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Orthogonal Sampling Formulas:
A Unified Approach∗

Antonio G. Garcia†

Abstract. This paper intends to serve as an educational introduction to sampling theory. Basically,
sampling theory deals with the reconstruction of functions (signals) through their values
(samples) on an appropriate sequence of points by means of sampling expansions involving
these values.

In order to obtain such sampling expansions in a unified way, we propose an inductive
procedure leading to various orthogonal formulas. This procedure, which we illustrate with
a number of examples, closely parallels the theory of orthonormal bases in a Hilbert space.
All intermediate steps will be described in detail, so that the presentation is self-contained.
The required mathematical background is a basic knowledge of Hilbert space theory.

Finally, despite the introductory level, some hints are given on more advanced problems
in sampling theory, which we motivate through the examples.
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1. Introduction. In 1949 Claude Shannon [23] published a remarkable result:

If a signal f(t) contains no frequencies higher than w cycles per second, then f(t)
is completely determined by its values f(n/2w) at a discrete set of points with spacing
1/2w and can be reconstructed from these values by the formula

f(t) =
∞∑

n=−∞
f

( n

2w

) sinπ(2wt− n)
π(2wt− n) .(1.1)

In engineering and mathematical terminology, the signal f is bandlimited to [−2πw,
2πw], meaning that f(t) contains no frequencies beyond w cycles per second. Equiv-
alently, its Fourier transform F is zero outside this interval:

f(t) =
1√
2π

∫ 2πw

−2πw

F (x)eixtdx.(1.2)

The engineering principle underlying (1.1) is that all the information contained in
f(t) is stored in its samples f(n/2w). The cut-off frequency determines the so-called
Nyquist rate,1 the minimum rate at which the signal needs to be sampled in order to
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recover it at all intermediate times t. In the case above, 2w = 4πw/2π is the sampling
frequency and 1/2w is the sampling period.

The sampling functions used in the reconstruction (1.1) are

Sn(t) =
sinπ(2wt− n)
π(2wt− n) .

They satisfy the interpolatory property Sn(tk) = δn,k: δn,k equals 1 if n = k and
0 if n �= k. A series as in (1.1) is known as a cardinal series because the sampling
functions involve the cardinal sine function (or sinc function)

sinc (t) =

{
sin πt

πt if t �= 0,
1 if t = 0.

These series owe their name to J. M. Whittaker [26], a reference cited by Shannon
in [23]. To be precise, J. M. Whittaker’s work was a refinement of his father’s, the
eminent British mathematician E. T. Whittaker [25]. However, it is not clear whether
they were the first mathematicians to introduce these kinds of expansions. Some
interesting historical notes concerning this controversy can be found in [6, 11, 12, 28].

The Shannon sampling theorem provides the theoretical foundation for modern
pulse code modulation communications systems, which were introduced, indepen-
dently, by V. Kotel’nikov [14] in 1933 (in Russian) and by Shannon in 1949. This
sampling theorem is presently known in the mathematical literature as the Whittaker–
Shannon–Kotel’nikov theorem or WSK theorem.

What started as a theorem for reconstructing bandlimited signals from uniform
samples has now become a whole branch of applied mathematics, known as sam-
pling theory. The efforts in extending Shannon’s fundamental result point in various
directions: nonuniform samples, other discrete data taken from the signal, multidi-
mensional signals, and more. Some of these extensions will appear in section 3.

In general, the problem of sampling and reconstruction can be stated as follows:
Given a set H of functions defined on a common domain Ω, is there a discrete set
D = {tn} ⊂ Ω such that every f ∈ H is uniquely determined by its values on D? And
if this is the case, how can we recover such a function? Moreover, is there a sampling
series of the form

f(t) =
∑

n

f(tn)Sn(t)(1.3)

valid for every f in H, where the convergence of the series is at least absolute and
uniform on closed bounded intervals?2

In many cases of practical interest, the set H is related to some integral transform
as in (1.2), and the sampling functions satisfy an interpolatory property. All this leads
us to propose a general method to obtain some sampling theorems in a unified way.
Section 2 obtains orthogonal sampling theorems by the following steps:

1. Take a set of functions {Sn(t)} interpolating at a sequence of points {tn}.
2. Choose an orthonormal basis for an L2 space.
3. Define an integral kernel involving {Sn(t)} and the orthonormal basis. Con-

sider the corresponding integral transform in the L2 space.

