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ABSTRACT. The aim of the article is to obtain an estimation for the truncation error in the
two-channel sampling formulas. Since these formulas are expansions with respect to suitable
Riesz bases in Paley-Wiener spaces, the truncation error will be estimated by using the hypercircle
inequality in the Riesz bases setting. In so doing, the norm of an involved operator is calculated,
and the remainder of the series of the absolute square sampling functions is estimated.

1. Introduction

The two-channel sampling theory in Paley-Wiener spaces has been well established in
mathematical literature. See, for instance, [5, Chapter 12] where the so-called Riesz basis
method is developed, or the former references [4, 8]. Roughly speaking, a bandlimited
signal is filtered by using appropriate Fourier multipliers and then, the two filtered signals
are sampled at suitable sampling rates. Finally, the original signal is recovered from the
samples thus obtained, by means of a sampling series. A challenging problem is to obtain
a good approximation of the initial signal by using only a finite number of samples. This
problem is intimately related to the problem of obtaining an estimation for the truncation
error in the corresponding sampling series. As far as we know, there is not a general
framework to obtain an estimation of the truncation error in the two-channel sampling
theory. In this article we propose a general framework by using the hypercircle inequality
in the Riesz bases setting.
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Recall that the hypercircle inequality [1, 3, 9] estimates the error when we are evaluat-
ing a bounded linear functional on a hypercircle Cr of a Hilbert space H, i.e., the intersection
of a hyperplane P of finite co-dimension and the closed ball of radius r , Br . The approx-
imate value is just the evaluation of the functional in the nearest point to the origin in the
hyperplane P . To be precise,
Let P be a hyperplane of co-dimension N in a Hilbert space H, and let wN be the element
of P nearest to the origin. Then, for any x in the hypercircle Cr = P ∩Br and any bounded
linear functional L in H we have

|L(x) − L(wN)|2 ≤ (
r2 − ‖wN‖2) ∞∑

k=N+1

|L(xk)|2 ,

where {xk}∞k=1 denotes an orthonormal basis in H such that P is given by the equations:

〈x, xi〉 = ai , i = 1, . . . , N and wN = ∑N
i=1 ai xi .

Besides, the hypercircle inequality has been proven to be very useful in numerical
analysis (see, for instance, [3]). Also, the hypercircle inequality has been used to estimate
the truncation error in the Whittaker-Shannon-Kotel’nikov sampling formula [6, 9]. This
well-known sampling result reads as follows:
Any function f in the Paley-Wiener space PWπσ := {f ∈ L2(R) ∩ C(R) : supp f̂ ⊆
[−πσ, πσ ]}, where f̂ stands for the Fourier transform of f , can be expanded as the
cardinal series

f (t) =
∞∑

n=−∞
f
( n

σ

) sin π(σ t − n)

π(σ t − n)
=

∞∑
n=−∞

f (n/σ) sinc(σ t − n) , t ∈ R .

Assuming that ‖f ‖ ≤ r , the hypercircle inequality shows that the truncation error in the
WSK sampling formula satisfies the inequality

∣∣f (t) − fN(t)
∣∣2 ≤ σr2 −

N∑
n=−N

|f (n/σ)|2 ,

where fN(t) := ∑N
n=−N f (n/σ) sinc(σ t − n).

Extending the hypercircle inequality in the Riesz bases setting allow us to estimate
the truncation error for non-orthogonal sampling expansions [2]. Such an estimation uses
only the samples and the norm of the function together with other quantities, intrinsically
related with the sampling formula. As pointed out in [3], the use of a non-optimal ap-
proximation including known data (the samples here) can be sometimes preferred to the
best approximation, which may have rather cumbersome coefficients. The two-channel
sampling formulas are expansions with respect to suitable Riesz bases in Paley-Wiener
spaces [5]. Consequently, the hypercircle inequality in the Riesz bases setting is an ap-
propriate tool to estimate their truncation error. Briefly, this result can be introduced as
follows: Let {xn}∞n=1 and {x∗

n}∞n=1 be a pair of dual Riesz bases in a separable Hilbert space
H. It is known that there exist an orthonormal basis {en}∞n=1 in a suitable Hilbert space Ĥ

