right or on the left according to the consecutions or inversions of σ as indicated in
Lemma 3.13(b1)-(b2). So we obtain

revFσ(P ) = (Ỹ−1 − λW̃k−2) ∼s (Ỹ0 − λW̃k−3) ∼s (Ỹ1 − λW̃k−4) ∼s · · · ∼s (Ỹk−2 − λW̃−1),

where the symbol ∼s denotes that we are performing strict equivalences, because the matrices Si are
always nonsingular. From Lemma 3.13 we see that Ỹk−2 = Yk−2 and W̃−1 = diag(Ĩk−1,−A0). Therefore

revFσ(P ) ∼s
(
Yk−2 − λ diag(Ĩk−1,−A0)

)
.

We now apply Lemma 3.12(c) to get

revFσ(P ) ∼s
(
R

(k−2)
` Yk−2R

(k−2)
r − λR(k−2)

` diag(Ĩk−1,−A0)R(k−2)
r

)
= Mτ (−revP )− λ diag(−A0, Ĩk−1) = −Fτ (−revP ).

Finally, by Lemma 3.11, −Fτ (−revP ) is strictly equivalent to −Fτ (revP ), which in turn is strictly
equivalent to Fτ (revP ). Hence we conclude that revFσ(P ) is strictly equivalent to Fτ (revP ).

4. Fiedler pencils of rectangular matrix polynomials are strong linearizations

We will prove in this section that all Fiedler pencils Fσ(λ) of a rectangular matrix polynomial P (λ)
are strong linearizations for P (λ). This is proved in Theorem 4.5, which generalizes [11, Thm 4.6] in a
nontrivial way. The approach we follow is constructive, in the sense that we will show how to construct
appropriate unimodular matrices U(λ) and V (λ) satisfying (3) for every Fσ(λ). The construction of
these matrices is accomplished via the construction of sequences of block partitioned matrix polynomi-
als in Algorithms 4 and 5, which follow the spirit of Definition 3.8 of Fiedler pencils for rectangular
polynomials. The properties of the unimodular transformations generated by these sequences are then
further studied in Lemma 4.4. In this section, we make systematic use of the Horner shifts introduced in
Definition 4.1.

Definition 4.1. Let P (λ) = A0 +λA1 + · · ·+λkAk be an m×n matrix polynomial of degree k. For d =
0, . . . , k, the degree d Horner shift of P (λ) is the matrix polynomial Pd(λ) := Ak−d+λAk−d+1+· · ·+λdAk .

Observe that the Horner shifts of P (λ) satisfy the following recurrence relation

P0(λ) = Ak, Pd+1(λ) = λPd(λ) +Ak−d−1, for 0 ≤ d ≤ k − 1, and Pk(λ) = P (λ).

Lemma 4.2. Let P (λ) =
∑k
i=0 λ

iAi be an m× n matrix polynomial with degree k ≥ 2, let σ : {0, 1, . . . ,
k − 1} → {1, 2, . . . , k} be a bijection, and consider the following algorithms:

Algorithm 4. Given P (λ) =
∑k
i=0 λ

iAi with size m × n and a bijection σ, the following
algorithm constructs a sequence of matrix polynomials {N0, N1, . . . , Nk−2}, where each matrix
Ni for i = 1, 2, . . . , k − 2 is partitioned into blocks in such a way that the blocks of Ni−1 are
blocks of Ni. Note that Pd denotes the degree d Horner shift of P (λ), and that the dependence
on λ is dropped for simplicity, both in Pd and in {Ni}k−2i=0 .
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if σ has a consecution at 0 then

N0 =

[
Im 0
λIm Im

]
else

N0 =

[
0 −In
Im Pk−1

]
endif

for i = 1 : k − 2
if σ has a consecution at i then

Ni =

[
Im 0

λNi−1(:, 1) Ni−1

]
else

Ni =

[
0 −In 0

Ni−1(:, 1) Ni−1(:, 1)Pk−i−1 Ni−1(:, 2 : i+ 1)

]
endif

endfor

Algorithm 5. Given P (λ) =
∑k
i=0 λ

iAi with size m × n and a bijection σ, the following
algorithm constructs a sequence of matrix polynomials {H0, H1, . . . ,Hk−2}, where each matrix
Hi for i = 1, 2, . . . , k − 2 is partitioned into blocks in such a way that the blocks of Hi−1 are
blocks of Hi. Note that Pd denotes the degree d Horner shift of P (λ), and that the dependence
on λ is dropped for simplicity, both in Pd and in {Hi}k−2i=0 .