2A sampling series may also contain samples from a transformed version of f , as the derivative,
for instance. Here we confine ourselves to sampling formulas like (1.3).
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4. Endow the range space of this integral transform with a norm that provides
an isometric isomorphism between the range space and the L2 space via the integral
transform.

5. Thus, any Fourier expansion in the L2 space is transformed into a Fourier
expansion in the range space whose coefficients are the samples of the corresponding
function, computed at the sequence {tn}.

6. Convergence in this norm of the range space implies pointwise convergence
and, as a consequence, we obtain a sampling expansion that holds for all functions in
the range space.3

This methodology is used in section 3, where several well-known sampling formu-
las are derived in this way. Thus the main features of our approach are the following:

I. The fact of placing the problem in a functional framework, common to many
diverse situations, allows us to introduce sampling theory through the well-
developed theory of orthonormal bases in a Hilbert space. A number of
well-known sampling formulas are obtained in a unified way.

II. The functional setting we have chosen only permits us, in principle, to derive
orthogonal sampling expansions. Some remarks, motivated by the examples
in section 3, will be made concerning other more general settings.

2. The Main Theory. Let {φn(x)}∞
n=1 be an orthonormal basis of an L2(I) space,

where I is an interval in R, bounded or unbounded. As usual, the inner product in
L2(I) is given by 〈F,G〉L2(I) =

∫
I
F (x)G(x)dx.

Let {Sn}∞
n=1 be a sequence of functions Sn : Ω ⊂ R −→ R (or C), defined for all

t ∈ Ω, and let {tn}∞
n=1 be a sequence in Ω satisfying conditions C1 and C2.

C1. Sn(tk) = anδn,k, where δn,k denotes the Kronecker delta and an �= 0.
C2.

∑∞
n=1 |Sn(t)|2 < ∞ for each t ∈ Ω.

Define the function K(x, t) as

K(x, t) =
∞∑

n=1

Sn(t)φn(x) , (x, t) ∈ I × Ω.(2.1)

As a function of x, K(·, t) belongs to L2(I) since {φn}∞
n=1 is an orthonormal basis for

L2(I) as well.
Now, consider K(x, t) as a kernel and define on L2(I) the linear integral trans-

formation which maps F to

f(t) :=
∫

I

F (x)K(x, t)dx.(2.2)

Remark 1. Given an integral kernel K(x, t), conditions C1 and C2 can be read
as the existence of a sequence {tn}∞

n=1 ⊂ Ω such that {K(x, tn)}∞
n=1 is an orthogonal

basis for L2(I). Kramer [15] originally suggested this method of obtaining sampling
theorems. From a pedagogical point of view, we find it more instructive to follow an
inductive construction.

The integral transform (2.2) is well defined because F and K(·, t) belong to L2(I)
and the Cauchy–Schwarz inequality implies that f(t) is defined for each t ∈ Ω. This
transformation is one to one, since {K(x, tk) = akφk(x)}∞

k=1 is a complete sequence for
L2(I); i.e., the only function orthogonal to every {K(x, tk)}∞

k=1 is the zero function.

3The idea underlying the whole procedure is borrowed from Hardy [10], who first noticed that
(1.1) is an orthogonal expansion.
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In fact, if two functions f and g are equal in the sequence {tk}∞
k=1 they coincide

necessarily on the whole set Ω.
Now, define H as the range of the integral transform (2.2)

H =
{
f : Ω −→ C such that f(t) =

∫
I

F (x)K(x, t)dx, F ∈ L2(I)
}

endowed with the norm ‖f‖H = ‖F‖L2(I). Using the polarization identity [20, p. 276],
we obtain the following fact.

• (H, ‖ · ‖H) is a Hilbert space isometrically isomorphic to L2(I), with inner
product

〈f, g〉H = 〈F,G〉L2(I),(2.3)

where f(t) =
∫

I
F (x)K(x, t)dx and g(t) =

∫
I
G(x)K(x, t)dx.

