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Abstract

The Fourier duality is an elegant technique to obtain sampling formulas in Paley–Wiener s
In this paper it is proved that there exists an analogue of the Fourier duality technique in the
of shift-invariant spaces. In fact, any shift-invariant spaceVϕ with a stable generatorϕ is the range
space of a bounded one-to-one linear operatorT betweenL2(0,1) andL2(R). Thus, regular and
irregular sampling formulas inVϕ are obtained by transforming, viaT , expansions inL2(0,1) with
respect to some appropriate Riesz bases.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The Whittaker–Shannon–Kotel’nikov sampling theorem states that any functionf in
the classical Paley–Wiener spacePWπ ,
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PWπ := {
f ∈ L2(R) ∩ C(R): suppf̂ ⊆ [−π,π]},

i.e., bandlimited to[−π,π], may be reconstructed from its samples{f (n)}n∈Z on the inte-
gers as

f (t) =
∞∑

n=−∞
f (n)sinc(t − n), (1)

where sinc denotes the cardinal sine function, sinc(t) = sinπt/πt .
This theorem and its numerous offspring have been proved in many different

e.g., using Fourier expansions, the Poisson summation formula, contour integrals, e
for instance, [11,19]). But the most elegant proof is probably the one due to Hardy
using that the Fourier transformF is an isometry betweenPWπ andL2[−π,π]. For any
f ∈ PWπ one has

f (t) = 1√
2π

π∫
−π

f̂ (w)eiwt dw =
〈
f̂ ,

e−iwt

√
2π

〉
L2[−π,π]

, t ∈ R,

so any valuef (tn) of f is the inner product inL2[−π,π] of f̂ and the complex expo
nentiale−itnw/

√
2π . The key point in Hardy’s proof is that an expansion convergin

L2[−π,π] is transformed byF−1 into another expansion which converges in the topol
of PWπ . This implies, in particular, that it converges absolutely and uniformly onR. Recall
that the Paley–Wiener spacePWπ is a reproducing kernel Hilbert space (RKHS) whose
producing kernel isk(t, s) = sinc(t − s). This technique has been coined in [11, p.
as theFourier duality in Paley–Wiener spaces. Thus, expandingf̂ with respect to the
orthonormal basis{e−inw/

√
2π }n∈Z and transforming byF−1 we obtain the Shanno

sampling formula (1). An irregular sampling formula inPWπ at a sequence{tn}n∈Z of real
points may be obtained by perturbating the orthonormal basis{e−inw/

√
2π }n∈Z in such

a way that the sequence of complex exponentials{e−itnw/
√

2π }n∈Z forms a Riesz basi
for PWπ . This is the case if, for instance, the sequence{tn}n∈Z ⊂ R verifies the Kadec
condition: supn∈Z |tn − n| < 1/4. Moreover, the Paley–Wiener–Levinson sampling th
rem states that any functionf ∈ PWπ can be recovered from its samples{f (tn)}n∈Z by
means of the Lagrange-type interpolation series

f (t) =
∞∑

n=−∞
f (tn)

G(t)

G′(tn)(t − tn)
,

whereG stands for the infinite productG(t) := (t − t0)
∏∞

n=1(1 − t/tn)(1 − t/t−n) [18].
On the other hand, the Paley–Wiener spacePWπ is a particular case of a shift-invaria
space, i.e., a closed subspace inL2(R) generated by the integer shifts of a single funct
ϕ ∈ L2(R). Whenever the sequence{ϕ(· − n)}n∈Z forms, at least, a frame sequence
L2(R) (i.e., it is a frame for its closed linear span), the corresponding shift-invariant s
can be described as

Vϕ :=
{∑

an ϕ(· − n): {an} ∈ �2(Z)

}
.

n∈Z
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The generatorϕ is stable if the sequence{ϕ(· − n)}n∈Z is a Riesz basis forVϕ . ForPWπ ,
a stable generator isϕ = sinc. Wavelet subspaces are important examples of shift-inva
spaces generated by the scaling function of the corresponding multiresolution analys
[3,4,15] for the general theory of shift-invariant spaces and their applications. In add
sampling theory in shift-invariant spaces and, in particular, in wavelet subspaces ha
largely studied in the recent years. Let us cite, for instance, the works of Aldroub
Gröchenig [1], Aldroubi and Unser [2], Chen, Itoh and Shiki [6,7], Janssen [13], Sun
Zhou [16,20], or Walter [14,17] among others.