(maybe H itself) and an invertible bounded operator T : Ĥ −→ H such that T (en) = xn,
for each n ∈ N. Moreover, (T ∗)−1(en) = x∗

n for each n ∈ N, where T ∗ denotes the adjoint
operator of T . Under these circumstances the hypercircle inequality becomes (see [2]):
Given the vector wM = ∑M

k=1 αkxk and the subspace K = {y ∈ H : 〈y, x∗
k 〉H = 0, 1 ≤

k ≤ M}, consider the hyperplane P := wM + K and the hypercircle Cr = P ∩ Br . Then,
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for any x ∈ Cr and any bounded linear functional L in H we have

|L(x) − L(wM)|2 ≤
(∥∥T −1

∥∥2
r2 −

M∑
k=1

|αk|2
) ∞∑

k=M+1

|L(xk)|2 . (1.1)

The article is organized as follows: First, we introduce the two-channel sampling
theory in the Paley-Wiener space PWπ , stressing that the obtained sampling formulas are
expansions with respect to suitable Riesz bases in PWπ . Next, we estimate the truncation
error by using the hypercircle inequality in the Riesz bases setting. In so doing, we calculate
the norm of an involved operator with the sampling functions, and we estimate the remainder
of the series of the absolute square sampling functions. Finally, we particularize the obtained
estimation for the derivative sampling formula.

2. Preliminaries on Two-Channel Sampling Formulas

In this section we introduce the Riesz basis method for obtaining Riesz bases in L2[−π, π ],
which gives the two-channel sampling theory in PWπ . We follow, with a slightly different
notation, the Higgins’ approach in [5, Chapter 12]. Throughout the article, Hπ will denote
the Hilbert space L2[0, π ] ⊕ L2[0, π ] with its usual norm, i.e., for (φ, ϕ) ∈ Hπ ,

‖(φ, ϕ)‖2
Hπ

= ‖φ‖2
L2[0,π ] + ‖ϕ‖2

L2[0,π ] .

Since {en(w) = e−2inw/
√

π}n∈Z is an orthonormal basis for L2[0, π ], we obtain an
orthonormal basis {αn}n∈Z ∪ {βn}n∈Z in Hπ by setting

αn(w) := (en(w), 0) ; βn(w) := (0, en(w)) , n ∈ Z .

Let M1, M2 be two bounded measurable functions (multipliers) on [−π, π ]. For φ ∈
L2[0, π ], we denote its π -periodic extension by φp. On the other hand, if φ ∈ L2[−π, π ],
it can be expressed as φ = φ① + φ②, where φ① = φχ[−π,0] and φ② = φχ[0,π ].

Next, we define the operator

S : Hπ −→ L2[−π, π ]
(φ1, φ2) �−→ M1(w)φ

p

1 (w) + M2(w)φ
p

2 (w) ,

which is bounded because ‖S(φ1, φ2)‖2 ≤ 4 max{‖M1‖2∞ , ‖M2‖2∞}‖(φ1, φ2)‖2. It maps
the orthonormal basis {αn}n∈Z ∪ {βn}n∈Z of Hπ onto the sequence {xn}n∈Z ∪ {yn}n∈Z in
L2[−π, π ] given by

xn(w) := S(αn)(w) = 1√
π

M1(w)e−i2nw ;

yn(w) := S(βn)(w) = 1√
π

M2(w)e−i2nw , n ∈ Z .

If the operator S is invertible, then the sequence {xn}n∈Z ∪ {yn}n∈Z will be a Riesz basis in
L2[−π, π ]. This will be the case whenever the matrix

M(w) :=
(

M①
1 (w − π) M①

2 (w − π)

M②
1 (w) M②

2 (w) ,

)
, w ∈ [0, π ] , (2.1)
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satisfies the condition 0 < A ≤ | det(M(w))| a.e. in [0, π ], for some positive constant A.
Indeed, if we denote � = (φ1, φ2)

T ∈ Hπ , then

M(w)�(w) =
(

M①
1 (w − π)φ

p

1 (w) + M①
2 (w − π)φ

p

2 (w)

M②
1 (w)φ

p

1 (w) + M②
2 (w)φ

p

2 (w)

)
, w ∈ [0, π ] .

