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a b s t r a c t

Assume that a sequence of samples of a filtered version of a function in a shift-invariant
space is given. This paper deals with the existence of a sampling formula involving these
samples and having reconstruction functions with compact support. This is done in the light
of the generalized sampling theory by using the oversampling technique. A necessary and
sufficient condition is given in terms of the Smith canonical form of a polynomial matrix.
Finally, we prove that the aforesaid oversampled formulas provide nice approximation
schemes with respect to the uniform norm.

© 2008 Elsevier B.V. All rights reserved.

1. Statement of the problem

Let Vϕ be a shift-invariant space in L2(R) with stable generator ϕ ∈ L2(R), i.e.,

Vϕ :=

{
f (t) =

∑
n∈Z

an ϕ(t − n) : {an} ∈ `
2(Z)

}
⊂ L2(R).

Nowadays, sampling theory in shift-invariant spaces is a very active research topic (see, for instance, [1–4,9,17,18] and the
references therein) since an appropriate choice for the generator ϕ (for instance, a B-spline) eliminates most of the problems
associated with the classical Shannon’s sampling theory [16].

Suppose that a linear time-invariant system L is defined on Vϕ. Under suitable conditions, Unser and Aldroubi [3,15]
have found sampling formulas allowing the recovering of any function f ∈ Vϕ from the sequence of samples {(Lf ) (n)}n∈Z.
Concretely, they proved that for any f ∈ Vϕ,

f (t) =
∑
n∈Z

Lf (n)S(t − n), t ∈ R, (1)

where the sequence {S(t − n)}n∈Z is a Riesz basis for Vϕ. Even when the generator ϕ has compact support, rarely the same
occurs with the reconstruction function S in formula (1). Recall that a reconstruction function S with compact support in
(1) implies low computational complexities and avoids truncation errors. A way to overcome this difficulty is to use the
oversampling technique, i.e, to take samples with a sampling period T < 1. This is the main goal in this paper: Assuming that
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the generator ϕ and the impulse response of the linear system L have compact support, we derive stable sampling formulas
which allow us to recover any f ∈ Vϕ from the samples {(Lf ) (Tsn)}n∈Z, where the sampling period is Ts := (s − 1)/s < 1
for some s ∈ {2, 3, . . .}. This is done in Sections 2 and 3 in the light of the generalized sampling theory obtained in [10] by
following an idea of Djokovic and Vaidyanathan in [9].

For the sake of notational ease we have assumed that only samples from one linear time-invariant system L are available.
Analogous results are still valid in the case of several systems. In [7], a different but related question is studied: Roughly
speaking, assuming that ϕ has compact support a system L with impulse response compactly supported is found in order
to recover any function in Vϕ by using the generator itself as the reconstruction function.

Besides, shift-invariant spaces are important in a number of areas of analysis. Many spaces, encountered in approximation
theory and in finite element analysis, are generated by the integer shifts of a function ϕ. Shift-invariant spaces also play a
key role in the construction of wavelets [13]. In each of these applications, one is interested in how well a general smooth
function (in a potential Sobolev space) can be approximated by the elements of the scaled spaces σhVϕ := {f (·/h) : f ∈ Vϕ}
(see [5] and the references therein). A cornerstone in this theory are the Strang–Fix conditions for the generator ϕ [14].

On the other hand, as pointed out by Lei et al. in [12], there are many ways to construct approximation schemes
associated with shift-invariant spaces. Among them, they cite cardinal interpolation, quasi-interpolation, projection and
convolution (see the references in [12]). They unify these approaches in a systematic way by viewing all as special cases
of the approximation scheme induced by an integral operator. Borrowing a result in [12], in Section 4 we prove that the
oversampled formulas with compactly supported reconstruction functions obtained in Section 3 give “good” approximation
schemes with respect to the sup norm.

2. A sampling formula in the oversampling setting

From now on, the function ϕ ∈ L2(R) is a stable generator for the shift-invariant space

Vϕ :=

{
f (t) =

∑
n∈Z

an ϕ(t − n) : {an} ∈ `
2(Z)

}
⊂ L2(R),

i.e., the sequence {ϕ(·−n)}n∈Z is a Riesz basis for Vϕ. A Riesz basis in a separable Hilbert space is the image of an orthonormal
basis by means of a bounded invertible operator. Recall that the sequence {ϕ(· − n)}n∈Z is a Riesz basis for Vϕ if and only if

0 < ‖Φ‖0 ≤ ‖Φ‖∞ <∞,

where ‖Φ‖0 denotes the essential infimum of the function Φ(w) :=
∑

k∈Z |ϕ̂(w + k)|2 in (0, 1), and ‖Φ‖∞ its essential
supremum. Furthermore, ‖Φ‖0 and ‖Φ‖∞ are the optimal Riesz bounds [6, p. 143].