if σ has a consecution at 0 then

H0 =

[
0 In
−Im Pk−1

]
else

H0 =

[
In λIn
0 In

]
endif

for i = 1 : k − 2
if σ has a consecution at i then

Hi =

 0 Hi−1(1, :)
−Im Pk−i−1Hi−1(1, :)

0 Hi−1(2 : i+ 1, :)


else

Hi =

[
In λHi−1(1, :)
0 Hi−1

]
endif

endfor

Then the matrix polynomials N0, N1, . . . , Nk−2 constructed by Algorithm 4 are partitioned into 2×2, 3×
3, . . . , k×k blocks, respectively, and the matrix polynomials H0, H1, . . . ,Hk−2 constructed by Algorithm 5

are partitioned into 2×2, 3×3, . . . , k×k blocks, respectively. Moreover, if {Wi}k−2i=0 is the sequence of block
partitioned matrices constructed by Algorithm 2 for P (λ) and σ, then the matrix polynomials {Ni}k−2i=0

and {Hi}k−2i=0 satisfy the following properties:

(a) For 0 ≤ i ≤ k − 2 and 1 ≤ j ≤ i + 2, the number of columns of Ni(:, j) is equal to the number of
rows of Wi(j, :). This means that the matrix product Ni(:, j)Wi(j, :) is well-defined.

(b) For 0 ≤ i ≤ k − 2 and 1 ≤ j ≤ i + 2, the number of columns of Wi(:, j) is equal to the number of
rows of Hi(j, :). This means that the matrix product Wi(:, j)Hi(j, :) is well-defined.

(c) The size of Ni is
(
m+m c(σ(0 : i)) + n i(σ(0 : i))

)
×
(
m+m c(σ(0 : i)) + n i(σ(0 : i))

)
.

(d) The size of Hi is
(
n+m c(σ(0 : i)) + n i(σ(0 : i))

)
×
(
n+m c(σ(0 : i)) + n i(σ(0 : i))

)
.

(e) The matrix polynomials Ni and Hi are unimodular. In fact, det(Ni) = ±1 and det(Hi) = ±1.
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(f) Ni(i+ 2, :) has m rows and Hi(:, i+ 2) has n columns; that is, the last block row of Ni has m rows
and the last block column of Hi has n columns.

Proof. The proof is trivial by induction. We indicate only the main points. Starting with N0 and H0, it
is obvious to see by induction that Ni(:, 1) has m columns and Hi(1, :) has n rows for i = 0, 1, . . . , k − 2.
Therefore the sequences {Ni}k−2i=0 and {Hi}k−2i=0 are well-defined. Since, for i ≥ 1, Ni and Hi are obtained
from Ni−1 and Hi−1, respectively, by adding one block row and one block column, then we see that Ni
and Hi are partitioned into (i+ 2)× (i+ 2) blocks.

To prove part (a), note that the result is true for N0 and W0, and make the inductive assumption that
the result holds for Ni−1 and Wi−1 with (i− 1) ≥ 0. Then the constructions of Ni in Algorithm 4 and
Wi in Algorithm 2 make evident that the result is true for Ni and Wi. Part (b) follows from a similar
inductive argument.

To prove parts (c) and (d), we note first that all matrices in the sequences {Ni}k−2i=0 and {Hi}k−2i=0 are
square; by definition this is true for N0 and W0, and for i ≥ 1, Ni is obtained from Ni−1 by adding the
same number of rows as columns, and Hi is also obtained from Hi−1 by adding the same number of rows
as columns. Then (c) follows from (a), and (d) from (b), by using Theorem 3.6(a). Finally parts (e) and
(f) follow again by induction.

Since the matrices Nk−2 and Hk−2 in Lemma 4.2 play a key role in the rest of the paper, we give
them each a special name and notation.

Definition 4.3. Let P (λ) =
∑k
i=0 λ

iAi be an m × n matrix polynomial with degree k ≥ 2, let σ :
{0, 1, . . . , k − 1} → {1, 2, . . . , k} be a bijection, and let Nk−2 and Hk−2 be, respectively, the last matrices
of the sequences constructed by Algorithms 4 and 5 for P (λ) and σ. Then

• Uσ(λ) := Nk−2 is the left unimodular equivalence matrix associated with P (λ) and σ,

• Vσ(λ) := Hk−2 is the right unimodular equivalence matrix associated with P (λ) and σ.

Lemma 4.4 further studies the unimodular transformations generated by the sequences {Ni}k−2i=0 and
{Hi}k−2i=0 .

Lemma 4.4. Let P (λ) =
∑k
i=0 λ

iAi be an m×n matrix polynomial with degree k ≥ 2, let σ : {0, . . . , k−1}
→ {1, . . . , k} be a bijection, and let {Wi}k−2i=0 , {Ni}

k−2
i=0 , {Hi}k−2i=0 be the sequences of block partitioned

matrices constructed, respectively, by Algorithms 2, 4 and 5 for P (λ) and σ. Also consider the numbers
αi = m c(σ(0 : i)) + n i(σ(0 : i)) and βi = m c(σ(i)) + n i(σ(i)); note that βi = m if σ has a consecution
at i, and βi = n if σ has an inversion at i, for i = 0, 1, . . . , k− 2. Then the following two identities hold.

(a) For 1 ≤ i ≤ k − 2,

Ni

([
λPk−i−2

λIαi

]
−Wi

)
Hi =

 Iβi

Ni−1

([
λPk−i−1

λIαi−1

]
−Wi−1

)
Hi−1

 ,
(b) and, for i = 0,

N0

([
λPk−2

λIα0

]
−W0

)
H0 =

[
Iβ0

P

]
,

where Pd is the degree d Horner shift of P . Here the dependences on λ have been dropped for simplicity.