On the other hand, for w ∈ [−π, π ], we get

S(φ1, φ2)(w) = M1(w)φ
p

1 (w) + M2(w)φ
p

2 (w)

= [
M①

1 (w) + M②
1 (w)

]
φ

p

1 (w) + [
M①

2 (w) + M②
2 (w)

]
φ

p

2 (w)

= [
M①

1 (w)φ
p

1 (w − π) + M①
2 (w)φ

p

2 (w − π)
]+ [

M②
1 (w)φ

p

1 (w) + M②
2 (w)φ

p

2 (w)
]
,

from which we deduce the relationship between M(w)�(w) and S(φ1, φ2)(w). Namely:
forw ∈ [−π, 0], S(φ1, φ2)(w) is given by the first row ofM(w̃)�(w̃), w̃ = w+π ∈ [0, π ],
whereas S(φ1, φ2)(w), for w ∈ [0, π ], is given by the second row of M(w)�(w).

Taking M∗
1 and M∗

2 such that

M−1(w) :=
(

M∗①
1 (w − π) M∗②

1 (w)

M∗①
2 (w − π) M∗②

2 (w)

)
, w ∈ [0, π ]

we obtain an explicit formula for evaluating S−1(f ) for f ∈ L2[−π, π ]. Namely,

[
S−1(f )

]
(w) = M−1(w)

(
f ①(w − π)

f ②(w)

)

=
(

M∗①
1 (w − π)f ①(w − π) + M∗②

1 (w)f ②(w)

M∗①
2 (w − π)f ①(w − π) + M∗②

2 (w)f ②(w)

)
, w ∈ [0, π ] .

Observe that, as a consequence, we obtain that the sequence {x∗
n}n∈Z ∪ {y∗

n}n∈Z where

x∗
n(w) := 1√

π
M∗

1 (w)e−i2nw ; y∗
n(w) := 1√

π
M∗

2 (w)e−i2nw , n ∈ Z ,

is the dual Riesz basis of {xn}n∈Z ∪ {yn}n∈Z.
By using Fourier duality we obtain the two-channel sampling formulas in PWπ .

Indeed, given f ∈ PWπ we expand its Fourier transform f̂ := F(f ) (throughout the
article the Fourier transform is defined as f̂ (w) := (1/

√
2π)

∫∞
−∞ f (t) e−itw dt) with

respect to the Riesz basis {xn}n∈Z ∪ {yn}n∈Z in L2[−π, π ]. Thus, we have

f̂ =
∑
n∈Z

[〈
f̂ , x∗

n

〉
xn + 〈

f̂ , y∗
n

〉
yn

]
.

Taking the inverse Fourier transform F−1 we get in the reproducing kernel Hilbert space
PWπ

f (t) =
∑
n∈Z

[〈
f̂ , x∗

n

〉(
F−1xn

)
(t) + 〈

f̂ , y∗
n

〉(
F−1yn

)
(t)
]
, t ∈ R ,

where[
F−1xn

]
(t)= 1√

π

(
F−1M1

)
(t − 2n) and

[
F−1yn

]
(t)= 1√

π

(
F−1M2

)
(t − 2n) , t ∈ R.
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For the coefficients we have〈
f̂ , x∗

n

〉 = √
2f1(2n) and

〈
f̂ , y∗

n

〉 = √
2f2(2n) n ∈ Z ,

where fj , j = 1, 2, are the filtered versions of f defined by their Fourier transforms
f̂j = M∗

j f̂ , j = 1, 2. Summarizing, we can state the two-channel sampling result:

Theorem 1. Any function f ∈ PWπ can be recovered from the samples {f1(2n)}n∈Z and
{f2(2n)}n∈Z of f1 and f2, respectively, by means of the sampling series

f (t) = √
2

∞∑
n=−∞

[
f1(2n) S(t − 2n) + f2(2n) T (t − 2n)

]
, t ∈ R , (2.2)

where S(t) = (F−1M1)(t)/
√

π and T (t) = (F−1M2)(t)/
√

π . The convergence of the
series is absolute and uniform in R.