The main aim in this paper is to show that the Fourier duality for Paley–Wiener s
can be generalized to the case of a shift-invariant spaceVϕ with a stable generatorϕ. To
this end, we define a bounded one-to-one linear operatorT betweenL2(0,1) andL2(R)

as

T :L2(0,1) −→ L2(R)

F −→ f such thatf (t) := 〈F,Kt 〉L2(0,1),

where the kernel transformt ∈ R �→ Kt ∈ L2(0,1) is given by the Zak transform of̄ϕ
namely,Kt(x) := Zϕ̄(t, x), a.e.x ∈ (0,1). Recall that the Zak transform off ∈ L2(R) is
formally defined as(Zf )(t,w) := ∑

n∈Z
f (t + n)e−2πinw , t,w ∈ R. The shift-invariant

spaceVϕ coincides with the range space ofT . Thus, sampling expansions inVϕ can be
seen as transformed expansions viaT of expansions inL2(0,1) with respect to appropriat
Riesz bases. Taking into account the definition ofT , these bases should have the particu
form {Ktn}n∈Z. Taking the sampling points{tn = a+n}n∈Z, we obtain the regular samplin
in Vϕ , whereas perturbing this sequence as{tn = a + n + δn}n∈Z, we obtain the irregula
sampling. These steps will be carried out throughout the remaining sections.

2. Preliminaries on shift-invariant spaces

Let ϕ ∈ L2(R) be a stable generator for the shift-invariant space

Vϕ :=
{∑

n∈Z

an ϕ(· − n): {an} ∈ �2(Z)

}
⊂ L2(R),

i.e., the sequence{ϕ(· −n)}n∈Z is a Riesz basis forVϕ . A Riesz basis in a separable Hilbe
space is the image of an orthonormal basis by means of a bounded invertible op
Recall that the sequence{ϕ(· −n)}n∈Z is a Riesz sequence, i.e., a Riesz basis forVϕ if and
only if

0< ‖Φ‖0 � ‖Φ‖∞ < ∞,

where‖Φ‖0 denotes the essential infimum of the functionΦ(w) := ∑
k∈Z

|ϕ̂(w + k)|2 in
[0,1], and‖Φ‖∞ its essential supremum. Furthermore,‖Φ‖0 and‖Φ‖∞ are the optima
Riesz bounds [8, p. 143].

We assume along the paper that, for eacht ∈ R, the series
∑

n∈Z
|ϕ(t − n)|2 converges

Thus, by using the Riesz’ subsequence theorem [8, p. 39] we can choose the po∑

limit f (t) := n∈Z

an ϕ(t − n) for each t ∈ R, as the representative element of the
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an ϕ(· − n) in L2(R). Moreover, ifϕ is a continuous function and the seri∑

n∈Z
|ϕ(t − n)|2 converges uniformly in compact subsets ofR, we can take anyf ∈ Vϕ

as a continuous function inR.
Besides,Vϕ is a RKHS since the evaluation functionals are bounded inVϕ . Indeed, for

each fixedt ∈ R we have∣∣f (t)
∣∣2 � 1

‖Φ‖0

∑
n∈Z

∣∣ϕ(t − n)
∣∣2 ‖f ‖2, f ∈ Vϕ, (2)

where we have used Cauchy–Schwartz’s inequality inf (t) = ∑
n∈Z

an ϕ(t − n), and the
Riesz basis condition

‖Φ‖0

∑
n∈Z

|an|2 � ‖f ‖2 � ‖Φ‖∞
∑
n∈Z

|an|2, f ∈ Vϕ.

Inequality (2) shows that convergence in theL2(R)-norm implies pointwise conver
gence inR. The convergence is uniform in subsets of the real line where‖Kt‖2

L2(0,1)
=∑

n∈Z
|ϕ(t − n)|2 is bounded.

The reproducing kernel ofVϕ is given byk(t, s) = ∑
n∈Z

ϕ(t − n)ϕ∗(s − n) where the
sequence{ϕ∗(· − n)}n∈Z denotes the dual Riesz basis of{ϕ(· − n)}n∈Z. Recall that the
functionϕ∗ has Fourier transform̂ϕ∗ = ϕ̂/Φ [2].

