
DE BRANGES SPACES, ANALYTIC KRAMER KERNELS
AND LAGRANGE-TYPE INTERPOLATION SERIES
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Abstract. The classical Kramer sampling theorem provides a method
for obtaining orthogonal sampling formulas. In particular, when the in-
volved kernel is analytic in the sampling parameter it can be stated in
an abstract setting of reproducing kernel Hilbert spaces of entire func-
tions which includes as a particular case the classical Shannon sampling
theory. This abstract setting allows us to obtain a sort of converse result
and to characterize when the sampling formula associated with an ana-
lytic Kramer kernel can be expressed as a Lagrange-type interpolation
series. On the other hand, the de Branges spaces of entire functions
satisfy orthogonal sampling formulas which can be written as Lagrange-
type interpolation series. In this work some links between all these ideas
are established.

1. Statement of the problem

The classical Kramer sampling theorem provides a method for obtaining
orthogonal sampling theorems [4, 11, 23]. The statement of this general
result is as follows. Let K be a complex function defined on D × I, where
I ⊂ R is an interval and D is an open subset of R, and such that for every
t ∈ D the sections K( · , t) are in L2(I). Assume that there exists a sequence
of distinct real numbers {tn} ⊂ D, indexed by integers, such that {K(x, tn)}
is a complete orthogonal sequence of functions for L2(I). Then for any F of
the form

(1) F (t) =
∫
I
f(x)K(x, t) dx , t ∈ D ,

where f ∈ L2(I), we have

(2) F (t) = lim
N→∞

∑
|n|≤N

F (tn)Sn(t) ,
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with

(3) Sn(t) :=

∫
I K(x, t)K(x, tn) dx∫

I |K(x, tn)|2 dx
.

The series in (2) converges absolutely and uniformly on subsets of D where
‖K(·, t)‖L2(I) is bounded.

The Kramer theorem has played a very significant role in sampling theory,
interpolation theory, signal analysis and so forth; see the survey articles
[2, 3]. Besides, it has been the cornerstone for a significant mathematical
literature on the topic of sampling theorems associated with differential or
difference problems which has flourished for the past few years. As for a
small but significant selection of examples see, for instance, [4, 7, 23] and
references therein.

If D is an open subset of C, which is our assumption from now on, a pos-
sibility of considering kernels analytic in the sampling parameter t appears;
look at [5] for implementation of this idea. If D is just the whole of C, any
function F defined by (1) is an entire function, as are all the sampling func-
tions (3). This gives rise to think of analytic Kramer kernels; for a complete
meaning see Definition 1.

The abstract version of the analytic Kramer sampling theorem consists in
replacing the space L2(I) by an arbitrary separable complex Hilbert space,
H say. A given a H-valued function K defined on C, for each x ∈ H,
which plays a role of the Kramer kernel, gives rise to a reproducing kernel
Hilbert space HK within which the sampling is performed. A little bit
more 1, assuming the existence of two sequences {zn}∞n=1 in C and {an}∞n=1

in C \ {0} such that K(zn) = anxn for each n ∈ N the analytic Kramer
theorem in its abstract version says there is a sequence {Sn}∞n=1 ⊂ HK of
sampling functions such that

(4) f(z) =
∞∑
n=1

f(zn)
Sn(z)
an

, z ∈ C .

In regarding to formula (4) some challenging problems arise. The first
one is to decide when a pointwise convergent sampling formula in HK as
(4) comes out from a Kramer kernel (see Section 2.3). The second one is to
give a necessary and sufficient condition to ensure that the corresponding
sampling formula can be written as a Lagrange-type interpolation series.
The latter is not always true as a counterexample in Section 2.5 will show.
Roughly speaking, the aforesaid necessary and sufficient condition concerns
the stability of functions to belong to the space HK on removing a finite
number of zeros (see Section 2.5 infra). The third one is to decide when a
space HK is a de Branges one (see Section 3 for the details on these spaces).
These spaces can be seen as particular cases of HK spaces where orthogonal

1 Details are given in the next section
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sampling formulas exist that can be expressed as Lagrange-type interpola-
tion series. All these steps will be carried out throughout the remaining
sections.

2. Analytic Kramer sampling theory within the space HK
Throughout this paper 〈 · , −〉 followed by a subscript indicating the

Hilbert space in question stands always for an inner product.

2.1. More on the space HK . Suppose we are given a separable complex
Hilbert space and an abstract kernel K which is nothing but a H-valued
function on C. Set fx(z) := 〈K(z), x〉H and denote by HK the collection of
all such functions fx, x ∈ H. It is a reproducing kernel Hilbert space (RKHS
in short) coming from the transforms 2 K(z), z ∈ C, and corresponding to
the kernel (z, w) 7→ 〈K(z),K(w)〉H. Notice that the mapping T given by

(5) H 3 x T7−→ fx ∈ HK
is an antilinear mapping from H onto HK . It is injective if and only if the set
{K(z)}z∈C is complete inH. In particular, if there exists a sequence {zn}∞n=1

in C such that {K(zn)}∞n=1 is a Riesz basis for H, then T is an anti-linear
isometry from H onto HK . Recall that a Riesz basis in a separable Hilbert
space H is the image of an orthonormal basis by means of a boundedly
invertible operator. Any Riesz basis {xn}∞n=1 has a unique biorthonormal
(dual) Riesz basis {yn}∞n=1, i.e., 〈xn, ym〉H = δn,m, such that the expansions

x =
∞∑
n=1

〈x, yn〉H xn =
∞∑
n=1

〈x, xn〉H yn

hold for every x ∈ H (see [22] for more details and proofs).
The convergence in the norm ‖ ·‖HK

implies pointwise convergence which
is uniform on those subsets of C where the function z 7→ ‖K(z)‖H is
bounded.