We assume throughout the paper that the functions in the shift-invariant space Vϕ are continuous on R. Equivalently, the
generator ϕ is continuous on R and the function

∑
n∈Z |ϕ(t − n)|2 is uniformly bounded on R (see [18]). Thus, any f ∈ Vϕ is

defined as the pointwise sum f (t) =
∑

n∈Z anϕ(t−n) onR. Besides,Vϕ is a reproducing kernel Hilbert space where convergence
in the L2(R)-norm implies pointwise convergence which is uniform on R (see [10]).

The space Vϕ is the image of L2(0, 1) by means of the isomorphism Tϕ : L2(0, 1)→ Vϕ which maps the orthonormal basis
{e−2πinw

}n∈Z for L2(0, 1) onto the Riesz basis {ϕ(t − n)}n∈Z for Vϕ. Namely, for each F ∈ L2(0, 1) the function TϕF ∈ Vϕ is given
by

(TϕF)(t) :=
∑
n∈Z
〈F(·), e−2πin·

〉L2(0,1)ϕ(t − n), t ∈ R. (2)

Suppose that L is a linear time-invariant system defined on Vϕ of one of the following types (or a linear combination of
both):

(a) The impulse response h of L belongs to L1(R) ∩ L2(R). Thus, for any f ∈ Vϕ we have

(Lf ) (t) := [f ∗ h](t) =
∫
∞

−∞

f (x)h(t − x)dx, t ∈ R.

(b) L involves samples of the function itself, i.e., (Lf )(t) = f (t + d), t ∈ R, for some constant d ∈ R.

For a fixed s ∈ {2, 3, . . .}, consider Ts = (s − 1)/s < 1. The first goal is to recover any function f ∈ Vϕ by using a frame
expansion involving the samples {(Lf )(Tsn)}n∈Z. This can be done in the light of the generalized sampling theory developed
in [10]. Indeed, since the sampling points Tsn, n ∈ Z, can be expressed as

{Tsn}n∈Z = {(s− 1)n+ (j− 1)Ts}n∈Z,j=1,2,...,s,

the initial problem is equivalent to the recovery of f ∈ Vϕ from the samples

{Ljf ((s− 1)n)}n∈Z,j=1,2,...,s

where the linear time-invariant systems Lj, j = 1, 2, . . . , s, are defined by

(Ljf )(t) := (Lf ) [t + (j− 1)Ts] , t ∈ R.
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Following the notation introduced in [10], consider the functions gj ∈ L2(0, 1), j = 1, 2, . . . , s, defined as

gj(w) :=
∑
n∈Z

(Lϕ) [n+ (j− 1)Ts] e−2πinw, (3)

the s× (s− 1) matrix

Gs(w) :=



g1(w) g1

(
w+

1
s− 1

)
· · · g1

(
w+

s− 2
s− 1

)
g2(w) g2

(
w+

1
s− 1

)
· · · g2

(
w+

s− 2
s− 1

)
...

...
...

gs(w) gs

(
w+

1
s− 1

)
· · · gs

(
w+

s− 2
s− 1

)


=

[
gj

(
w+

k− 1
s− 1

)]
j=1,2,...,s

k=1,2,...,s−1

,

(in what follows we omit the subscript s) and its related constants

αG := ess inf
w∈(0,1/(s−1))

λmin[G∗(w)G(w)], βG := ess sup
w∈(0,1/(s−1))

λmax[G∗(w)G(w)],

where G∗(w) denotes the transpose conjugate of the matrix G(w), and λmin (respectively λmax) the smallest (respectively the
largest) eigenvalue of the positive semidefinite matrix G∗(w)G(w). Notice that in the definition of the matrix G(w) we are
considering the 1-periodic extensions of the involved functions gj, j = 1, 2, . . . , s.

Thus, the generalized sampling theory in [10] (see Theorems 1 and 2 and its proof) gives the following sampling result
in Vϕ:

Theorem 1. Assume that the functions gj defined in Eq. (3) belong to ∈ L∞(0, 1) for each j = 1, 2, . . . , s (this is equivalent to
βG <∞). Then the following statements are equivalent:

(i) αG > 0
(ii) There exist functions aj in L∞(0, 1), j = 1, 2, . . . , s, such that

[a1(w), . . . , as(w)] G(w) = [1, 0, . . . , 0] a.e. in (0, 1). (4)

(iii) There exists a frame for Vϕ having the form {Sj(· − (s− 1)n)}n∈Z,j=1,2,...,s such that, for any f ∈ Vϕ, we have

f =
∑
n∈Z

s∑
j=1

(Lf ) [(s− 1)n+ (j− 1)Ts] Sj (· − (s− 1)n) in L2(R). (5)

In case the equivalent conditions are satisfied, the reconstruction functions in Eq. (5) are given by Sj = (s−1)Tϕaj, j = 1, 2, . . . , s,
where the functions aj, j = 1, 2, . . . , s, satisfy Eq. (4). The convergence of the series in Eq. (5) is also absolute and uniform on R.