3. A linear transform defining a shift-invariant space

For eacht ∈ R, consider the functionKt ∈ L2(0,1) defined by the Fourier series

Kt :=
∑
n∈Z

ϕ(t + n)e−2πinx.

Notice thatKt(x) = Zϕ̄(t, x) a.e.x ∈ (0,1), whereZ denotes the Zak transform ofϕ̄. See
[9,12] for properties and uses of the Zak transform.

Thus, for eachF ∈ L2(0,1) we can define the function

f :R −→ C,

t −→ f (t) := 〈F,Kt 〉L2(0,1).

If we denote byT the linear transform which mapsF ∈ L2(0,1) into f , i.e.,T (F ) = f ,
then we can identify the range space ofT as the shift-invariantVϕ , i.e.,T (L2(0,1)) = Vϕ .
Indeed, forF ∈ L2(0,1) we have that[

T (F )
]
(t) = 〈F,Kt 〉L2(0,1) =

∑
n∈Z

〈
F,e−2πinx

〉
L2(0,1)

ϕ(t + n), t ∈ R,

which belongs toVϕ . Furthermore, for eachf ∈ Vϕ there exists a sequence{an} ∈ �2(Z)

such thatf = ∑
n∈Z

anϕ(· + n) in L2(R). Since{e−2πinx}n∈Z is an orthonormal basis i
L2(0,1), there exists a functionF ∈ L2(0,1) such that〈F,e−2πinx〉L2(0,1) = an for every

n ∈ Z. Hence,T (F ) = f . Moreover, the following result holds:
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Theorem 1. The mappingT is an invertible bounded operator betweenL2(0,1) andVϕ .

Proof. The operatorT is bijective since it maps the orthonormal basis{e−2πinx}n∈Z in
L2(0,1) into the Riesz basis{ϕ(t + n)}n∈Z in Vϕ . Concerning the continuity, forF ∈
L2(0,1), we have

∥∥T (F )
∥∥2

L2(R)
=

∥∥∥∥∑
n∈Z

〈
F,e−2πinx

〉
L2(0,1)

ϕ(t + n)

∥∥∥∥2

L2(R)

� ‖Φ‖∞
∑
n∈Z

∣∣〈F,e−2πinx
〉∣∣2

= ‖Φ‖∞‖F‖2
L2(0,1)

,

where we have used the upper Riesz basis condition for{ϕ(· + n)}n∈Z. �
Having in mind the periodicity relations of the Zak transform, the functionKt satisfies

Kt+m(x) = e2πimxKt (x) in L2(0,1), wheret ∈ R andm ∈ Z.
Now, for f ∈ Vϕ considerF = T −1(f ) ∈ L2(0,1). For eachn ∈ Z we have

T
[
F(x)e2πinx

]
(t) = 〈

F(·)e2πin·,Kt (·)
〉
L2(0,1)

= 〈F,Kt−n〉L2(0,1) = f (t − n).

SinceT is a bounded invertible operator, the sequence{f (t −n)}n∈Z is a Riesz basis forVϕ

if and only if {F(x)e2πinx}n∈Z is a Riesz basis forL2(0,1). The following theorem which
can be found in [5, Theorem 2.2] gives a characterization of Bessel sequences, Ries
and frames inL2(0,1) having the form{F(x)e2πinx}n∈Z. From now on,‖F‖∞ (respec-
tively ‖F‖0) will denote the essential supremum (respectively infimum) of|F | in (0,1).

Theorem 2. Given a functionF ∈ L2(0,1), the following results hold:

(a) The sequence{F(x)e2πinx}n∈Z is a Bessel sequence inL2(0,1) if and only if the func-
tion F satisfies‖F‖∞ < ∞.

(b) The sequence{F(x)e2πinx}n∈Z is a Riesz basis forL2(0,1) if and only if the func-
tion F satisfies0 < ‖F‖0 � ‖F‖∞ < ∞. In this case, the optimal Riesz bounds
{F(x)e2πinx}n∈Z are‖F‖2

0 and‖F‖2∞.
(c) The sequence{F(x)e2πinx}n∈Z is a frame inL2(0,1) if and only if is a Riesz basis fo

L2(0,1).

Thus we have the following corollary inVϕ .

Corollary 1. Given a functiong ∈ Vϕ , considerG = T −1(g) ∈ L2(0,1). Then, the se
quence{g(t − n)}n∈Z is a Riesz basis forVϕ if and only if0< ‖G‖0 � ‖G‖∞ < ∞.