Proof. Observe first that, for 0 ≤ i ≤ k− 2, parts (a) and (b) of Lemma 4.2 guarantee that the products
NiWiHi are well-defined and that the block partitions of Ni, Wi, and Hi are conformal for this matrix
product. Moreover, from Theorem 3.6, the block Wi(1, 1) always has size m×n, and so the size of Wi(2 :
i+2, 2 : i+2) is αi×αi. Therefore diag(λPk−i−2, λIαi) has the same size asWi, and can be partitioned into
blocks exactly in the same way as Wi, where recall that the diagonal blocks Wi(2, 2), . . . ,Wi(i+ 2, i+ 2)
are square. As a consequence, the products Ni diag(λPk−i−2, λIαi

)Hi are also well-defined.
The rest of the proof consists in carefully performing block matrix products. We start with the proof

of part (a), which must be split into two cases.
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(a1) Part (a), case 1: σ has a consecution at i. In this case we have

Ni =

[
Im 0

λNi−1(:, 1) Ni−1

]
, Wi =

[
−Ai+1 Im 0

Wi−1(:, 1) 0 Wi−1(:, 2 : i+ 1)

]
, Hi =

 0 Hi−1(1, :)
−Im Pk−i−1Hi−1(1, :)

0 Hi−1(2 : i+ 1, :)

 .
This implies

Ni

[
λPk−i−2

λIαi

]
Hi =

[
0 λPk−i−2Hi−1(1, :)

−λNi−1(:, 1) (Si)22

]
, (27)

where

(Si)22 = Ni−1(:, 1)(λ2Pk−i−2 + λPk−i−1)Hi−1(1, :) + λNi−1(:, 2 : i+ 1)Hi−1(2 : i+ 1, :) ,

and also

NiWiHi =

[
−Im (−Ai+1 + Pk−i−1)Hi−1(1, :)

−λNi−1(:, 1) (Ti)22

]
, (28)

where

(Ti)22 =Ni−1(:, 1)(−λAi+1 + λPk−i−1)Hi−1(1, :)

+Ni−1(Wi−1(:, 1)Hi−1(1, :) +Wi−1(:, 2 : i+ 1)Hi−1(2 : i+ 1, :)).

Now we use (27), (28), and −Ai+1 + Pk−i−1 = λPk−i−2 to get

Ni

([
λPk−i−2

λIαi

]
−Wi

)
Hi =

[
Im 0
0 (Zi)22

]
,

where

(Zi)22 =λNi−1(:, 1)Pk−i−1Hi−1(1, :) + λNi−1(:, 2 : i+ 1)Hi−1(2 : i+ 1, :)

−Ni−1(Wi−1(:, 1)Hi−1(1, :) +Wi−1(:, 2 : i+ 1)Hi−1(2 : i+ 1, :))

=Ni−1

[
λPk−i−1

λIαi−1

]
Hi−1 −Ni−1Wi−1Hi−1

=Ni−1

([
λPk−i−1

λIαi−1

]
−Wi−1

)
Hi−1.

(a2) Part (a), case 2: σ has an inversion at i. In this case

Ni

[
λPk−i−2

λIαi

]
Hi =

[
0 −λHi−1(1, :)

λNi−1(:, 1)Pk−i−2 (Si)22

]
, (29)

where (Si)22 is the same as in (a1), and

NiWiHi =

[
−In −λHi−1(1, :)

λNi−1(:, 1)Pk−i−2 (T̃i)22

]
, (30)

where now

(T̃i)22 =Ni−1(:, 1)(−λAi+1 + λPk−i−1)Hi−1(1, :)

+ (Ni−1(:, 1)Wi−1(1, :) +Ni−1(:, 2 : i+ 1)Wi−1(2 : i+ 1, :))Hi−1.

Subtracting (30) from (29) and reasoning as in (a1), we again obtain the desired identity.
The proof of part (b) is again a direct block matrix product and is omitted. We only remark that one

has to again consider two separate cases: σ has a consecution at 0, and σ has an inversion at 0. Also one
must use that λPk−2 = Pk−1 −A1 and P (λ) = λ2Pk−2 + λA1 +A0.

Now we are ready to prove the main result of this section.
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Theorem 4.5. Let P (λ) be an m×n matrix polynomial with degree larger than or equal to 2. Then any
Fiedler companion pencil Fσ(λ) of P (λ) is a strong linearization for P (λ).

