Vol.1, No.1, Jan. 2002, pp. 53-61 ISSN: 1530-6429

A Converse of the Kramer Sampling Theorem

A. G. García

Departamento de Matematicas, Universidad Carlos III de Madrid Avda. de la Universidad 30, 28911 Leganés-Madrid, Spain agarcia@math.uc3m.es

F. H. Szafraniec

Instytut Matematyki, Uniwersytet Jagielloński ul. Reymonta 4, 30059 Krakow, Poland fhszafra@im.uj.edu.pl

Abstract. The classical Kramer sampling theorem is a universal method to obtain orthogonal sampling formulas. In the this paper a converse of this theorem is given. Concretely we assume that a pointwise sampling formula holds in the range space of a linear integral transform defined in a suitable \mathcal{L}^2 space. Then, under appropriate pointwise conditions on the sampling functions, we obtain a Riesz basis in the \mathcal{L}^2 space. Although our setup leads to a Riesz basis in general, it can further be specified so as to single out orthogonality as in Kramer's result.

Key words and phrases: Kramer Sampling Theorem, reproducing kernel Hilbert space, Riesz bases.

2000 AMS Mathematics Subject Calssification—44XX, 46E22, 94A20.

1 Introduction

The classical Kramer sampling theorem provides a method for obtaining orthogonal sampling theorems [2, 6, 7, 12]. The statement of this result is as follows: Let K(x,t) be a function, defined for all t in a suitable subset D of $\mathbb R$ such that, as a function of x, $K(\cdot,t) \in \mathcal L^2(I)$ for every number $t \in D$, where I is an interval of the real line. Assume that there exists a sequence of distinct real numbers $\{t_n\}_{n\in \mathbb Z} \subset D$, such that $\{K(\cdot,t_n)\}_{n\in \mathbb Z}$ is a complete orthogonal sequence of functions of $\mathcal L^2(I)$. Then for any f of the form

$$f(t) = \int_I F(x)K(x,t) dx,$$

where $F \in \mathcal{L}^2(I)$, we have

$$f(t) = \lim_{N \to \infty} \sum_{|n| \le N} f(t_n) S_n(t), \qquad (1)$$

with

$$S_n(t) = rac{\int_I K(x,t) \overline{K(x,t_n)} \, dx}{\int_I |K(x,t_n)|^2 \, dx} \, .$$

The series in (1) converges absolutely and uniformly wherever $||K(\cdot,t)||_{\mathcal{L}^2(I)}$ is bounded.

Taking $I = [-\pi, \pi]$, $K(x, t) = e^{itx}$ and $\{t_n = n\}_{n \in \mathbb{Z}}$, we get the well-known Whittaker-Shannon-Kotel'nikov sampling formula

$$f(t) = \sum_{n = -\infty}^{\infty} f(n) \frac{\sin \pi (t - n)}{\pi (t - n)}$$

for functions in $\mathcal{L}^2(\mathbb{R})$ whose Fourier transform has support in $[-\pi, \pi]$, i.e., bandlimited to $[-\pi, \pi]$ in the classical sense.

Now, if we take I = [0,1], $K(x,t) = \sqrt{xt}J_{\nu}(xt)$ and $\{t_n\}$, the sequence of the positive zeros of the Bessel function J_{ν} of ν -th order with $\nu > -1$, then

$$f(t) = \sum_{n} f(t_n) \frac{2\sqrt{t_n t} J_{\nu}(t)}{J_{\nu}'(t_n)(t^2 - t_n^2)}$$

for every f of the form $f(t) = \int_0^1 F(x) \sqrt{xt} J\nu(xt) dx$, where $F \in \mathcal{L}^2(0,1)$.

We note that one of the richest sources of Kramer kernels is in the subject of self-adjoint boundary value problems; see, for example, [12, 3] and the references cited therein. The biorthogonal version of the Kramer sampling theorem has been stated and proved in [6, p. 84].