It is worth to mention that whenever the functions gj, j = 1, 2, . . . , s, are continuous on R, the conditions in Theorem 1
are also equivalent to the new condition:

(iv) rankG(w) = s− 1 for all w ∈ R.

3. Searching for compactly supported reconstruction functions

The main aim in this section is to obtain reconstruction functions Sj, j = 1, 2, . . . , s, in formula Eq. (5) with compact
support. To this end, assume from now on that the generator ϕ and Lϕ have compact support. We introduce the s× (s− 1)
matrix

G(z) :=


g1(z) g1(Wz) · · · g1(W

s−2z)
g2(z) g2(Wz) · · · g2(W

s−2z)
...

...
...

gs(z) gs(Wz) · · · gs(W
s−2z)

 (6)

where W := e−2πi/(s−1) and gj(z) :=
∑

n∈Z(Lϕ) [n+ (j− 1)Ts] zn, j = 1, 2 . . . , s. Notice that the matrix G(z) has Laurent
polynomials entries, and G(w) = G(e−2πiw). On the other hand, if the functions aj(z), j = 1, 2 . . . , s, are Laurent polynomials
satisfying

[a1(z), . . . , as(z)]G(z) = [1, 0, . . . , 0], (7)
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then, the trigonometric polynomials aj(w) = aj(e−2πiw), j = 1, 2, . . . , s, satisfy Eq. (4). In this case, the corresponding
reconstruction functions Sj, j = 1, 2, . . . , s, have compact support. Indeed, in terms of the coefficients cj,n of aj(z), that is,
aj(z) =

∑
n∈Z cj,nzn, j = 1, 2, . . . , s, the reconstruction function Sj, j = 1, 2, . . . , s, can be written as (see Eq. (2))

Sj(t) = (s− 1)
∑
n∈Z

cj,nϕ(t − n), t ∈ R. (8)

In what follows we refer to a polynomial matrix (respectively a polynomial vector) for a matrix (respectively a vector) having
Laurent polynomial entries. We are interested in finding polynomial solutions of Eq. (7) having a small number of nonzero
coefficients.

3.1. A theoretical answer via the Smith canonical form

The existence of polynomial solutions of Eq. (7) is equivalent to the existence of a left inverse of the matrix G(z) whose
entries are polynomials. This problem has been studied by Cvetković and Vetterli in [8] in the filter banks setting. Applying
their result, we obtain a characterization for the existence of polynomial solutions of Eq. (7) using the Smith canonical form
of the matrix G(z).

Recall that any m × n (m ≥ n) polynomial matrix H(z) with rankH(z) = r (recall that the rank of a polynomial matrix is
the order of its largest minor that is not equal to the zero polynomial) can be written as the product H(z) = V(z)S(z)W(z)
where V(z) and W(z) are unimodular matrices (i.e., the determinants of V(z) and W(z) are nonzero constants) of dimension
m×m and n×n respectively and S(z) is a diagonal m×n polynomial matrix S(z) := diag[i1(z), . . . , ir(z), 0, . . . , 0]. Moreover,
the diagonal entries (the so-called invariant polynomials of H(z)) are given by ij(z) = dj(z)/dj−1(z), j = 1, 2, . . . , r, where
dj(z) is the greatest common divisor of all minors of H(z), j = 1, 2, . . . , r and d0(z) ≡ 1. The matrix S(z) is called the Smith
canonical form of the matrix H(z). See [11] for the details.

Assume that the s× (s− 1) matrix

S(z) =



i1(z) 0 · · · 0
0 i2(z) · · · 0
...

...
...