Proof. We denote as usual P (λ) =
∑k
i=0 λ

iAi, and adopt the notation used in Lemma 4.4. Moreover,
recall from Definition 4.3 that Uσ(λ) = Nk−2 and Vσ(λ) = Hk−2, from Definition 3.8 that Mσ = Wk−2,
that P0 = Ak, and that αk−2 = mc(σ) + ni(σ). Then part (a) in Lemma 4.4 for i = k − 2 implies

Uσ(λ)Fσ(λ)Vσ(λ) = Nk−2

(
λ

[
P0

Iαk−2

]
−Wk−2

)
Hk−2

=

 Iβk−2

Nk−3

([
λP1

λIαk−3

]
−Wk−3

)
Hk−3

 .
Now apply part (a) in Lemma 4.4 for i = k − 3 to the lower right block in the previous equation to get

Uσ(λ)Fσ(λ)Vσ(λ) =


Iβk−2

Iβk−3

Nk−4

([
λP2

λIαk−4

]
−Wk−4

)
Hk−4

 .
Next, we apply part (a) in Lemma 4.4 consecutively for i = k − 4, k − 5, . . . , 1 until we get

Uσ(λ)Fσ(λ)Vσ(λ) =

 Iβk−2+βk−3+...+β1

N0

([
λPk−2

λIα0

]
−W0

)
H0

 .
Finally apply part (b) in Lemma 4.4, and use βk−2 + · · ·+ β1 + β0 = αk−2 to obtain

Uσ(λ)Fσ(λ)Vσ(λ) =

[
Imc(σ)+ni(σ)

P (λ)

]
, (31)

which proves that Fσ(λ) is a linearization of P (λ), since Uσ(λ) and Vσ(λ) are unimodular.
To show that Fσ(λ) is a strong linearization of P (λ), we invoke Theorem 3.14, which states that

revFσ(P ) is strictly equivalent to Fτ (revP ), where τ is a bijection (defined in the statement of The-
orem 3.14) with the same total number of consecutions and the same total number of inversions as
σ. We can now apply (31) to Fτ (revP ) and revP to see that Fτ (revP ) is unimodularly equivalent to
diag(Imc(σ)+ni(σ), revP ), and hence that revFσ(P ) is unimodularly equivalent to diag(Imc(σ)+ni(σ), revP ).
This proves that Fσ(λ) is indeed a strong linearization of P (λ).

From the proof of Theorem 4.5, we get Corollary 4.6, which will be fundamental in Section 5.

Corollary 4.6. Let P (λ) =
∑k
i=0 λ

iAi be an m × n matrix polynomial with degree k ≥ 2, let σ :
{0, . . . , k − 1} → {1, . . . , k} be a bijection, and let Uσ(λ) and Vσ(λ) be, respectively, the left and right
unimodular equivalence matrices associated with P (λ) and σ that were introduced in Definition 4.3. Then

Uσ(λ)Fσ(λ)Vσ(λ) =

[
Imc(σ)+ni(σ)

P (λ)

]
.

5. Recovery of minimal indices and bases of rectangular polynomials from Fiedler pencils

In this section we show how to recover in a very simple way the minimal indices and bases of a
rectangular matrix polynomial from those of any of its Fiedler pencils. The results and most of the
proofs in this section are very similar to the ones presented for singular square matrix polynomials in
Section 5 of [11]. Therefore, in order to avoid some repetitions, we omit all proofs that the reader can
deduce easily from [11, Section 5], and pay close attention only to those arguments where the fact that
the polynomial is rectangular makes a significant difference. Simultaneously, in order to keep the reading
of the paper self-contained, we present careful statements of the main results and give exact pointers to
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the results in [11] where the proofs can be found. In this sense, this section has a different character
than Sections 3 and 4, where most proofs have been presented in detail since the approaches followed in
Sections 3 and 4 are new and very different from those in [11].

The main recovery results in this section are Corollaries 5.4 and 5.7, which are consequences of
Theorems 5.3 and 5.6, respectively. These results extend to rectangular matrix polynomials what was
previously proved in [11] only for square singular polynomials, specifically in Corollaries 5.8 and 5.11 and
Theorems 5.7 and 5.9 in [11].

Corollaries 5.4 and 5.7 and Theorems 5.3 and 5.6 in this paper rely on a series of previous results.
The first one is Lemma 5.1, which is an extension to rectangular matrix polynomials of [11, Lemma 5.1].
The proof is an obvious modification of the one given in [11, Lemma 5.1], and so is omitted.

Lemma 5.1. Let the pencil L(λ) be a linearization of an m×n matrix polynomial P (λ) of degree k ≥ 2,
and let U(λ) and V (λ) be two unimodular matrix polynomials such that

U(λ)L(λ)V (λ) =

[
Is 0
0 P (λ)

]
.

Let UL = UL(λ) and V R = V R(λ) be, respectively, the matrices comprising the last m rows of U(λ) and
the last n columns of V (λ). Then

(a) the linear map L : N`(P ) −→ N`(L)
wT (λ) 7−→ wT (λ) · UL

is an isomorphism of F(λ)-vector spaces;

(b) the linear map R : Nr(P ) −→ Nr(L)
v(λ) 7−→ V R · v(λ)

is an isomorphism of F(λ)-vector spaces.