Since an isometric isomorphism transforms orthonormal bases to orthonormal
bases, we derive an important property for H by applying the integral transform (2.2)
to the orthonormal basis {φn(x)}.

• {Sn(t)}∞
n=1 is an orthonormal basis for H.

Now we see that (H, ‖ · ‖H) is a reproducing kernel Hilbert space of functions
defined on Ω, a crucial step for our sampling purposes. In a reproducing kernel Hilbert
space (RKHS) H, all the evaluation functionals Et(f) := f(t), f ∈ H, are continuous
for each fixed t ∈ Ω (or equivalently bounded since they are linear) [27, pp. 15–19].
By the Riesz representation theorem [20, p. 345], for each t ∈ Ω there exists a unique
element kt ∈ H such that f(t) = 〈f, kt〉H for all f ∈ H. Let k(t, s) = 〈ks, kt〉 = ks(t)
for s, t ∈ Ω. Then

〈f(·), k(·, s)〉 = 〈f, ks〉 = f(s).(2.4)

The function k(t, s) is called the reproducing kernel 4 of H. One can easily prove
that the reproducing kernel in an RKHS is unique. Indeed, let k′(t, s) be another
reproducing kernel for H. For a fixed s ∈ Ω, consider k′

s(t) = k
′(t, s). Then, for t ∈ Ω

we have

k′
s(t) = 〈k′

s, kt〉 = 〈kt, k′
s〉

= kt(s) = 〈kt, ks〉 = ks(t).

Hence k(s, t) = k′(s, t) for all t, s ∈ Ω.
Finally, if {en(t)}∞

n=1 is an orthonormal basis for H, then the reproducing kernel
can be expressed as k(t, s) =

∑∞
n=1 en(t)en(s). Indeed, expanding kt in the orthonor-

mal basis {en}∞
n=1 we have

kt =
∞∑

n=1

〈kt, en〉en =
∞∑

n=1

en(t)en,

and therefore,

k(t, s) = 〈ks, kt〉 =
∞∑

n=1

en(s)en(t).(2.5)

4Note that, equivalently, an RKHS can be defined through (2.4) instead of the continuity of the
evaluation functionals. In this case, the continuity of Et follows from the Cauchy–Schwarz inequality.
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• (H, ‖ · ‖H) is an RKHS whose reproducing kernel is given by

k(t, s) =
∞∑

n=1

Sn(s)Sn(t) = 〈K(·, t),K(·, s)〉L2(I).(2.6)

To prove it, we use the Cauchy–Schwarz inequality in (2.2), obtaining for a fixed
t ∈ Ω

|Et(f)| = |f(t)| ≤ ‖F‖L2(I)‖K(·, t)‖L2(I) = ‖f‖H‖K(·, t)‖L2(I)(2.7)

for every f ∈ H.
As to the reproducing kernel formula (2.6), due to (2.5), we only need to prove

the second equality. To this end, consider

k′(t, s) = 〈K(·, t),K(·, s)〉L2(I) =
∫

I

K(x, t)K(x, s)dx.

Then, for a fixed s ∈ Ω, k′(t, s) is the transformedK(x, s) by (2.2). Using the isometry
(2.3) we have

〈f, k′(·, s)〉H = 〈F,K(x, s)〉L2(I) =
∫

I

F (x)K(x, s)dx = f(s).

The uniqueness of the reproducing kernel leads to the desired result.
It is worth pointing out that inequality (2.7) has important consequences for the

convergence in H. More precisely, we have the following fact.
• Convergence in the norm ‖ · ‖H implies pointwise convergence and uniform

convergence on subsets of Ω, where ‖K(·, t)‖L2(I) =
√
k(t, t) is bounded.