0 0 · · · is−1(z)
0 0 · · · 0

 (9)

is the Smith canonical form of the matrix G(z) (notice that it is the case whenever αG > 0) and consider the unimodular
matrices V(z) and W(z), of dimension s× s and (s− 1)× (s− 1) respectively, such that G(z) = V(z)S(z)W(z). The following
result holds:

Theorem 2. Assume that the generator ϕ and Lϕ have compact support. Then, there exists a polynomial vector
[a1(z), a2(z), . . . , as(z)] satisfying Eq. (7) if and only if the polynomials ij(z), j = 1, 2, . . . , s − 1, on the diagonal of the Smith
canonical form Eq. (9) of the matrix G(z) are monomials. Moreover, the polynomial solutions of Eq. (7) are the first row of the
(s− 1)× s polynomial matrices R(z) having the form

R(z) = R0(z)+ U(z)[Is − G(z)R0(z)]

where U(z) is any (s− 1)× s polynomial matrix and

R0(z) :=W−1(z)


i−1
1 (z) 0 · · · 0 0

0 i−1
2 (z) · · · 0 0

...
...

0 0 · · · i−1
s−1(z) 0

V−1(z).

Proof. If the diagonal entries ij(z), j = 1, 2, . . . , s − 1 are monomials and U(z) is a (s − 1) × s polynomial matrix then the
entries of the matrix R(z) = R0(z)+ U(z)[Is −G(z)R0(z)] are Laurent polynomials. It can be checked that this matrix satisfies
R(z)G(z) = Is−1. Therefore, the first row of R(z) satisfies Eq. (7).

Conversely, if the polynomial vector [a1(z), a2(z), . . . , as(z)] satisfies Eq. (7) then the matrix R(z) :=[
aj(zWk−1)

]
j = 1, 2, . . . , s

k = 1, 2, . . . , s− 1
is a polynomial matrix and it satisfies R(z)G(z) = Is−1. The argument given in [8, Appendix E]

proves that ij(z), j = 1, 2, . . . , s− 1 are monomials. Moreover, a(z) is the first row of the polynomial matrix R(z) which can
be written as R(z) := R0(z)+ U(z)[Is − G(z)R0(z)] by taking U(z) = R(z). �

There is an equivalent characterization for the existence of polynomial solutions of Eq. (7) which involves the rank of the
matrix G(z) for each z ∈ C. Notice that if S(z) is the Smith form of the matrix G(z) then, taking into account that V(z) and
W(z) are unimodular matrices, we have

rank S(z) = rankG(z) for all z ∈ C.
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Therefore, it is straightforward to deduce that, for each j = 1, 2, . . . , s− 1, the Laurent polynomial ij(z) is a monomial if and
only if rank S(z) = s− 1 for all z ∈ C \ {0}. As a consequence we obtain the following result:

Theorem 3. Assume that the generator ϕ and the Lϕ have compact support. Then, there exists a matrix A(z) whose entries are
Laurent polynomials and satisfying A(z)G(z) = Is−1 if and only if

rankG(z) = s− 1 for all z ∈ C \ {0}.

If a(z) is the first row of A(z) then, the reconstruction functions Sj, j = 1, 2, . . . , s, obtained from a(z) through Eq. (8) have compact
support.

From a practical point of view the Smith canonical form method for solving Eq. (7) has some important drawbacks. First,
it is not an easy task to compute the Smith canonical form of the matrix G(z); the polynomial solution given by the first
row of the matrix R0(z) has often a high degree which implies that the corresponding reconstruction functions have long
supports; and finally, it is by no means straightforward to find a polynomial matrix U(z) to improve the situation.

3.2. Checking the Smith canonical form condition

The aim here is to study when the Smith canonical form of the matrix G(z) has monomials in its diagonal for some
important cases. Instead of computing directly the Smith canonical form of the matrixG(z), we compute the Smith canonical
form of a simpler related matrix to it. This computation is based on the following decomposition of the matrix G(z). Without
loss of generality, we assume that supp Lϕ ⊆ [0,N] for some N ∈ N; otherwise we might consider an appropriated shifted
system.

Since j− 1 ≤ jTs ≤ j, for j = 0, 1, . . . , s− 1, the functions gj(z) have the form:

g1(z) = Lϕ(1)z+Lϕ(2)z2
+ · · · +Lϕ(N − 1)zN−1

g2(z) = Lϕ(Ts)+Lϕ(1+ Ts)z+ · · · +Lϕ(N − 1+ Ts)z
N−1

g3(z) = Lϕ(2Ts − 1)z−1
+Lϕ(2Ts)+ · · · +Lϕ(N − 2+ 2Ts)zN−2

...

gs(z) = Lϕ((s− 1)Ts − (s− 2))z−(s−2)
+ · · · +Lϕ(N − (s− 1)+ (s− 1)Ts)z

N−(s−1).

(10)

We factorize the matrix G(z) as G(z) = [Γ1|Γ2]Z(z), where the matrix Γ1 ∈ Cs×s is given by

0 0 · · · 0 0 Lϕ(1)
0 0 · · · 0 Lϕ(Ts) Lϕ(1+ Ts)
0 0 · · · Lϕ(2Ts − 1) Lϕ(2Ts) Lϕ(1+ 2Ts)
...

