MULTI-CHANNEL SAMPLING ON SHIFT-INVARIANT SPACES WITH FRAME GENERATORS

A. G. GARCÍA¹, J. M. KIM², K. H. KWON³, AND G. J. YOON³

ABSTRACT. Let φ be a continuous function in $L^2(\mathbb{R})$ such that the sequence $\{\varphi(t-n)\}_{n\in\mathbb{Z}}$ is a frame sequence in $L^2(\mathbb{R})$ and assume that the shift-invariant space $V(\varphi)$ generated by φ has a multi-banded spectrum $\sigma(V)$. The main aim in this paper is to derive a multi-channel sampling theory for the shift-invariant space $V(\varphi)$. By using a type of Fourier duality between the spaces $V(\varphi)$ and $L^2[0, 2\pi]$ we find necessary and sufficient conditions allowing us to obtain stable multi-channel sampling expansions in $V(\varphi)$.

Key words : shift-invariant spaces, multi-channel sampling, frames Mathematics Subject Classification 2010: 42C15, 94A20

1. INTRODUCTION

As a natural extension of the classical Shannon sampling theorem, Papoulis introduced in [17] generalized sampling for arbitrary multi-channel sampling in Paley-Wiener spaces $PW_{\pi\sigma}$ of band-limited signals: In many common situations the available data are samples of some filtered versions of the signal itself. Following [17], there have been many generalizations and applications of the multi-channel sampling. See, for example, [6, 7, 16, 19, 20] and references therein.

Although Shannon's sampling theory has had an enormous impact, it has a number of problems, as pointed out by Unser in [18]: It relies on the use of ideal filters; the bandlimited hypothesis is in contradiction with the idea of a finite duration signal; the bandlimiting operation generates Gibbs oscillations; and finally, the sinc function has a very slow decay, which makes computation in the signal domain very inefficient.

Moreover, many applied problems impose different a priori constraints on the type of functions. For this reason, sampling and reconstruction problems have been investigated in spline spaces, wavelet spaces, and general shift-invariant spaces. Indeed, in many practical applications, signals are assumed to belong to some shift-invariant space of the form: $V(\varphi) := \overline{\text{span}}_{L^2(\mathbb{R})} \{\varphi(t-n) : n \in \mathbb{Z}\}$ where the function φ in $L^2(\mathbb{R})$ is called the generator of $V(\varphi)$. In most of cases in the mathematical literature, it is supposed that the sequence $\{\varphi(t-n)\}_{n\in\mathbb{Z}}$ forms a Riesz basis for $V(\varphi)$. See, for instance, [1, 2, 3, 4, 12, 15, 18, 21, 22] and the references therein. Throughout this paper we assume that the sequence $\{\varphi(t-n)\}_{n\in\mathbb{Z}}$ is a frame for $V(\varphi)$ and that the spectrum of $V(\varphi)$ is multi-banded in $[0, 2\pi]$ (see Section 3 infra).

On the other hand, suppose that N linear time-invariant systems (filters) \mathcal{L}_j , j = 1, 2, ..., N, are defined on the shift-invariant subspace $V(\varphi)$ of $L^2(\mathbb{R})$. In mathematical terms we are dealing with continuous operators which commute with shifts. The recovery of any function $f \in V(\varphi)$ from samples of the functions $\mathcal{L}_j f$, j = 1, 2, ..., N, leads to a generalized sampling in $V(\varphi)$. Our challenge problem is the following: Given r, N positive integers and N real numbers $0 \le a_j < r$ for $1 \le j \le N$, find multi-channel sampling expansions like

(1.1)
$$f(t) = \sum_{j=1}^{N} \sum_{n \in \mathbb{Z}} (\mathcal{L}_j f)(a_j + rn) S_{j,n}(t), \quad t \in \mathbb{R}$$

valid for any $f \in V(\varphi)$, where the sequence of sampling functions $\{S_{j,n}(t) : 1 \leq j \leq N, n \in \mathbb{Z}\}$ forms a frame or a Riesz basis for $V(\varphi)$.