Like in the classical case the following result holds: HK is a RKHS of
entire functions if and only if the kernel K is analytic in C ([21, p. 266]).
Another characterization of the analyticity of the functions in HK is given
in terms of Riesz bases. Suppose that a Riesz basis {xn}∞n=1 for H is given
and let {yn}∞n=1 be its dual Riesz basis; expanding K(z), where z ∈ C is
fixed, in this basis we obtain

K(z) =
∞∑
n=1

〈K(z), yn〉H xn ,

where the coefficients 〈K(z), yn〉H as functions in z are inHK . The following
result holds.

2 This kind of construction has been appearing for long time in many diverse circum-
stances, an extensive assortment of instances can be found in the monograph [16]; for a
general setup look at [20].
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Lemma 1. Let {xn}∞n=1 and {yn}∞n=1 be a pair of dual Riesz bases for H.
Then, HK is RKHS of entire functions if and only if all the functions

(6) Sn(z) := 〈K(z), yn〉H, z ∈ C

are entire and ‖K(·)‖H is bounded on compact sets of C.

Proof: The necessary condition is obvious. The sufficient condition is a
straightforward consequence of Montel’s theorem. Indeed, K will be analytic
in C if and only if the function f(z) := 〈K(z), x〉H is analytic in C for each
x ∈ H. By using the continuity of the inner product we get

(7) f(z) = 〈K(z), x〉H = 〈
∞∑
n=1

Sn(z)xn, x〉H =
∞∑
n=1

Sn(z) 〈xn, x〉H .

Applying the Cauchy-Schwarz inequality we get∣∣∣∣ N∑
n=1

Sn(z) 〈xn, x〉H
∣∣∣∣2 ≤ ( N∑

n=1

|Sn(z)|2
)( N∑

n=1

|〈xn, x〉H|2
)
≤
∞∑
n=1

|Sn(z)|2 ‖x‖2 .

The Riesz basis condition implies that there exist two constants 0 < A ≤ B
such that A‖K(z)‖2H ≤

∑∞
n=1 |Sn(z)|2 ≤ B‖K(z)‖2H. As a consequence, the

partial sums in the series of (7) are uniformly bounded on compact sets of
C. Consequently, Montel’s theorem assures the existence of a subsequence
which will converge to an entire function which necessarily coincides with
f . Hence, f is an entire function. �

2.2. Sampling in the space HK . Consider the data

(8) {zn}∞n=1 ∈ C and {an}∞n=1 ∈ C \ {0}.

Definition 1. An analytic kernel K : C −→ H is said to be an analytic
Kramer kernel (with respect to the data (8)) if it satisfies K(zn) = anxn,
n ∈ N, for some Riesz basis {xn}∞n=1 of H. A sequence {Sn}∞n=1 of functions
in HK is said to be have the interpolation property (with respect to the data
(8)) if

(9) Sn(zm) = an δn,m .

An analytic kernel is an analytic Kramer one if and only if the sequence
of functions {Sn}∞n=1 in HK given by (6), where {yn}∞n=1 is the dual Riesz
basis of {xn}∞n=1, has the interpolation property with respect to the same
data (8).

Under the notation introduced so far the following abstract version of the
classical Kramer sampling theorem sampling [11] holds (see also [10]):

Theorem 2 (Kramer sampling theorem). Let K : C −→ H be an ana-
lytic Kramer kernel, and assume that the interpolation property (9) holds
for some sequences {zn}∞n=1 in C and {an}∞n=1 in C \ {0}. Let HK be the
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corresponding RKHS of entire functions. Then any f ∈ HK can be recovered
from its samples {f(zn)}∞n=1 by means of the sampling series

(10) f(z) =
∞∑
n=1

f(zn)
Sn(z)
an

, z ∈ C .

This series converges absolutely and uniformly on compact subsets of C.

Proof: First notice that limn→∞ |zn| = +∞; otherwise the sequence {zn}∞n=1

contains a bounded subsequence and hence, the entire function Sn ≡ 0 for
all n ∈ N which contradicts (9). The anti-linear mapping T given by (5) is
a bijective isometry between H and HK . As a consequence, the functions
{Sn = T (yn)}∞n=1 form a Riesz basis for HK ; let {Tn}∞n=1 be its dual Riesz
basis. Expanding any f ∈ HK in this basis we obtain

f(z) =
∞∑
n=1

〈f, Tn〉HK
Sn(z) .

Moreover,

(11) 〈f, Tn〉HK
= 〈x, xn〉H =

〈
K(zn)
an

, x

〉
H

=
f(zn)
an

.

Since a Riesz basis is an unconditional basis, the sampling series will be
pointwise unconditionally convergent and hence, absolutely convergent. The
uniform convergence is a standard result in the setting of the RKHS theory
since z 7→ ‖K(z)‖H is bounded on compact subsets of C. �

Riesz bases theory assures the existence of two constants 0 < A ≤ B such
that

A‖f‖2HK
≤
∞∑
n=1

|f(zn)/an|2 ≤ B‖f‖2HK
for all f ∈ HK .

In the case that the Riesz basis {xn}∞n=1 is an orthonormal one we say that
(10) is an orthogonal sampling formula.

2.3. A converse result. An interesting converse problem is to decide when
a sampling formula as (10), pointwise convergent in HK , implies the Kramer
kernel condition for K. From formula (10) in Theorem 2 we derive that:

• The sequence
{
f(zn)/an

}∞
n=1

belongs to `2(N) for any f ∈ HK , and
•
∑∞

n=1 αnSn(z) = 0 for all z ∈ C and {αn}∞n=1 ∈ `2(N) implies αn = 0
for all n ∈ N, due to the uniqueness of a Riesz basis expansion in
the RKHS HK .