...
...

...
...

Lϕ((s− 1)Ts − (s− 2)) · · · Lϕ(N − (s− 1)+ (s− 1)Ts) 0 0

 ,

the matrix Γ2 ∈ Cs×(N−2) is given by

Lϕ(2) · · · Lϕ(N − 2) Lϕ(N − 1)
Lϕ(2+ Ts) · · · Lϕ(N − 2+ Ts) Lϕ(N − 1+ Ts)
Lϕ(2+ 2Ts) · · · Lϕ(N − 2+ 2Ts) 0

...
...

...
...

0 0 0 0


and the matrix Z(z) ∈ C(N+s−2)×(s−1) is given by

Z(z) =



z−(s−2) (zW)−(s−2)
· · · (zWs−2)−(s−2)

...
...

...

z0 (zW)0
· · · (zWs−2)0

...
...

...

zN−1 (zW)N−1
· · · (zWs−2)N−1


.

Since Γ1 is a lower triangular matrix it is straightforward to check when it is invertible. Suppose that Γ1 is invertible;
there exists a s× (N − 2) matrix Λ such that Γ2 = Γ1Λ. Therefore, splitting the matrix Z(z) into blocks we have

G(z) = ΓZ(z) = [Γ1|Γ2]Z(z) = Γ1[Is|Λ]
[
Z1(z)
Z2(z)

]
= Γ1 (Z1(z)+ ΛZ2(z)) .
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Since Γ1 is invertible, the Smith canonical forms of the matrices G(z) and Z1(z) + ΛZ2(z) coincide. Using this argument
we deduce when the Smith canonical form of G(z) has monomials in its diagonal in two important examples:

Case I: supp Lϕ is a subset of [0, 2]
Here Γ1 = Γ and G(z) = Γ1Z(z). Since the Smith canonical form of Z(z) has monomials in the diagonal, we conclude that

the Smith canonical form of G(z) has monomials in its diagonal.

Case II: supp Lϕ is a subset of [0, 3]
In this case Λ = [a1 a2 . . . as]T is an s× 1 matrix and Z1(z)+ ΛZ2(z) = z−(s−2)Υ(z), where

Υ(z) =



1+ a1z
s W−(s−2)

+ a1W
2zs · · · W−(s−2)2

+ a1W
2(s−2)zs

z+ a2z
s W−(s−3)z+ a2W

2zs · · · W−(s−2)(s−3)z+ a2W
2(s−2)zs

...
...

...

zs−2
+ as−1z

s zs−2
+ as−1W

2zs · · · zs−2
+ as−1W

2(s−2)zs

zs−1
+ asz

s Wzs−1
+ asW

2zs · · · Ws−2zs−1
+ asW

2(s−2)zs


.

It is obvious that the Smith canonical form of Υ(z) has monomials in the diagonal if and only if the Smith canonical form
of Z1(z) + ΛZ2(z) has monomials in the diagonal. To compute the Smith canonical form of Υ(z) we reduce it by means
of elementary transformations. An elementary row (column) transformation on a polynomial matrix is one of the following
operations: multiply any row (column) by a nonzero c ∈ C; interchange any two rows (columns); add to any row (column)
any other row (column) multiplied by an arbitrary polynomial p(z). Performing an elementary transformation on a matrix
does not change its Smith canonical form [11]. After some of these elementary column operations on Υ(z) we obtain the
equivalent s× (s− 1) matrix

∆(z) =



1+ a1z
s Ws−2

+ a1z
s

· · · W + a1z
s

z+ a2z
s z+ a2z

s
· · · z+ a2z

s

...
...

...

zs−2
+ as−1z

s Ws−3zs−2
+ as−1z

s
· · · W−2(s−2)zs−2

+ as−1z
s

zs−1
+ asz

s Ws−2zs−1
+ asz

s
· · · Wzs−1

+ asz
s

 .

All the s − 1-minors of ∆(z) containing the second row have as a factor the polynomial 1 + a2zs−1. We claim that, if the
remainder s−1 minor does not have the polynomial 1+ a2zs−1 as a factor, then the polynomials in the diagonal of the Smith
canonical form of ∆(z) are monomials. Indeed, the s× (s− 1) matrix

Θ(z) =



1+ a1z
s Ws−2

+ a1z
s

· · · W + a1z
s

z z · · · z
...