Recently, García et al. ([8, 9, 10]) introduced a novel idea for developing a sampling theory on a shift-invariant space $V(\varphi)$ by using an analogous of the Fourier duality between the spaces $V(\varphi)$ and $L^2[0, 2\pi]$. In particular, García and Pérez-Villalón [9] (see also [14]) developed a multi-channel sampling procedure on a shift-invariant space $V(\varphi)$, where φ is a continuous Riesz generator. Unlike the author's claim (see section 4.1 in [9]), the arguments used in [9] for the case of Riesz generator cannot be directly extended to the case of a frame generator.

In the present paper, by assuming that the sequence $\{\varphi(t-n)\}_{n\in\mathbb{Z}}$ is a frame for $V(\varphi)$ and that the spectrum of $V(\varphi)$ is multi-banded in $[0, 2\pi]$, and allowing more general filters than those used in [9], we obtain necessary and sufficient conditions under which there exists a stable multi-channel sampling expansion on $V(\varphi)$ like that in (1.1). We also provide some illustrating examples. All these tasks will be carried out throughout the remaining sections.

2. Shift-invariant spaces and Fourier duality type

We start this section by introducing some notation and preliminaries used in the sequel. Let $\{\varphi_n\}_{n\in\mathbb{Z}}$ be a sequence of elements in a separable Hilbert space \mathcal{H} . We say that

• the sequence $\{\varphi_n\}_{n\in\mathbb{Z}}$ is a Bessel sequence (with Bessel bound B) in \mathcal{H} if there exists a constant B > 0 such that

$$\sum_{n \in \mathbb{Z}} |\langle \varphi, \varphi_n \rangle|^2 \le B \|\varphi\|^2 \text{ for all } \varphi \in \mathcal{H};$$

• the sequence $\{\varphi_n\}_{n\in\mathbb{Z}}$ is a frame for \mathcal{H} (with frame bounds A and B) if there exist constants $0 < A \leq B$ such that

$$A\|\varphi\|^2 \le \sum_{n \in \mathbb{Z}} |\langle \varphi, \varphi_n \rangle|^2 \le B\|\varphi\|^2 \text{ for all } \varphi \in \mathcal{H};$$

• the sequence $\{\varphi_n\}_{n\in\mathbb{Z}}$ is a Riesz basis for \mathcal{H} (with Riesz bounds A and B) if it is a complete set in \mathcal{H} and there exist constants $0 < A \leq B$ such that

$$A \|\mathbf{c}\|^2 \le \|\sum_{n \in \mathbb{Z}} c(n)\varphi_n\|^2 \le B \|\mathbf{c}\|^2 \text{ for all } \mathbf{c} = \{c(n)\}_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z}),$$

where $\|\mathbf{c}\|^2 := \sum_{n \in \mathbb{Z}} |c(n)|^2.$

For $\varphi \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ we take its Fourier transform to be normalized as

$$\mathcal{F}[\varphi](\xi) = \widehat{\varphi}(\xi) := \int_{-\infty}^{\infty} \varphi(t) e^{-it\xi} dt \,,$$

so that $\frac{1}{\sqrt{2\pi}}\mathcal{F}: L^2(\mathbb{R}) \longrightarrow L^2(\mathbb{R})$ becomes a unitary operator. For any $\varphi \in L^2(\mathbb{R})$ consider its related functions

$$C_{\varphi}(t) := \sum_{n \in \mathbb{Z}} |\varphi(t+n)|^2$$
 and $G_{\varphi}(\xi) := \sum_{n \in \mathbb{Z}} |\widehat{\varphi}(\xi + 2n\pi)|^2$.

