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Abstract. The classical Kramer sampling theorem provides a method for ob-
taining orthogonal sampling formulas. A challenging problem is to character-
ize the situations when these sampling formulas can be written as Lagrange-
type interpolation series. This article gives a necessary and sufficient condi-
tion to ensure that when the sampling formula is associated with an analytic
Kramer kernel, then it can be expressed as a quasi Lagrange-type interpolation
series; this latter form is a minor but significant modification of a Lagrange-
type interpolation series. Finally, a link with the theory of de Branges spaces
is established.
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1. Statement of the problem

The classical Kramer sampling theorem provides a method for obtaining orthogo-
nal sampling theorems [7,12,15,21]. This theorem has played a very significant role
in sampling theory, interpolation theory, signal analysis and, generally, in math-
ematics; see the survey articles [5, 6]. The statement of this general result is as
follows: Let K(ω, λ) be a function, defined for all λ in an open subset D of R (or
C) such that, as a function of ω, K(·, λ) ∈ L2(I) for every number λ ∈ D, where I
is an interval of the real line. Assume that there exists a sequence of distinct real
numbers {λn} ⊂ D, with n belonging to an indexing set I contained in Z, such
that {K(ω, λn)} is a complete orthogonal sequence of functions for L2(I). Then
for any F of the form

F (λ) =
∫

I

f(ω)K(ω, λ) dω , λ ∈ D , (1.1)
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where f ∈ L2(I), we have

F (λ) = lim
N→∞

∑
|n|≤N

n∈I

F (λn)Sn(λ) , (1.2)

with

Sn(λ) =

∫
I K(ω, λ)K(ω, λn) dω∫

I
|K(ω, λn)|2 dω

. (1.3)

The series in (1.2) converges absolutely and uniformly on subsets of D where
‖K(·, λ)‖L2(I) is bounded.

The Kramer sampling theorem has been the cornerstone for a significant
mathematical literature on the topic of sampling theorems associated with differ-
ential or difference problems which has flourished for the past few years. As a small
but significant sample of examples see, for instance, [7,21] and references therein.

In [8] an extension of the Kramer sampling theorem has been obtained to the
case when the kernel is analytic in the sampling parameter λ. Namely: Assume
that the Kramer kernel K is an entire function for any fixed ω ∈ I, and that
the function h(λ) =

∫
I |K(ω, λ)|2dω is locally bounded on D. Then any function

F defined by (1.1) is an entire function, as are all the sampling functions (1.3).
A kernel K satisfying the above additional conditions is called a Kramer analytic
kernel.

The discrete version of Kramer sampling theorem has been proved in [1,2,9],
and its analytic counterpart in [10].

In many cases the sampling functions Sn can be expressed as Lagrange-type
interpolation functions, i.e.,

Sn(λ) =
G(λ)

(λ − λn)G′(λn)
,

where G is an entire function having simple zeros at all the points {λn ∈ D}. In
other important examples the sampling functions Sn have the form

Sn(λ) =
A(λ)
A(λn)

G(λ)
(λ − λn)G′(λn)

,

where the additional function A is an entire function without zeros (see [3] or the
Shannon-type interpolation formulae in [7]). In this case we say that the sampling
functions can be written as quasi Lagrange-type interpolation functions. Notice
that a quasi Lagrange-type interpolation series reduces to a Lagrange-type inter-
polation series when the function F to be sampled is replaced by F/A.

It is worth mentioning that the problem of whether a sampling theorem
involving infinitely many sampling points can be derived as limiting cases of finite
Lagrange interpolation has been considered in [14].

The starting point in this paper is an abstract analytic version of the Kramer
sampling theorem. To this end, we work in the reproducing kernel Hilbert space
(written shortly as RKHS) of entire functions introduced by Saitoh as follows (see
his superb monograph [18]): Let (H, 〈·, ·〉H) be a complex, separable Hilbert space
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with orthonormal basis {en}∞n=1. Suppose K is a H-valued function defined on C.
For each x ∈ H, define fx(z) = 〈K(z), x〉H and let HK denote the collection of
all such functions fx. Furthermore, each element in HK is an entire function if
and only if K is analytic on C or, equivalently, if and only if 〈K(z), en〉 is entire
for each n ∈ N and ‖K(·)‖

H
is bounded on all compact subsets of C. In this

setting, an abstract version of the analytic Kramer theorem is obtained assuming
the existence of two sequences, {zn}∞n=1 in C, and {an}∞n=1 in C \ {0}, such that
K(zn) = anen for each n ∈ N. This is a slight modification of a sampling result
derived by Higgins in [13] which also includes the analytic version.