...
...

zs−2
+ as−1z

s Ws−3zs−2
+ as−1z

s
· · · W−2(s−2)zs−2

+ as−1z
s

zs−1
+ asz

s Ws−2zs−1
+ asz

s
· · · Wzs−1

+ asz
s


is equal to ∆(z) except in the second row. Moreover, the polynomial matrix Θ(z) is equivalent to zs−2Z(z) (recall that N = 3)
which trivially has monomials in the diagonal of its Smith canonical form. Summarizing we have the following result:
Assume that supp Lϕ ⊆ [0, 3], Γ1 ∈ Cs×s invertible. Let Γ2 = Γ1Λ with Λ = [a1 a2 . . . as]T. If the s−1 minor obtained from ∆(z)
by removing the second row does not have as a factor the polynomial 1+ a2zs−1, then the Smith canonical form of the matrix G(z)
has monomials in its diagonal.

The following example illustrates the result. Assume that s = 4. In this case, the minor of order 3 which appears in the
result is∣∣∣∣∣∣∣

1+ a1z
4 W2

+ a1z
4 W + a1z

4

z2
+ a3z

4 Wz2
+ a3z

4 W2z2
+ a3z

4

z3
+ a4z

4 W2z3
+ a4z

4 Wz3
+ a4z

4

∣∣∣∣∣∣∣ = 3(W −W2)z6(a4 − a1z
3).

As a consequence, if a4 +
a1
a2
6= 0 then 1+ a2z3 is not a factor of the minor (if a2 = 0 then it is straightforward to prove that

the Smith form of G(z) has monomials in the diagonal).

3.3. An easy illustrative example

Let ϕ(t) := N3(t) be the quadratic B-spline

N3(t) :=
t2

2
X[0,1)(t)+

(
3t − t2

−
3
2

)
X[1,2)(t)+

(3− t)2

2
X[2,3)(t),
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where X[a,b) denotes the characteristic function of the interval [a, b], and let L be the identity system. In this case,
supp Lϕ ⊆ [0, 3]. Taking s = 3 (that is, Ts = 2/3) we have the matrix

G(z) =



1
2
z+

1
2
z2

−
1
2
z+

1
2
z2

2
9
+

13
18

z+
1
8
z2 2

9
−

13
18

z+
1
8
z2

1
18

z−1
+

13
18
+

2
9
z −

1
18

z−1
+

13
18
−

2
9
z1

 .

A polynomial solution for [a1(z), a2(z), a3]G(z) = [1, 0], of degrees 7, 10 and 9 respectively, is obtained from the Smith
canonical form of G(z) (see Theorem 2) computed using MapleTM. This solution gives reconstruction functions Sj, j = 1, 2, 3,
supported on the intervals [−7, 2], [−10, 3] and [−9, 3] respectively.

3.4. A case-by-case practical solution: Solving a linear system

In this section, a new approach to the problem to seek reconstruction functions of compact support is showed. The
method is based on constructing and solving a linear system of equations. Let [a1(z), a2(z), . . . , as(z)] be a solution of Eq. (7).
Assume that aj(z) =

∑
n∈Z aj,nzn for j = 1, 2, . . . , s with just a finite set of nonzero coefficients aj,n. Then, the matrix equation

(7) leads to a system of linear equations. The key point is to choose a suitable finite set of nonzero coefficients in such a way
that we obtain a compatible linear system. This method avoids the computation of the Smith canonical form of G(z) and, it
gives polynomial solutions of Eq. (7) with less terms.

Without loss of generality, assume that supp Lϕ ⊆ [0,N] for some N ∈ N. Thus, the functions gj(z) can be written as in
Eq. (10). Let p := Ns− s− 2N; we try a solution [a1(z), a2(z), . . . , as(z)] of Eq. (7) of the form

a1(z) =
l+u∑

n=−N−l′−u′
a1,nz

n, aj(z) =
j−2+l∑

n=−N+j−1−l′
aj,nz

n, j = 2, 3, . . . , s,

where l = l′ = 0 and u = u′ = −1 if p = −2; l = l′ = 0, u = 0 and u′ = −1 if p = −1; u = u′ = 0 and l = l′ = p
2 if p ≥ 0 is even

and u = u′ = 0, l = p+1
2 , l′ = l − 1 if p ≥ 0 is odd (notice that, since s ≥ 2 and N ≥ 1 we have p ≥ −2). This choice leads to

a linear system as many equations as unknowns which, in most of the cases, comes to be compatible. Otherwise increasing
by one l when l = l′ or l′ when l 6= l′ leads to a new linear system with s − 1 more equations and with s more unknowns.
Thus, whenever Eq. (7) has a polynomial solution, the above procedure gives a solution in a finite number of steps.

