LOW RANK PERTURBATIONS OF SPECTRAL CANONICAL FORMS

Froilán M. Dopico

Departamento de Matemáticas
Universidad Carlos III de Madrid
Spain

Joint work with Fernando de Terán and Julio Moro (Universidad Carlos III)
• Low rank perturbations of matrices arise frequently in applications and in theory.

• They appear when a system with many degrees of freedom is controlled with actions on a small subset of the degrees of freedom.

• Well-known example: Sherman-Morrison-Woodbury formula.

\[(A + UV^T)^{-1} = A^{-1} - A^{-1}U(I + V^TA^{-1}U)^{-1}V^TA^{-1}\]

\[A \ n \times n, \ U, V \ n \times k, \ \text{rank}(U) = \text{rank}(V) = k.\]
Our Goal: How are typically modified spectral canonical forms by low rank perturbations?

- **Jordan** canonical form (JCF) of $A \in \mathbb{C}^{n \times n}$.

- **Weierstrass** canonical form (WCF) of regular matrix pencils $A + \lambda B$, $A, B \in \mathbb{C}^{n \times n}$ and $\det(A + \lambda B)$ does not vanish identically. Generalized eigenvalue problem

\[(A + \lambda B)v = 0\]

- **Kronecker** canonical form (KCF) of singular matrix pencils $A + \lambda B$, $A, B \in \mathbb{C}^{m \times n}$ or $A, B \in \mathbb{C}^{n \times n}$ and $\det(A + \lambda B) = 0$ for all λ.
Many different things may happen

\[
A + E_1 = \begin{bmatrix}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
+ \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
= \begin{bmatrix}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

\[
A + E_2 = \begin{bmatrix}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
+ \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
= \begin{bmatrix}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

Our goal is to describe the GENERIC or most frequent behavior. This will be a behavior that holds for all perturbations \(E \) except those in a set of zero Lebesgue measure. We are able to describe explicitly this set (HARD AND NOT EASY).
Notation

\[J_k(\lambda) = \begin{bmatrix} \lambda & 1 \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & 1 \\ \lambda \end{bmatrix} \in \mathbb{C}^{k \times k} \]

\[J_{k_1}(\lambda_1) \oplus \cdots \oplus J_{k_p}(\lambda_p) = \begin{bmatrix} J_{k_1}(\lambda_1) & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & J_{k_p}(\lambda_p) \end{bmatrix} \]

Direct sum or block diagonal matrix of Jordan blocks.
Perturbation of Jordan canonical form: an example (I)

\[
\text{JCF of } A = J_5(9) \oplus J_5(9) \oplus J_5(9) \oplus J_3(9) \oplus \\
J_7(-3) \oplus J_6(-3) \oplus J_4(-3) \oplus J_3(-3) \oplus J_1(-3)
\]

Notice that \(A \) has only two different eigenvalues 9 and \(-3\).

Let \(E \) be such that \(\text{rank}(E) = 2 \). Then generically

\[
\text{JCF of } A + E = * \oplus \ldots \oplus * \oplus J_5(9) \oplus J_3(9) \oplus \\
* \oplus \ldots \oplus * \oplus J_4(-3) \oplus J_3(-3) \oplus J_1(-3)
\]

In the \(* \oplus \ldots \oplus *\) of the JCF of \(A + E \) there are no Jordan blocks associated to the eigenvalues 9 and \(-3\). Besides, in general, it contains only \(1 \times 1 \) Jordan blocks.
Perturbation of Jordan canonical form: an example (II)

\[
\text{JCF of } A = J_5(9) \oplus J_5(9) \oplus J_5(9) \oplus J_3(9) \oplus J_7(-3) \oplus J_6(-3) \oplus J_4(-3) \oplus J_3(-3) \oplus J_1(-3)
\]

\[\text{rank}(E) = 2.\]

\[
\text{JCF of } A + E = * \oplus \ldots \oplus * \oplus J_5(9) \oplus J_3(9) \oplus *
\]
\[\oplus \ldots \oplus * \oplus J_4(-3) \oplus J_3(-3) \oplus J_1(-3)\]

For every eigenvalue of \(A \) the perturbation \(E \) destroys the \(2 = \text{rank}(E) \) largest Jordan blocks. The other Jordan blocks of \(A \) remain as Jordan blocks of \(A + E \).
Theorem: Let \(A \in \mathbb{C}^{n \times n} \) and \(\lambda_0 \) be an eigenvalue of \(A \) with \(g_0 \) Jordan blocks in the JCF of \(A \). Let \(E \in \mathbb{C}^{n \times n} \) with \(\text{rank}(E) \leq g_0 \).

