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Abstract. The classical Kramer sampling theorem is a universal method to obtain
orthogonal sampling formulas. In the this paper a converse of this theorem is given.
Concretely we assume that a pointwise sampling formula holds in the range space of
a linear integral transform defined in a suitable £2 space. Then, under appropriate
pointwise conditions on the sampling functions, we obtain a Riesz basis in the £2
space. Although our setup leads to a Riesz basis in general, it can further be specified
so as to single out orthogonality as in Kramer’s result.
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1 Introduction

The classical Kramer sampling theorem provides a method for obtaining or-
thogonal sampling theorems [2, 6, 7, 12]. The statement of this result is as
follows: Let K(z,t) be a function, defined for allt in a suitable subset D of R
such that, as a function of z, K(-,t) € L2(I) for every number t € D, where I
is an interval of the real line. Assume that there erists a sequence of distinct
real numbers {t,}ncz C D, such that {K(-,t,)}ncz is a complete orthogonal
sequence of functions of L*(I). Then for any f of the form

10 = [ Pk s,
where F € L%(I), we have

£ = Jim 3 ft)Sad), &)

InI<N
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I, K(z,)K(@,t,) dz
[ 1K (@, ta) 2 dz

- Sat) =

The series in (1) converges absolutely and uniformly wherever ||K(-,t)||z2(r) s
bounded.

Teking I = [—m, 7], K (:z: t) = €' and {t, = n}nez, we get the well-known
Whittaker—Shannon-Kotel’nikov sampling formula

=3 it )S‘“{(t ")

n=-—co n)

for functions in £2(R) whose Fourier transform has support in [-,7], ie.,
bandlimited to [—m, ] in the classical sense.

Now, if we take I = [0,1), K(z,t) = vztJ,(«t) and {t,}, the sequence of
the positive zeros of the Bessel function J, of v-th order with » > —1, then

2/tatdy(t
10 = 3 fen) g med

for every f of the form f(t) = [, F(z)v/ztJv(zt)dz, where F € £2(0,1).

We note that one of the richest sources of Kramer kernels is in the subject of
self-adjoint boundary value problems; see, for example, [12, 3] and the references
cited therein. The biorthogonal version of the Kramer sampling theorem has
been stated and proved in [6, p. 84].

Having in mind the Kramer sampling theorem, a procedure has been pro-
posed in [4] to obtain orthogonal sampling formulas in a unified way. Namely,
let {¢n(x)}32, be an orthonormal basis of an £2(I) space, where [ is an inter-
val in R. Let {S, }n_obeasequenceofflmctionsS © c C — C, defined
for all ¢t € Q, and let {t,,},,_0 be a sequence in ) satisfying the following two
conditions:

(a) Sn(tk) = @nbn x where 8, i denotes the Kronecker delta and a, # 0,
(b) Yoo Sn(t)]? < oo for each t € Q.

By defining the kernel K(z, t)df Yoo 0 Sn(t)Pn(), (z,t) € IXQ, any function

f of the form f (t)- [; F(z)K (x,t)dz, where F € L%(I), can be expanded as the
sampling series

10=3 1029, )

n=0

where the convergence of the series is, at least, pointwise in the set Q.
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In a similar way, one can obtain non-orthogonal sampling formulas by using
a Riesz basis in £2(I), instead of the orthonormal one [5)].

Roughly speaking, the main purpose of this paper is to show that assuming
that a sampling expansion like (2) holds for every function in the range space
of a linear integral transform whose kernel is K and the sampling functions
{S,}32, satisfy some appropriate conditions, then {a;'K(-,t,)}32, is a Riesz
basis in £2(I). The case when {K(-,t,)}32, is an orthogonal basis is derived
as a particular case.

Finally, notice that in [8] a reproducing kernel Hilbert space is obtained from
the concept of sampling theorem associated with a class of continuous functions
by using a completely different approach and hypotheses.

2 The result |

Let I be an interval of the real line R, and {2 a fixed subset of R. We consider a
complex-valued kernel K(z,t) verifying that K (-,t) is in £2(I) for each t € .
For F € L2(I) the function f(t)al J; F(z)K(z,t)dz is well-defined as a function
f : 2 — C. We denote by H the set of functions obtained in this way and by T
the linear integral transform

T:L‘2(I)9F»——>f€’H. (3)

If we define in H a norm as ||f||» = inf{||F||z2(s)}, where the infimum is
taken over all F € L%(I) such that T(F) = f, we obtain a reproducing kernel
Hilbert space (RKHS hereafter) whose reproducing kernel is given by, cf. [9],

k(t, 8)L(K (), K(, 9)) c2q2) (4)

(recall that the Moore-Aronszajn procedure (1] leads to the same RKHS via the
positive definite function k). Under these circumstances it is known that the
linear operator T is one-to-one if and only if T is an isometry between £2(I) and
H, or, equivalently, if and only if the set of functions {K(-,t)};cq is complete
in £2(I) [9)-

From now on we confine ourselves to the case where, a priori, T is one-to-one,
although, at the end of the section, a remark will be made for the assumption
of T being one-to-one to be dropped so as to get a similar result. It is simply a
consequence of the theorem.