It is worth to point out that these two conditions are also sufficient to prove
that K is an (analytic) Kramer kernel. For a proof see [9] under minor
changes.
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2.4. Existence of analytic Kramer kernels. As it was proved in [6],
associated with an arbitrary sequence of complex numbers {zn}∞n=1 such
that limn→∞ |zn| = +∞ there exists an analytic Kramer kernel. Indeed,
given the sequence {zn}∞n=1, consider a sequence {an}∞n=1 in C \ {0} such
that

∑
zn 6=0 |an/zn|2 < ∞ (set ak = 1 in the case zk = 0). Now, let P be

an entire function having only simple zeros at {zn}∞n=1; this is allowed by
the theorem of Weierstrass [22, p. 54]. In a separable Hilbert space H with
dual Riesz bases {xn}∞n=1 and {yn}∞n=1 define the mapping K : C −→ H as:

K(z) :=
∞∑
n=1

anP (z)
z − zn

xn ∈ H ,

where the convergence of the series is in the norm of H. Then K defines an
analytic Kramer kernel and the stable sampling formula for the correspond-
ing RKHS HK reads:

f(z) =
∞∑
n=1

f(zn)
P (z)

(z − zn)P ′(zn)
, z ∈ C ,

for each f ∈ HK .

The entire functions Sn(z) =
anP (z)
z − zn

= 〈K(z), yn〉H, n ∈ N, satisfy the

interpolation condition Sn(zm) = amP
′(zm)δn,m. In addition, the function

z 7→ ‖K(z)‖H is uniformly bounded on compact subsets of C. The Riesz
basis condition on {yn}∞n=1 gives the existence of a constant A such that

‖K(z)‖2H ≤ A
∞∑
n=1

∣∣∣∣anP (z)
z − zn

∣∣∣∣2 , z ∈ C ,

and the series is uniformly bounded on compact subsets (see [6]). Thus, K
defines an analytic Kramer kernel. As a consequence, Theorem 2 assures
that any function f ∈ HK can be recovered from its samples {f(zn)}∞n=1 by
means of the Lagrange-type interpolation formula
(12)

f(z) =
∞∑
n=1

f(zn)
anP (z)/(z − zn)

an P ′(zn)
=
∞∑
n=1

f(zn)
P (z)

(z − zn)P ′(zn)
, z ∈ C .

2.5. Lagrange-type interpolation series. A more difficult question con-
cerns whether the sampling expansion (10) can be written, in general, as
a Lagrange-type interpolation series as in (12). As it was proved in [6] for
the case where {xn}∞n=1 in Definition 1 is an orthonormal basis for H, a
necessary and suficient condition involves the following algebraic property:

Definition 2. A space H of entire functions has the zero-removing property
(ZR property hereafter) if for any g ∈ H and any zero w of g the function
g(z)/(z − w) belongs to H.
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The classical Paley-Wiener space PWπσ :=
{
f ∈ L2(R)∩C(R), supp f̂ ⊆

[−πσ, πσ]
}

, where f̂ stands for the Fourier transform of f , clearly satisfies
the ZR property. Indeed, the Whittaker-Shannon-Kotel’nikov sampling for-
mula for f ∈ PWπσ (cf. [23, p. 16])

f(z) =
∞∑

n=−∞
f

(
n

σ

)
sinπ(σz − n)
π(σz − n)

, z ∈ R ,

can be written as a Lagrange-type interpolation series by taking P (z) =
(sinπσz)/π. Without using Theorem 3, the ZR property follows from the
characterization of PWπσ which uses the classical Paley–Wiener Theorem
[22, p.101], i.e.,

PWπσ =
{
f ∈ H(C) : |f(z)| ≤ A eπσ|z|, f |R ∈ L2(R)

}
.

On the other hand, it is easy to construct analytic Kramer kernels K such
that the corresponding spaces HK do not satisfy the ZR property. Indeed,
let K : C→ L2[−π, π] be the kernel defined by [K(z)](x) := 1√

2π
ei z2x. It is

an analytic Kramer kernel and its Taylor series around z = 0 is given by

[K(z)](x) =
∞∑
k=0

(ix)kz2k

k!

Hence, the Taylor series of any function f(z) = 〈K(z), F 〉L2[−π,π] in HK
where F ∈ L2[−π, π] is of the form

f(z) =
∞∑
k=0

ck
k!
z2k , z ∈ C ,

where ck = 〈(ix)k, F 〉, i.e., f is an even function. Let G be a nonzero
function in L2[−π, π] such that

∫ π
−π G = 0. The function G is orthogonal to

K(0), and consequently, the entire function g(z) = 〈K(z), G〉L2[−π,π] verifies
g(0) = 0. We have,

g(z)
z

=
∞∑
k=0

ck
k!
z2k−1 , where ck = 〈(ix)k, G〉

Clearly, the entire function g(z)/z does not belong to HK and therefore, the
space HK does not satisfy the ZR property.

For the case of analytic Kramer kernels K one can find a necessary and
sufficient condition assuring when the corresponding spaces HK satisfy the
ZR property:

Theorem 3. Let HK be a RKHS of entire functions obtained from an ana-
lytic Kramer kernel K with respect to the sequence {zn}∞n=1 ⊂ C. Then, the
sampling formula (10) for HK can be written as a Lagrange-type interpola-
tion series if and only if the space HK satisfies the ZR property.
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The proof follows the same steps, with only minor changes, that those in
[6, Theorem 3.3] for analytic orthogonal Kramer kernels.

3. Sampling in de Branges spaces

Paley-Wiener spaces can be seen as special cases of a more general theory
of Hilbert spaces of entire functions due to de Branges. We start this section
by giving some preliminaries on de Branges spaces needed in the sequel [1,
p. 50] (see also [12]). For an entire function f define the function f∗ as

(13) f∗(z) := f(z̄), z ∈ C.
Definition 3. Let E be an entire function verifying |E(x−i y)| < |E(x+i y)|
for all y > 0. The de Branges space H(E) is the set of all entire functions
F such that

‖F‖2E :=
∫ ∞
−∞

∣∣∣F (t)
E(t)

∣∣∣2 dt <∞,

and such that both ratios F/E and F ∗/E, where F ∗ is defined by (13), are
of bounded type and of non-positive mean type in the upper half-plane.