Then the Jordan blocks in the JCF of \(A + E \) with eigenvalue \(\lambda_0 \) are just the \(g_0 - \text{rank}(E) \) smallest Jordan blocks of \(A \) with eigenvalue \(\lambda_0 \) if and only if \(E \) does not belong to a certain algebraic manifold of codimension one in the matrix space \(\mathbb{C}^{n \times n} \).
1. The perturbations E are not small.

2. A perturbation matrix E can satisfy the assumptions of the Theorem for one eigenvalue but not for others.

3. Condition $\text{rank}(E) \leq g_0$ defines what we understand by “low rank” in this context. It depends on the eigenvalue we consider.

4. Let $A = PJP^{-1}$ be a Jordan Canonical factorization. If J and P are given then we are able to give an explicit equation for the algebraic manifold mentioned in the theorem in terms of some minors of $P^{-1}EP$. We have a different equation for each eigenvalue λ_0 of A.

5. We will explain this manifold at the end of the talk if we have time. Some additional notation is needed.
Some intuitions

- $\#\lambda_0$-Jordan blocks of $A = \dim \text{Nul}(A - \lambda_0 I) \equiv g_0$.

- $\text{rank}(A + E - \lambda_0 I) \leq \text{rank}(A - \lambda_0 I) + \text{rank}(E) \leq n$

- $\dim \text{Nul}(C) = n - \text{rank}(C)$

Then $g_0 - \text{rank}(E) \leq \dim \text{Nul}(A + E - \lambda_0 I)$

Generically

$\text{rank}(A + E - \lambda_0 I) = \text{rank}(A - \lambda_0 I) + \text{rank}(E)$

and

$g_0 - \text{rank}(E) = \dim \text{Nul}(A + E - \lambda_0 I)$

Why and when the smallest Jordan Blocks?
Theorem (Weierstrass) Let $A, B \in \mathbb{C}^{n \times n}$ such that the polynomial $p(\lambda) = \det(A + \lambda B)$ does not vanish identically. Then there exist two nonsingular matrices R and S such that

$$R(A + \lambda B)S = \begin{pmatrix} J & 0 \\ 0 & I_q \end{pmatrix} + \lambda \begin{pmatrix} I_p & 0 \\ 0 & N \end{pmatrix},$$

J is in Jordan canonical form, and N is in Jordan canonical form with all its eigenvalues equal to zero. J and N are unique up to permutations of the diagonal Jordan blocks. This is called the Weierstrass canonical form of the pencil $A + \lambda B$.

March 2006 ICAM 2006
Weierstrass canonical form: summary (II)

\[R(A + \lambda B)S = \begin{pmatrix} J & 0 \\ 0 & I_q \end{pmatrix} + \lambda \begin{pmatrix} I_p & 0 \\ 0 & N \end{pmatrix}, \]

1. The WCF contains all the spectral information of the generalized eigenvalue problem \((A + \lambda B)v = 0\)

2. \(J\) shows the Jordan structure of the finite eigenvalues of \(A + \lambda B\).

3. \(N\) shows the Jordan structure of the infinite eigenvalue of \(A + \lambda B\).

4. The Jordan structure of the infinite eigenvalue of \(A + \lambda B\) is the Jordan structure of the zero eigenvalue of \(B + \lambda A\).

5. Related to systems of algebraic-differential equations

\[B \frac{dx(t)}{dt} = Ax(t) \]
Perturbation of Weierstrass canonical form: example (I)

Part WCF of \((A + \lambda B)\) for \((\lambda = -5)\) is

\[J_5(5) \oplus J_4(5) \oplus J_3(5) \oplus J_2(5) \]

Let us consider a perturbation \(E_A + \lambda E_B\) such that

\[
\text{rank}(E_A - 5E_B) = 2 \quad \text{and} \quad \text{rank}(E_B) = 1
\]

Then generically

Part WCF of \((A + E_A + \lambda(B + E_B))\) for \((\lambda = -5)\) is

\[J_1(5) \oplus J_2(5) \]
Perturbation Weierstrass canonical form: example (II)

WCF of \((A + \lambda B)\) is \(J_5(5) \oplus J_4(5) \oplus J_3(5) \oplus J_2(5)\)

\[
\text{rank}(E_A - 5E_B) = 2 \quad \text{and} \quad \text{rank}(E_B) = 1
\]

WCF of \((A + E_A + \lambda(B + E_B))\) is \(J_1(5) \oplus J_2(5)\)

The \(2 = \text{rank}(E_A - 5E_B)\) largest Jordan blocks are destroyed.