At this point, we have all the ingredients to obtain a sampling formula for all the
functions in H. Indeed, expanding an arbitrary function f ∈ H in the orthonormal
basis {Sn(t)}∞

n=1, we have

f(t) =
∞∑

n=1

〈f, Sn〉HSn(t),

where the convergence is in the H-norm sense and hence pointwise in Ω. Taking into
account the isometry between H and L2(I), we have that

〈f, Sn〉H = 〈F, φn〉L2(I) =
f(tn)
an

for each n ∈ N. Hence, we obtain the following sampling formula for H.
• Each function f in H can be recovered from its samples at the sequence {tn}∞

n=1
through the formula

f(t) =
∞∑

n=1

f(tn)
Sn(t)
an

.(2.8)

The convergence of the series in (2.8) is absolute and is uniform on subsets of Ω,
where ‖K(·, t)‖L2(I) =

√
k(t, t) is bounded.

Note that an orthonormal basis is an unconditional basis. By Parseval’s identity
[20, p. 307], any of its reorderings is again an orthonormal basis. Therefore, the
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sampling series (2.8) is pointwise unconditionally convergent for each t ∈ Ω and hence
pointwise absolutely convergent. The uniform convergence follows from inequality
(2.7).

Remark 2. We also could have obtained the formula (2.8) by applying the integral
transform (2.2) to the Fourier series expansion F (x) =

∑∞
n=1〈F, φn〉L2(I)φn(x) of a

function F in L2(I).
A final comment about the functional space H is in order. Any f ∈ H can be

described using the sequence of its values {f(tn)}∞
n=1 by means of formula (2.8). In

particular, the inner product and the norm in H can be expressed as

〈f, g〉H =
∞∑

n=1

f(tn)g(tn)
|an|2 , ‖f‖2

H =
∞∑

n=1

|f(tn)|2
|an|2 .

3. Some Examples. Generally speaking, one can easily construct spaces H as in
section 2 having a sampling property at a sequence {tn}∞

n=1 as in formula (2.8). To this
end, let t1, t2, . . . be distinct real numbers such that

∑∞
n=1 1/|tn|2 < ∞. There exists

an analytic function P (t) with simple zeros at the sequence {tn} [18, p. 457]. Taking
Sn(t) =

P (t)
t−tn

and any orthonormal basis {φn(x)}∞
n=1 for an L2(I)-space, we can follow

the steps of section 2 in order to construct an RKHS H with the sampling property at
the given sequence {tn}. Thus, taking into account the fact that Sn(tk) = P ′(tn)δn,k,
formula (2.8) ensures that any function of the form (2.2) can be expanded as the
Lagrange-type interpolation series

f(t) =
∞∑

n=1

f(tn)
P (t)

(t− tn)P ′(tn)
.

However, our main aim is to derive some of the well-known sampling theorems by
following the method exposed in the previous section. All the examples in this section
are based on the knowledge of specific orthonormal bases for known L2-spaces. See
[20, pp. 322–329] for the bases and also [30] for the integral transforms.

One of the richest sources of Kramer kernels is in the subject of self-adjoint
boundary value problems [8, 28].

3.1. Classical Bandlimited Functions. The set of functions {e−inx/
√
2π}n∈Z is

an orthonormal basis for L2[−π, π]. We consider the Fourier integral kernel K(x, t) =
eitx/

√
2π. For a fixed t ∈ R, we have

eitx√
2π

=
1
2π

∞∑
n=−∞

〈eitx, einx〉L2[−π,π]
einx

√
2π

=
∞∑

n=−∞

sinπ(t− n)
π(t− n)

einx

√
2π

in L2[−π, π].

Therefore, taking Sn(t) =
sin π(t−n)

π(t−n) and tn = n, n ∈ Z, we obtain that any function
of the form

f(t) =
1√
2π

∫ π

−π

F (x)eitxdx with F ∈ L2[−π, π],
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i.e., bandlimited to [−π, π] in the classical sense, can be recovered from its samples at
integers by means of the cardinal series

f(t) =
∞∑

n=−∞
f(n)

sinπ(t− n)
π(t− n) .(3.1)

The series converges absolutely, and uniformly on R because in this case

‖K(·, t)‖2
L2[−π,π] = 1 for all t ∈ R.