Clearly an immediate consequence of Lemma 5.1 is that the rational bases of Nr(P ) and Nr(L) are
in one-to-one correspondence via the map R. But for an arbitrary linearization L(λ), the map R does
not necessarily establish a bijection between vector polynomial bases of Nr(P ) and Nr(L), let alone
between minimal bases of Nr(P ) and Nr(L). A key point in our development is to show that for each
Fiedler pencil Fσ(λ) of an m × n matrix polynomial P (λ), if Vσ(λ) is the right unimodular equivalence
matrix appearing in Corollary 4.6, then the map Rσ associated with Vσ(λ) actually provides a one-to-one
correspondence between the right minimal bases of P (λ) and those of Fσ(λ). This correspondence is so
simple that it allows us to very easily obtain the right minimal bases of P (λ) from the right minimal
bases of Fσ(λ), and hence also the right minimal indices of P (λ) from those of Fσ(λ). Analogous results
hold for left minimal indices and bases.

Lemma 5.1 and Corollary 4.6 indicate that we need to determine the last block column of the matrix
Vσ(λ) = Hk−2 introduced in Definition 4.3, since this last block column has precisely n columns according
to Lemma 4.2(f). For this purpose, we need to define as in [11] some additional magnitudes and matrices,
which are based on the consecution-inversion structure sequence of σ introduced in Definition 3.2, i.e.,
CISS(σ) = (c1, i1, . . . , c`, i`). So we define

s0 := 0 , sj :=

j∑
p=1

(cp + ip) for j = 1, . . . , `, (32)

m0 := 0 , mj :=

j∑
p=1

ip for j = 1, . . . , `. (33)

Note that s` = k−1 and m` = i(σ). We also need to define some matrices, denoted Λσ,j(P ) for j = 1, . . . , `

and Λ̂σ,j(P ) for j = 1, . . . , `− 1, associated with the m× n matrix polynomial P (λ) and the bijection σ.
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These matrices are defined in terms of the Horner shifts of P (λ) as follows:

Λσ,j(P ) :=



λijIn
...
λIn
In

Pk−sj−1−cj
...

Pk−sj−1−2
Pk−sj−1−1


and Λ̂σ,j(P ) :=



λij−1In
...
λIn
In

Pk−sj−1−cj
...

Pk−sj−1−2
Pk−sj−1−1


if c1 ≥ 1, (34)

but if c1 = 0, then Λσ,1(P ) := [λi1In, . . . , λIn, In]T , Λ̂σ,1(P ) := [λi1−1In, . . . , λIn, In]T , with Λσ,j(P ),

Λ̂σ,j(P ) as in (34) for j > 1. Here for simplicity we omit λ from the Horner shifts Pd(λ). With all these
definitions we are now able to state and prove Lemma 5.2, which describes explicitly the last block-column
of Vσ(λ). Note that Lemma 5.2 generalizes [11, Lemma 5.3] to rectangular polynomials. However, the
proof is completely different than that given in [11, Lemma 5.3].

Lemma 5.2. Let P (λ) =
∑k
i=0 λ

iAi be an m× n matrix polynomial with degree k ≥ 2, let Fσ(λ) be the
Fiedler pencil of P (λ) associated with the bijection σ, and let Vσ(λ) be the right unimodular equivalence
matrix associated with P (λ) and σ introduced in Definition 4.3. Consider Vσ(λ) partitioned into k × k
blocks according to Algorithm 5. Then the last block-column V R(λ) of Vσ(λ), i.e., the last n columns of
Vσ(λ), is

ΛRσ (P ) :=


λm`−1Λσ,`(P )

λm`−2Λ̂σ,`−1(P )
...

λm1Λ̂σ,2(P )

Λ̂σ,1(P )

 if ` > 1, (35)

and V R(λ) = Λσ,1(P ) =: ΛRσ (P ) if ` = 1.

Proof. The last block-column of Vσ(λ) = Hk−2 can be determined by using Algorithm 5, and just looking
at the last block-column at each step of the algorithm. Set CISS(σ) = (c1, i1, . . . , c`, i`). Assume first
that c1 > 0, which means that σ has consecutions at 0, 1, . . . , c1 − 1. Then the last block-column of the
matrix Hc1−1 constructed after steps 0, 1, . . . , c1 − 1 of Algorithm 5 is of the form

Hc1−1(:, c1 + 1) =


In

Pk−c1
...

Pk−1

 .
Next, σ has inversions at c1, c1 + 1, . . . , c1 + i1 − 1, so then the last block-column of Hc1+i1−1 is

Hc1+i1−1(:, c1 + i1 + 1) =



λi1In
...
λIn
In

Pk−c1
...

Pk−1


= Λσ,1(P ).

The reader may check that if c1 = 0, then Hi1−1(:, i1 + 1) = [λi1In, . . . , λIn, In]T = Λσ,1(P ). The proof
is complete here if ` = 1, because in this case c1 + i1 = k − 1 and Hc1+i1−1(:, c1 + i1 + 1) = Hk−2(:, k) is
the last block column of Vσ(λ).
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If ` > 1, then the next c2 consecutions of σ at c1 + i1, ci + i1 + 1, . . . , c1 + i1 + c2 − 1 give, according
to Algorithm 5,

Hc1+i1+c2−1(:, c1 + i1 + c2 + 1) =



λi1In
λi1Pk−s1−c2

...
λi1Pk−s1−1
λi1−1In

...
λIn
In

Pk−c1
...