4. Regular sampling in shift-invariant spaces

Regular sampling inVϕ arises by considering appropriate Riesz bases inL2(0,1).
Namely, for a fixeda ∈ [0,1), the regular samples at{a + n}n∈Z of f ∈ Vϕ are given

by
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f (a + n) = 〈F,Ka+n〉L2(0,1) = 〈
F,Kae

2πinx
〉
L2(0,1)

, n ∈ Z,

whereF = T −1(f ). The sequence{Ka(x)e2πinx}n∈Z in L2(0,1) has the biorthonorma
sequence{e2πinx/K̄a(x)}n∈Z provided 1/Ka ∈ L2(0,1). Hence, stable regular samplin
in Vϕ reduces to studying whenever the sequence{Ka(x)e2πinx}n∈Z is a Riesz basis fo
L2(0,1), and this depends on the functionKa as stated in Theorem 2. ExpandingF =
T −1(f ) with respect to the Riesz basis{e2πinx/K̄a(x)}n∈Z, via the invertible bounde
operatorT , we obtain a regular sampling formula forf .

Lemma 1. Givena ∈ [0,1), there exists a functionSa ∈ Vϕ satisfying the interpolation con
dition Sa(a + n) = δn,0, wheren ∈ Z, if and only if the function1/Ka belongs toL2(0,1).
In this caseSa = T (1/K̄a).

Proof. Assume that there exists a functionSa ∈ Vϕ satisfying the interpolation conditio
Sa(a + n) = δn,0, wheren ∈ Z. ForFa = T −1(Sa) we have

Sa(a + n) = 〈Fa,Ka+n〉L2(0,1) = 〈
Fa, e

2πinxKa

〉
L2(0,1)

=
1∫

0

Fa(x)Ka(x)e−2πinx dx = δn,0,

which implies thatFa(x)Ka(x) = 1 a.e. in(0,1), and consequently the function 1/Ka

belongs toL2(0,1).
Conversely, if 1/Ka is in L2(0,1), we defineSa = T (1/K̄a). Forn ∈ Z it satisfies

Sa(a + n) =
〈

1

K̄a

,Ka+n

〉
L2(0,1)

= 〈
1, e2πinx

〉
L2(0,1)

= δn,0. �
Thus we can characterize stable regular sampling inVϕ .

Theorem 3. Considera ∈ [0,1) such that the function1/Ka ∈ L2(0,1). The following
conditions are equivalent:

(a) 0< ‖Ka‖0 � ‖Ka‖∞ < ∞.
(b) There exists a Riesz basis{Sn}n∈Z for Vϕ such that, for eachf ∈ Vϕ , we have the

pointwise expansion

f (t) =
∑
n∈Z

f (a + n)Sn(t), t ∈ R.

Furthermore, in this case the sampling functions areSn(t) = Sa(t − n), whereSa =
T (1/K̄a). The sampling series converges in theL2(R)-norm sense, absolutely and un
formly in subsets ofR where‖Kt‖ is bounded.

Proof. First we prove that (a) implies (b). ConsiderSa = T (1/K̄a). Condition (a) im-

plies that 0< ‖1/K̄a‖0 � ‖1/K̄a‖∞ < ∞ and, as a consequence, Corollary 1 gives that
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{Sa(t − n)}n∈Z is a Riesz basis forVϕ . For eachf ∈ Vϕ , there exists a sequence{an}n∈Z

in �2(Z) such thatf (t) = ∑
n∈Z

anSa(t − n) where the convergence is also pointwise
eacht ∈ R sinceVϕ is a RKHS. Takingt = a + m, and using the interpolatory conditio
Sa(a + n) = δn,0, we obtain thatam = f (a + m) for anym ∈ Z.

Conversely, assume that the condition (b) holds. Takingf (t) = Sa(t − m), m ∈ Z, we
obtain thatSm(t) = Sa(t − m) and , as a consequence,{Sa(t − n)}n∈Z is a Riesz basis
for Vϕ . SinceSa = T (1/K̄a), Corollary 1 gives condition (a).

Absolute convergence comes from the inconditional character of a Riesz basi
uniform convergence is a standard result in the setting of the RKHS theory.�

A straightforward calculation gives the Fourier transform ofSa . Indeed,

Ŝa(w) = ̂T (1/K̄a)(w) = ϕ̂(w)

Zϕ(a,w/2π)
a.e. inR.