The choice of the interval [−π, π] is arbitrary. The same result applies to any
compact interval [−πσ, πσ] taking the samples {f(n/σ)}n∈Z and replacing t with σt
in the cardinal series (3.1).

The reproducing kernel of the corresponding H space is given by

k(t, s) =
1
2π

〈eitx, eisx〉L2[−π,π] =
sinπ(t− s)
π(t− s)

=
∞∑

n=−∞

sinπ(t− n)
π(t− n)

sinπ(s− n)
π(s− n) ,

where we have used (2.6) and (2.5), respectively.
Remark 3. We can provide further information about the space (H, ‖ · ‖H) in this

particular case. Namely, since the Fourier transform is a unitary operator in L2(R)
[20, p. 335], the space H coincides with the classical Paley–Wiener space PWπ, the
closed subspace of L2(R) given by

PWπ = {f ∈ L2(R) ∩ C(R), supp f̂ ⊆ [−π, π]},

where f̂ is the Fourier transform of f and supp f̂ denotes the support of f̂ . Hence,
f̂ is zero outside [−π, π] for any f ∈ PWπ. Furthermore, the classical Paley–Wiener
theorem [27, p. 100] shows that PWπ coincides with the space of entire functions of
exponential type at most π with square integrable restriction to the real axis; i.e.,

PWπ = {f ∈ H(C) : |f(z)| ≤ Aeπ|z|, f |R ∈ L2(R)}.

Remark 4. The actual computation of the cardinal series (3.1) presents some
numerical difficulties since the cardinal sine function behaves like 1/t as |t| → ∞. One
way to overcome this difficulty is the so-called oversampling technique, i.e., sampling
the signal at a frequency higher than that given by its bandwidth. In this way we
obtain sampling functions converging to zero at infinity faster than the cardinal sine
functions. Indeed, consider the bandlimited function

f(t) =
1√
2π

∫ πδ

−πδ

F (x)eixtdx with F ∈ L2[−πδ, πδ] and δ < 1.

Extending F to be zero in [−π, π] \ [−πδ, πδ], we have

F (x) =
∞∑

n=−∞
f(n)

e−inx

√
2π

in L2[−π, π].
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Let θ(x) be a smooth function taking the value 1 on [−πδ, πδ] and the value 0 outside
[−π, π]. As a consequence,

F (x) = θ(x)F (x) =
∞∑

n=−∞
f(n)θ(x)

e−inx

√
2π

in L2[−π, π],

and the sampling expansion

f(t) =
∞∑

n=−∞
f(n)S(t− n)

holds, where S is the inverse Fourier transform F−1 of θ/
√
2π and, consequently,

S(t−n) = F−1(θ(x)e−inx/
√
2π)(t). Furthermore, using the properties of the Fourier

transform [24, p. 317] we see that the smoother θ is, the faster the decay of S is.
However, the new sampling functions {S(· − n)} are no longer orthogonal.

Remark 5. Note that, using the orthonormal basis {e−inx/
√
2π}, we can only

obtain sampling formulas with uniformly separated sampling points. However, in
many cases uniform sampling is not the most efficient way. As a rule, the sampling
frequency should be higher in regions where the function is expected to undergo large
variations and lower in intervals where the function is known to be almost constant.
To obtain sampling formulas with irregularly spaced sampling points tn, one can use
Riesz bases or frames of complex exponentials eitnx. The theory obtained by including
either Riesz bases or frames in the definition of the kernel (2.1) goes much in the same
way as in section 2, but the mathematical requirements are more sophisticated. We
omit the details to keep this presentation at an introductory level (see [2, 9] for
more details of this more general framework). Finally, some iterative methods for
the practical implementation of irregular sampling theory have been developed. A
comprehensive account can be found in [9].

