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Basic definitions

We consider a matrix polynomial of degree k

P (λ) =
k∑
i=0

λiAi = λkAk + · · ·+ λA1 +A0 , Ai ∈ Fn×n . Ak 6= 0.

A linearization for P (λ) is an nk × nk linear matrix poly (pencil) L(λ) s. t.

U(λ)L(λ)V (λ) =
[
In(k−1)

P (λ)

]
(U(λ), V (λ) unimodular).

L(λ) is “strong linearization” if, in addition, revL(λ) is a linearization for
revP (λ), where

revP (λ) := λkA0 + . . .+ λAk−1 +Ak

REMARK
MATLAB command polyeig solves polynomial eigenproblems

P (λ0)x = 0

via (companion) linearizations.
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Advantages and disadvantages of the use of linearizations

Strong linearizations preserve the finite and infinite elementary divisors
of P (λ), but NOT the eigenvectors and minimal indices/minimal bases.

Good numerical methods for computing eigenvalues/vectors and minimal
indices/bases of pencils are available (QZ, GUPTRI (Staircase form)).

Standard linearizations do not preserve structures that P (λ) may have.

Conditioning of eigenvalues in linearizations may be much larger than in
P (λ). Backward errors?

These difficulties have motivated an intense research on linearizations in
the last years by different groups of several countries (Amiraslani,
Antoniou, Bueno, Corless, De Terán, D, Grammont, Higham, Lancaster,
R-C. Li, Mackey2, Mehl, Merhmann, Tisseur, Vologiannidis, ...)

In this talk, we review advances for one of the most relevant classes of
linearizations developed in the last years.

A "good" linearization for applications should allow to recover easily
eigenvectors, minimal indices and bases of P (λ), should preserve
structures, and should be easily constructible.
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Fiedler pencils (I): main ideas

Fiedler pencils of P (λ) =
∑k
i=0 λ

iAi satisfy:

They are strong linearizations, λX + Y , for any P (λ), regular or
singular (detP (λ) ≡ 0), over an arbitrary field and

even for rectangular matrix polynomials.

They allow to recover very easily eigenvectors, minimal indices, and
minimal bases of P (λ).

They are easily constructible: If the matrices X and Y are partitioned
into k × k blocks of size n× n, then each block of X and Y is either 0n
or ±In or ±Ai for i = 0 : k.

They are privileged among the new classes of linearizations that have
been developed recently.
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Fiedler pencils (II): a bit of history

Introduced by Fiedler (LAA, 2003) for scalar polynomials.

Extended to regular matrix polynomials (and generalized to preserve
symmetry for odd degree) by Antoniou and Vologiannidis (ELA, 2004,
2006), where it is proved that they are strong linearizations.

De Terán, D, Mackey (SIMAX, 2010) proved that they are strong
linearizations for any square matrix poly in any field and found easy
recovery procedures for e-vectors and minimal indices/bases of P (λ).

Palindromic strong linearizations for odd degree polynomials based on
Fiedler pencils were introduced by De Terán, D, Mackey (JCAM 2011).

Recovery of e-vectors and minimal indices/bases from generalized
Fiedler linears. established by Bueno, De Terán, D (SIMAX, 2011)

Further generalized with repeated factors by Vologiannidis and Antoniou
(MCSS, 2011), related again to Fiedler’s work (LAA, 2008).

Extended to rectangular matrix polynomials by De Terán, D, Mackey (to
be submitted soon)...
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Fiedler pencils (III): Examples

P (λ) = A6λ
6 +A5λ

5 +A4λ
4 +A3λ

3 +A2λ
2 +A1λ+A0

First companion form:

C1(λ) = λ


A6

In
In

In
In

In

−

−A5 −A4 −A3 −A2 −A1 −A0

In
In

In
In

In


Second companion form:

C2(λ) = λ


A6

In
In

In
In

In

−

−A5 In
−A4 In
−A3 In
−A2 In
−A1 In
−A0


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Fiedler pencils (III): Examples

P (λ) = A6λ
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Fiedler pencils (III): Examples and structural properties

First companion form:

C1(λ) = λ


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
Structural property 1 of Fiedler Pencils