We have all the prerequisites done to prove the following result:

Theorem 1 Let H be the range of the linear integral transform T (defined as in
(8)) considered as a RKHS with the kernel k defined by (4). Let {Sp}32 be
sequence in H such that 3o |Sn(t)|? < +00, t € Q and let Hyamp e a RKHS

corresponding to the kernel kyomp(s, t)‘#z Sn(8)Sn(t). Then, we have the
following results

n=0
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1°) Suppose that the sequence {S,}32, satisfies the condition that for each se-
quence {0, }32 € £2(N) such that Y oo ) @, S, (t) = 0 for all t € Q implies
ay, =0 for alln. Then, Heamp C H and {Sp}32, is an orthonormal basis
in Hsamp-

2°) Suppose in addition to 1°) the ezistence of sequences {t,}3, in Q and
{an} in C\ {0} such that

{f(tn)} €f(N) and f(t) = Zf(tn)s n(t ), forany f €H,
n=0

Gn n=0

where the sampling series is pointwise convergent in Q. Then

L] Haamp = H.
o The norms of H and Hsamp are equivalent, i.e., for some constants
0<a<db
al|fllsamp < [Ifll2¢e < bll fllsamps f € H = Haamp. (5)

Consequently, {S, }32, is a Riesz basis for H.

o The sequencea{a'lK( )} and {3, a 1(.S"J,.S',,>71¢K( ta)}520
as well as {S;}24 and {a; ' Yoo2 o ke, (tn)a; 1Sn}52, are biorthonor-
mal sequences in L%(I) and H respectively.

o Ifa =0, then a?k(s,t) = ksamp(s,t) for all s,t € Q and the sequence
{K (- ta)}32 s a complete and orthogonal set in L2(I).

Proof: That the sequence {S,}52 is an orthonormal basis in H,4m, follows

from what is in [11), but for reader’s convenience we extract the proof from
there. We consider kqamp,t(8) = Ksamp(S,t), and we prove that

kaamp,t = i—sn_(t)sn (6)

n=0

in the H,4mp-norm for a fixed ¢ € Q. Indeed, we define fN—k
taking{l;{%"' »SM in C and 81,82, ,8M in Q we have

<) M 2
Z mz&sn(si)

n.-O S (t)S""

samp, t

M 2
iIn(si)| =
=1

n=N+1 =1
oo oo M
<O Y 1Sa@PYQ 1Y &Sa(s:)?) =
n=N+1 n=0 i=1

=) M
=( Z ISn(t)lz)( Z §if—jksamp(3ivsj))y

n=N+1 ij=1
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where we have used the Cauchy-Schwarz inequality and the definition of ksamp.
By using the RKHS test (see Appendix) we obtain
Ifnl? < Yo n411Sn()]? = 0 a8 N — oo. Concerning orthonormality of
the sequence {S,}32, we have

Sm(t) = (ksamp,ta Sm)samp = Z Sn(t) (Sny Sm)sampa
n=1

where we have used the reproducing property in Hyamp and (6). As a conse-
quence, condition in 1°) implies (Sy, Sm)samp = On,m-

For the completeness of the sequence {S,}32 ,, suppose that (Sy, f)semp =0
for all n € N. Hence, 0 = ;“;1 sn(t)<smf)samp = (ksamp,t, f)samp for each
t € Q. By using the reproducing property in H,,m, We obtain f =0 in Q. This
proves 1°).

Now we prove that Heamp = M. By the sampling property, {f(tn)az'} _,
is in £2(N) for each f € H. Then, the series 3 o, f(tn)a, 'S, converges in the
norm of H,,mp. By the reproducing kernel property, we have that the series
Y oo f(ta)a, 1S, is pointwise convergent. Comparing this with what we get
from the sampling formula for f we deduce that

[ o]

£=Y f(tn)az'Sn, Y
n=0
where the convergence is in Hgamp and, consequently, f € Hsamp-

Now we show that the identity mappingH,amp < H is continuous by appli-
cation of the closed graph theorem. Indeed, let {f,} be a sequence such that
fn— fin Heamp and f, — g in ‘H. Using the reproducing property in both H
and H,qmp, we have for ¢ € 2,

Ifn(t) - f(t)l S "fn - f”sampv ksamp(t)t)
|fn(t) — 9@ < | fn = fllneV/E(2 ),

and therefore, lim, o fn(t) = f(t) = g(t) for each t € Q, and f =g.

Now, since it is also surjective, we infer that the norms || - || and || - |[samp
are equivalent from the open mapping theorem. As a consequence, {S,}32,
is a Riesz basis in ‘H and the transform T is a linear isomorphism between
L2(I) and Hsamp- An easy calculation shows that, for each t € Q, K(z,t) =
Y e o Sn(t)pn(z) in L2(I),where{p}, }32 is the biorthonormal basis associated
with the Riesz basis {¢, = T71(S,)}2, in L3(I).

Notice that the interpolation property S,(tx) = @,6, x necessarily follows
from a direct application of the sampling property to S,. Thus, {a;2K(-,t,)}32,
is a Riesz basis in £2(I). Note that {an K (-,t,)}32, is also a Riesz basis in
L3(I).