3.2. Bandlimited Functions in the Fractional Fourier Transform Sense. The
sequence { 1√

2σ
e−iπnx/σ}n∈Z is an orthonormal basis for L2[−σ, σ]. It is easy to

prove that { 1√
2σ
e−iπnx/σeiax2}n∈Z, with a ∈ R, is also a new orthonormal basis for

L2[−σ, σ]. Let a and b be two nonzero real constants. For notational ease we denote
2ab = 1

c . We will see the meaning of these constants later. Direct calculations show
that the expansion

e−ia(t2+x2−2bxt) =
∞∑

n=−∞

〈
e−ia(t2+x2−2bxt),

eiπnx/σ

√
2σ

e−iax2
〉

L2[−σ,σ]

eiπnx/σ

√
2σ

e−iax2

=
∞∑

n=−∞

√
2σe−iat2 sin

σ
c (t− nπc

σ )
σ
c (t− nπc

σ )
eiπnx/σ

√
2σ

e−iax2

holds in the L2[−σ, σ] sense. Set

Sn(t) =
√
2σe−iat2 sin

σ
c (t− nπc

σ )
σ
c (t− nπc

σ )
and tn =

nπc

σ
, n ∈ Z.

Since Sn(tk) =
√
2σe−iat2nδn,k, we have the sampling formula

f(t) =
∞∑

n=−∞
f(tn)e−ia(t2−t2n) sin

σ
c (t− nπc

σ )
σ
c (t− nπc

σ )
(3.2)
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for any function f of the form

f(t) =
∫ σ

−σ

F (x)e−ia(t2+x2−2bxt)dx with F ∈ L2[−σ, σ].(3.3)

Here, the reproducing kernel obtained from (2.6) is

k(t, s) = 2σe−ia(t2−s2) sin
σ
c (t− s)

σ
c (t− s)

.

Since k(t, t) = 2σ, the series in (3.2) converges uniformly in R.
Our next purpose is to see how formula (3.3) and the fractional Fourier transform

(FRFT) are related. Recall that the FRFT with angle α �∈ {0, π} of a function f(t)
is defined as

Fα [f ] (x) =
∫ ∞

−∞
f(t)Kα(x, t) dt,

where, apart from a normalization constant, the integral kernel Kα(x, t) is given by

ei
cot α

2 (t2+x2)−i xt
sin α .(3.4)

For α = 0 the FRFT is defined by F0 [f ] (x) = f(x), and for α = π, by Fπ [f ] (x) =
f(−x). Whenever α = π/2, the kernel (3.4) coincides with the Fourier kernel. Oth-
erwise, (3.4) can be rewritten as

eia(α)[t2+x2−2b(α)xt],

where a(α) = cot α
2 and b(α) = secα. The inversion formula of the FRFT (see [29]) is

given by

f(t) =
1√
2π

∫ ∞

−∞
Fα(x)K−α(x, t)dx.

Consequently, formula (3.2) is just the sampling expansion for a function bandlimited
to [−σ, σ] in the FRFT sense (3.3). Note that 2a(α)b(α) = 1

sin α , and c = sinα in the
sampling expansion (3.2).

3.3. Finite Cosine Transform. Let us consider the orthogonal basis {cosnx},
n ∈ N ∪ {0}, in L2[0, π]: note that ‖ cosnx‖2

L2[0,π] equals π/2 for n ≥ 1 and π for
n = 0. For t ∈ R fixed, we expand the function cos tx in this basis, obtaining

cos tx =
∞∑

n=0

〈
cos tx,

cosnx
‖ cosnx‖

〉
L2[0,π]

cosnx
‖ cosnx‖

=
sinπt
πt

+
∞∑

n=1

(−1)n2t sinπt
π(t2 − n2)

cosnx in L2[0, π].

Therefore, choosing

S0(t) =
sinπt
πt

, Sn(t) =
(−1)n2t sinπt
π(t2 − n2)

, and tn = n, n ∈ N ∪ {0},
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we have that any function of the form

f(t) =
∫ π

0
F (x) cos txdx with F ∈ L2[0, π]

can be expanded as

f(t) = f(0)
sinπt
πt

+
2
π

∞∑
n=1

f(n)
(−1)nt sinπt
t2 − n2 .

The convergence of the series is absolute and uniform on R since

‖K(·, t)‖2
L2[0,π] =

π

2
+

sin 2tπ
4t

is bounded for all t ∈ R. The reproducing kernel is given by

k(t, s) =
1

s− t [t sin tπ cos sπ − s cos tπ sin sπ].