Having in mind the Kramer sampling theorem, a procedure has been proposed in [4] to obtain orthogonal sampling formulas in a unified way. Namely, let $\{\phi_n(x)\}_{n=0}^{\infty}$ be an orthonormal basis of an $\mathcal{L}^2(I)$ space, where I is an interval in \mathbb{R} . Let $\{S_n\}_{n=0}^{\infty}$ be a sequence of functions $S_n:\Omega\subset\mathbb{C}\longrightarrow\mathbb{C}$, defined for all $t\in\Omega$, and let $\{t_n\}_{n=0}^{\infty}$ be a sequence in Ω satisfying the following two conditions:

- (a) $S_n(t_k) = a_n \delta_{n,k}$ where $\delta_{n,k}$ denotes the Kronecker delta and $a_n \neq 0$,
- (b) $\sum_{n=0}^{\infty} |S_n(t)|^2 < \infty$ for each $t \in \Omega$.

By defining the kernel $K(x,t) \stackrel{df}{=} \sum_{n=0}^{\infty} S_n(t) \overline{\phi_n}(x)$, $(x,t) \in I \times \Omega$, any function f of the form $f(t) \stackrel{df}{=} \int_I F(x) K(x,t) dx$, where $F \in \mathcal{L}^2(I)$, can be expanded as the sampling series

$$f(t) = \sum_{n=0}^{\infty} f(t_n) \frac{S_n(t)}{a_n}, \qquad (2)$$

where the convergence of the series is, at least, pointwise in the set Ω .

In a similar way, one can obtain non-orthogonal sampling formulas by using a Riesz basis in $\mathcal{L}^2(I)$, instead of the orthonormal one [5].

Roughly speaking, the main purpose of this paper is to show that assuming that a sampling expansion like (2) holds for every function in the range space of a linear integral transform whose kernel is K and the sampling functions $\{S_n\}_{n=0}^{\infty}$ satisfy some appropriate conditions, then $\{a_n^{-1}K(\cdot,t_n)\}_{n=0}^{\infty}$ is a Riesz basis in $\mathcal{L}^2(I)$. The case when $\{K(\cdot,t_n)\}_{n=0}^{\infty}$ is an orthogonal basis is derived as a particular case.

Finally, notice that in [8] a reproducing kernel Hilbert space is obtained from the concept of *sampling theorem* associated with a class of continuous functions by using a completely different approach and hypotheses.

2 The result

Let I be an interval of the real line \mathbb{R} , and Ω a fixed subset of \mathbb{R} . We consider a complex-valued kernel K(x,t) verifying that $K(\cdot,t)$ is in $\mathcal{L}^2(I)$ for each $t\in\Omega$. For $F\in\mathcal{L}^2(I)$ the function $f(t)\stackrel{df}{=}\int_I F(x)K(x,t)dx$ is well-defined as a function $f:\Omega\to\mathbb{C}$. We denote by \mathcal{H} the set of functions obtained in this way and by T the linear integral transform

$$T: \mathcal{L}^2(I) \ni F \mapsto f \in \mathcal{H}.$$
 (3)

If we define in \mathcal{H} a norm as $||f||_{\mathcal{H}} = \inf\{||F||_{\mathcal{L}^2(I)}\}$, where the infimum is taken over all $F \in \mathcal{L}^2(I)$ such that T(F) = f, we obtain a reproducing kernel Hilbert space (RKHS hereafter) whose reproducing kernel is given by, cf. [9],

$$k(t,s) \stackrel{df}{=} \langle K(\cdot,t), K(\cdot,s) \rangle_{\mathcal{L}^{2}(I)}$$
 (4)

(recall that the Moore-Aronszajn procedure [1] leads to the same RKHS via the positive definite function k). Under these circumstances it is known that the linear operator T is one-to-one if and only if T is an isometry between $\mathcal{L}^2(I)$ and \mathcal{H} , or, equivalently, if and only if the set of functions $\{K(\cdot,t)\}_{t\in\Omega}$ is complete in $\mathcal{L}^2(I)$ [9].

From now on we confine ourselves to the case where, a priori, T is one-to-one, although, at the end of the section, a remark will be made for the assumption of T being one-to-one to be dropped so as to get a similar result. It is simply a consequence of the theorem.