The one-degree coefficient of every Fiedler Pencil is always the same. The
zero-degree coefficient of every Fiedler Pencil has exactly the same blocks as the first
companion form but they are in different positions.
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Fiedler pencils (III): Examples and structural properties
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Structural property 2 of Fiedler pencils

Companion forms are the Fiedler pencils with largest banwidth. Pentadiagonal Fiedler
pencils are the ones with smallest bandwith.
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Structural property 3 of Fiedler pencils

The zero degree coefficient of every Fiedler pencil satisfies:

The identity blocks are never in the main block diagonal.
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Fiedler pencils (III): Examples and structural properties
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Structural property 4 of Fiedler pencils

The zero degree coefficient of every Fiedler pencil satisfies:

If an In block is at block-entry (i, j), then either the ith block-row or the jth block
column has at least one matrix −A0,−A1, . . . ,−Ak−1.
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Outline

1 Definition of Fiedler pencils. Consecutions and inversions.

2 Recovery of eigenvectors from Fiedler pencils

3 Recovery of minimal indices and bases from Fiedler pencils

4 Preservation of structures and generalized Fiedler pencils

5 Eigenvectors of GF pencils with repeated factors

6 Conclusions
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Definition (Fiedler, 2003–Antoniou & Vologiannidis, 2004)

Let P (λ) = λkAk + · · ·+ λA1 +A0 , Ai ∈ Fn×n. We define nk × nk matrices:

Mj :=


In(k−j−1)

−Aj In
In 0

In(j−1)

 , j = 1, . . . , k − 1 ,

M0 :=
[
In(k−1)

−A0

]
, Mk :=

[
Ak

In(k−1)

]
.

Given any permutation σ = (j0, j1, . . . , jk−1) of (0, 1, . . . , k − 1), the Fiedler
pencil associated with σ is

Fσ(λ) = λMk −Mj0Mj1 · · ·Mjk−1

Examples: Companion forms-Pentadiagonal Fiedler pencils

C1(λ) = λMk −Mk−1 · · ·M1M0

C2(λ) = λMk −M0M1 · · ·Mk−1

T (λ) = λMk − (M1M3M5 · · · ) (M2M4M6 · · · )M0
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Number of distinct Fiedler pencils and consequences

Observe that MiMj = MjMi for |i− j| 6= 1. This implies:

Lemma

Let P (λ) be an arbitrary matrix polynomial of degree k. Then there exist 2k−1

distinct Fiedler pencils associated with P (λ).

Consequences:

Quadratic polys: Fiedler pencils are the two companion forms.

For degree k = 3, there are two more Fiedler pencils:

λ

A3

In
In

−
−A2 In
−A1 −A0

In



The potential applications of Fiedler pencils are in degrees k ≥ 3.
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Consecutions and inversions

Let us consider the Fiedler pencil associated to σ = (j0, j1, . . . , jk−1),
permutation of (0, 1, . . . , k − 1), i.e.,

Fσ(λ) = λMk −Mj0Mj1 · · ·Mjk−1

For i = 0, 1, . . . k − 2, we say that Fσ(λ) has a

consecution at i, if the product Mσ := Mj0Mj1 · · ·Mjk−1 is of the form

Mσ = · · ·Mi · · ·Mi+1 · · ·

inversion at i, if the product Mσ := Mj0Mj1 · · ·Mjk−1 is of the form

Mσ = · · ·Mi+1 · · ·Mi · · ·

We say that Fσ(λ) has c0 initial consecutions if it has consecutions at

0, 1, 2, . . . , c0 − 1,

but not at c0. Analogous for i0 initial inversions.
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Example of consecutions and inversions

P (λ) = A6λ
6 +A5λ

5 +A4λ
4 +A3λ

3 +A2λ
2 +A1λ+A0

Fσ(λ) = λM6 −M5M4M3M0M1M2

= λ


A6

In
In

In
In

In

−

−A5 −A4 −A3 −A2 In
In

In
In
−A1 In
−A0



Fσ(λ) has

Consecutions at 0, 1,

Inversions at 2, 3, 4,

c0 = 2, and

i0 = 0.
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Theorem for eigenvector recovery: extracting blocks

Theorem (De Terán, D, Mackey (SIMAX, 2010))

Let P (λ) be an n× n regular matrix polynomial with degree k ≥ 2, let Fσ(λ) be the
Fiedler pencil of P (λ) with permutation σ having c0 initial consecutions and i0 initial
inversions, and suppose that λ0 is a finite eigenvalue of P (λ).