A challenging problem is to give a necessary and sufficient condition to ensure
that the corresponding sampling formula can be written as a quasi Lagrange-type
interpolation series. This is not always true as a counterexample shows, see Sec-
tion 3. Roughly speaking, the aforesaid necessary and sufficient condition concerns
the stability of the functions belonging in the space HK , on removing a finite num-
ber of zeros. The classical Paley–Wiener spaces satisfy this property. Finally, we
prove under suitable hypotheses that the RKHS HK , whose sampling formula can
be written as quasi Lagrange-type interpolation formula, is a de Branges space of
entire functions. It is important to mention that the paper [16], by Nashed and
Walter, is the first reference where sampling in connection with de Branges spaces
is introduced.

2. Analytic Kramer sampling theory

For the sake of completeness we sketch the underlying sampling theory used
through this article (see [11] or [18] for details). Let H be a complex, separa-
ble Hilbert space and let K be a H-valued function defined on C, i.e., K : C � z �→
K(z) ∈ H. Using this function K we define a mapping between H and the set C

C

of all functions between C and C as follows:

T : H � x �→ T (x) = f such that f(z) :=
〈
K(z), x

〉
H

for z ∈ C . (2.1)

The application T is anti-linear, i.e., T (αx + βy) = α T (x) + β T (y) for x, y ∈ H

and α, β ∈ C.
We denote by HK the range of T , i.e., HK = T (H). From now on, we refer

to the function K as the kernel of the anti-linear application T .
The space HK with the norm ‖f‖HK := inf{‖x‖H : f = T (x)} becomes

a reproducing kernel Hilbert space, RKHS hereafter, i.e., for each z ∈ C, the
evaluation functional Ez(f) = f(z), f ∈ HK , is bounded. As a consequence,
convergence in the norm ‖ · ‖HK implies pointwise convergence which is uniform
on those subsets of C where ‖K(·)‖H is bounded. The reproducing kernel of HK

is given by k(z, ω) = 〈K(z), K(ω)〉H, z, ω ∈ C.
We note that the anti-linear mapping T : H −→ HK is injective if and

only if it is an isometry, or equivalently, if and only if the set {K(z)}z∈C is com-
plete in H [18]. In particular, if there exists a sequence {zn}∞n=1 in C such that
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{K(zn)}∞n=1 is an orthogonal complete set in H, then T is an anti-linear isometry
from H onto HK .

On the other hand, to decide whether HK is a RKHS of entire functions the
following result holds: HK is a RKHS of entire functions if and only if the kernel K
is analytic in C ([19, p. 266]). Another characterization of the analyticity of the
functions in HK is the following: Suppose that an orthonormal basis {en}∞n=1 for H

is given; expanding K(z), where z ∈ C is fixed, in this basis we obtain

K(z) =
∞∑

n=1

〈
K(z), en

〉
H

en ,

where the coefficients Sn(z) := 〈K(z), en〉H define functions in HK . Then, the
functions in HK are entire if and only if the functions {Sn}∞n=1 are entire and
‖K(·)‖H is bounded on compact sets of C ([11, Theorem 2.2]).

For sampling purposes we suppose the existence of a sequence of points
{zn}∞n=1 in C is given such that K(zn) = an en, n ∈ N, for some nonzero constants
{an}∞n=1, where {en}∞n=1 denotes an orthonormal basis for H. This is equivalent
to saying that the sequence of functions {Sn}∞n=1, where Sn(z) := 〈K(z), en〉H,
satisfies, for the sequence {zn}∞n=1, the interpolatory property:

Sn(zm) = an δn,m . (2.2)

In this case, the following sampling result holds:

Theorem 2.1. Let K : C −→ H be an analytic kernel. Assume that the interpolation
property (2.2) holds for some sequences {zn}∞n=1 in C and {an}∞n=1 in C \ {0}.
Let HK be the corresponding RKHS of entire functions. Then any f ∈ HK can be
recovered from its samples {f(zn)}∞n=1 by means of the sampling series

f(z) =
∞∑

n=1

f(zn)
Sn(z)

an
, z ∈ C . (2.3)

This series converges absolutely and uniformly on compact subsets of C.