Pk−1



=


λi1In

λi1Pk−s1−c2
...

λi1Pk−s1−1
Λ̂σ,1(P )

 .

Notice that this produces the “truncated” block matrix Λ̂σ,1(P ) at the bottom of the last block-column
of Hc1+i1+c2−1. The next i2 inversions of σ produce

Hs2−1(:, s2 + 1) =

[
λm1Λσ,2(P )

Λ̂σ,1(P )

]
.

The rest of the proof follows by induction, with arguments similar to the ones given above. Assume that
for j such that 2 ≤ j < ` we have

Hsj−1(:, sj + 1) =


λmj−1Λσ,j(P )

λmj−2Λ̂σ,j−1(P )
...

λm1Λ̂σ,2(P )

Λ̂σ,1(P )

 ,

and prove via Algorithm 5 that the corresponding result holds for j + 1. To finish the proof, note that
Hs`−1(:, s` + 1) = Hk−2(:, k) is precisely the last block column of Vσ(λ).

A fundamental fact in Lemma 5.2 is that ΛRσ (P ) always has exactly one block equal to In at block
index k − c1. This is the block that allows us to easily recover the minimal bases of P (λ) from those of
Fσ(λ). To this purpose we first state Theorem 5.3, whose proof is omitted since it is essentially the same
as the one of [11, Theorem 5.7].

Theorem 5.3. Let P (λ) =
∑k
i=0 λ

iAi be an m × n matrix polynomial with degree k ≥ 2, let Fσ(λ) be
the Fiedler pencil of P (λ) associated with a bijection σ, let i(σ) be the total number of inversions of σ
and c(σ) the total number of consecutions of σ, and let ΛRσ (P ) be the

(
n + m c(σ) + n i(σ)

)
× n matrix

defined in (35). Then the linear map

Rσ : Nr(P ) −→ Nr(Fσ)
v 7−→ ΛRσ (P ) v

is an isomorphism of F(λ)-vector spaces with uniform degree-shift i(σ) on the vector polynomials in
Nr(P ). More precisely, Rσ induces a bijection between the subsets of vector polynomials in Nr(P ) and
Nr(Fσ), with the property that

degRσ(v) = i(σ) + deg v

for every nonzero vector polynomial v. Furthermore, for any nonzero vector polynomial v, degRσ(v) is
attained only in the topmost n× 1 block of Rσ(v).

An immediate consequence of Theorem 5.3 is Corollary 5.4, that establishes a very simple relationship
between the right minimal indices and bases of P (λ) and Fσ(λ). The proof of Corollary 5.4 is also omitted
since it is almost the same as the one of [11, Corollary 5.8].
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Corollary 5.4 (Recovery of right minimal indices and bases). Let P (λ) be an m × n matrix
polynomial with degree k ≥ 2, and let Fσ(λ) be the Fiedler pencil of P (λ) associated with a bijection
σ having CISS(σ) = (c1, i1, . . . , c`, i`) and total number of consecutions and inversions c(σ) and i(σ),
respectively. Suppose that each vector z(λ) ∈ Nr(Fσ) ⊂ F(λ)(n+mc(σ)+ni(σ))×1 is partitioned into k × 1
blocks which are conformal for multiplication with the partition of Fσ(λ) given by Algorithm 2.

(a) If z(λ) ∈ Nr(Fσ), and x(λ) ∈ F(λ)n×1 is the (k − c1)th block of z(λ), then x(λ) ∈ Nr(P ).

(b) If {z1(λ), . . . , zp(λ)} is a right minimal basis of Fσ(λ), and xj(λ) is the (k − c1)th block of zj(λ)
for each j = 1, . . . , p, then {x1(λ), . . . , xp(λ)} is a right minimal basis of P (λ).

(c) If 0 ≤ ε1 ≤ ε2 ≤ · · · ≤ εp are the right minimal indices of P (λ), then

ε1 + i(σ) ≤ ε2 + i(σ) ≤ · · · ≤ εp + i(σ) ,

are the right minimal indices of Fσ(λ).

Note that these results hold for the first companion form of P (λ) using (c1, i1) = (0, k−1) and i(σ) = k−1,
and for the second companion form using (c1, i1) = (k − 1, 0) and i(σ) = 0.

For the recovery of left minimal indices and bases, it is possible to take a similar approach to the
one we have used for right minimal indices and bases; that is, based on the results of Lemma 5.1 and
Corollary 4.6, focus on the last m rows of Uσ(λ), and determine them via Algorithm 4. However, we
follow here a different strategy, based on the fact that the left minimal indices and bases of a matrix
polynomial (and in particular, of a matrix pencil) coincide with the right minimal indices and bases of its
transpose, since y(λ)T ∈ N`(P ) if and only if y(λ) ∈ Nr(PT ). Then we relate the right minimal indices
and bases of P (λ)T with the ones of Fσ(λ)T , using the fact that Fσ(λ)T is a Fiedler pencil for P (λ)T , as
the following lemma shows.