3.5. The example revisited

Consider again the example in Section 3.3. The above described method gives the following sampling result:
Any function f ∈ VN3 can be recovered through the sampling formula

f (t) =
∑
n∈Z

[f (2n)S1(t − 2n)+ f (2n+ 2/3)S2(t − 2n)+ f (2n+ 4/3)S3(t − 2n)] , t ∈ R,

where the reconstruction functions are given by

S1(t) =
1

16
(N3(t + 3)− 3N3(t + 2)− 3N3(t + 1)+ N3(t)) ,

S2(t) =
1

16
(27N3(t + 1)− 9N3(t)) ,

S3(t) =
1

16
(−9N3(t + 1)+ 27N3(t)) , t ∈ R.

In this case, the reconstruction functions Sj, j = 1, 2, 3, are supported on the intervals [−3, 3], [−1, 3] and [−1, 3]
respectively.

4. Uniform approximation by using oversampled generalized formulas

In this Section we deal with the uniform approximation property for the generalized sampling formulas appearing in
Theorem 1. Concretely, associated with the sampling formula Eq. (5) we introduce the operator Γ , formally defined as,

(Γ f )(t) :=
∑
n∈Z

s∑
j=1

(Lf ) [(s− 1)n+ (j− 1)Ts] Sj (t − (s− 1)n) , t ∈ R. (11)

Under appropriate hypotheses we prove that, if the generator ϕ satisfies the Strang–Fix conditions of order m, then the
operator Γ provides approximation order m in the uniform norm for functions f in the Sobolev space Wm

∞
(R) = {f : ‖f (k)‖∞ <

∞, k = 0, 1, 2, . . . ,m}, i.e.,
‖Γhf − f‖∞ = O(hm) as h→ 0+,

where Γh := σhΓσ1/h and σhf := f (·/h), h > 0.
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At this point we introduce some further notation. Let Cb(R) be the Banach space of continuous bounded functions on
R taken with the L∞-norm. For a measurable function f : R → C, we denote |f |∞ := supt∈[0,1)

∑
n∈Z |f (t + n)|. Notice that

|f |∞ < ∞ for any continuous compactly supported function. Provided that |ϕ|∞ < ∞, the L∞-closure of the linear span of
the integer shifts of ϕ can be also expressed as (see [12]):

V∞ϕ =

{∑
n∈Z

cnϕ(t − n) : {cn}n∈Z ∈ c0(Z)

}
,

where c0(Z) denotes the Banach space of scalar sequences converging to zero taken with the norm ‖{cn}‖∞ := supn∈Z |cn|.
Notice that V∞ϕ ⊂ Cb(R). By ϕ̂we denote the Fourier transform of the generator ϕ, ϕ̂(w) :=

∫
∞

−∞
ϕ(t)e−iwtdt.

Our approximation result is based on the following theorem whose proof can be found in [12, Theorem 5.2]:

Theorem 4. Assume that ess supt∈R
∑

n∈Z |ϕ(t+n)|(1+|t+n|)m <∞ for some m ∈ N. If the generator ϕ satisfies the Strang–Fix
conditions of order m, i.e.,

ϕ̂(0) 6= 0, ϕ̂(k)(2πn) = 0, k = 0, 1, . . . ,m− 1, n ∈ Z \ {0},

then, for each f ∈ Wm
∞

(R) and h > 0 there exists a function g ∈ σhV∞ϕ such that

‖g − f‖∞ ≤ K ‖f (m)
‖∞ hm,

where the constant K is independent of f and h.

Lemma 1. Assume that the sampling function Sj satisfies |Sj|∞ <∞ for each j = 1, 2, . . . , s. Then, the following statements hold:
(a) The linear map Γ : Cb(R) −→ L∞(R) defines a bounded operator.
(b) For any g ∈ V∞ϕ we have that Γg = g.

Proof. For f ∈ Cb(R), consider the sequence mf ,j given by

{mf ,j[n] := (Lf ) ((s− 1)n+ (j− 1)T)}n∈Z.

For L a linear system of the type (Lf )(t) = f (t+ d), t ∈ R, trivially one has ‖mf ,j‖`∞ ≤ ‖f‖∞; whenever L is a linear system
of the type Lf = f ∗ h (h ∈ L1(R) ∩ L2(R)) one has ‖mf ,j‖`∞ ≤ ‖h‖1‖f‖∞. Since |Sj|∞ < ∞, the function Γ f is well defined
for all t ∈ R, it belongs to L∞(R) and Γ is a well-defined bounded operator. Indeed,