Proof. First notice that limn→∞ |zn| = +∞; otherwise the sequence {zn}∞n=1 con-
tains a bounded subsequence and hence, the entire function Sn ≡ 0 for all n ∈ N

which contradicts (2.2). The anti-linear application T is a bijective isometry be-
tween H and Hk. As a consequence, the functions {Sn = T (en)}∞n=1 form an
orthonormal basis for HK . Expanding any f ∈ HK in this basis we obtain

f(z) =
∞∑

n=1

〈f, Sn〉HK Sn(z) .

Moreover,

〈f, Sn〉HK = 〈x, en〉H
=

〈
K(zn)

an
, x

〉
H

=
f(zn)
an

. (2.4)

Since an orthonormal basis is an unconditional basis, the sampling series will
be pointwise unconditionally convergent and hence, absolutely convergent. The



Vol. 51 (2008) Analytic Kramer Sampling Theory 219

uniform convergence is a standard result in the setting of the RKHS theory since
‖K(·)‖H is bounded on compact subsets of C. �

Theorem 2.1 is an abstract version of classical Kramer sampling theorem [15].
This leads us to give the following definition:

Definition 2.2. An analytic kernel K : C −→ H is said to be an analytic Kramer
kernel if there exists a sequence of complex numbers {zn}∞n=1 which satisfies
K(zn) = anen, n ∈ N, for some orthonormal basis {en}∞n=1 for H, and {an}∞n=1 ∈
C \ {0}.

At this point, a question naturally arises. It concerns the existence of an
analytic Kramer kernel associated with an arbitrary sequence of complex numbers
{zn}∞n=1 such that limn→∞ |zn| = +∞. The answer to this question is affirmative.
Given the sequence {zn}∞n=1, consider a sequence {an}∞n=1 in C \ {0} such that∑

zn �=0 |an/zn|2 < ∞ (set ak = 1 in the case zk = 0). Now, let P be an entire
function having only simple zeros at {zn}∞n=1; this is allowed by the theorem of
Weierstrass [20, p. 54]. In a separable Hilbert space H with orthonormal basis
{en}∞n=1, invoking the Riesz–Fisher theorem, define the mapping K : C −→ H as:

K(z) :=
∞∑

n=1

anP (z)
z − zn

en ,

where the convergence of the series is in the norm of H, and consider the cor-
responding RKHS HK . The entire functions Sn(z) = anP (z)

z−zn
, n ∈ N, satisfy the

interpolation condition Sn(zm) = amP ′(zm)δn,m. In addition, the function

‖K(z)‖2
H

=
∞∑

n=1

∣∣∣∣anP (z)
z − zn

∣∣∣∣
2

, z ∈ C ,

is uniformly bounded on compact subsets. Indeed, given A a compact in C there
exists a closed disk ΔR centered at the origin with radius R > 0 such that A ⊆ ΔR.
Apart from a possible finite number of points {zk}, k ∈ IR, we have the result that
|z − zn| ≥

∣∣|z| − |zn|
∣∣ ≥ |zn| − R for all z ∈ A and n ∈ N \ IR. Thus,

∞∑
n=1

∣∣∣∣anP (z)
z − zn

∣∣∣∣
2

≤
∑
n∈IR

∣∣∣∣anP (z)
z − zn

∣∣∣∣
2

+
∑

n∈N\IR

|an|2|P (z)|2
(|zn| − R)2

,

and both summands are bounded on the compact A. Hence, K is an entire H-
valued function [11, Theorem 2.2] satisfying the requirements in Definition 2.2,
i.e., K is an analytic Kramer kernel. As a consequence, Theorem 2.1 assures that
any function f ∈ HK can be recovered from its samples {f(zn)}∞n=1 by means of
the Lagrange-type interpolation formula

f(z) =
∞∑

n=1

f(zn)
anP (z)/(z − zn)

an P ′(zn)
=

∞∑
n=1

f(zn)
P (z)

(z − zn)P ′(zn)
, z ∈ C . (2.5)
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A more difficult question concerns whether the sampling expansion (2.3) can
be written, in general, as a Lagrange-type interpolation series as in (2.5). The next
section deals with this problem.

3. Quasi Lagrange-type interpolation

First, we introduce quasi Lagrange-type interpolation series.