If

z =


x1

x2

...
xk

 ∈ Fnk×1, xi ∈ Fn×1,

is a right λ0-eigenvector of Fσ(λ), then xk−c0 is a right λ0-eigenvector of P (λ).

If
wT =

[
wT1 wT2 . . . wTk

]
∈ F1×nk, wTi ∈ F1×n,

is a left λ0-eigenvector of Fσ(λ), then wTk−i0 is a left λ0-eigenvector of P (λ).

For first companion form c0 = 0, i0 = k − 1, and for second c0 = k − 1, i0 = 0.

For the infinite e-value, one has to extract the first blocks.
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Example of eigenvector recovery

P (λ) = A6λ
6 +A5λ

5 +A4λ
4 +A3λ

3 +A2λ
2 +A1λ+A0 has size n× n

Fσ(λ) = λM6 −M5M4M3M0M1M2

= λ


A6

In
In

In
In

In

−

−A5 −A4 −A3 −A2 In
In

In
In
−A1 In
−A0


Fσ(λ) has c0 = 2

z =



x1

x2

x3

x4

x5

x6

 , (xi ∈ Fn×1) be such that Fσ(λ0)z = 0 =⇒ P (λ0)x4 = 0
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Explicit expressions of e-vectors of Fσ(λ) in terms e-vectors of P (λ) (I)

They have been developed by De Terán, D, Mackey (SIMAX, 2010).

These expressions are useful to compare the conditioning and
backward error of a number λ0 as an eigenvalue of the matrix
polynomial P (λ) and as an eigenvalue of the Fiedler linearization Fσ(λ):

κrel(λ0, P ) =
∑k
i=0 |λ0|i‖Ai‖2
|λ0|

‖y‖2 ‖x‖2
|y∗ P ′(λ0)x|

The complete description of these expressions requires more notation,
we have no time to present it here. It depends on the consecutions and
inversions of Fσ(λ).

We simply illustrate these results with an example.

In this problem, the Horner shifts of P (λ) = Akλ
k + · · ·+A1λ+A0 play

an important role

Pd(λ) := λdAk + · · ·+ λAk−d+1 +Ak−d, 0 ≤ d ≤ k
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Explicit expressions of e-vectors of Fσ(λ) in terms e-vectors of P (λ) (II)

P (λ) = A6λ
6 +A5λ

5 +A4λ
4 +A3λ

3 +A2λ
2 +A1λ+A0

Fσ(λ) = λM6 −M0 (M1M3M5) (M2M4)

= λ


A6

In
In

In
In

In

−

−A5 −A4 In
In 0 0 0
0 −A3 0 −A2 In

In 0 0 0 0
0 −A1 0 In
−A0 0 0


If λ0 e-val of P and P (λ0)x = 0, yTP (λ0) = 0, then Fσ(λ0)z = 0, wTFσ(λ0) = 0 with

z =


λ2

0x
λ0x

λ0P2(λ0)x
x

P4(λ0)x
P5(λ0)x

 , wT =
[
yTλ3

0 yTλ3
0P1(λ0) yTλ2

0 yTλ2
0P3(λ0) yTλ0 yT

]

F. M. Dopico (U. Carlos III, Madrid) Eigenvector from Fiedler linearizations SC2011 17 / 36



Explicit expressions of e-vectors of Fσ(λ) in terms e-vectors of P (λ) (II)

P (λ) = A6λ
6 +A5λ

5 +A4λ
4 +A3λ

3 +A2λ
2 +A1λ+A0

Fσ(λ) = λM6 −M0 (M1M3M5) (M2M4)

= λ


A6

In
In

In
In

In

−

−A5 −A4 In
In 0 0 0
0 −A3 0 −A2 In

In 0 0 0 0
0 −A1 0 In
−A0 0 0


If λ0 e-val of P and P (λ0)x = 0, yTP (λ0) = 0, then Fσ(λ0)z = 0, wTFσ(λ0) = 0 with

z =


λ2

0x
λ0x

λ0P2(λ0)x
x

P4(λ0)x
P5(λ0)x

 , wT =
[
yTλ3

0 yTλ3
0P1(λ0) yTλ2

0 yTλ2
0P3(λ0) yTλ0 yT

]