The structure function or de Branges function E has no zeros in the upper
half plane. A de Branges function E is said to be strict if it has no zeros
on the real axis. We require that F/E and F ∗/E be of bounded type and
nonpositive mean type in C+. A function is of bounded type if it can be
written as a quotient of two bounded analytic functions in C+ and it is of
nonpositive mean type if it grows no faster than e εy for each ε > 0 as y →∞
on the positive imaginary axis {i y : y > 0}. A de Branges space H(E)
such that E is a strict de Branges function satisfies the ZR property [1, p.
52].

Any de Branges function E can be written as E(z) = A(z)− iB(z), where
A and B are entire functions, real-valued on R, given by

A(z) =
1
2
(
E(z) + E∗(z)

)
, B(z) =

1
2 i
(
E(z)− E∗(z)

)
The functions A and B have only real zeros, and these zeros interlace. If E
has no real zeros, then all the zeros are simple zeros.

The Paley-Wiener space PWπσ corresponds to the de Branges space
H(Eσ) where Eσ(z) = exp(− iπσz).

A de Branges space H(E) is a reproducing kernel Hilbert space with inner
product

〈f, g〉E =
∫ ∞
−∞

f(t)g(t)
|E(t)|2

dt .

Its reproducing kernel

(14) k(w, z) =
B(z)A(w)−A(z)B(w)

π(z − w)
, z, w ∈ C ,

has the property that for each f ∈ H(E), there holds

f(w) = 〈f, k(w, · )〉E for all w ∈ C .
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3.1. Sampling in a de Branges space H(E). The existence of a sequence
{tn} in C such that the corresponding sequence {k(tn, · )} forms an orthog-
onal basis for H(E) implies a sampling formula in this space. Namely, any
function f ∈ H(E) can be recovered from its samples {f(tn)} through the
sampling formula:

(15) f(z) =
∑
n

f(tn)
k(tn, z)
k(tn, tn)

, z ∈ C .

For a proof, expand f ∈ H(E) with respect to the orthonormal basis{
k(tn, · )/

√
k(tn, tn)

}
obtaining

f =
∑
n

〈f, k(tn, · )〉E
k(tn, · )
k(tn, tn)

=
∑
n

f(tn)
k(tn, · )
k(tn, tn)

in H(E) .

The convergence is also absolute and uniform on compact subsets of C.
Following de Branges book [1] there exist sequences {tn} in R with the

above property. Indeed, let ϕ be a phase function associated with E, i.e.,
a continuous function ϕ(x) of real x such that E(x) eiϕ(x) is real-valued for
all x ∈ R (see [1, p. 54]), and let α be a real number such that the function
eiαE(z) − e− iαE∗(z) does not belong to H(E) (there is at most one real
number α mod π, such that eiαE(z) − e− iαE∗(z) ∈ H(E) [1, p. 54]).
According to Theorem 22 in [1, p. 55], the sequence of real numbers {tn}
satisfying ϕ(tn) = α mod π gives the orthogonal basis {k(tn, · )} for H(E).

It is important to mention that the paper [14], by Nashed and Walter,
is the first reference where sampling in connection with de Branges spaces
is introduced. Now we show that the sampling formula (15) is of Lagrange
interpolation type.

Theorem 4. There exists an entire function Q having only simple zeros at
{tn} such that (z − tn)k(tn, z) = σnQ(z) for some nonzero constants σn,
which allows us to write expansion (15) as the Lagrange-type interpolation
formula

(16) f(z) =
∑
n

f(tn)
Q(z)

(z − tn)Q′(tn)
, z ∈ C .

Proof: Whithout loss of generality we can assume that the function E
is strict, i.e., it has no real zero. We prove that the only zeros of the
function Rn := k(tn, · ) are given by {tr}r 6=n. Suppose that Rn(w) = 0;
since the space H(E) satisfies the ZR property (see [1, p. 52]) we have that
Rn(z)/(z − w) is in H(E). Hence, the functions Rn

z − tn
z − w

Rn(z) = Rn(z) +
w − tn
z − w

Rn(z), z ∈ C

also belong to H(E). If w /∈ {tr}r 6=n, the analytic function z 7→ z−tn
z−wRn(z)

vanishes at the sequence {tr} which implies that Rn ≡ 0, to give a contra-
diction. In addition, the zeros of Rn are simple. Indeed, supposing tm is
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a multiple zero of Rn and proceeding as above, we get that the function
z 7→ z−tn

z−tmRn(z) belongs to H(E) and vanishes at {tr} which again implies
that Rn ≡ 0.

Consequently, choose an entire function P having only simple zeros at
{tn}, then for each n there exists an entire function An without zeros such
that (z− tn)Rn(z) = P (z)An(z), z ∈ C. Next, we prove that there exists an
entire function without zeros A and a sequence {σn} in C \ {0} such that
An(z) = σnA(z) for all z ∈ C. For m 6= n the function z 7→ z−tn

z−tmRn(z) in
H(E) has its zeros at {tr}r 6=m. Thus the sampling formula (15) gives

z − tn
z − tm

Rn(z) = [(tm − tn)R′n(tm)]
Rm(z)
k(tm, tm)

, z ∈ C .