It is known that the 1-periodic function C_{φ} belongs to $L^1[0,1]$ and the 2π -periodic function G_{φ} belongs to $L^1[0,2\pi]$; moreover,

$$\|\varphi\|_{L^2(\mathbb{R})}^2 = \|C_{\varphi}\|_{L^1[0,1]} = \frac{1}{2\pi} \|G_{\varphi}\|_{L^1[0,2\pi]}.$$

Let $V(\varphi) := \overline{\operatorname{span}}_{L^2(\mathbb{R})} \{ \varphi(t-n) : n \in \mathbb{Z} \}$ be the shift-invariant space generated by φ , that is, the closed subspace of $L^2(\mathbb{R})$ spanned by $\{\varphi(t-n)\}_{n\in\mathbb{Z}}$ and $\operatorname{supp} G_{\varphi}$ the support of the locally integrable function G_{φ} as a distribution on \mathbb{R} . Let $\sigma(V) := \operatorname{supp} G_{\varphi} \cap [0, 2\pi]$ be the spectrum of $V(\varphi)$ and $\tau(V) := [0, 2\pi] \setminus \sigma(V)$. For any $\mathbf{c} = \{c(n)\}_{n\in\mathbb{Z}}$ in $\ell^2(\mathbb{Z})$, let

$$\widehat{\mathbf{c}}(\xi) := \sum_{n \in \mathbb{Z}} c(n) e^{-in\xi}$$

be the discrete Fourier transform of the sequence \mathbf{c} . In [5] we find the following result:

Proposition 2.1. Let $\varphi \in L^2(\mathbb{R})$ and $0 < A \leq B$. The following statements hold:

(a) The sequence $\{\varphi(t-n)\}_{n\in\mathbb{Z}}$ is a Bessel sequence with a Bessel bound B for $V(\varphi)$ if and only if

$$G_{\varphi}(\xi) \leq B$$
 a.e. on $[0, 2\pi]$.

(b) The sequence $\{\varphi(t-n)\}_{n\in\mathbb{Z}}$ is a frame for $V(\varphi)$ with frame bounds A, B if and only if

 $A \leq G_{\varphi}(\xi) \leq B$ a.e. on $\sigma(V)$.

(c) The sequence $\{\varphi(t-n)\}_{n\in\mathbb{Z}}$ is a Riesz basis for $V(\varphi)$ with Riesz bounds A, B if and only if

$$A \leq G_{\varphi}(\xi) \leq B$$
 a.e. on $[0, 2\pi]$.

For any $\varphi \in L^2(\mathbb{R})$ and $\mathbf{c} = \{c(k)\}_{k \in \mathbb{Z}} \in \ell^2(\mathbb{Z})$, let $T(\mathbf{c}) := (\mathbf{c} * \varphi)(t) = \sum_{k \in \mathbb{Z}} c(k)\varphi(t-k)$ be

the pre-frame operator of $\{\varphi(t-n)\}_{n\in\mathbb{Z}}$. Proposition 2.1 can be restated as (cf. [5]):

- The sequence $\{\varphi(t-n)\}_{n\in\mathbb{Z}}$ is a Bessel sequence with a Bessel bound B if and only if T is a bounded linear operator from $\ell^2(\mathbb{Z})$ into $V(\varphi)$ with $||T|| \leq \sqrt{B}$.
- The sequence $\{\varphi(t-n)\}_{n\in\mathbb{Z}}$ is a frame for $V(\varphi)$ with frame bounds A, B if and only if T is a bounded linear operator from $\ell^2(\mathbb{Z})$ onto $V(\varphi)$ and

$$A \|\mathbf{c}\|^2 \le \|T(\mathbf{c})\|_{L^2(\mathbb{R})}^2 \le B \|\mathbf{c}\|^2, \ \mathbf{c} \in N(T)^{\perp},$$

where $N(T) := {\mathbf{c} \in \ell^2(\mathbb{Z}) : T(\mathbf{c}) = 0}$ and $N(T)^{\perp}$ is the orthogonal complement of N(T) in $\ell^2(\mathbb{Z})$.