F. M. Dopico (U. Carlos III, Madrid) Eigenvector from Fiedler linearizations SC2011 17 / 36



Outline

1 Definition of Fiedler pencils. Consecutions and inversions.

2 Recovery of eigenvectors from Fiedler pencils

3 Recovery of minimal indices and bases from Fiedler pencils

4 Preservation of structures and generalized Fiedler pencils

5 Eigenvectors of GF pencils with repeated factors

6 Conclusions

F. M. Dopico (U. Carlos III, Madrid) Eigenvector from Fiedler linearizations SC2011 18 / 36



Minimal indices and bases of singular matrix polynomials

Magnitudes relevant in linear system and control theory.

F(λ) denotes the field of rational functions with coefficients in F and F(λ)n the
set of n-tuples with entries in F(λ).

Definition: Minimal bases and indices (Forney, SIAM J. Control, 1975)

Let S ⊆ F(λ)n be a subspace and B = {v1(λ), . . . ,vp(λ)} be a
polynomial basis of S with βi = deg vi(λ). We say that B is a minimal
basis of S if

∑
i βi is minimal over all polynomial bases of S.

The ordered sequence β1 ≤ β2 ≤ · · · ≤ βp of degrees is the same for all
minimal bases of S. These degrees are called minimal indices of S.

Definition: Minimal bases and indices of a singular matrix poly P (λ)

A right minimal basis of P is a min. basis of Nr(P ) = {x(λ) : P (λ)x(λ) = 0}.
The right minimal indices of P (λ) are the minimal indices of Nr(P ).

Left-definitions analogous for left-null space.
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Theorem for recovery of minimal indices

Theorem (De Terán, D, Mackey (SIMAX, 2010))

Let P (λ) be an n× n singular matrix polynomial with degree k ≥ 2, let Fσ(λ)
be the Fiedler pencil of P (λ) with permutation σ having i(σ) total number of
inversions and c(σ) total number of consecutions.

(a) If 0 ≤ ε1 ≤ ε2 ≤ · · · ≤ εp are the right minimal indices of P (λ), then

ε1 + i(σ) ≤ ε2 + i(σ) ≤ · · · ≤ εp + i(σ) ,

are the right minimal indices of Fσ(λ).

(b) If 0 ≤ η1 ≤ η2 ≤ · · · ≤ ηp are the left minimal indices of P (λ), then

η1 + c(σ) ≤ η2 + c(σ) ≤ · · · ≤ ηp + c(σ) ,

are the left minimal indices of Fσ(λ).

Theorem (Recovery of minimal bases (DT, D, M, SIMAX, 2010))

It follows exactly the same block-extraction rule as eigenvector recovery.

F. M. Dopico (U. Carlos III, Madrid) Eigenvector from Fiedler linearizations SC2011 20 / 36



Theorem for recovery of minimal indices

Theorem (De Terán, D, Mackey (SIMAX, 2010))

Let P (λ) be an n× n singular matrix polynomial with degree k ≥ 2, let Fσ(λ)
be the Fiedler pencil of P (λ) with permutation σ having i(σ) total number of
inversions and c(σ) total number of consecutions.

(a) If 0 ≤ ε1 ≤ ε2 ≤ · · · ≤ εp are the right minimal indices of P (λ), then

ε1 + i(σ) ≤ ε2 + i(σ) ≤ · · · ≤ εp + i(σ) ,

are the right minimal indices of Fσ(λ).

(b) If 0 ≤ η1 ≤ η2 ≤ · · · ≤ ηp are the left minimal indices of P (λ), then

η1 + c(σ) ≤ η2 + c(σ) ≤ · · · ≤ ηp + c(σ) ,

are the left minimal indices of Fσ(λ).

Theorem (Recovery of minimal bases (DT, D, M, SIMAX, 2010))

It follows exactly the same block-extraction rule as eigenvector recovery.