Lemma 5.5. Let P (λ) =
∑k
i=0 λ

iAi be an m× n matrix polynomial of degree k ≥ 2, and σ : {0, . . . , k−
1} → {1, . . . , k} a bijection. Define the reversal bijection of σ as follows: revσ(i) := k + 1 − σ(i) for
i = 0, 1, . . . , k − 1. Then

[Fσ(P )]
T

= Frevσ(PT ) .

Proof. This lemma can be easily proved by induction using Algorithm 2. Let {Wi}k−2i=0 be the sequence
of matrices constructed by Algorithm 2 for P (λ) and σ, and let {W ′i}

k−2
i=0 be the sequence of matrices

constructed by Algorithm 2 for P (λ)T =
∑k
i=0 λ

iATi and revσ. Note that revσ has a consecution (resp.,
inversion) at i if and only if σ has an inversion (resp., consecution) at i. First notice that either

WT
0 =

[
−AT1 −AT0
Im 0

]
or WT

0 =

[
−AT1 In
−AT0 0

]
,

depending on whether σ has a consecution or an inversion at 0. Observe that, in both cases, we get
WT

0 = W ′0. Now we proceed by induction: assume WT
i−1 = W ′i−1 for some 0 ≤ (i− 1) < k− 2, and prove

that WT
i = W ′i . For this purpose, use Algorithm 2 to see that

WT
i =

 −ATi+1 Wi−1(:, 1)T

Im 0
0 Wi−1(:, 2 : i+ 1)T

 or WT
i =

[
−ATi+1 In 0

Wi−1(1, :)T 0 Wi−1(2 : i+ 1, :)T

]
,

depending on whether σ has a consecution or an inversion at i. Using the induction hypothesis, this
can be seen to be precisely the same as the matrix W ′i . The conclusion of Lemma 5.5 is now just a
restatement of WT

k−2 = W ′k−2.

Lemma 5.5 allows us to prove Theorem 5.6 in essentially the same way as Theorem 5.9 in [11] was
proved. Therefore we omit the proof of Theorem 5.6, although we remark that we cannot use here the
block-transpose operation (·)B, see [11, Definition 3.6], because the blocks of ΛRrevσ(PT ) do not all have
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the same sizes when P (λ) is rectangular. This motivates a minor modification2 in the statement of
Theorem 5.6 as compared to the statement of [11, Theorem 5.9]. Note also that i(revσ) = c(σ) and
c(revσ) = i(σ).

Theorem 5.6. Let P (λ) =
∑k
i=0 λ

iAi be an m × n matrix polynomial with degree k ≥ 2, let Fσ(λ) be
the Fiedler pencil of P (λ) associated with bijection σ, let c(σ) be the total number of consecutions of σ
and i(σ) the total number of inversions of σ, and let ΛRrevσ(PT ) be, for the n×m polynomial P (λ)T and
the reversal bijection revσ, the

(
m+m c(σ) +n i(σ)

)
×m matrix defined in Lemma 5.2 . Then the linear

map
Lσ : N`(P ) −→ N`(Fσ)

uT 7−→ uTΛLσ (P ) ,

where ΛLσ (P ) :=
[
ΛRrevσ(PT )

]T
, is an isomorphism of F(λ)-vector spaces with uniform degree-shift c(σ)

on the vector polynomials in N`(P ). More precisely, Lσ induces a bijection between the subsets of vector
polynomials in N`(P ) and N`(Fσ), with the property that

degLσ(uT ) = c(σ) + deg(uT ) (36)

for every nonzero vector polynomial uT . Furthermore, for any nonzero vector polynomial uT , degLσ(uT )
is attained only in the leftmost 1×m block of Lσ(uT ).

An immediate consequence of Theorem 5.6 is Corollary 5.7, which establishes a very simple relationship
between the left minimal indices and bases of P (λ) and Fσ(λ). The easy proof is also omitted. We only
indicate that the fact “revσ has a consecution (resp., inversion) at i if and only if σ has an inversion
(resp., consecution) at i” implies that ΛRrevσ(PT ) has exactly one block equal to Im at block index k if
c1 > 0, and at block index k − i1 if c1 = 0.

Corollary 5.7 (Recovery of left minimal indices and bases). Let P (λ) be an m× n matrix poly-
nomial with degree k ≥ 2, and let Fσ(λ) be the Fiedler pencil of P (λ) associated with a bijection σ having
CISS(σ) = (c1, i1, . . . , c`, i`) and total number of consecutions and inversions c(σ) and i(σ), respectively.
Suppose that each vector z(λ)T ∈ N`(Fσ) ⊂ F(λ)1×(m+mc(σ)+ni(σ)) is partitioned into 1× k blocks which
are conformal for multiplication with the partition of Fσ(λ) given by Algorithm 2.