Definition 3.1. The sampling formula (2.3) in a RKHS HK associated with an
analytic Kramer kernel K is a quasi Lagrange-type interpolation series if it can be
written as

f(z) =
∞∑

n=1

f(zn)
A(z)
A(zn)

P (z)
(z − zn)P ′(zn)

, z ∈ C , (3.1)

where P is an entire function having only simple zeros at {zn}∞n=1, and A is an
entire function without zeros.

In this case, defining a new analytic Kramer kernel as KA(z) := K(z)/A(z),
z ∈ C, then any function h in the new RKHS HKA can be recovered from its
samples at {zn}∞n=1 by means of the Lagrange-type interpolation series

h(z) =
∞∑

n=1

h(zn)
P (z)

(z − zn)P ′(zn)
, z ∈ C .

As we see in the next theorem, the existence of a quasi Lagrange-type in-
terpolation series in HK is intimately related to a stability property in this space
with respect to removing a finite number of zeros to functions in HK .

Definition 3.2. A space H of entire functions has the zero-removing property (ZR
property hereafter) if for any g ∈ H and any zero w of g the function g(z)/(z−w)
belongs to H.

Next, we give an example taken from [11] of a RKHS HK associated with an
analytic Kramer kernel where the ZR property fails. Namely: consider H as the
Sobolev Hilbert space H1(−π, π) with its usual inner product

〈f, g〉1 =
∫ π

−π

f(x) g(x) dx +
∫ π

−π

f ′(x) g′(x) dx , f, g ∈ H1(−π, π) .

The sequence {einx}n∈Z ∪ {sinh x} forms an orthogonal basis for H1(−π, π): It is
straightforward to prove that the orthogonal complement of {einx}n∈Z in H1(−π, π)
is one-dimensional for which sinh x is a basis. For a fixed a ∈ C \ Z we define a
kernel

Ka : C −→ H1(−π, π)
z −→ Ka(z) ,

by setting[
Ka(z)

]
(x) = (z − a) eizx + sin πz sinh x , for x ∈ (−π, π) .
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Expanding Ka(z) ∈ H1(−π, π) in the former orthogonal basis we obtain

Ka(z) =
[
1 − i(z − a)

]
sinπz sinh x + (z − a)

∞∑
n=−∞

1 + zn

1 + n2
sinc(z − n)einx .

As a consequence, Theorem 2.1 gives the following sampling result in HKa : Any
function f ∈ HKa can be recovered from its samples {f(n)}n∈Z∪{f(a)} by means
of the sampling formula

f(z) =
[
1 − i(z − a)

] sin πz

sin πa
f(a) +

∞∑
n=−∞

f(n)
z − a

n − a

1 + zn

1 + n2
sinc(z − n) .

The function (z−a) sinc z belongs to HKa since (z−a) sinc z = 〈Ka(z), 1/2π〉1 for
all z ∈ C. However, by using the sampling formula for HKa it is straightforward
to check that the function sinc z does not belong to HKa .

Theorem 3.3. Let HK be a RKHS of entire functions obtained from an analytic
Kramer kernel K with respect to the sequence {zn}∞n=1 ⊂ C. Then, the sampling
formula (2.3) for HK can be written as a quasi Lagrange-type interpolation se-
ries (3.1) if and only if the space HK satisfies the ZR property.

Proof. For the sufficient condition we have to prove that sampling formula (2.3)
can be written as a quasi Lagrange-type interpolation series (3.1), for some entire
functions P and A. First, we prove that the only zeros of the sampling function Sn

are given by {zr}r �=n. Suppose that Sn(w) = 0, then by hypothesis the function
Sn(z)/(z − w) is in HK . Hence, the function

z − zn

z − w
Sn(z) = Sn(z) +

w − zn

z − w
Sn(z)

also belongs to HK . If w /∈ {zr}r �=n, the function z−zn

z−w Sn(z) in HK vanishes
at the sequence {zr}∞r=1 which implies that Sn ≡ 0, to give a contradiction. In
addition, the zeros of Sn are simple; indeed, suppose that zm is a multiple zero
of Sn. Proceeding as above, the function z−zn

z−zm
Sn(z) belongs to HK and vanishes

at {zr}∞r=1 which again implies that Sn ≡ 0.
Consequently, choose an entire function P having only simple zeros at

{zn}∞n=1, then for each n ∈ N there exists an entire function without zeros An

such that (z − zn)Sn(z) = P (z)An(z), z ∈ C. Next, we prove that there exists
an entire function without zeros A and a sequence {σn}∞n=1 in C \ {0} such that
An(z) = σnA(z) for all z ∈ C. For m �= n the function z−zn

z−zm
Sn(z) in HK has its

zeros at {zr}r �=m. Thus the sampling formula (2.3) gives
z − zn

z − zm
Sn(z) =

[
(zm − zn)S′

n(zm)
]
Sm(z) , z ∈ C .