F. M. Dopico (U. Carlos III, Madrid) Eigenvector from Fiedler linearizations SC2011 20 / 36



Example: recovery of minimal indices

P (λ) = A6λ
6 +A5λ

5 +A4λ
4 +A3λ

3 +A2λ
2 +A1λ+A0

Fσ(λ) = λM6 −M0 (M1M3M5) (M2M4)

= λ


A6

In
In

In
In

In

−

−A5 −A4 In
In 0 0 0
0 −A3 0 −A2 In

In 0 0 0 0
0 −A1 0 In
−A0 0 0


Note that i(σ) = 2 and c(σ) = 3, so

(a) If 0 ≤ ε1 ≤ ε2 ≤ · · · ≤ εp are the right minimal indices of P (λ), then

ε1 + 2 ≤ ε2 + 2 ≤ · · · ≤ εp + 2 ,

are the right minimal indices of Fσ(λ).
(b) If 0 ≤ η1 ≤ η2 ≤ · · · ≤ ηp are the left minimal indices of P (λ), then

η1 + 3 ≤ η2 + 3 ≤ · · · ≤ ηp + 3 ,

are the left minimal indices of Fσ(λ).

F. M. Dopico (U. Carlos III, Madrid) Eigenvector from Fiedler linearizations SC2011 21 / 36



Example: recovery of minimal indices

P (λ) = A6λ
6 +A5λ

5 +A4λ
4 +A3λ

3 +A2λ
2 +A1λ+A0

Fσ(λ) = λM6 −M0 (M1M3M5) (M2M4)

= λ


A6

In
In

In
In

In

−

−A5 −A4 In
In 0 0 0
0 −A3 0 −A2 In

In 0 0 0 0
0 −A1 0 In
−A0 0 0


Note that i(σ) = 2 and c(σ) = 3, so

(a) If 0 ≤ ε1 ≤ ε2 ≤ · · · ≤ εp are the right minimal indices of P (λ), then

ε1 + 2 ≤ ε2 + 2 ≤ · · · ≤ εp + 2 ,

are the right minimal indices of Fσ(λ).
(b) If 0 ≤ η1 ≤ η2 ≤ · · · ≤ ηp are the left minimal indices of P (λ), then

η1 + 3 ≤ η2 + 3 ≤ · · · ≤ ηp + 3 ,

are the left minimal indices of Fσ(λ).

F. M. Dopico (U. Carlos III, Madrid) Eigenvector from Fiedler linearizations SC2011 21 / 36



Example: recovery of minimal indices

P (λ) = A6λ
6 +A5λ

5 +A4λ
4 +A3λ

3 +A2λ
2 +A1λ+A0

Fσ(λ) = λM6 −M0 (M1M3M5) (M2M4)

= λ


A6

In
In

In
In

In

−

−A5 −A4 In
In 0 0 0
0 −A3 0 −A2 In

In 0 0 0 0
0 −A1 0 In
−A0 0 0


Note that i(σ) = 2 and c(σ) = 3, so

(a) If 0 ≤ ε1 ≤ ε2 ≤ · · · ≤ εp are the right minimal indices of P (λ), then

ε1 + 2 ≤ ε2 + 2 ≤ · · · ≤ εp + 2 ,

are the right minimal indices of Fσ(λ).
(b) If 0 ≤ η1 ≤ η2 ≤ · · · ≤ ηp are the left minimal indices of P (λ), then

η1 + 3 ≤ η2 + 3 ≤ · · · ≤ ηp + 3 ,

are the left minimal indices of Fσ(λ).

F. M. Dopico (U. Carlos III, Madrid) Eigenvector from Fiedler linearizations SC2011 21 / 36



Outline

1 Definition of Fiedler pencils. Consecutions and inversions.

2 Recovery of eigenvectors from Fiedler pencils

3 Recovery of minimal indices and bases from Fiedler pencils

4 Preservation of structures and generalized Fiedler pencils

5 Eigenvectors of GF pencils with repeated factors

6 Conclusions

F. M. Dopico (U. Carlos III, Madrid) Eigenvector from Fiedler linearizations SC2011 22 / 36



No existence of structure-preserving Fiedler pencils

Lemma

There are no Fiedler pencils that are symmetric whenever P (λ) is
symmetric.

There are no Fiedler pencils that are palindromic whenever P (λ) is
palindromic.