The \(1 = \text{rank}(E_B)\) following largest Jordan blocks turn into \(1 \times 1\) blocks.

Only the \(4 - \text{rank}(E_A - 5E_B) - \text{rank}(E_B)\) smallest Jordan blocks remain unchanged.
Theorem: Let λ_0 be an eigenvalue of the regular pencil $A + \lambda B$ with g_0 Jordan blocks in the WCF. Let $E_A + \lambda E_B$ be another pencil such that $\text{rank}(E_A + \lambda_0 E_B) < g_0$. Let us define

$$\rho_0 = \text{rank}(E_A + \lambda_0 E_B), \quad \rho_1 = \text{rank}(E_B).$$

Then for all pencils $E_A + \lambda E_B$ except those in an algebraic manifold of codimension one:

1. There are $g_0 - \rho_0$ Jordan blocks for λ_0 in the WCF of $A + E_A + \lambda(B + E_B)$, and

2. they are the $g_0 - \rho_0 - \rho_1$ smallest Jordan Blocks for λ_0 in the WCF of $A + \lambda B$,

3. together with ρ_1 1×1 Jordan blocks for λ_0.
WCF: Comments on the Theorem

1. Similar remarks to those of JCF.

2. In the case $\text{rank}(E_A) + \text{rank}(E_B) \leq n$ and $\lambda_0 \neq 0$ generically

\[
\text{rank}(E_A + \lambda_0 E_B) = \text{rank}(E_A) + \text{rank}(E_B),
\]

and the number of destroyed and preserved Jordan Blocks “does not” depend on the particular λ_0.

3. Again an elementary rank argument show that

\[
g_0 - \text{rank}(E_A + \lambda_0 E_B) \leq \dim \text{Nul}(A + E_A + \lambda_0(B + E_B)) = \text{Number of } \lambda_0\text{-Jordan blocks in the WCF}
\]
Intuition on differences WCF vs. JCF

JCF. Problem: \((A - \lambda_0 I)v = 0\). Jordan chain corresponding to a \(k \times k\) Jordan block

\[(A - \lambda_0 I)v_1 = 0, \quad (A - \lambda_0 I)v_j = v_{j-1} \quad j = 2 : k\]

\[E\]

WCF. Problem: \((A + \lambda_0 B)v = 0\). Jordan chain corresponding to a \(k \times k\) Jordan block

\[(A + \lambda_0 B)v_1 = 0, \quad (A + \lambda_0 B)v_j = Bu_{j-1} \quad j = 2 : k\]

\[E_A + \lambda_0 E_B \quad \quad \quad E_B\]
Theorem (Kronecker) Let $A, B \in \mathbb{C}^{m \times n}$. Then there exist two nonsingular matrices R and S such that

\[
R (A + \lambda B) S = L_{\epsilon_1} (\lambda) \oplus \ldots \oplus L_{\epsilon_p} (\lambda) \oplus L_{\eta_1}^T (\lambda) \oplus \ldots \oplus L_{\eta_q}^T (\lambda) \oplus (J + \lambda I) \oplus (I + \lambda N),
\]

J is square and is in Jordan canonical form,

N is square and is in Jordan canonical form with all its eigenvalues equal to zero,
Continuation Kronecker’s Let $A, B \in \mathbb{C}^{m \times n}$

$$R(A + \lambda B)S = L_{\epsilon_1}(\lambda) \oplus \ldots \oplus L_{\epsilon_p}(\lambda) \oplus L_{\eta_1}^T(\lambda) \oplus \ldots \oplus L_{\eta_q}^T(\lambda) \oplus (J + \lambda I) \oplus (I + \lambda N),$$

$$L_{\epsilon_i}(\lambda) = \begin{bmatrix} \lambda & 1 \\ \lambda & 1 \\ & \ddots & \ddots \\ & & \lambda & 1 \end{bmatrix} \in \mathbb{C}^{\epsilon_i \times (\epsilon_i+1)}$$

$0 \leq \epsilon_1 \leq \epsilon_2 \leq \ldots \leq \epsilon_p$ are the column minimal indices.

$0 \leq \eta_1 \leq \eta_2 \leq \ldots \leq \eta_q$ are the row minimal indices.