Fixing m = 1, we conclude that An(z) = σnA(z) where A = A1 and σn =
(z1 − zn)S′

n(z1) �= 0 for n ∈ N \ {1} and σ1 = 1. Hence, Sn(z) = σnP (z)A(z)
z−zn

for
z �= zn and Sn(zn) = an = σnP ′(zn)A(zn). Substituting in (2.3) we obtain the
quasi Lagrange-type interpolation series (3.1).
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For the necessary condition, assume that the sampling formula in HK takes
the form of a quasi Lagrange-type interpolation series

f(z) =
∞∑

n=1

f(zn)
A(z)
A(zn)

P (z)
(z − zn)P ′(zn)

, z ∈ C .

Given g ∈ HK , there exists x ∈ H such that g(z) = 〈K(z), x〉, z ∈ C. Assuming
that g(w) = 0, we have to prove that the function g(z)/(z − w) belongs to HK .
The sampling expansion for g at w gives

∞∑
n=1

g(zn)
A(w)
A(zn)

P (w)
(w − zn)P ′(zn)

= 0 . (3.2)

We now distinguish two cases:
(i) w ∈ C \ {zn}∞n=1. As P (w) �= 0, from (3.2) we obtain

∞∑
n=1

g(zn)
1

(w − zn)A(zn)P ′(zn)
= 0 .

Thus,

g(z) =
∞∑

n=1

g(zn)
A(z)
A(zn)

P (z)
(z − zn)P ′(zn)

−
∞∑

n=1

g(zn)
A(z)
A(zn)

P (z)
(w − zn)P ′(zn)

= (w − z)
∞∑

n=1

g(zn)
A(z)
A(zn)

P (z)
P ′(zn)

1
(z − zn)(w − zn)

.

Therefore, the entire function G(z) := g(z)/(w − z) can be recovered from its
samples at {zn}∞n=1 through the formula

G(z) =
∞∑

n=1

G(zn)
A(z)
A(zn)

P (z)
(z − zn)P ′(zn)

, z ∈ C . (3.3)

Moreover, the function G is in HK because G(z) = 〈K(z), y〉H, where y ∈ H has
Fourier coefficients {

〈y, en〉 :=
1

w − zn
〈x, en〉

}∞

n=1

∈ 	2(N) .

Indeed, sampling formula (3.1) for Sn gives Sn(z) = an
A(z)P (z)

A(zn)(z−zn)P ′(zn) . Hence,
using Parseval’s equality we obtain

〈
K(z), y

〉
=

∞∑
n=1

Sn(z)〈x, en〉
w − zn

= G(z) , z ∈ C ,

where we have used (3.3), and the result that 〈x, en〉 = g(zn)/an, n ∈ N.
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(ii) w = zm for some m ∈ N. As g(zm) = 0, the sampling expansion for g
reads

g(z) =
∞∑

n=1
n�=m

g(zn)
A(z)
A(zn)

P (z)
(z − zn)P ′(zn)

, z ∈ C .

Setting P (z) = (z−zm)Qm(z) we have P ′(z) = Qm(z)+(z−zm)Q′
m(z) and hence

P ′(zk) =

{
(zk − zm)Q′

m(zk) if k �= m

Qm(zm) if k = m .

Hence,
g(z)

z − zm
=

∞∑
n=1
n�=m

g(zn)
zn − zm

A(z)
A(zn)

Qm(z)
(z − zn)Q′

m(zn)
, z ∈ C . (3.4)

Using the uniform convergence of the series in (3.4) we deduce that this series
defines a continuous function. Hence, taking the limit as z → zm we obtain

g′(zm) =
∞∑

n=1
n�=m

g(zn)
zn − zm

A(zm)
A(zn)

Qm(zm)
(zm − zn)Q′

m(zn)
(3.5)

Now we prove that

g(z)
z − zm

=
∞∑

n=1
n�=m

g(zn)
zn − zm

A(z)
A(zn)