Fixing m = 1, we conclude that An(z) = σnA(z) where A = A1 and
σn = (t1 − tn)R′n(t1)/k(t1, t1) 6= 0 for n ∈ N \ {1} and σ1 = 1. Hence,
taking Q(z) := P (z)A(z), we have that k(tn, z) = σnQ(z)

z−Tn
for z 6= tn and

k(tn, tn) = σnQ
′(tn). Substituting this in (15) we derive the Lagrange-type

interpolation series (16). �

3.2. Some illustrative example. Now we connect the sampling results
in a de Branges space to a boundary problem involving the Bessel differ-
ential equation. For ν ≥ −1/2 consider the second order differential Bessel
equation:

(17) −u′′ +

(
ν2 − 1

4

t2

)
u = zu , t ∈ (0, 1) ,

and the boundary condition u(0) = 0 which is satisfied by the solution
uz(t) =

√
tJν(t

√
z) of (17). Following [13], since uz(1) = Jν(

√
z) and

u′z(1) = 1
2Jν(
√
z) +

√
zJ ′ν(
√
z) the associated Weyl inner function Θν as-

sociated with the Weyl-Titchmarsh function m(z) = −u′
z(1)
uz(1) is:

(18) Θν(z) =
√
zJ ′ν(
√
z) + (1/2 + i)Jν(

√
z)√

zJ ′ν(
√
z) + (1/2− i)Jν(

√
z)
.

Given an inner function Θ, we say that a strict de Branges function E is a
de Branges function of Θ if Θ = E∗/E where E∗(z) = E(z).

It is well known that Jν(z) = zνGν(z) where Gν is an even real entire
function and Gν(0) 6= 0. The function Fν(z) = zG′ν(z) is also an even real
entire function. Since zJ ′ν = zν(νGν + Fν), we can write (18) as

Θν(z) =
Fν(
√
z) + (1/2 + ν + i)Gν(

√
z)

Fν(
√
z) + (1/2 + ν − i)Gν(

√
z)
.

The function
Eν(z) = Fν(

√
z) + (1/2 + ν − i)Gν(

√
z)
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is a de Branges function of Θν . Notice that Eν does not vanish at z = 0 and
therefore it has no zeros on R. Indeed, Eν(r) = 0 with r ∈ R \ {0} implies
Gν(r) = Fν(r) = 0 and, as a consequence, Jν(r) = J ′ν(r) = 0.

In what follows, we assume that ν = 1/2. In this case

J1/2(z) =

√
2
πz

sin z

and, hence

G1/2(z) = z−1/2J1/2(z) =

√
2
π

sin z
z

, F1/2(z) = zG′1/2(z) =

√
2
π

z cos z − sin z
z

.

Next we deduce some sampling expansions in de Branges space H(E1/2).
Assuming that E1/2(z) = A1/2(z)− iB1/2(z), in our case,

A1/2(z) = F1/2(
√
z) +G1/2(

√
z) , B1/2(z) = G1/2(

√
z) .

A phase function φ for the space H(E1/2) is given by

φ(x) = − arctan
−G1/2(

√
x)

F1/2(
√
x) +G1/2(

√
x)
.

For a given real number α, the sequence {rαn} should verify

(19) φ(rαn) = α mod π

Thus, for α = π/2 the points rπ/2n are the zeros of the function A1/2,
and for α = 0 the points r0

n are the zeros of the function B1/2. For these
sequences {rαn} the sequence {k(rαn , z)} is an orthogonal system for H(E1/2).
Moreover, the sequence {k(rαn , z)} is an orthogonal basis for H(E1/2) if and
only if the function eiαE(z) − e− iαE∗(z) does not belong to H(E1/2) [1].
This occurs for α ∈ {0, π/2}:

For α = 0 we have that eiαE1/2(z)− e− iαE∗1/2(z) = E1/2(z)−E∗1/2(z) =
2 iB1/2(z) so that we need to check that B1/2 /∈ H(E1/2). To this end, we
check that the function B1/2/E1/2 does not belong to L2(R). For x ∈ R,
one gets∣∣∣∣B1/2(x)

E1/2(x)

∣∣∣∣2 =
B2

1/2(x)

A2
1/2(x) +B2

1/2(x)
=

sin2(
√
x)

x cos2(
√
x) + sin2(

√
x)

/∈ L1(R) .

Having in mind that the points {r0
n} are the zeros of the functionB1/2(z) =

G1/2(
√
z), that is, r0

n = (nπ)2 with n = 1, 2, . . . , for each f ∈ H(E1/2) the
following sampling formula holds:

(20) f(z) =
∞∑
n=1

f(n2π2)
k(n2π2, z)

k(n2π2, n2π2)
, z ∈ C .

Having in mind (14) we have that

k(n2π2, z)
k(n2π2, n2π2)

=
2(−1)nn2π2 sin(

√
z)

(z − n2π2)
√
z
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The sampling expansion (20) can be written as the Lagrange-type interpo-
lation series:

f(z) =
∞∑
n=1

f(n2π2)
Q(z)

(z − n2π2)Q′(n2π2)
, z ∈ C ,

where Q(z) =
sin
√
z√

z
for z ∈ C.

For α = π/2 the points of the sequence {rπ/2n } are the zeros of the function
A1/2, that is, they are the solutions of

A1/2(z) = F1/2(
√
z) +G1/2(

√
z) =

√
2
π

cos(
√
z) = 0 .

Hence, rπ/2n = (2n − 1)2 π2

4 with n = 1, 2, . . . . In this case, the function
eiαE1/2(z) − e− iαE∗1/2(z) equals i(E1/2(z) + E∗1/2(z)) = 2 iA1/2(z). As
before, A1/2 /∈ H(E1/2) because the function A1/2/E1/2 does not belong to
L2(R). Indeed,∣∣∣∣A1/2(x)

E1/2(x)

∣∣∣∣2 =
A2

1/2(x)

A2
1/2(x) +B2

1/2(x)
=

x cos2(
√
x)

x cos2(
√
x) + sin2(

√
x)

/∈ L1(R)

Thus, any function f ∈ H(E1/2) can be expanded as:

f(z) =
∞∑
n=1

f
(
[(2n− 1)π]2/4

) k
((

2n−1
2

)2
π2, z

)
k
((

2n−1
2

)2
π2,
(

2n−1
2

)2
π2
)

=
∞∑
n=1

f
(
[(2n− 1)π]2/4

) Q(z)(
z − [(2n− 1)π]2/4

)
Q′([(2n− 1)π]2/4)

, z ∈ C ,

where Q(z) = cos
√
z for z ∈ C.