3. The Truncation Error for the Two-Channel Sampling
Formulas

In this section we are concerned with the estimation of the truncation error for a two-
channel sampling formula as in (2.2). Our goal is to get an estimation for the truncation
error TN(t) := |f (t) − fN(t)| where fN denotes the sum in (2.2) from −N to N . Since
the Paley-Wiener space PWπ is a reproducing kernel Hilbert space, the point-evaluation
functional Et (f ) := f (t), f ∈ PWπ , is bounded. As a consequence,

TN(t) := |f (t) − fN(t)| = |Et (f ) − Et (fN)| , t ∈ R , (3.1)

can be considered as the left term in inequality (1.1). In addition, the sampling ex-
pansion (2.2) was obtained by expanding f ∈ PWπ with respect to the Riesz basis
{S(·−2n)}n∈Z ∪{T (·−2n)}n∈Z. This Riesz basis is the image, via F−1, of the Riesz basis
{xn}n∈Z ∪ {yn}n∈Z in L2[−π, π ]. As we have seen in Section 2, {xn}n∈Z ∪ {yn}n∈Z is the
image, via the bounded invertible operator S, of the orthonormal basis {αn}n∈Z ∪ {βn}n∈Z

in the Hilbert space H. Hence, the invertible bounded operator T := F−1 S satisfies
T (αn) = S(· − 2n) and T (βn) = T (· − 2n) for each n ∈ Z. Thus, we have obtained:

Theorem 2. Let f ∈ PWπ with ‖f ‖ ≤ r . Then, the truncation error for the sampling
formula (2.2) satisfies the inequality

|f (t) − fN(t)|2

≤
[∥∥T −1

∥∥2
r2 − 2

N∑
n=−N

(
|f1(2n)|2 + |f2(2n)|2

)] ∑
|n|>N

[|S(t − 2n)|2 + |T (t − 2n)|2],
where t ∈ R and fN(t) = √

2
∑N

n=−N

[
f1(2n) Sn(t) + f2(2n) Tn(t)

]
.

So, we must estimate the series
∑

|n|>N

[|S(t − 2n)|2 + |T (t − 2n)|2] and calculate

the norm
∥∥T −1

∥∥.
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3.1 The Computation of
∥∥T −1

∥∥
In order to calculate

∥∥T −1
∥∥, t he following equalities hold:

(i)
∥∥T ∥∥ = ∥∥S∥∥ = ∥∥T ∗∥∥ = ∥∥S∗∥∥ where T ∗ and S∗ denote the adjoint operators of
T and S, respectively.

(ii)
∥∥T −1

∥∥ = ∥∥S−1
∥∥.

The equality
∥∥T ∥∥ = ∥∥S∥∥ is a straightforward consequence of the fact that the inverse

Fourier transform F−1 is a unitary operator. The other equalities follow from the general
theory of adjoint operators. For (ii), the following chain of equalities holds∥∥T −1

∥∥ = ∥∥(T −1)∗∥∥ = ∥∥(S−1 F
)∗∥∥ = ∥∥F (

S−1)∗∥∥ = ∥∥(S−1)∗∥∥ = ∥∥S−1
∥∥ .

From now on, we assume that the multipliers M1 and M2 are real, or purely imaginary
valued. In this case, a straightforward calculation shows that ‖S−1f ‖2 = ‖S−1(�f )‖2 +
‖iS−1(�f )‖2 for any f ∈ L2[−π, π ]. Thus, we have∥∥S−1f

∥∥2

‖f ‖2
=
∥∥S−1(�f )

∥∥2 + ∥∥iS−1(�f )
∥∥2

‖f ‖2

= ‖�f ‖2

‖f ‖2

∥∥S−1(�f )
∥∥2

‖�f ‖2
+ ‖�f ‖2

‖f ‖2

∥∥S−1(�f )
∥∥2

‖�f ‖2
.

Taking into account that ‖f ‖2 = ‖�f ‖2 + ‖�f ‖2, we can consider a real valued function
f without loss of generality.

If f ∈ L2[−π, π ], then ‖f ‖2 = ∫ π

0

[|f ①(w − π)|2 + |f ②(w)|2] dw and∥∥S−1f
∥∥2

= ∥∥M∗①
1 (w − π)f ①(w − π) + M∗②

1 (w)f ②(w)
∥∥2

+ ∥∥M∗①
2 (w − π)f ①(w − π) + M∗②

2 (w)f ②(w)
∥∥2

= ∥∥M∗
1 f
∥∥2 + ∥∥M∗

2 f
∥∥2

+ 2
∫ π

0

[
M∗①

1 (w − π)M∗②
1 (w) + M∗①

2 (w − π)M∗②
2 (w)

]
f ①(w − π)f ②(w) dw.