The aforesaid interpolation property immediately gives

a8 = Si(t;) = (Sis ke, )r = (Siy Y ke, (tn)ar Sn)n

n=0
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or

855 = (S1,a;1 Y ke, (tn)an Su)n, 8)

n=0

which leads to biorthonormality of the second pair of sequences.
Using (7) and (4) we get from (8)

6, = (Si, ;;-:T Z ke, (tn)ay, ' Sn)n

n=0

=a;' Z kt; (tn)an(Si, Sn)n = a; " Z an ' (ke; o ke, )24(Siy Sn)m

n=0 n=0

= a’J'_l Za—’_‘—1<K(? tﬂ): K('7tj))cﬂ(1)(5i, Sn)‘H

n=0

= (E a-;—l-(si’ Sn)HK('v tﬂ)’;;:TK(" tj)>L2(1)-

n=0

This provides us the biorthonormality of the first pair of sequences.

The equivalence of the norms (5) can be written as ¢k < ksamp < b%k
(see the corollary in the Appendix). When a = b , then a2k = kyqm, and the
transform T is an isometry (up to the positive factor a) between £2(I) and
Heamp- In this case {p, = T~1(S,)}32, is an orthogonal basis in £2(I) and,
consequently, so is the sequence {K(:,t,) = anPn}3, This completes the
proof of the theorem. ]

To conclude, some remarks concerning the above result are in order.
Remark 1. As to the case when, a priori, T is not known to be one-to-one,
let {¢,}32, be a sequence in £2(I) with P(¢,) # 0 for all n, where P denotes
the orthogonal projection onto the closed subspace (KerT')1. Consider S, =
T(¢n) € H, and suppose that these functions satisfy hypotheses in Theorem.
In this case, {S,}32 is a Riesz basis in H. Consequently, since S,, = T[P(¢,,)]
and T'|p(ker7) = 0, we obtain that {P(¢,)}32, is a Riesz basis in P(L%(I)) =
(Ker T)*. The result comes out taking into account the orthogonal sum £2(I) =
(Ker T)* @ (Ker T).

Remark 2. Theorem 1 can be stated in a more general setting. To this end,
consider an abstract set 2 and a mapping K : ! — H, where H denotes some
separable Hilbert space. Define f(t) := (h, K(t))y for h € H. Thus, we obtain
a RKHS H of complex-valued functions on {2, whose reproducing kernel is given
by k(t, s) = (K(s), K(t))u. This allows us to include multidimensional sampling
by taking Q2 in R™, and/or dealing with £2(u) spaces for an arbitrary measure
1, in particular for the case where p is supported on a finite or countable set.

Remark 3. In a similar way as in the proof in 1°), we can consider two
sequences {S,}2, and {S};}32, in H such that Y > |S.(¢)|? < +oo and



A CONVERSE OF THE KRAMER SAMPLING THEOREM 59

YoorolSa®)? < +oo, t € Q. Defining kogmp(t,s) = Yoo 0 Sn(t)S%(s), we
can prove, following [11], that {S,}32; and {S%}32, are biorthogonal bases in
Haamp-

Remark 4. As a final remark, it is worth pointing out that the results in the
theorem could be used to prove the existence of a Riesz (orthogonal) basis in

L2(I), starting from a sampling expansion in H with the conditions stated in it.
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Appendix

We state here the RKHS test used in the proof of the theorem
RKHS test [10] Let H be a RKHS with reproducing kernel k on a set Q. A
function f is in H if and only if there is a constant C > 0 such that

M 2 M .
D f(s)&| <CPD k(sirsi)EE; (9)
=1 1,5=1

where &1,8€2,--+ ,&m inC and 8,82, , 80 in 2. Moreover, in this case || f|| =

inf{C}, where the infimum is taken over all the constants C satisfying (9).
This leads to the following:

Corollary Let K and L be two positive definite kernels on X and || - ||k and

|- ||z be the norms in their RKHS’s. Then

K < Lifand onlyifc| |l < |- |l
with some ¢ > 0.!

Proof: Suppose c?K < L. Then

2

M M
<|fI% Y- K(si,8)6& < |Iflk Y ¢ 2L(si, 85)6:&,

i,j=1 i,j=1

M
Y f(s)é

=1

and the RKHS test gives us ¢||f||z < ||f]|k-
Suppose the converse. Then Bk (1) C Br(1/c) where B stands for a ball
with its center at O in a corresponding space.

Thus

3 A AnK @ 7n) = IS AmKan e = sup{I(f, 3 MK )l
m,n=0 m=0 . m=0 f € BK(I)}
=sup{] Y Mnf(zm)’; f € Bx(1)}

m=0

= sup{| i Am{fy Lz,)Ll% f € Bk(1)}

LIf K and L are two positive definite kernels, then K € L means that the kernel L — K
18 positive definite too



and K < L.
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<sup{l S Amlfy Lenuls £ € Bu(1/0)}

m=0
(o o] [o o]
= 0—2” Z ALz, ||2 =c2 Z )\m/\—nL(xm,:cn),
m=0 m,n=0