P (z)
(z − zn)P ′(zn)

+ g′(zm)
A(z)

A(zm)
P (z)

(z − zm)P ′(zm)
. (3.6)

Indeed, substituting (3.5) into (3.6) we obtain
∞∑

n=1
n�=m

[
g(zn)

zn − zm

A(z)
A(zn)

P (z)
(z − zn)P ′(zn)

+
g(zn)

zn − zm

A(z)
A(zn)

Qm(z)
(zm − zn)Q′

m(zn)

]

=
∞∑

n=1
n�=m

g(zn)
zn − zm

A(z)
A(zn)

Qm(z)
Q′

m(zn)

[
z − zm

(zn − zm)(z − zn)
− 1

zn − zm

]

=
∞∑

n=1
n�=m

g(zn)
zn − zm

A(z)
A(zn)

Qm(z)
(z − zn)Q′

m(zn)

=
g(z)

z − zm
.

Thus, defining y ∈ H by its Fourier coefficients {〈y, en〉}∞n=1 in 	2(N) as

〈y, en〉 :=

{ 〈x,en〉
zn−zm

if n �= m

g′(zm) if n = m
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and proceeding as in case (i), it may be shown that

g(z)
z − zm

=
〈
K(z), y

〉
z ∈ C ,

which proves that g(z)/(z − zm) belongs to HK . This concludes the proof of the
theorem. �

It is worth noticing that in the proof of Theorem 3.3 we have found the
relationship between the entire functions A and P appearing in the quasi Lagrange-
type interpolation formula; P is an entire function having simple zeros at {zn}∞n=1

and A is an entire function without zeros satisfying

(z − zn)Sn(z) = σnA(z)P (z) , z ∈ C , for all n ∈ N ,

for some sequence {σn}∞n=1 in C \ {0}.

4. Quasi Lagrange-type interpolation and de Branges spaces

The classical Paley–Wiener space PWπσ :=
{
f ∈L2(R)∩C(R), supp f̂ ⊆ [−πσ, πσ]

}
,

where f̂ stands for the Fourier transform of f , clearly satisfies the ZR property.
Indeed, the Whittaker–Shannon–Kotel’nikov sampling formula for f ∈ PWπσ [12,
20, 21]

f(t) =
∞∑

n=−∞
f

(
n

σ

)
sinπ(σt − n)

π(σt − n)
, t ∈ R ,

can be written as a Lagrange-type interpolation series by taking P (t) = sin πσt/π.
Without using Theorem 3.3, the ZR property follows from the characterization of
PWπσ which uses the classical Paley–Wiener theorem [20, p. 101], i.e.,

PWπσ =
{
f ∈ H(C) : |f(z)| ≤ Aeπσ|z|, f |R ∈ L2(R)

}
.

As pointed out in [17, p. 234], Paley–Wiener spaces can be seen as special cases of
a more general theory of Hilbert spaces of entire functions due to de Branges [4,
p. 50]:

Definition 4.1. Let E be an entire function verifying |E(x − iy)| < |E(x + iy)| for
all y > 0. The de Branges space H(E) is the set of all entire functions F such that

‖F‖2
E :=

∫ ∞

−∞

∣∣∣∣F (t)
E(t)

∣∣∣∣
2

dt < ∞ ,

and such that both ratios F/E and F ∗/E, where F ∗ denotes the function F ∗(z) :=
F (z), are of bounded type and of nonpositive mean type in the upper half-plane.

A de Branges space H(E) is a reproducing kernel Hilbert space of entire
functions. In particular, the Paley–Wiener space PWπσ corresponds to de Branges
space H(Eσ) where Eσ(z) = exp(−iπσz). The following characterization of a de
Branges space can be found in [4, p. 57]:
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Theorem 4.2. A Hilbert space H of entire functions is equal isometrically to some
de Brange space H(E) if and only if the following conditions hold:

B1. Whenever f ∈ H and ω is a nonreal zero of f , the function

g(z) :=
z − ω

z − ω
f(z)

belongs to H and ‖g‖ = ‖f‖.
B2. For each ω �∈ R the linear mapping H � f → f(ω) is continuous.
B3. The function f∗ belongs to the space, and ‖f∗‖ = ‖f‖.