We have all the prerequisites done to prove the following result: Theorem 1 Let \mathcal{H} be the range of the linear integral transform T (defined as in (3)) considered as a RKHS with the kernel k defined by (4). Let $\{S_n\}_{n=0}^{\infty}$ be a sequence in \mathcal{H} such that $\sum_{n=0}^{\infty} |S_n(t)|^2 < +\infty$, $t \in \Omega$ and let \mathcal{H}_{samp} be a RKHS corresponding to the kernel $k_{samp}(s,t) \stackrel{df}{=} \sum_{n=0}^{\infty} S_n(s) \overline{S_n(t)}$. Then, we have the following results

- 1°) Suppose that the sequence $\{S_n\}_{n=0}^{\infty}$ satisfies the condition that for each sequence $\{\alpha_n\}_{n=0}^{\infty} \in \ell^2(\mathbb{N})$ such that $\sum_{n=0}^{\infty} \alpha_n S_n(t) = 0$ for all $t \in \Omega$ implies $\alpha_n = 0$ for all n. Then, $\mathcal{H}_{samp} \subset \mathcal{H}$ and $\{S_n\}_{n=0}^{\infty}$ is an orthonormal basis in \mathcal{H}_{samp} .
- 2°) Suppose in addition to 1°) the existence of sequences $\{t_n\}_{n=0}^{\infty}$ in Ω and $\{a_n\}_{n=0}^{\infty}$ in $\mathbb{C}\setminus\{0\}$ such that

$$\left\{\frac{f(t_n)}{a_n}\right\}_{n=0}^{\infty} \in \ell^2(\mathbb{N}) \text{ and } f(t) = \sum_{n=0}^{\infty} f(t_n) \frac{S_n(t)}{a_n}, \text{ for any } f \in \mathcal{H},$$

where the sampling series is pointwise convergent in Ω . Then

- $\mathcal{H}_{samp} = \mathcal{H}$.
- The norms of \mathcal{H} and \mathcal{H}_{samp} are equivalent, i.e., for some constants 0 < a < b

$$a||f||_{samp} \le ||f||_{\mathcal{H}} \le b||f||_{samp}, \quad f \in \mathcal{H} = \mathcal{H}_{samp}. \tag{5}$$

Consequently, $\{S_n\}_{n=0}^{\infty}$ is a Riesz basis for \mathcal{H} .

- The sequences $\{\overline{a_i^{-1}}K(\cdot,t_i)\}_{i=0}^{\infty}$ and $\{\sum_{n=0}^{\infty}\overline{a_n^{-1}}\langle S_j,S_n\rangle_{\mathcal{H}}K(\cdot,t_n)\}_{j=0}^{\infty}$ as well as $\{S_i\}_{i=0}^{\infty}$ and $\{\overline{a_j^{-1}}\sum_{n=0}^{\infty}k_{t_j}(t_n)a_n^{-1}S_n\}_{j=0}^{\infty}$ are biorthonormal sequences in $\mathcal{L}^2(I)$ and \mathcal{H} respectively.
- If a = b, then $a^2k(s,t) = k_{samp}(s,t)$ for all $s, t \in \Omega$ and the sequence $\{K(\cdot,t_n)\}_{n=0}^{\infty}$ is a complete and orthogonal set in $\mathcal{L}^2(I)$.

Proof: That the sequence $\{S_n\}_{n=0}^{\infty}$ is an orthonormal basis in \mathcal{H}_{samp} follows from what is in [11], but for reader's convenience we extract the proof from there. We consider $k_{samp,t}(s) = k_{samp}(s,t)$, and we prove that

$$k_{samp,t} = \sum_{n=0}^{\infty} \overline{S_n(t)} S_n \tag{6}$$

in the \mathcal{H}_{samp} -norm for a fixed $t \in \Omega$. Indeed, we define $f_N \stackrel{df}{=} k_{samp,t} - \sum_{n=0}^N \overline{S_n(t)} S_n$; taking $\xi_1, \xi_2, \dots, \xi_M$ in $\mathbb C$ and s_1, s_2, \dots, s_M in Ω we have