Any de Branges space H(E) can be seen as a HK space (see Corollary
10 below) where K is an analytic Kramer kernel. But this kernel K is not
unique. For instance, for the space H(E1/2) above consider the kernel K
defined by

[K(z)](t) =

√
2
π

sin t
√
z√

z
, t ∈ [0, 1] , z ∈ C

For all z ∈ C the function K(z) belongs to L2[0, 1] and the map C 3 z 7→
K(z) ∈ L2[0, 1] is analytic. Moreover, the anti-linear map

L2[0, 1]→ H(E1/2) , f 7→
∫ 1

0
[K(z)](t)f(t) dt

is an isometric map (see [13]).
The challenging problem is to determine when a HK space is equal iso-

metrically to a de Branges space.
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3.3. A new characterization of de Branges spaces. Consider H a re-
producing kernel Hilbert space of entire functions on C with reproducing
kernel k. In this section we give a new characterization for being H a de
Branges space. To this end, we use the following classical characterization
of a de Branges space which can be found in [1, p. 57]:

Theorem 5. A Hilbert space H of entire functions is equal isometrically to
some de Branges space H(E) if and only if the following conditions hold:

B1. Whenever f ∈ H and ω is a nonreal zero of f , the function

g(z) :=
z − ω
z − ω

f(z)

belongs to H and ‖g‖ = ‖f‖.
B2. For each ω 6∈ R the linear mapping H 3 f → f(ω) ∈ C is continuous.
B3. The function f∗ defined as in (13) belongs to the space, and ‖f∗‖ =
‖f‖.

Now, suppose H is a Hilbert space of entire functions on C and k is its
reproducing kernel. The following is a rather minor variation of Theorem B
in [19] as well as of the reproducing Hilbert space test identified as (η) in
[20].

Lemma 6. Suppose Ω is a set of uniqueness of H. A complex function f
is in H if and only if there C > 0 such that
(21)∣∣∣ N∑

i=0

λif(zi)
∣∣∣2 ≤ C2

N∑
i,j=0

λiλ̄jk(zi, zj), z0, . . . , zN ∈ Ω, λ0, . . . λN ∈ C.

A couple of words for the proof: Due to (21), the map

Φ :
N∑
i=0

λif(zi)→
N∑
i=0

λikzi

defines a bounded linear functional on the closure of {kz : z ∈ Ω}; extend
it by putting 0 on the orthogonal complement of its (temporarily) domain.
Consequently, by the Riesz representation theorem there is f̃ inH, which, by
the reproducing kernel property, agrees with f on Ω. Therefore f̃ coincides
with f .

For ω ∈ C denote by Hω all the functions f in H such that f(ω) = 0.
Furthermore, define for f ∈ Hω the function fω by fω := (z−ω)(z−ω)−1f(z)

Theorem 7. H is a de Branges space if and only if it is isometrically
imbedded into L2(µ) with some positive measure on R, satisfies the following
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approximation condition:

For any ω ∈ C, f ∈ Hω and any finite subset C ⊂ C there is a sequence

(ϕC,n)n ⊂ H such that ϕC,n(z)→ fω(z), z ∈ C, and the norms

‖ϕC,n‖L2(µ) < M with M depending on f exclusively,

(22)

and H is symmetric with respect to the involution f → f∗.

Proof: Prove first that if for f belongs to some Hω, then the function fω
belongs to H and ‖fω‖ = ‖f‖. For the latter notice that

(23)
∫

R
|fω(z)|2µ(dz) =

∫
R
|(z − ω̄)(z − ω)−1f(z)|2µ(dz) =

∫
R
|f(z)|2µ(dz)

because |(z − ω̄)| = |(z − ω)| as long as z is real. This means in particular
fω is in L2(µ).

Suppose now f belongs to some Hω. Choose a finite set (zi)Ni=0 such that
C := (zi)Ni=0 ⊂ Ω := C \ {ω} and (λi)Ni=0 ⊂ C. Let (ϕC,n)n be the sequence
appearing in (22). Fix ε > 0 such that |

∑N
i=0 λi(fω(zi)− ϕC,n(zi))| < ε for

n sufficiently large (C is finite).
Using the reproducing kernel property on the way we can write

|
N∑
i=0

λifω(zi)| = |
N∑
i=0

λiϕC,n(zi)|+ |
N∑
i=0

λi(fω(zi)− ϕC,n(zi))|

≤ |〈ϕC,n,
∑
i

λikzi〉H|+ ε ≤ ‖ϕC,n‖L2(µ)‖
∑
i

λikzi‖L2(µ) + ε

= M‖
∑
i

λikzi‖2H + ε = M
(∑
i,j

λiλ̄jk(zi, zj)
) 1

2 + ε.

Removing ε we come to (21). Because Ω is a set of uniqueness for H Lemma
6 applies to conclude that fω is in H as well.

The involution f → f∗ is apparently an isometry in L2(µ). Because the
involution f → f∗ is symmetric the second condition needed is satisfied as
well. The converse implication required in theorem is transparent. �

As a consequence of Theorem 7 we give the following example:

3.3.1. A supporting example. Suppose (pn)∞n=0 is a sequence of real polyno-
mials orthonormal with respect to an indeterminate measure µ. Then, [18,
Theorem 10.33]

K(z, w) :=
∞∑
n=0

pn(z)pn(w), z, w ∈ C
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is well defined. For KN (z, w) :=
∑N

n=0 pn(z)pn(w) to be a finite truncation
of the kernel K we have∫

R
KN (z, t)KN (w, t)µ(dt) =

N∑
m,n=0

pm(z)pn(w)
∫

R
pm(t)pn(t)µ(dt)

=
N∑
n=0

pn(z)pn(w) = KN (z, w).