5. Irregular sampling in shift-invariant spaces

Usually, one may consider irregular sampling as a perturbation of the regular sam
In the present setting, we can try to recover any functionf ∈ Vϕ from its perturbed sample
{f (a + n + δn)}n∈Z, wherea ∈ [0,1) and{δn}n∈Z is a sequence in(−1,1). Since

f (a + n + δn) = 〈F,Ka+n+δn〉L2(0,1), n ∈ Z, whereF = T −1(f ) ∈ L2(0,1),

a challenge problem is to prove that{Ka+n+δn}n∈Z is a Riesz basis forL2(0,1).
One possibility is to use a perturbation technique on the Riesz basis{Ka+n}n∈Z =

{Kae
2πinx}n∈Z which gives the sequence of regular samples{f (a + n)}n∈Z. As a con-

sequence, we need a perturbation result for those Riesz bases inL2(0,1) appearing in
Theorem 2.

For an infinite matrixM = {mn,k}n,k∈Z defining a bounded operator in�2(Z) we denote
its operator norm as‖M‖2 := sup‖c‖

�2(Z)
=1 ‖Mc‖�2(Z).

Theorem 4. Let F = ∑
k∈Z

ake
−2πikx be in L2(0,1) such that0 < ‖F‖0 � ‖F‖∞ <

∞. Let {Fn}n∈Z be a sequence of functions inL2(0,1) with Fourier expansionsFn =∑
k∈Z

ak(n)e−2πikx , n ∈ Z. Suppose that the infinite matrixD = {dn,k}n,k∈Z with entries
dn,k := an−k(n)−an−k , n, k ∈ Z, satisfies the condition‖D‖2 < ‖F‖0. Then, the sequenc
{Fn(x)e2πinx}n∈Z is a Riesz basis forL2(0,1).

Proof. To this end we use the following result on perturbation of Riesz bases in a H
spaceH which can be found in [8, p. 354]: let{fk}∞k=1 be a Riesz basis forH with Riesz
boundsA,B, and let{gk}∞k=1 be a sequence inH. If there exists a constantR < A such
that

∞∑
k=1

∣∣〈fk − gk, f 〉∣∣2 � R ‖f ‖2, for eachf ∈ H,
then{gk}∞k=1 is a Riesz basis forH.
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For anyf =
∑
j∈Z

cj e
2πijx in L2(0,1) we have

∑
n∈Z

∣∣〈Fn(x)e2πinx − F(x)e2πinx, f
〉∣∣2

=
∑
n∈Z

∣∣∣∣
〈∑

k∈Z

(
ak(n) − ak

)
e2πi(n−k)x,

∑
j∈Z

cj e
2πijx

〉∣∣∣∣2

=
∑
n∈Z

∣∣∣∣∑
k∈Z

(
an−k(n) − an−k

)
ck

∣∣∣∣2 =
∑
n∈Z

∣∣∣∣∑
k∈Z

dn,kck

∣∣∣∣2 = ‖D c‖2
�2(Z)

� ‖D‖2
2 ‖f ‖2.

Taking into account that in our caseA = ‖F‖2
0, we obtain that{Fn(x)e2πinx}n∈Z is a Riesz

basis forL2(0,1). �
As a consequence of the above perturbation theorem inL2(0,1), we obtain an irregula

sampling result inVϕ .

Theorem 5. Givena ∈ [0,1) such that0 < ‖Ka‖0 � ‖Ka‖∞ < ∞. Let∆ = {δn}n∈Z be a
sequence in(−1,1) such that the infinite matrixD∆ = {dn,k}n,k∈Z whose entries are give
by

dn,k := ϕ(a + n − k + δn) − ϕ(a + n − k), n, k ∈ Z,

satisfies‖D∆‖2 < ‖Ka‖0. Then, there exists a Riesz basis{Sn}n∈Z for Vϕ such that any
functionf ∈ Vϕ can be expanded as

f (t) =
∑
n∈Z

f (a + n + δn)Sn(t), t ∈ R.

The convergence of the series is absolute and uniform in subsets ofR where‖Kt‖ is
bounded. Also, it converges in theL2(R)-norm sense.