$$\begin{split} \left| \sum_{i=1}^{M} \xi_{i} f_{N}(s_{i}) \right|^{2} &= \left| \sum_{n=N+1}^{\infty} \overline{S_{n}(t)} \sum_{i=1}^{M} \xi_{i} S_{n}(s_{i}) \right|^{2} \leq \\ &\leq (\sum_{n=N+1}^{\infty} |S_{n}(t)|^{2}) (\sum_{n=0}^{\infty} |\sum_{i=1}^{M} \xi_{i} S_{n}(s_{i})|^{2}) = \\ &= (\sum_{n=N+1}^{\infty} |S_{n}(t)|^{2}) (\sum_{i,j=1}^{M} \xi_{i} \overline{\xi_{j}} k_{samp}(s_{i}, s_{j})) \,, \end{split}$$

where we have used the Cauchy-Schwarz inequality and the definition of k_{samp} . By using the RKHS test (see Appendix) we obtain

 $||f_N||^2 \le \sum_{n=N+1}^{\infty} |S_n(t)|^2 \to 0$ as $N \to \infty$. Concerning orthonormality of the sequence $\{S_n\}_{n=0}^{\infty}$ we have

$$\overline{S_m(t)} = \langle k_{\text{samp},t}, S_m \rangle_{samp} = \sum_{n=1}^{\infty} \overline{S_n(t)} \langle S_n, S_m \rangle_{samp} \,,$$

where we have used the reproducing property in \mathcal{H}_{samp} and (6). As a consequence, condition in 1°) implies $\langle S_n, S_m \rangle_{samp} = \delta_{n,m}$.

For the completeness of the sequence $\{S_n\}_{n=0}^{\infty}$, suppose that $\langle S_n, f \rangle_{samp} = 0$ for all $n \in \mathbb{N}$. Hence, $0 = \sum_{n=1}^{\infty} \overline{S_n(t)} \langle S_n, f \rangle_{samp} = \langle k_{samp,t}, f \rangle_{samp}$ for each $t \in \Omega$. By using the reproducing property in \mathcal{H}_{samp} we obtain f = 0 in Ω . This proves 1°).

Now we prove that $\mathcal{H}_{samp} = \mathcal{H}$. By the sampling property, $\left\{f(t_n)a_n^{-1}\right\}_{n=0}^{\infty}$ is in $\ell^2(\mathbb{N})$ for each $f \in \mathcal{H}$. Then, the series $\sum_{n=0}^{\infty} f(t_n)a_n^{-1}S_n$ converges in the norm of \mathcal{H}_{samp} . By the reproducing kernel property, we have that the series $\sum_{n=0}^{\infty} f(t_n)a_n^{-1}S_n$ is pointwise convergent. Comparing this with what we get from the sampling formula for f we deduce that

$$f = \sum_{n=0}^{\infty} f(t_n) a_n^{-1} S_n \,, \tag{7}$$

where the convergence is in \mathcal{H}_{samp} and, consequently, $f \in \mathcal{H}_{samp}$.

Now we show that the identity mapping $\mathcal{H}_{samp} \hookrightarrow \mathcal{H}$ is continuous by application of the closed graph theorem. Indeed, let $\{f_n\}$ be a sequence such that $f_n \to f$ in \mathcal{H}_{samp} and $f_n \to g$ in \mathcal{H} . Using the reproducing property in both \mathcal{H} and \mathcal{H}_{samp} , we have for $t \in \Omega$,

$$|f_n(t) - f(t)| \le ||f_n - f||_{samp} \sqrt{k_{samp}(t, t)}$$

 $|f_n(t) - g(t)| \le ||f_n - f||_{\mathcal{H}} \sqrt{k(t, t)}$,

and therefore, $\lim_{n\to\infty} f_n(t) = f(t) = g(t)$ for each $t\in\Omega$, and f=g.