Notice that under the assumption on the multipliers M1 and M2, the function M∗①
1 (w −

π)M∗②
1 (w) + M∗①

2 (w − π)M∗②
2 (w) is real valued on [0, π ]. Now, denoting by

F(w) := M∗①
1 (w − π)M∗②

1 (w) + M∗①
2 (w − π)M∗②

2 (w) ,

G1(w − π) := ∣∣M∗①
1 (w − π)

∣∣2 + ∣∣M∗①
2 (w − π)

∣∣2 ,

G2(w) := ∣∣M∗②
1 (w)

∣∣2 + ∣∣M∗②
2 (w)

∣∣2 , w ∈ [0, π ] ,

we obtain that ∥∥S−1f
∥∥2 =

∫ π

0
F(w)

∣∣f ①(w − π) + f ②(w)
∣∣2 dw

+
∫ π

0
[G1(w − π) − F(w)]∣∣f ①(w − π)

∣∣2 dw

+
∫ π

0
[G2(w) − F(w)]∣∣f ②(w)

∣∣2 dw .
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Now, defining the set A(f ) := {w ∈ [0, π ] : |f ①(w − π)|2 + |f ②(w)|2 �= 0}, we get
‖f ‖2 = ∫

A(f )

[|f ①(w − π)|2 + |f ②(w)|2] dw and

∥∥S−1f
∥∥2 =

∫
A(f )

F (w)
∣∣f ①(w − π) + f ②(w)

∣∣2 dw

+
∫

A(f )

[G1(w − π) − F(w)]∣∣f ①(w − π)
∣∣2 dw

+
∫

A(f )

[G2(w) − F(w)]∣∣f ②(w)
∣∣2 dw .

Hence, ∥∥S−1f
∥∥2

‖f ‖2
=
∫

A(f )

∣∣f ①(w − π)
∣∣2 + ∣∣f ②(w)

∣∣2
‖f ‖2

H(w) dw ,

where the function H is given in A(f ) by

H(w) := G1(w − π) + 2f ①(w − π)f ②(w)F (w) + [
G2(w) − G1(w − π)

]∣∣f ②(w)
∣∣2∣∣f ①(w − π)

∣∣2 + ∣∣f ②(w)
∣∣2 .

Consider the sets C(f ) := {w ∈ [0, π ] : |f ②(w)| = 0}, and B(f ) := A(f ) \ C(f ).
For w ∈ C(f ), we have that H(w) = G1(w − π) =: α(w). For w ∈ B(f ) we

consider the function

J (x) := K + 2λx + L

x2 + 1
, x ∈ R ,

whose maximum is achieved at x = −L
2λ

+
√

L2

4λ2 + 1 when λ �= 0. This value is precisely

K + L
2 +

√
L2

4 + λ2. On the other hand, when λ = 0, its maximum is reached at x = 0
and takes the value K + L.

Writing H(w) as

H(w) = G1(w − π) +
2 f ①(w−π)

f ②(w)
F (w) + G2(w) − G1(w − π)(

f ①(w−π)

f ②(w)

)2

+ 1

,

we obtain that, whenever F(w) �= 0

H(w) ≤ G1(w − π) + G2(w)

2
+
√[

G2(w) − G1(w − π)
]2

4
+ F(w)2 =: β(w) .

Whenever F(w) = 0, we have that H(w) ≤ G2(w) ≤ β(w). In any case, for w ∈ B(f )

we have H(w) ≤ β(w).
Finally, for any w ∈ A(f ), we have

H(w) ≤ max
{
α(w), β(w)

} ≤ max{‖α‖∞ , ‖β‖∞} =: m ,

where ‖ · ‖∞ denotes the essential supremum in the interval [0, π ]. Thus,∥∥S−1f
∥∥2

‖f ‖2
≤
∫

A(f )

∣∣f ①(w − π)
∣∣2 + ∣∣f ②(w)

∣∣2
‖f ‖2

m dw ,
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from which we deduce that∥∥S−1
∥∥2 ≤ m := max{‖α‖∞ , ‖β‖∞} .

Finally, this bound is saturated. Suppose that m = ‖β‖∞. For each n ∈ N, define the set

Dn :=
{
w ∈ [0, π ] : β(w) > m − 1

n

}
and consider the sequence of functions {φn}n∈N given by

φn(w) := γ (w)χDn(w + π) + χDn(w) ,

where χDn denotes the characteristic function of the set Dn and γ the function defined in
[0, π ] by

γ (w) =
{

G1(w−π)−G2(w)
2F(w)

+
√

[G2(w)−G1(w−π)]2

4F 2(w)
+ 1 if F(w) �= 0

0 if F(w) = 0 .