The cardinal series (3.1) is absolutely convergent and hence unconditionally con-
vergent. Therefore, it can be written, gathering terms, in the equivalent form

f(t) =
sinπt
π

{
f(0)
t

+
∞∑

n=1

(−1)n
(
f(n)
t− n +

f(−n)
t+ n

)}
.

As a consequence, the sampling expansion associated with the finite cosine transform
is nothing more than the cardinal series (3.1) for an even function.

3.4. The Paley–Wiener Space Revisited. Consider the product Hilbert space
H = L2[0, π] × L2[0, π] endowed with the norm ‖F‖2

H = ‖F1‖2
L2[0,π] + ‖F2‖2

L2[0,π]

for every F = (F1, F2) ∈ H. The system of functions { 1√
π
(cosnx, sinnx)}n∈Z is an

orthonormal basis for H. For a fixed t ∈ R we have

(cos tx, sin tx) =
∞∑

n=−∞

〈
(cos tx, sin tx),

1√
π
(cosnx, sinnx)

〉
H

1√
π
(cosnx, sinnx)

=
∞∑

n=−∞

sinπ(t− n)√
π(t− n)

1√
π
(cosnx, sinnx)

in the H sense. Taking Sn(t) = sin π(t−n)√
π(t−n) and tn = n ∈ Z, we have that Sn(tk) =√

πδn,k. As a consequence, any function of the form

f(t) =
∫ π

0
{F1(x) cos tx+ F2(x) sin tx}dx with F1, F2 ∈ L2[0, π]

can be expanded as the cardinal series

f(t) =
∞∑

n=−∞
f(n)

sinπ(t− n)
π(t− n) .
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The corresponding H space is again the Paley–Wiener space PWπ. Indeed, for f ∈
PWπ we have

f(t) =
1√
2π

∫ π

−π

F (x)eitxdx =
1√
2π

{∫ 0

−π

F (x)eitxdx+
∫ π

0
F (x)eitxdx

}
=

1√
2π

{∫ 0

−π

F (x)(cos tx+ i sin tx)dx+
∫ π

0
F (x)(cos tx+ i sin tx)dx

}
=

∫ π

0

{
1√
2π

[F (x) + F (−x)] cos tx+ i√
2π

[F (x) − F (−x)] sin tx
}
dx

=
∫ π

0
{F1(x) cos tx+ F2(x) sin tx}dx,

where F1(x) = 1√
2π

[F (x)+F (−x)] and F2(x) = i√
2π

[F (x)−F (−x)] belong to L2[0, π].
In particular, taking F1 = F2 = F ∈ L2[0, π] we obtain the sampling expansion

for a function f bandlimited to [0, π] in the sense of the Hartley transform. To be
more precise, any function of the form

f(t) =
∫ π

0
F (x)[cos tx+ sin tx]dx with F ∈ L2[0, π]

can be expanded as a cardinal series (3.1). Recall that the Hartley transform of a
function F , defined as

f(t) =
∫ ∞

0
F (x)[cos tx+ sin tx]dx,

was introduced by R. V. L. Hartley, an electrical engineer, as a way to overcome what
he considered a drawback of the Fourier transform, namely, representing a real-valued
function F (x) by a complex-valued one

g(t) =
∫ ∞

−∞
F (x)[cos tx− i sin tx]dx.

3.5. The ν-Bessel–Hankel Space. The Fourier–Bessel set {√
xJν(xλn)}∞

n=1 is
known to be an orthogonal basis for L2(0, 1), where λn is the nth positive zero of the
Bessel function Jν(t), ν > −1. The Bessel function of order ν is given by

Jν(t) =
tν

2νΓ(ν + 1)

[
1 +

∞∑
n=1

(−1)n

n!(1 + ν) · · · (n+ ν)

(
t

2

)2n
]
.

Using special function formulas (see [1, 11.3.29]), for a fixed t > 0, we have

√
xtJν(xt) =

∞∑
n=1

2
√
tλnJν(t)

J ′
ν(λn)(t2 − λ2

n)
√
xJν(xλn) in L2(0, 1).