Now, since it is also surjective, we infer that the norms $\|\cdot\|_{\mathcal{H}}$ and $\|\cdot\|_{\text{samp}}$ are equivalent from the open mapping theorem. As a consequence, $\{S_n\}_{n=0}^{\infty}$ is a Riesz basis in \mathcal{H} and the transform T is a linear isomorphism between $\mathcal{L}^2(I)$ and \mathcal{H}_{samp} . An easy calculation shows that, for each $t \in \Omega$, $K(x,t) = \sum_{n=0}^{\infty} S_n(t) \varphi_n^*(x)$ in $\mathcal{L}^2(I)$, where $\{\varphi_n^*\}_{n=0}^{\infty}$ is the biorthonormal basis associated with the Riesz basis $\{\varphi_n = T^{-1}(S_n)\}_{n=0}^{\infty}$ in $\mathcal{L}^2(I)$.

Notice that the interpolation property $S_n(t_k) = a_n \delta_{n,k}$ necessarily follows from a direct application of the sampling property to S_n . Thus, $\{a_n^{-1}K(\cdot,t_n)\}_{n=0}^{\infty}$ is a Riesz basis in $\mathcal{L}^2(I)$. Note that $\{\overline{a_n^{-1}}K(\cdot,t_n)\}_{n=0}^{\infty}$ is also a Riesz basis in $\mathcal{L}^2(I)$.

The aforesaid interpolation property immediately gives

$$a_j \delta_{j,i} = S_i(t_j) = \langle S_i, k_{t_j} \rangle_{\mathcal{H}} = \langle S_i, \sum_{n=0}^{\infty} k_{t_j}(t_n) a_n^{-1} S_n \rangle_{\mathcal{H}}$$

or

$$\delta_{j,i} = \langle S_i, \overline{a_j^{-1}} \sum_{n=0}^{\infty} k_{t_j}(t_n) a_n^{-1} S_n \rangle_{\mathcal{H}}, \tag{8}$$

which leads to biorthonormality of the second pair of sequences. Using (7) and (4) we get from (8)

$$\begin{split} \delta_{j,i} &= \langle S_i, \overline{a_j^{-1}} \sum_{n=0}^{\infty} k_{t_j}(t_n) a_n^{-1} S_n \rangle_{\mathcal{H}} \\ &= a_j^{-1} \sum_{n=0}^{\infty} \overline{k_{t_j}(t_n) a_n^{-1}} \langle S_i, S_n \rangle_{\mathcal{H}} = a_j^{-1} \sum_{n=0}^{\infty} \overline{a_n^{-1} \langle k_{t_j}, k_{t_n} \rangle_{\mathcal{H}}} \langle S_i, S_n \rangle_{\mathcal{H}} \\ &= a_j^{-1} \sum_{n=0}^{\infty} \overline{a_n^{-1}} \langle K(\cdot, t_n), K(\cdot, t_j) \rangle_{\mathcal{L}^2(I)} \langle S_i, S_n \rangle_{\mathcal{H}} \\ &= \langle \sum_{n=0}^{\infty} \overline{a_n^{-1}} \langle S_i, S_n \rangle_{\mathcal{H}} K(\cdot, t_n), \overline{a_j^{-1}} K(\cdot, t_j) \rangle_{\mathcal{L}^2(I)}. \end{split}$$

This provides us the biorthonormality of the first pair of sequences.

The equivalence of the norms (5) can be written as $a^2k \ll k_{samp} \ll b^2k$ (see the corollary in the Appendix). When a=b, then $a^2k=k_{samp}$ and the transform T is an isometry (up to the positive factor a) between $\mathcal{L}^2(I)$ and \mathcal{H}_{samp} . In this case $\{\varphi_n=T^{-1}(S_n)\}_{n=0}^{\infty}$ is an orthogonal basis in $\mathcal{L}^2(I)$ and, consequently, so is the sequence $\{K(\cdot,t_n)=a_n\overline{\varphi_n}\}_{n=0}^{\infty}$. This completes the proof of the theorem.

To conclude, some remarks concerning the above result are in order.