Whenever the RKHS HK associated with a Kramer kernel K is (equal iso-
metrically to) a de Branges space H(E) such that the entire function E has no real
zeros, then the space HK satisfies the ZR property [4, p. 52]. As a consequence,
the sampling formula (2.3) in HK can be written as a quasi Lagrange-type in-
terpolation formula. There exists a form of converse result in the case when the
sequence {zn}∞n=1 is real, and the functions A and P are real for real z:

Theorem 4.3. If the sampling formula in HK can be written as a quasi Lagrange-
type interpolation formula where A∗ = A, P ∗ = P and the sampling points
{zn}∞n=1 are real, then HK is a de Branges space.

Proof. In our case, property B2 holds because HK is a RKHS. For B3, consider
f ∈ HK such that f(z) = 〈K(z), x〉 for some x ∈ H. Then, f∗(z) = 〈K(z), x〉 =∑∞

n=1 S∗
n(z)〈x, en〉. From (2.4) we find that 〈x, en〉 = f∗(zn)/an, n ∈ N. Since

Sn(z) = an
A(z)
A(zn)

P (z)
(z − zn)P ′(zn)

, n ∈ N ,

A∗ = A, P ∗ = P and {zn}∞n=1 ⊂ R we obtain

S∗
n(z) = an

A(z)
A(zn)

P (z)
(z − zn)P ′(zn)

, n ∈ N .

Thus we get

f∗(z) =
∞∑

n=1

f∗(zn)
A(z)
A(zn)

P (z)
(z − zn)P ′(zn)

. (4.1)

Let y be in H such that its Fourier coefficients with respect to the orthonormal
basis {en}∞n=1 are

〈y, en〉 =
an

an
〈x, en〉 , n ∈ N .

The function g(z) := 〈K(z), y〉 in HK satisfies g(zn) = an〈y, en〉 = an〈x, en〉 =
f∗(zn) for each n ∈ N. Taking into account (4.1) we conclude that f∗ = g and, as
a consequence, f∗ ∈ HK . Moreover,

‖f∗‖2 = ‖y‖2
H

=
∞∑

n=1

|〈y, en〉|2 =
∞∑

n=1

|〈x, en〉|2 = ‖x‖2
H

= ‖f‖2
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Finally we prove property B1. To this end, consider f ∈ HK given by f(z) =
〈K(z), x〉 for some x ∈ H, and such that f(w) = 0 where w ∈ C \ R. Since
A(w)P (w) �= 0, the quasi Lagrange-type interpolation formula for f gives

∞∑
n=1

f(zn)
A(zn)(w − zn)P ′(zn)

= 0 .

Therefore,

f(z) =
∞∑

n=1

f(zn)
A(z)
A(zn)

P (z)
(z − zn)P ′(zn)

−
∞∑

n=1

f(zn)
A(z)
A(zn)

P (z)
(w − zn)P ′(zn)

= (w − z)
∞∑

n=1

f(zn)
A(z)
A(zn)

P (z)
P ′(zn)

1
(z − zn)(w − zn)

.

As a consequence, we obtain

f(z)
z − w

=
∞∑

n=1

f(zn)
(zn − w)

A(z)
A(zn)

P (z)
(z − zn)P ′(zn)

. (4.2)

Since
z − w

z − w
f(z) = f(z) + (w − w)

f(z)
z − w

,

the function [(z − w)/(z − w)]f(z) belongs to HK if and only if the function
f(z)/(z − w) belongs to HK which follows from Theorem 3.3. As in the proof of
Theorem 3.3, the function g ∈ HK defined by g(z) := 〈K(z), y〉, where y ∈ H has
Fourier coefficients with respect to the orthonormal basis {en}∞n=1

〈y, en〉 =
1

zn − w
〈x, en〉 , n ∈ N ,

coincides with the entire function f(z)/(z − w). Moreover,
∥∥∥∥z − w

z − w
f(z)

∥∥∥∥
2

= ‖f + (w − w)g‖2 = ‖x + (w − w)y‖2
H

=
∞∑

n=1

∣∣〈x + (w − w)y, en

〉∣∣2

=
∞∑

n=1

∣∣∣∣zn − w

zn − w

∣∣∣∣
2

|〈x, en〉|2 = ‖x‖2
H

= ‖f‖2 ,

which concludes the proof. �

In closing the paper, it is worth pointing out that, taking advantage of the
general theory of de Branges spaces, we could obtain a characterization of RKHS
HK independently of the anti-linear transform T (2.1) (see the characterization of
a de Branges space in [4, p. 53]).
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