Definition
An n× n matrix polynomial P (λ) is

symmetric if P (λ) = P (λ)T .

palindromic if revP (λ) = P (λ)T .
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Generalized Fiedler pencils (I) (Fiedler (2003), Antoniou-Vologiannidis (2004))

Idea: Given P (λ) = λkAk + · · ·+ λA1 +A0 , Ai ∈ Fn×n, recall the matrices:

Mj :=


In(k−j−1)

−Aj In
In 0

In(j−1)

 ∈ Fnk×nk , j = 1, . . . , k − 1 ,

M0 :=

[
In(k−1)

−A0

]
∈ Fnk×nk , Mk :=

[
Ak

In(k−1)

]
∈ Fnk×nk,

and note that M1,M2, ...,Mk−1 are always invertible.

Then multiply any Fiedler pencil

Fσ(λ) = λMk −Mj0Mj1 · · ·Mjk−1

by some of the factors M−1
1 ,M−1

2 , . . . ,M−1
k−1 in a certain order to obtain

pencils strictly equivalent to Fσ(λ) (so strong linearizations for P (λ)) of
the type

λMσ1 −Mσ0 := λ (M−1
p0 · · ·M

−1
ps1

)Mk(M−1
q0 · · ·M

−1
qs2

)−Mr0Mr1 · · ·Mrs3
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Generalized Fiedler pencils (II)

Definition

λMσ1 −Mσ0 := λ (M−1
p0 · · ·M

−1
ps1

)Mk(M−1
q0 · · ·M

−1
qs2

)−Mr0Mr1 · · ·Mrs3

is a proper generalized Fiedler pencil (strong linearization) for P (λ) if

(p0, . . . , ps1 , k, q0, . . . , qs2 , r0, . . . , rs3) is a permutation of (0, 1, . . . , k).

0 ∈ {r0, r1, . . . , rs3}.
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Generalized Fiedler (GF) pencils that preserve symmetry for odd degree

Theorem (Antoniou & Vologiannidis, ELA, 2004)

Let P (λ) =
∑k
i=0 λ

iAi be an n× n matrix poly of odd degree, then the
proper generalized Fiedler linearization for P (λ)

S(λ) = λ MkM
−1
k−2 · · ·M

−1
3 M−1

1 −Mk−1Mk−3 · · ·M2M0

is symmetric whenever P (λ) is symmetric.

It follows easily from

M−1
j =


In(k−j−1)

0 In
In Aj

In(j−1)

 ∈ Fnk×nk , j = 1, . . . , k − 1 .
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GF pencils that preserve symmetry for odd degree: Example

P (λ) = A5λ
5 +A4λ

4 +A3λ
3 +A2λ

2 +A1λ+A0

S(λ) = λM5M
−1
3 M−1

1 −M4M2M0

= λ


A5

0 In
In A3

0 In
In A1

−

−A4 In
In 0

−A2 In
In 0

−A0


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Linearizations based on GFP that preserve palindromicity for odd degree

Theorem (De Terán, D, Mackey, JCAM, 2011)

Let P (λ) =
∑k
i=0 λ

iAi be an n× n matrix poly of odd degree. Consider any
proper generalized Fiedler pencil of the type

L(λ) = λ(· · ·Mk · · ·M−1
k−i1M

−1
k−i0)− (Mi0Mi1 · · ·M0 · · · ),

and define

R =

 In
. . .

In

 ∈ Fnk×nk and S =

±In . . .
±In

 ∈ Fnk×nk,

where the signs are easily determined by the consecutions/inversions of the
factors in (Mi0Mi1 · · ·M0 · · · ). Then

Lpalin(λ) = S RL(λ)

is a strong linearization of P (λ) that is palindromic whenever P (λ) is
palindromic.
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Palindromic-preserving linearizations based on GF pencils: Example

P (λ) = A5λ
5 +A4λ

4 +A3λ
3 +A2λ

2 +A1λ+A0

There are many, let us illustrate one with lowest (anti-)bandwidth

Lpalin(λ) = S R (λM−1
1 M−1

3 M5 −M0M2M4)

= λ


In A1

0 −In
In A3

0 −In
A5

+


A0

In 0
A2 −In

In 0
A4 −In

 ,
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Recovery of eigenvectors, minimal indices and bases from proper GF

pencils (Bueno, De Terán, D, SIMAX, 2011)

Exactly the same recovery rules via block-extraction for

minimal bases, and
eigenvectors of finite eigenvalues of P (λ),

considering consecutions and inversions only for the zero degree term of
the pencil.