Remark 1. As to the case when, a priori, T is not known to be one-to-one, let $\{\phi_n\}_{n=1}^{\infty}$ be a sequence in $\mathcal{L}^2(I)$ with $P(\phi_n) \neq 0$ for all n, where P denotes the orthogonal projection onto the closed subspace $(\operatorname{Ker} T)^{\perp}$. Consider $S_n = T(\phi_n) \in \mathcal{H}$, and suppose that these functions satisfy hypotheses in Theorem. In this case, $\{S_n\}_{n=0}^{\infty}$ is a Riesz basis in \mathcal{H} . Consequently, since $S_n = T[P(\phi_n)]$ and $T|_{P(\operatorname{Ker} T)} = 0$, we obtain that $\{P(\phi_n)\}_{n=1}^{\infty}$ is a Riesz basis in $P(\mathcal{L}^2(I)) = (\operatorname{Ker} T)^{\perp}$. The result comes out taking into account the orthogonal sum $\mathcal{L}^2(I) = (\operatorname{Ker} T)^{\perp} \oplus (\operatorname{Ker} T)$.

Remark 2. Theorem 1 can be stated in a more general setting. To this end, consider an abstract set Ω and a mapping $K:\Omega\longrightarrow \mathbf{H}$, where \mathbf{H} denotes some separable Hilbert space. Define $f(t):=\langle h,K(t)\rangle_{\mathbf{H}}$ for $h\in \mathbf{H}$. Thus, we obtain a RKHS \mathcal{H} of complex-valued functions on Ω , whose reproducing kernel is given by $k(t,s)=\langle K(s),K(t)\rangle_{\mathbf{H}}$. This allows us to include multidimensional sampling by taking Ω in \mathbb{R}^n , and/or dealing with $\mathcal{L}^2(\mu)$ spaces for an arbitrary measure μ , in particular for the case where μ is supported on a finite or countable set.

Remark 3. In a similar way as in the proof in 1°), we can consider two sequences $\{S_n\}_{n=0}^{\infty}$ and $\{S_n^*\}_{n=0}^{\infty}$ in $\mathcal H$ such that $\sum_{n=0}^{\infty} |S_n(t)|^2 < +\infty$ and

 $\sum_{n=0}^{\infty} |S_n^*(t)|^2 < +\infty$, $t \in \Omega$. Defining $k_{samp}(t,s) = \sum_{n=0}^{\infty} S_n(t) \overline{S_n^*(s)}$, we can prove, following [11], that $\{S_n\}_{n=0}^{\infty}$ and $\{S_n^*\}_{n=0}^{\infty}$ are biorthogonal bases in \mathcal{H}_{samp} .

Remark 4. As a final remark, it is worth pointing out that the results in the theorem could be used to prove the existence of a Riesz (orthogonal) basis in $\mathcal{L}^2(I)$, starting from a sampling expansion in \mathcal{H} with the conditions stated in it.

ACKNOWLEDGEMENT

The authors wish to thank the referee for his/her constructive comments. The work of the first author has been supported by the grant BFM 2000-0029 of the Spanish Ministerio de Ciencia y Tecnologia, (DGI).

References

- [1] N. Aronszajn, Theory of reproducing kernels, *Trans. Amer. Math. Soc.*, 68, 337–404, 1950.
- [2] P. L. Butzer and G. Nasri-Roudsari, Kramer's sampling theorem in signal analysis and its role in mathematics, in *Image Processing: Mathematical Methods and Applications*, Oxford University Press, Oxford, 1994.
- [3] W. N. Everitt and G. Nasri-Roudsari, Interpolation and sampling theories, and linear ordinary boundary value problems, In Sampling Theory and Signal Analysis II, J. R. Higgins and R. Stens, editors., 96–129, Oxford University Press, Oxford, 1999.
- [4] A. G. García, Orthogonal sampling formulas: a unified approach, SIAM Review, 42-3, 499-512, 2000.
- [5] A. G. Garcia and A. Portal, An abstract approach to non orthogonal sampling formulas, Preprint, 2000.
- [6] J. R. Higgins, Sampling Theory in Fourier and Signal Analysis: Foundations, Oxford University Press, Oxford, 1996.
- [7] H. P. Kramer, A generalized sampling theorem, J. Math. Phys., 63, 68-72, 1957.
- [8] M. Z. Nashed and G. G. Walter, Reproducing kernel Hilbert spaces from sampling expansions, Contemp. Math., 190, 221–226, 1995.
- [9] S. Saitoh, Integral transforms, reproducing kernels and their applications, Addison Wesley Longman, Essex, 1997.
- [10] F. H. Szafraniec, Interpolation and domination by positive definite kernels, In *Lecture Notes in Math.*, 1014, 291–295, Springer, Berlin-Heidelberg, 1983.