‖Γ f‖∞ ≤
s∑

j=1
‖mf ,j‖`∞ |Sj|∞ ≤ K‖f‖∞,

for some constant K independent of f .
Proving (b), notice that Γ f = f for each f in span{ϕ(· − n)}n∈Z. For g ∈ V∞ϕ let {gk}k∈N be a sequence in span{ϕ(· − n)}n∈Z

such that ‖gk − g‖∞ → 0 as k→∞. Since

0 ≤ ‖gk − Γg‖∞ = ‖Γgk − Γg‖∞ ≤ ‖Γ‖ ‖gk − g‖∞ → 0 as k→∞,

we obtain that Γg = g. �

Theorem 5. Assume that ess supt∈R
∑

n∈Z |ϕ(t + n)|(1 + |t + n|)m < ∞ for some m ∈ N and the sampling functions Sj satisfy
|Sj|∞ <∞ for each j = 1, 2, . . . , s. If the generator ϕ satisfies the Strang–Fix conditions of order m, then for each f ∈ Wm

∞
(R) and

h > 0, we have

‖Γhf − f‖∞ ≤ C ‖f (m)
‖∞ hm,

where the constant C is independent of f and h.

Proof. Notice that, as a consequence of Lemma 1(a), the linear operator Γh : Cb(R)→ L∞(R) is bounded. Moreover, we can
easily deduce that ‖Γh‖ = ‖Γ‖. From Lemma 1(b) we obtain that Γhg = g for each g ∈ σhV∞ϕ . Thus, for each f ∈ Wm

∞
(R) and

g ∈ σhV∞ϕ we obtain

‖f − Γhf‖∞ ≤ ‖f − g‖∞ + ‖g − Γhf‖∞ ≤ (1+ ‖Γh‖)‖f − g‖∞ = (1+ ‖Γ‖)‖f − g‖∞.

Now, the result comes out from Theorem 4. �

The hypotheses in Theorem 5 are clearly satisfied for the sampling formulas in Section 3, where the generator ϕ, Lϕ and
the sampling functions Sj, j = 1, 2, . . . , s, have compact support. For instance, since the B-spline N3 satisfies the Strang–Fix
conditions of order 3, the operator Γ associated with the sampling formula in Section 3.5 has approximation order 3. That
is, for any f ∈ W3

∞
(R),∣∣∣∣∣f (t)−∑

n∈Z
f (2nh)S1

(
t

h
− 2n

)
+ f

(
2nh+

2
3
h
)
S2

(
t

h
− 2n

)
+ f

(
2nh+

4
3
h
)
S3

(
t

h
− 2n

)∣∣∣∣∣ ≤ C ‖f ′′′‖∞ h3

for all t ∈ R and h > 0, where the constant C is independent of f and h.
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Notice that here the sampling period is (2/3)h instead of h, the sampling period for the corresponding interpolatory
formula which satisfies the same approximation order (see [12]). As a counterpart, our reconstruction functions Sj, j = 1, 2, 3,
have compact support.

5. Conclusions

The recovery of a function f in a shift-invariant space Vϕ from the sequence of samples {(Lf ) (n)}n∈Z, where Lf denotes
a filtered version of f , through a sampling formula as

f (t) =
∑
n∈Z

Lf (n)S(t − n), t ∈ R,

is a well-established problem. But, in general, the reconstruction function S is not compactly supported. In this paper we deal
with the problem of obtaining reconstruction functions having compact support. This is done in the light of the generalized
sampling theory by using the oversampling technique. Under appropriate hypotheses, we obtain a necessary and sufficient
condition in this direction. It involves the Smith canonical form of a polynomial matrix (the so-called modulation matrix
in the filter bank jargon). Besides, the obtained sampling formulas provide approximation schemes for the functions in a
Sobolev space Wm

∞
(R) with respect to the uniform norm. All the results in the paper are illustrated with an example in the

shift-invariant space generated by the quadratic B-spline.
To end this section we point out two possible generalizations: The first one concerns the use of a larger oversampling

rate, considering the systems

(L1f )(t) = Lf (t), (L2f )(t) = Lf
(
t +

r

s

)
, . . . , (Lsf )(t) = Lf

(
t + (s− 1)

r

s

)
,

and the samples {Ljf (rn)}n∈Z, j=1,2,...,s, where r and s are any natural numbers with s > r. The corresponding sampling
formulas allow the recovering of the functions in Vϕ from their samples in the lattice (r/s)Z. The second one concerns getting
compactly supported reconstruction functions in a generalized sampling formulas as

f (t) =
∑
n∈Z

r∑
j=1

(Ljf )(rn) Sj(t − rn), t ∈ R,

where the samples of r filtered versions Ljf of f are included.
Finally, it is worth to mention that, in the present paper, we have only dealt with the univariate case. The multivariate

case can be also studied, but in this case the Smith canonical form theory should be substituted by the more involved Gröbner
base theory.
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