Different, but simple, rules for eigenvectors of the infinite eigenvalue also
via block-extraction. They involve consecutions and inversions only for
the first degree term of the pencil.

Different, but simple, rules for minimal indices.

Explicit expressions of e-vectors of GF pencils in terms of e-vectors of
P (λ) (Bueno, De Terán, D, presented last ILAS 2011).
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Example of eigenvector recovery in proper GF pencils

P (λ) = A6λ
6 +A5λ

5 +A4λ
4 +A3λ

3 +A2λ
2 +A1λ+A0

G(λ) = λM−1
3 M6M

−1
5 −M4M0M2M1

= λ


A6

In A5

In
In A3

In
In

−

In
−A4 In
In

−A2 −A1 In
In
−A0


M4M0M2M1 has c0 = 1 initial consecutions
(consecution at 0, inversion at 1, nothing at 2, 3, 4, 5

z =



x1

x2

x3

x4

x5

x6

 , (xi ∈ Fn×1) be such that G(λ0)z = 0 =⇒ P (λ0)x5 = 0
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Outline

1 Definition of Fiedler pencils. Consecutions and inversions.

2 Recovery of eigenvectors from Fiedler pencils

3 Recovery of minimal indices and bases from Fiedler pencils

4 Preservation of structures and generalized Fiedler pencils

5 Eigenvectors of GF pencils with repeated factors

6 Conclusions
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GF pencils with repeated factors (Vologiannidis & Antoniou, MCSS 2011)

Example: P (λ) = A5λ
5 +A4λ

4 +A3λ
3 +A2λ

2 +A1λ+A0

L(λ) = λM−1
2 M−1

4 M−1
1 M−1

3 M5M
−1
2 M−1

4 −M−1
2 M−1

4 M0

= M−1
2 M−1

4 (λM−1
1 M−1

3 M5M
−1
2 M−1

4 −M0)

= λ


0 0 0 In 0
0 A5 0 A4 0
0 0 0 0 In
In A4 0 A3 A2

0 0 In A2 A1

−


0 In 0 0 0
In A4 0 0 0
0 0 0 In 0
0 0 In A2 0
0 0 0 0 −A0

 ,

They are defined in terms of two basic ideas:

(a) They are strictly equivalent to Fiedler pencils via multiplication by
Mi or M−1

i .
(b) Although there are repeated factors, the pencil is made of blocks

that can be either ±In, ±Ai, 0n.

Necessary and sufficient condition for (b) are presented by Vologiannidis
and Antoniou (MCSS 2011).
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Eigenvectors of GF pencils with repeated factors

We have (complicated) rules to get explicit expressions of the e-vectors
of these pencils in terms of the e-vectors of P (λ).

They do not depend only on the Horner shifts of P (λ).

Example for degree 8.

L(λ) = λM−1
6 M8M

−1
7 M2M3M4 −M1M2M3M4M5M0M2M3M4

If P (λ)x = 0, the L(λ)z = 0 with

z =
[
λ3P0x λ2x λx λP6x λ(P3 +A4P6)x λ(P4 +A3P6)x . . .

. . . λ(P5 +A2P6)x x
]B
,

where all Horner shifts are evaluated in λ.
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Conclusions and Future work

The algebraic and the recovery properties of Fiedler pencils are
well-understood.

The fundamental open problem to ascertain the practical relevance
of Fiedler pencils is to compare the conditioning and backward
errors of eigenvalues in Fiedler pencils with respect conditioning and
backward errors in companion forms and in the original polynomial P (λ).

This is a difficult problem. Two outgoing works

De Terán and Tisseur: cubic matrix polynomials.
D and Pérez-Álvaro: scalar polynomials.

Probably, the most relevant numerical applications in eigenvalue/vector
computations of (generalized) Fiedler pencils will be in

Symmetric and palindromic matrix polynomials of odd-degree.
Scalar polynomials with very large degree, where low bandwith may
be important.
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