$L_{\epsilon_i}(\lambda)$ ($L_{\eta_i}^T(\lambda)$) are called column (row) singular blocks.
Continuation Kronecker’s Let $A, B \in \mathbb{C}^{m \times n}$

$$R(A + \lambda B)S = L_{\epsilon_1}^{\top}(\lambda) \oplus \cdots \oplus L_{\epsilon_p}^{\top}(\lambda) \oplus L_{\eta_1}^{\top}(\lambda) \oplus \cdots \oplus L_{\eta_q}^{\top}(\lambda) \oplus (J + \lambda I) \oplus (I + \lambda N)$$

1. $0 \leq \epsilon_1 \leq \epsilon_2 \leq \cdots \leq \epsilon_p$ and $0 \leq \eta_1 \leq \eta_2 \leq \cdots \leq \eta_q$ are unique.

2. J and N are unique up to permutations of the Jordan diagonal blocks.

3. $(J + \lambda I) \oplus (I + \lambda N)$ is the regular part of the pencil.

4. $\text{rank}(A + \lambda B) = n - p = m - q$

5. $R(A + \lambda B)S = (J + \lambda I) \oplus (I + \lambda N)$ if and only if $\det(A + \lambda B) \neq 0$.

6. KCF application in control theory.
1. We will consider three singular $m \times n$ pencils with rank less than $\min\{m, n\}$:

 Unperturbed: $P(\lambda) = A + \lambda B$
 Perturbation: $E(\lambda) = E_A + \lambda E_B$
 Perturbed: $(P + E)(\lambda) = (A + E_A) + \lambda(B + E_B)$

2. We will assume

 $\text{rank}(P + E)(\lambda) = \text{rank } P(\lambda) + \text{rank } E(\lambda) < \min\{m, n\}$

3. Therefore, we have the global low rank condition

 $\rho \equiv \text{rank } E(\lambda) < \min\{p, q\}$
Number of minimal indices

\[\text{rank}(P + E)(\lambda) = \text{rank } P(\lambda) + \text{rank } E(\lambda) < \min\{m, n\} \]

and

\[\rho \equiv \text{rank } E(\lambda) < \min\{p, q\} \]

implies

Number of column (row) singular blocks of \((P + E)(\lambda)\) is equal to \(p - \text{rank}(E)\) \((q - \text{rank}(E))\),

What are their dimensions?
How is the regular part?
Relevant data of unperturbed and perturbation pencil

\[P(\lambda) = A + \lambda B \]

\[0 \leq \epsilon_1 \leq \ldots \leq \epsilon_p \text{ and } 0 \leq \eta_1 \leq \ldots \leq \eta_q \]

\[(J + \lambda I) \oplus (I + \lambda N) \]

\[E(\lambda) = E_A + \lambda E_B \]

\[0 \leq \bar{\epsilon}_1 \leq \ldots \leq \bar{\epsilon}_\bar{p} \text{ and } 0 \leq \bar{\eta}_1 \leq \ldots \leq \bar{\eta}_\bar{q} \]

\[\bar{\epsilon} \equiv \bar{\epsilon}_1 + \ldots + \bar{\epsilon}_{\bar{p}} \text{ and } \bar{\eta} \equiv \bar{\eta}_1 + \ldots + \bar{\eta}_{\bar{q}} \]

\[(J_E + \lambda I) \oplus (I + \lambda N_E) \]
Definitions:

\[d_k = \left\lfloor \frac{\sum_{i=1}^{k} \epsilon_i + \tilde{\epsilon}}{k - \rho} \right\rfloor \quad k = (\rho + 1) : p \]

\[h_k = \left\lfloor \frac{\sum_{i=1}^{k} \eta_i + \tilde{\eta}}{k - \rho} \right\rfloor \quad k = (\rho + 1) : q \]

\[d_{\min} = \min_k d_k \quad \text{and} \quad h_{\min} = \min_k h_k \]

Lemma: There exists only one index \(s \) (or \(t \)) such that

1. \(d_s = d_{\min} \quad (h_t = h_{\min}) \)
2. \(d_s \geq \epsilon_s \geq \ldots \geq \epsilon_1 \quad (h_t \geq \eta_t \geq \ldots \geq \eta_1) \)
3. If \(k > s \) (or \(k > t \)) then \(\epsilon_k > d_k \geq d_s \quad (\eta_k > h_k \geq h_t) \)
Theorem: Let $\gamma_s (\mu_t)$ be the remainder of the integer division of $\sum_{i=1}^{s} \varepsilon_i + \tilde{\varepsilon}$ by $s - \rho$ (of $\sum_{i=1}^{t} \eta_i + \tilde{\eta}$ by $(t - \rho)$), where $\rho = \text{rank}(E(\lambda))$. Then under certain generic conditions the KCF of $(P + E)(\lambda)$ is determined by

1. $s - \rho - \gamma_s$ column minimal indices equal to d_s,
 γ_s column minimal indices equal to $d_s + 1$,
 $p - s$ column minimal indices equal to $\varepsilon_{s+1}, \ldots, \varepsilon_p$.