Therefore, the range of the integral transform

f(t) =
∫ 1

0
F (x)

√
xtJν(xt)dx, F ∈ L2(0, 1),(3.5)
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is an RKHS Hν with reproducing kernel

k(s, t) =
√
st

t2 − s2 {tJν+1(t)Jν(s) − sJν+1(s)Jν(t)},

and the sampling expansion

f(t) =
∞∑

n=1

f(λn)
2
√
tλnJν(t)

J ′
ν(λn)(t2 − λ2

n)

holds for f ∈ Hν . Note that the integral kernel in (3.5) is the kernel of the Hankel
transform.

3.6. The Continuous Laguerre Transform. The sequence {e−x/2Ln(x)}∞
n=0 is

an orthonormal basis for L2[0,∞), where Ln(x) =
∑n

k=0(−1)k 1
k!

(
n
k

)
xk is the nth

Laguerre polynomial. A continuous extension Lt(x) of the Laguerre polynomials can
be found in [28, p. 144]. It is given by

Lt(x) =
∞∑

n=0

Ln(x)
sinπ(t− n)
π(t− n) .

Lt(x) is a C∞-function that satisfies the Laguerre differential equation

xy′′ + (1 − x)y′ + ty = 0,

which is the same differential equation satisfied by Ln(x) when t is replaced by n. For
our sampling purposes, the most important feature is that the expansion

e−x/2Lt(x) =
∞∑

n=0

sinπ(t− n)
π(t− n) e−x/2Ln(x)

holds in L2[0,∞). Therefore, any function of the form

f(t) =
∫ ∞

0
F (x)e−x/2Lt(x)dx with F ∈ L2[0,∞)

can be expanded as the sampling series

f(t) =
∞∑

n=0

f(n)
sinπ(t− n)
π(t− n) .

3.7. The Multidimensional WSK Theorem. The general theory of section 2 can
be easily adapted to higher dimensions. For simplicity we consider the bidimensional
case.

The sequence {e−inxe−imy/2π}, where n, m ∈ Z, is an orthonormal basis for
L2(R), where R denotes the square [−π, π]× [−π, π]. For a fixed (t, s) ∈ R

2, we have

1
2π
eitxeisy =

∑
n,m

sinπ(t− n)
π(t− n)

sinπ(s−m)
π(s−m)

1
2π
einxeimy in L2(R).

The functions

Snm(t, s) =
sinπ(t− n)
π(t− n)

sinπ(s−m)
π(s−m)
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and the sequence {tnm = (n,m)}, n,m ∈ Z, satisfy conditions C1 and C2 in section
2. Therefore, any function of the form

f(t, s) =
1
2π

∫ π

−π

∫ π

−π

F (x, y)eitxeisydxdy with F ∈ L2(R)

can be recovered by means of the double series

f(t, s) =
∑
n,m

f(n,m)
sinπ(t− n)
π(t− n)

sinπ(s−m)
π(s−m)

.

The series converges absolutely, and uniformly on R
2.

Remark 6. Naturally, one can always find a rectangle enclosing the bounded
support B of the bidimensional Fourier transform of a bidimensional function f . In
that case, a function bandlimited to B can be reconstructed through the bidimensional
WSK formula. However, this is clearly inefficient from a practical point of view,
since we are using more information than strictly needed. In general, the support
B of the Fourier transform is an irregularly shaped set. So, obtaining more efficient
reconstruction procedures depends largely on the particular geometry of B (see [12,
Chap. 14] for a more specific account).

We conclude this section by directing the interested reader to [17], a reference
describing various practical applications of the sampling theorems discussed above.

Acknowledgments and Further Reading. The author is indebted to all those
who, with their books, papers, and surveys, have contributed to the revitalization of
this beautiful and relevant topic in applied mathematics. For a sampling of references,
of widely varying depth of coverage, it may help to suggest four groups:

• Surveys on sampling theory [4, 7, 11, 13];
• Advanced papers on sampling theory [2, 5, 6, 9, 19];
• Specific books on sampling theory [12, 16, 28];
• General books making reference to sampling theory [3, 21, 22, 24, 27].
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