We obtain that∥∥S−1φn

∥∥2

‖φn‖2
≥
∫

A(φn)

∣∣φ①
n (w − π)

∣∣2+∣∣φ②
n (w)

∣∣2
‖φn‖2

(
m − 1

n

)
dw = m − 1

n
→ m as n → ∞ .

When m = ‖α‖∞, taking the functions φn(w) := χDn(w + π) we achieve the result in a
similar way.

Therefore, ∥∥S−1
∥∥2 = max{‖α‖∞ , ‖β‖∞} ,

where the functions α and β have been defined above.
After some tedious calculations, one can find the same value for ‖S−1‖2 whenever

the complex valued multipliers satisfy the condition:

�
[
M∗①

1 (w − π)M∗②
1 (w) + M∗①

2 (w − π)M∗②
2 (w)

]
= 0 a.e. in [0, π ] .

3.2 Estimating the Sum
∑

|n|>N

[|S(t − 2n)|2 + |T (t − 2n)|2]
The knowledge of the asymptotic behavior of the functions S and T allow us to give an
estimation for the series

∑
|n|>N

[|S(t −2n)|2 +|T (t −2n)|2]. In fact, the following result
holds:

Lemma 1. Let F be a function such that, for L, b > 0 and ν > 1/2, it satisfies

|F(t)| ≤ L

|t |ν , for |t | ≥ b .

Then, for N > (b + 1)/2, we obtain

∑
|n|>N

|F(t − 2n)|2 ≤ 2L2

2(2ν − 1)(2N − |t |)2ν−1
, |t | < 2N − b − 1 .
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Proof. For |t | < 2N − b − 1 and |n| > N we have |t − 2n| > b. As a consequence, for
|t | < 2N − b − 1 and 2N > b + 1, we get

∑
|n|>N

|F(t − 2n)|2 ≤
∑

|n|>N

L2

|t − 2n|2ν
≤

∑
|n|>N

L2

(|2n| − |t |)2ν

= 2L2
∞∑

n=N+1

1

(2n − |t |)2ν
≤ 2L2

2

∞∑
n=N

∫ 2(N+1)−|t |

2N−|t |
1

x2ν
dx

= 2L2

2

∫ ∞

2N−|t |
1

x2ν
dx = 2L2

2(2ν − 1)(2N − |t |)2ν−1
.

Whenever N is small we could calculate the whole series
∑∞

n=−∞
[|S(t − 2n)|2 +

|T (t − 2n)|2]. Having in mind that

S(t − 2n) =
〈
xn,

e−it ·
√

2π

〉
L2[−π,π ]

=
〈
S(αn),

e−it ·
√

2π

〉
L2[−π,π ]

=
〈
αn, S∗

(
e−it ·
√

2π

)〉
Hπ

T (t − 2n) =
〈
yn,

e−it ·
√

2π

〉
L2[−π,π ]

=
〈
S(βn),

e−it ·
√

2π

〉
L2[−π,π ]

=
〈
βn, S∗

(
e−it ·
√

2π

)〉
Hπ

,

the Parseval equality gives

∞∑
n=−∞

[|S(t − 2n)|2 + |T (t − 2n)|2] = ∥∥S∗(e−it ·/
√

2π
)∥∥2

Hπ
≤ ‖T ‖2 .

To compute ‖S∗(e−it ·/
√

2π)‖Hπ
, we express the adjoint operator S∗ in terms of the matrix

M(w) given by (2.1), which represent, the operator S. Indeed, for (φ1, φ2) ∈ Hπ , we have
that

M(w)

(
φ1(w)

φ2(w)

)
=
(

S(φ1, φ2)
①(w − π)

S(φ1, φ2)
②(w)

)
, a.e. in [0, π ] .