Therefore, cf. [15], Theorem 1.38, p.28, we have∫
R
K(z, t)K(w, t)µ(dt) = lim

N→+∞

∫
R
KN (z, t)KN (w, t)µ(dt) = K(z, w)

= 〈K( · , w),K( · , z)〉

and, consequently, the Hilbert space H corresponding to the kernel is iso-
metrically imbedded in L2(µ).

Because the polynomials pn are of real coefficients, H is symmetric with
respect to the involution f → f∗.

Because the polynomials (pn)n form an orthonormal basis of H (cf. Fact
B in [20]) all the polynomials are in H. Furthermore, because Hω is closed
in H (sic!), for any f ∈ Hω there is a sequence (rn)n of polynomials in Hω
converging to f in the norm of H and such that ‖rn‖L2(µ) = ‖rn‖H ≤ 2‖f‖H,
say. Therefore, (rn)n plays the role of (ϕC,n)n in the approximation property
(22) (notice, C becomes irrelevant as norm convergence in H implies that of
uniform on compact subsets of C). Because, the polynomials rn’s are in Hω,
(rn)ω’s are still polynomials, according to (23), of the same norm as that of
rn’s. Now we are in a position to apply Theorem 7 and conclude with the
following:

Corollary 8. The above constructed H is a de Branges space.

The same refers to polynomials of the second kind, see [18, Theorem
10.33].

3.4. The spaces HK as de Branges spaces. In this section we are inter-
ested in the search of a sampling characterization of the spaces HK as de
Branges spaces. Whenever the RKHS HK associated with a Kramer kernel
K is (equal isometrically to) a de Branges space H(E) such that the entire
function E has no real zeros, then the space HK satisfies the ZR property [1,
p. 52]. As a consequence, the sampling formula (10) in HK can be written
as a Lagrange-type interpolation formula. There exists a form of a converse
result in the case that the sequence {zn}∞n=1 is real, and the function P is
real for real z:

Theorem 9. Assume that the sampling formula (10) is an orthogonal ex-
pansion in HK and that it can be written as a Lagrange-type interpolation
formula (2.5) where the sampling points {tn}∞n=1 are real, and P is an entire
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function having simple zeros at {tn}∞n=1 and satisfying P ∗ = P . Then, the
space HK is a de Branges space.

Proof: In the present case, property B2 holds because HK is a RKHS.
For B3, consider f ∈ HK such that f(z) = 〈K(z), x〉 for some x ∈ H.
Then, f∗(z) = 〈K(z), x〉 =

∑∞
n=1 S

∗
n(z)〈x, en〉, where {en}∞n=1 denotes an

orthonormal basis such that K(tn) = an en for all n ∈ N. From (11) we find
that 〈x, en〉 = f∗(tn)/an, n ∈ N. Since

Sn(z) = an
P (z)

(z − tn)P ′(tn)
, n ∈ N ,

P ∗ = P and {tn}∞n=1 ⊂ R we obtain

S∗n(z) = an
P (z)

(z − tn)P ′(tn)
, n ∈ N .

Thus we get

(24) f∗(z) =
∞∑
n=1

f∗(tn)
P (z)

(z − tn)P ′(tn)
.

Let y be in H such that its Fourier coefficients with respect to the or-
thonormal basis {en}∞n=1 are

〈y, en〉 =
an
an
〈x, en〉 , n ∈ N .

The function g(z) := 〈K(z), y〉 inHK satisfies g(tn) = an〈y, en〉 = an〈x, en〉 =
f∗(tn) for each n ∈ N. Taking into account (24) we conclude that f∗ = g
and, as a consequence, f∗ ∈ HK . Moreover,

‖f∗‖2 = ‖y‖2H =
∞∑
n=1

|〈y, en〉|2 =
∞∑
n=1

|〈x, en〉|2 = ‖x‖2H = ‖f‖2

Finally we prove property B1. To this end, consider f ∈ HK given by
f(z) = 〈K(z), x〉 for some x ∈ H, and such that f(w) = 0 where w ∈ C \R.
Since P (w) 6= 0, the Lagrange-type interpolation formula for f gives

∞∑
n=1

f(tn)
(w − tn)P ′(tn)

= 0 .

Therefore,

f(z) =
∞∑
n=1

f(tn)
P (z)

(z − tn)P ′(tn)
−
∞∑
n=1

f(tn)
P (z)

(w − tn)P ′(tn)

= (w − z)
∞∑
n=1

f(tn)
P (z)
P ′(tn)

1
(z − tn)(w − tn)

.
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As a consequence, we obtain

(25)
f(z)
z − w

=
∞∑
n=1

f(tn)
(tn − w)

P (z)
(z − tn)P ′(tn)

.

Since
z − w
z − w

f(z) = f(z) + (w − w)
f(z)
z − w

,

the function [(z−w)/(z−w)]f(z) belongs to HK if and only if the function
f(z)/(z−w) belongs toHK which follows from Theorem 3. As in the proof of
Theorem 3, the function g ∈ HK defined by g(z) := 〈K(z), y〉, where y ∈ H
has Fourier coefficients with respect to the orthonormal basis {en}∞n=1

〈y, en〉 =
1

tn − w
〈x, en〉 , n ∈ N ,

coincides with the entire function f(z)/(z − w). Moreover,∥∥∥∥z − wz − w
f(z)

∥∥∥∥2

= ‖f + (w − w)g‖2 = ‖x+ (w − w)y‖2H =

=
∞∑
n=1

|〈x+ (w − w)y, en〉|2 =
∞∑
n=1

∣∣∣∣ tn − wtn − w

∣∣∣∣2|〈x, en〉|2 = ‖x‖2H = ‖f‖2 ,

which concludes the proof. �

As a consequence of Theorem 9, we find the following characterization of
the de Branges spaces as HK spaces:

Corollary 10. A space HK is a de Branges space (that means, equal isomet-
rically to some de Branges space H(E)) if and only if there exists an orthog-
onal sampling formula in HK such that it can be written as a Lagrange-type
interpolation formula, i.e., for each f ∈ HK ,

f(z) =
∑
n

f(tn)
P (z)

(z − tn)P ′(tn)
, z ∈ C ,

where {tn}∞n=1 is a real sequence of sampling points and P ∗(z) = P (z) for
all z ∈ C.