(a) If z(λ)T ∈ N`(Fσ), and

y(λ)T is the

{
kth block of z(λ)T if c1 > 0,

(k − i1)th block of z(λ)T if c1 = 0,

then y(λ)T ∈ N`(P ).

(b) If {z1(λ)T , . . . , zq(λ)T } is a left minimal basis of Fσ(λ), and

yj(λ)T is the

{
kth block of zj(λ)T if c1 > 0,

(k − i1)th block of zj(λ)T if c1 = 0,

for j = 1, . . . , q, then {y1(λ)T , . . . , yq(λ)T } is a left minimal basis of P (λ).

(c) If 0 ≤ η1 ≤ η2 ≤ · · · ≤ ηq are the left minimal indices of P (λ), then

η1 + c(σ) ≤ η2 + c(σ) ≤ · · · ≤ ηq + c(σ) ,

are the left minimal indices of Fσ(λ).

Note that these results hold for the first companion form of P (λ) using (c1, i1) = (0, k− 1) and c(σ) = 0,
and for the second companion form using (c1, i1) = (k − 1, 0) and c(σ) = k − 1.

2In [11, Theorem 5.9] the matrix
[
ΛRrevσ(P )

]B
was used, while in Theorem 5.6 we use

[
ΛRrevσ(PT )

]T
. Note that both

expressions coincide for square matrix polynomials, but that
[
ΛRrevσ(P )

]B
is not defined for rectangular polynomials.
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Next we include an example that illustrates the results presented in this section. This example
extends to rectangular matrix polynomials what appears in [11, Example 5.12] only for square singular
polynomials, which allows the reader to appreciate the strong similarities and the really minor differences
between square and rectangular polynomials.

Example 5.8. Let us consider an m × n matrix polynomial P (λ) =
∑6
i=0 λ

iAi with degree 6, and the
Fiedler pencil Fτ (λ) of P (λ) associated with the bijection τ = (1, 2, 5, 3, 6, 4). Recall that the zero degree
term Mτ of this pencil was considered in (16), and so

Fτ (λ) = λ diag(A6, In, Im, In, Im, Im)−Mτ .

Observe that CISS(τ) = (2, 1, 1, 1). So for τ , the parameters in (32) and (33) are ` = 2, s`−1 = s1 = 3,
and m`−1 = m1 = 1. In addition, revτ = (6, 5, 2, 4, 1, 3), hence CISS(revτ) = (0, 2, 1, 1, 1, 0); also for
revτ we have ` = 3, s1 = 2, s`−1 = s2 = 4, and m1 = 2, m`−1 = m2 = 3. Therefore

ΛLτ (P ) =
[
ΛRrevτ (PT )

]T
=
[
λ3Im λ3P1(λ) λ2Im λ2P3(λ) λIm Im

]
and ΛRτ (P ) =

[
λ2In λIn λP2(λ)T In P4(λ)T P5(λ)T

]T
.

The relationships between the minimal indices and bases of Fτ (λ) and those of P (λ) may now be sum-
marized as follows:

• Right minimal indices of Fτ (λ) are shifted from those of P (λ) by i(τ) = 2.

• Left minimal indices of Fτ (λ) are shifted from those of P (λ) by c(τ) = 3.

• A right minimal basis of P (λ) is recovered from the 4th = (k − c1)th blocks (of size n× 1) of any
right minimal basis of Fτ (λ).

• A left minimal basis of P (λ) is recovered from the 6th = kth blocks (of size 1 × m) of any left
minimal basis of Fτ (λ). �

6. Conclusions and future work

In the last decade several new classes of linearizations for square matrix polynomials have been in-
troduced by various authors [1, 2, 11, 12, 23, 27, 28, 34]. Among them, the class of Fiedler companion
linearizations, which includes the classical first and second Frobenius companion forms, is a privileged
class as a consequence of possessing the many valuable properties described in the Introduction. In
this paper, we have extended Fiedler linearizations from square to rectangular matrix polynomials. To
achieve this we have followed a completely different approach than the one followed in [2, 11] for regular
and singular square polynomials, which cannot be easily generalized to the rectangular case. This new
approach is based on a constructive definition via Algorithm 2, and has allowed us to prove that Fiedler
pencils of rectangular matrix polynomials satisfy the same properties as Fiedler pencils of square matrix
polynomials. More precisely, we have proved that every Fiedler pencil of a given rectangular polynomial
P (λ) is always a strong linearization for P (λ), and that Fiedler pencils of rectangular matrix polynomials
allow us to recover minimal indices and bases of matrix polynomials with essentially the same extremely
simple rules as for Fiedler pencils of square polynomials. As far as we know, the class of Fiedler lineariza-
tions is the first of the new classes of linearizations introduced in the last decade that has been extended
from square to rectangular polynomials. The most natural open problem in this context is to try to
extend other classes of linearizations from square to rectangular matrix polynomials, e.g., the classes
related to Fiedler pencils considered in [2, 5, 12, 34], or the vector spaces of linearizations introduced in
[27]. Investigating the possibility of such extensions will be the subject of future work.
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