- [11] F. H. Szafraniec, The reproducing kernel Hilbert space and its multiplication operators, *Operator Th. Adv. Appl.*, 114, 253-263, 2000.
- [12] A. I. Zayed, Advances in Shannon's Sampling Theory, CRC Press, Boca Raton, FL 1993.

Appendix

We state here the RKHS test used in the proof of the theorem RKHS test [10] Let \mathcal{H} be a RKHS with reproducing kernel k on a set Ω . A function f is in \mathcal{H} if and only if there is a constant C > 0 such that

$$\left|\sum_{i=1}^{M} f(s_i)\xi_i\right|^2 \le C^2 \sum_{i,j=1}^{M} k(s_i, s_j)\xi_i\overline{\xi_j}, \tag{9}$$

where $\xi_1, \xi_2, \dots, \xi_M$ in \mathbb{C} and s_1, s_2, \dots, s_M in Ω . Moreover, in this case $||f|| = \inf\{C\}$, where the infimum is taken over all the constants C satisfying (9).

This leads to the following:

Corollary Let K and L be two positive definite kernels on X and $\|\cdot\|_K$ and $\|\cdot\|_L$ be the norms in their RKHS's. Then

$$c^2K \ll L$$
 if and only if $c||\cdot||_L \leq ||\cdot||_K$

with some c > 0.1

Proof: Suppose $c^2K \ll L$. Then

$$\left| \sum_{i=1}^{M} f(s_i) \xi_i \right|^2 \leq \|f\|_K^2 \sum_{i,j=1}^{M} K(s_i, s_j) \xi_i \overline{\xi_j} \leq \|f\|_K^2 \sum_{i,j=1}^{M} c^{-2} L(s_i, s_j) \xi_i \overline{\xi_j},$$

and the RKHS test gives us $c||f||_L \leq ||f||_K$.

Suppose the converse. Then $B_K(1) \subset B_L(1/c)$ where B stands for a ball with its center at 0 in a corresponding space.

Thus

$$\begin{split} \sum_{m,n=0}^{\infty} \lambda_m \overline{\lambda_n} K(x_m, x_n) &= \| \sum_{m=0}^{\infty} \lambda_m K_{x_m} \|_K^2 = \sup\{ |\langle f, \sum_{m=0}^{\infty} \lambda_m K_{x_m} \rangle_K |^2; \\ & f \in B_K(1) \} \\ &= \sup\{ | \sum_{m=0}^{\infty} \lambda_m f(x_m)|^2; \ f \in B_K(1) \} \\ &= \sup\{ | \sum_{m=0}^{\infty} \lambda_m \langle f, L_{x_m} \rangle_L |^2; \ f \in B_K(1) \} \end{split}$$

 $^{^1}$ If K and L are two positive definite kernels, then $K \ll L$ means that the kernel L-K is positive definite too

$$\begin{split} &\leq \sup\{|\sum_{m=0}^{\infty}\lambda_m\langle f,L_{x_m}\rangle_L|^2;\; f\in B_L(1/c)\}\\ &= c^{-2}\|\sum_{m=0}^{\infty}\lambda_mL_{x_m}\|^2 = c^{-2}\sum_{m,n=0}^{\infty}\lambda_m\overline{\lambda_n}L(x_m,x_n), \end{split}$$

and $c^2K \ll L$.