2. $t - \rho - \mu_t$ row minimal indices equal to h_t,
 μ_t row minimal indices equal to $h_t + 1$,
 $q - t$ row minimal indices equal to $\eta_{t+1}, \ldots, \eta_q$.

3. The regular part is
 \[(J + \lambda I) \oplus (J_E + \lambda I) \oplus (\lambda I + N) \oplus (\lambda I + N_E)\]
Low rank perturbation of KCF: Three Main Ideas

- The blocks of the regular parts of $P(\lambda)$ and $E(\lambda)$ remain unchanged in the sum $(P + E)(\lambda)$ and no more regular blocks appear.

- The largest $p-s$ column and $q-t$ row singular blocks of $P(\lambda)$ remain unchanged as singular blocks of $(P + E)(\lambda)$.

- The smallest s column and t row singular blocks of $P(\lambda)$ are destroyed or transformed into larger blocks (but not larger than the unchanged ones).
Theorem: Let $A \in \mathbb{C}^{n \times n}$ and λ_0 be an eigenvalue of A with g_0 Jordan blocks in the JCF of A. Let $E \in \mathbb{C}^{n \times n}$ with $\text{rank}(E) \leq g_0$.

Then the Jordan blocks in the JCF of $A + E$ with eigenvalue λ_0 are just the $g_0 - \text{rank}(E)$ smallest Jordan blocks of A with eigenvalue λ_0 if and only if E does not belong to a certain algebraic manifold of codimension one in the matrix space $\mathbb{C}^{n \times n}$.

March 2006

ICAM 2006

27
JCF: generic conditions. Example (I)

\[A + E = \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix} + \begin{bmatrix}
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\bullet & \cdot & \clubsuit & \cdot & \spadesuit & \cdot & \cdot \\
\spadesuit & \cdot & \heartsuit & \cdot & \spadesuit & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{bmatrix} \]

\[\text{rank}(E) = 2 \text{ and } \lambda_0 = 1 \]

\[C_0 = \det \begin{bmatrix}
\bullet & \clubsuit \\
\spadesuit & \clubsuit
\end{bmatrix} + \det \begin{bmatrix}
\bullet & \spadesuit \\
\spadesuit & \spadesuit
\end{bmatrix} \]
JCF: generic conditions. Example (II)

\[JCF \text{ of } A + E = \begin{bmatrix}
* & * & * \\
* & * & * \\
* & * & \\
\hline \\
* & * \\
* & * \\
\hline \\
0 & 1 \\
0 & 0 \\
\hline \\
* \\
\end{bmatrix} \]

if and only if

\[C_0 = \det \begin{bmatrix}
\spadesuit & \clubsuit \\
\clubsuit & \clubsuit \\
\end{bmatrix} + \det \begin{bmatrix}
\spadesuit & \spadesuit \\
\spadesuit & \spadesuit \\
\end{bmatrix} \neq 0 \]
Theorem: Let \(\text{rank}(E) = \rho \) and the JCF of \(A \) be

\[
P^{-1}AP = J_{n_1}(\lambda_0) \oplus \ldots \oplus J_{n_\rho}(\lambda_0) \oplus J_{n_{\rho+1}}(\lambda_0) \oplus \ldots J_{n_{g_0}}(\lambda_0) \oplus \mathbf{\hat{J}},
\]

with \(n_1 \geq \ldots \geq n_{g_0} \) and \(\det(\mathbf{\hat{J}} - \lambda_0 I) \neq 0 \).

1. If \(n_\rho > n_{\rho+1} \) and \(\Phi_\rho \) is the minor of \(P^{-1}EP \) corresponding to the lower left positions of the \(\rho \) largest Jordan blocks of \(P^{-1}AP \) then

 Generic behavior if and only if \(\Phi_\rho \neq 0 \).

2. If \(n_\rho = n_{\rho+1} \) and \(\Phi_\rho \) is ANY minor of \(P^{-1}EP \) corresponding to the lower left positions of \(\rho \) largest Jordan blocks of \(P^{-1}AP \) then

 Generic behavior if and only if \(\sum \Phi_\rho \neq 0 \).
OUR WORK:

- JCF. Moro and FMD, SIMAX 2003.
- WCF. De Terán, FMD, Moro, submitted.
- KCF. De Terán, FMD, in preparation (one month!)
- KCF (Singular goes to Full Rank). De Terán, FMD, still in progress.

RELATED WORK: ONLY JCF, GENERIC CONDITION NOT GIVEN