Proof: To conclude the result we only should identify the de Branges space
H(E) with a HK space. Indeed, for any f ∈ H(E) we have

f(z) = 〈f(w), k(z, w)〉E =
∫

R
f(t)

k(z, t)
|E(t)|2

dt = 〈K(z), f∗〉E , z ∈ C .

where the Kramer analytic kernel is given by [K(z)](w) =
B(w)A(z)−A(w)B(z)

π(w − z)
.

Notice that the functions f∗ and K(z), z ∈ C, belong to H(E). �
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3.4.1. The example in 3.3.1 revisited. Throughout this section we follow the
reference [7] and the references therein. Let s = {sn}n∈N0 be an indetermi-
nate Hamburger moment sequence and let Vs be the set of positive Borel
measures µ on R satisfying

∫∞
−∞ x

ndµ(x) = sn, n ∈ N0 := N∪{0}. The func-
tional L defined on the vector space C[x] of polynomials p(x) =

∑n
k=0 pkx

k

by

L(p) =
n∑
k=0

pksk =
∫ ∞
−∞

p(x)dµ(x)

is independent of µ ∈ Vs. Let {Pn}n∈N0 be the corresponding orthonormal
polynomials satisfying∫ ∞

−∞
Pn(x)Pm(x)dµ(x) = δnm , for each µ ∈ Vs .

We assume that Pn is of degree n with positive leading coefficient. Recall
that {Pn(x)} satisfy the three–term recurrence relation

xPn(x) = anPn+1(x) + bnPn(x) + an−1Pn−1(x) n ≥ 0

P−1(x) = 0 ; P0(x) = 1

The set Vs of solutions to an indeterminate moment problem can be parametrized
with the one–point compactification P∪{∞} of the Pick (or Herglotz) func-
tions set P [17]. When the parameter is restricted to constant functions
taking values in R ∪ {∞}, we obtain the set of N–extremal measures {µt}
which satisfy ∫ ∞

−∞

dµt(x)
x− z

= −A(z)t− C(z)
B(z)t−D(z)

, z ∈ C \ R ,

where A, B, C, D are the entire functions forming the so–called Nevanlinna
matrix associated with the moment problem. See [17] for explicit formulas
of the Nevanlinna matrix. It is known that, for each t ∈ R ∪ {∞}, µt is the
discrete measure µt =

∑
z∈Λt

mzδz where

Λt =

{
{z ∈ C | B(z)t−D(z) = 0} if t ∈ R ,
{z ∈ C | B(z) = 0} if t =∞ ,

and

mz =
A(z)t− C(z)
B′(z)t−D′(z)

, for z ∈ Λt .

Recall that the zeros of the entire function B(z)t − D(z) or B(z) are real
and simple, and they form a sequence {ztm}∞m=0. The N–extremal measures
are characterized as those measures µ ∈ Vs for which the polynomials are
dense in L2(µ).

On the other hand, it is known that the sequence in `2(N0) given by

{P0(ztm), P1(ztm), P2(ztm), P3(ztm), · · · · · · }m∈N0
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is an orthogonal basis for `2(N0). As a consequence, [K(z)](n) = Pn(z),
n ∈ N0 defines an analytic Kramer kernel in `2(N0). Moreover, the following
sampling theorem in the corresponding HK space holds (see [7]):

Theorem 11. Let µt be an N–extremal measure for an indeterminate mo-
ment problem and let {Pn}∞n=0 be the sequence of associated orthonormal
polynomials. Assume that {ztm}∞m=0 are the zeros of B(z)t−D(z) if t ∈ R, or
the zeros of B(z) if t =∞. Then, any function F (z) =

∑∞
n=0 cnPn(z) where

{cn}∞n=0 ∈ `2(N0) can be recovered from its samples {F (ztm)}∞m=0 through the
Lagrange–type interpolatory series

(26) F (z) =
∞∑
m=0

F (ztm)
Gt(z)

G′t(ztm)(z − ztm)
,

where

Gt(z) =

{
B(z)t−D(z) if t ∈ R
B(z) if t =∞ .

The series (26) converges absolutely and uniformly on compact subsets of
C.

As a consequence of Theorem 11 and Corollary 10 we deduce that the
space

HK :=
{
f(z) =

∞∑
n=0

anPn(z) , z ∈ C where {an}∞n=0 ∈ `2(N0)
}
,

is a de Branges space.
Another good candidate to be an analytic Kramer kernel is [K(z)](n) =

Qn(z), n ∈ N, where {Qn(z)}∞n=1 denotes the sequence of the second kind
orthogonal polynomials associated to {Pn}∞n=0. These polynomials are given
in terms of the measure µt by

Qn(z) =
∫
Pn(z)− Pn(u)

z − u
dµt(u) .

Any function f(z) =
∑∞

n=1 anQn(z) can be recovered by means of a Lagrange-
type interpolation series as in Theorem 11 (see [7]), and consequently, the
space

HK :=
{
f(z) =

∞∑
n=1

anQn(z) , z ∈ C where {an}∞n=1 ∈ `2(N)
}
,

is also a de Branges space.

Dedicatory: The first two authors are very pleased to dedicate their work
to the third, Professor F. H. Szafraniec on the occasion of his 70th birth-
day. The research of Professor Szafraniec has inspired and influenced many
mathematicians throughout the world; we are fortunate to be two of those.
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