Consequently, for (φ1, φ2) ∈ Hπ and g ∈ L2[−π, π ] we have〈
S(φ1, φ2), g

〉 = 〈
S(φ1, φ2)

①, g①
〉+ 〈

S(φ1, φ2)
②, g②

〉
=
∫ π

0

(
S(φ1, φ2)

①(w − π), S(φ1, φ2)
②(w)

) (g①(w − π)

g②(w)

)
dw

=
∫ π

0

(
φ1(w), φ2(w)

)
MT (w)

(
g①(w − π)

g②(w)

)
dw ,

where MT (w) stands for the transpose matrix of M(w). Therefore, S∗g = (ϕ1, ϕ2) is
given by (

ϕ1(w)

ϕ2(w)

)
= MT (w)

(
g①(w − π)

g②(w)

)
, a.e. in [0, π ] .

Hence, ∥∥S∗(e−it ·/
√

2π
)∥∥Hπ

= 1√
2π

∥∥∥∥MT (w)

(
e−it (w−π)

e−itw

)∥∥∥∥
Hπ

.
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3.3 An Example: Truncation Error in the Derivative Sampling Formula

The derivative sampling formula in the Paley-Wiener space PWπ can be derived from
Theorem 1 by using the multipliers: M1(w) = 1 − |w|

π
and M2(w) = i sgn w

π
, w ∈ [−π, π ].

In this case,

M(w) = 1

π

(
w −i

π − w i

)
and M−1(w) =

(
1 1

−i(w − π) −iw

)
, w ∈ [0, π ] ,

and hence, M∗
1 (w) = 1 and M∗

2 (w) = −iw. The corresponding pair of dual Riesz bases
in PWπ are{

xn = 1√
π

(
1 − |w|

π

)
e−2inw

}
n∈Z

∪
{
yn = i sgn w

π
√

π
e−2inw

}
n∈Z

and {
x∗
n = 1√

π
e−2inw

}
n∈Z

∪
{
y∗
n = 1√

π
iwe−2inw

}
n∈Z

.

The sampling functions in Theorem 1 are

S(t − 2n) = 1√
2

sinc2
( t − 2n

2

)
and T (t − 2n) = −1√

2
(t − 2n) sinc2

( t − 2n

2

)
,

the sequences of samples {f (2n)}n∈Z and {−f ′(2n)}n∈Z, and the corresponding sampling
formula (2.2) reads:

f (t) =
∞∑

n=−∞

[
f (2n) + (t − 2n)f ′(2n)

]
sinc2

( t − 2n

2

)
, t ∈ R . (3.2)

Concerning the truncation error for (3.2) we have that

F(w)=1 − πw + w2 ; G1(w − π) = 1 + (w − π)2 ; G2(w) = 1 + w2 , w ∈ [0, π ] .

Hence, α(w) = 1 + (w − π)2 whose maximum in [0, π ] is ‖α‖∞ = 1 + π2, and

β(w) = w2 − πw + 1 + π2

2
+
√(

π2 − 2πw
)2

4
+ w2 − πw + 1 ,

whose maximum in [0, π ] is ‖β‖∞ = 1 + π2/2 +√
π4/4 + 1. Therefore,∥∥S−1

∥∥2 = 1 + π2/2 +
√

π4/4 + 1 .

In this example the sampling functions are generated by the functions S(t) = (1/
√

2)

sinc2(t/2) and T (t) = (−1/
√

2) t sinc2(t/2) which satisfy

|S(t)| ≤ 4

π2
√

2

1

|t |2 and |T (t)| ≤ 4

π2
√

2

1

|t | , |t | ≥ δ > 0 .

Thus, for N > 1 Lemma 1 gives∑
|n|>N

|S(t − 2n)|2 + |T (t − 2n)|2 ≤ 8

3π4(2N − |t |)3
+ 8

π4(2N − |t |) ,
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whenever |t | < 2N − 1 − δ. Therefore, the truncation error for the sampling formula (3.2)
reads:

|f (t) − fN(t)|2 ≤
[(

1 + π2/2 +
√

π4/4 + 1
)
r2 − 2

N∑
n=−N

(
|f (2n)|2 + ∣∣f ′(2n)

∣∣2)]
×
[

8

3π4(2N − |t |)3
+ 8

π4(2N − |t |)
]

, |t | < 2N − 1 − δ ,

where fN(t) = ∑N
n=−N

[
f (2n) + (t − 2n)f ′(2n)

]
sinc2

( t − 2n

2

)
.

For more details on the derivative sampling topic we address the interested reader to
the superb survey in [7, Chapter 3].
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