Proof. Applying Theorem 4 to

Ka(x) =
∑
k∈Z

ϕ(a + k)e−2πikx and

Ka+δn(x) =
∑
k∈Z

ϕ(a + k + δn)e
−2πikx, n ∈ Z,

we obtain that{Ka+δne
2πinx}n∈Z = {Ka+n+δn}n∈Z is a Riesz basis forL2(0,1). Denote by

{Gn}n∈Z its dual Riesz basis. Now, givenf ∈ Vϕ , we expand the functionF = T −1(f ) ∈
L2(0,1) with respect to{Gn}n∈Z. Thus,

F =
∑
n∈Z

〈F,Ka+n+δn〉L2(0,1) Gn =
∑
n∈Z

f (a + n + δn) Gn in L2(0,1).

Applying the operatorT , we get

f =
∑

f (a + n + δn)T (Gn) in L2(R).
n∈Z
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Furthermore, sinceT is an invertible bounded operator, the sequence{Sn := T (Gn)}n∈Z

is a Riesz basis forVϕ . The pointwise convergence properties of the series come out
Theorem 3. �

The next result yields a uniform bound of the norm‖D∆‖2 regardless the sequen
∆ = {δn}n∈Z in [α,β] ⊂ [−1,1].

Theorem 6. For any sequence∆ = {δn}n∈Z in [α,β] the following inequality holds:

‖D∆‖2 � sup
{dn}⊂[α,β]

∑
n∈Z

∣∣ϕ(a + n + dn) − ϕ(a + n)
∣∣. (3)

Proof. Assume that the second term in the above inequality is finite. Otherwise, th
equality trivially holds. For anyc = {ck}k∈Z ∈ �2(Z) we have

‖D∆c‖2
�2(Z)

=
∑
n∈Z

∣∣∣∣∑
k∈Z

dn,k ck

∣∣∣∣2 �
∑
n∈Z

∑
l,j∈Z

|dn,l | |cl | |dn,j | |cj |

=
∑
l,j∈Z

|cl | |cj |
∑
n∈Z

|dn,l | |dn,j | �
∑
l,j∈Z

|cl |2 + |cj |2
2

∑
n∈Z

|dn,l | |dn,j |

=
∑
l∈Z

|cl |2
∑

j,n∈Z

|dn,l | |dn,j | � sup
l∈Z

( ∑
j,n∈Z

|dn,l | |dn,j |
)

‖c‖2
�2(Z)

� sup
l∈Z

(∑
n∈Z

|dn,l |
)∑

j∈Z

|dn,j | ‖c‖2
�2(Z)

.

Having in mind that∑
j∈Z

|dn,j | =
∑
j∈Z

∣∣ϕ(a + j − k + δj ) − ϕ(a + j − k)
∣∣

=
∑
n∈Z

∣∣ϕ(a + n + δn+k) − ϕ(a + n)
∣∣,

we obtain the desired result.�
A comment about the second term in (3) is in order. Namely, looking for an estim

of the ratio between
∑

n∈Z
|ϕ(a + n + dn) − ϕ(a + n)| and(supn |dn|)λ for a fixedλ > 0,

led Chen et al. to introduce in [6] the classes of functionsLλ
a[α,β].

Next we give a particular example when Theorem 6 works. Namely, suppose th
stable generatorϕ ∈ C1(R) and for someε > 0 it satisfiesϕ′(t) = O(|t |−(1+ε)) as|t | → ∞.
Then, it is easy to prove that, forδ ∈ (0,1],

Mϕ′(δ) :=
∑

k

max
Ik(δ)

∣∣ϕ′(t)
∣∣ � Mϕ′(1) < ∞,
whereIk(δ) denotes the interval[a + k − δ, a + k + δ].
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Corollary 2. Let ϕ ∈ C1(R) be a stable generator such thatMϕ′(δ) < ∞, whereδ :=
supn∈Z |δn|. Then, the conditionδ Mϕ′(δ) < ‖Ka‖0 implies the existence of a Riesz ba
{Sn}n∈Z for Vϕ such that any function in this space can be expanded as

f (t) =
∑
n∈Z

f (a + n + δn)Sn(t), t ∈ R.

The convergence in the series is absolute and uniform in subsets ofR where‖Kt‖ is
bounded. It converges also in theL2(R)-norm sense.

Proof. The mean value theorem gives

sup
{dn}⊂[−δ,δ]

∑
n∈Z

∣∣ϕ(a + n + dn) − ϕ(a + n)
∣∣ � δ Mϕ′(δ).

Theorem 5 concludes the proof.�
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