• The sequence $\{\varphi(t-n)\}_{n\in\mathbb{Z}}$ is a Riesz basis for $V(\varphi)$ with Riesz bounds A, B if and only if T is an isomorphism from $\ell^2(\mathbb{Z})$ onto $V(\varphi)$ and

$$A \|\mathbf{c}\|^{2} \leq \|T(\mathbf{c})\|_{L^{2}(\mathbb{R})}^{2} \leq B \|\mathbf{c}\|^{2}, \ \mathbf{c} \in \ell^{2}(\mathbb{Z}).$$

Lemma 2.2. Let $\varphi \in L^2(\mathbb{R})$ such that the sequence $\{\varphi(t-n)\}_{n\in\mathbb{Z}}$ is a Bessel sequence in $L^2(\mathbb{R})$. Then for any $\mathbf{c} = \{c(n)\}_{n \in \mathbb{Z}}$ in $\ell^2(\mathbb{Z})$,

$$T(\mathbf{c})(\xi) = \widehat{\mathbf{c}}(\xi)\widehat{\varphi}(\xi)$$

so that

(2.1)
$$\|T(\mathbf{c})\|_{L^{2}(\mathbb{R})}^{2} = \frac{1}{2\pi} \int_{-\infty}^{\infty} |\widehat{\mathbf{c}}(\xi)\widehat{\varphi}(\xi)|^{2}d\xi = \frac{1}{2\pi} \int_{0}^{2\pi} |\widehat{\mathbf{c}}(\xi)|^{2}G_{\varphi}(\xi)d\xi \,.$$

Proof. See Lemma 7.2.1 in [5] and Lemma 2.2 in [11].

In what follows, we always assume that the function $\varphi \in L^2(\mathbb{R}) \cap C(\mathbb{R})$ is a continuous frame generator (i.e., the sequence $\{\varphi(t-n)\}_{n\in\mathbb{Z}}$ is a frame for $V(\varphi)$), and satisfying the condition: $\sup_{\mathbb{R}} C_{\varphi}(t) < \infty$. Thus $V(\varphi) = \{ (\mathbf{c} * \varphi)(t) : \mathbf{c} \in \ell^2(\mathbb{Z}) \}$ is a reproducing kernel Hilbert space (RKHS in short) and any $f(t) = (\mathbf{c} * \varphi)(t)$ in $V(\varphi)$ converges both in the $L^2(\mathbb{R})$ sense, and absolutely and uniformly on \mathbb{R} to a continuous function on \mathbb{R} (see [15, 22]).

By using (2.1), we have that $N(T) = \{ \mathbf{c} \in \ell^2(\mathbb{Z}) : \widehat{\mathbf{c}}(\xi) = 0 \text{ a.e. on } \sigma(V) \}$ and consequently $N(T)^{\perp} = \{ \mathbf{c} \in \ell^2(\mathbb{Z}) : \widehat{\mathbf{c}}(\xi) = 0 \text{ a.e. on } \tau(V) \}.$ (2.2)

Now, we introduce a Fourier duality for $V(\varphi)$ useful for sampling purposes as we will see in the next section.

Let $\mathcal{T}_{\varphi}: L^2[0, 2\pi] \longrightarrow V(\varphi)$ be the linear operator defined by

$$(\mathcal{T}_{\varphi}F)(t) := \frac{1}{2\pi} \sum_{k \in \mathbb{Z}} \langle F(\xi), e^{-ik\xi} \rangle_{L^2[0,2\pi]} \varphi(t-k) = \langle F(\xi), \frac{1}{2\pi} \overline{Z_{\varphi}(t,\xi)} \rangle_{L^2[0,2\pi]},$$

where Z_{φ} denotes the Zak transform of φ given as $Z_{\varphi}(t,\xi) := \sum_{k \in \mathbb{Z}} \varphi(t+k) e^{-ik\xi}$ (see [12]). Notice that $\{\varphi(t-n)\}_{n\in\mathbb{Z}}\in \ell^2(\mathbb{Z})$ for each t in \mathbb{R} . By using (2.2), \mathcal{T}_{φ} is a bounded linear operator from $L^2[0, 2\pi]$ onto $V(\varphi)$ with kernel

$$N(\mathcal{T}_{\varphi}) = \{F(\xi) \in L^{2}[0, 2\pi] : F(\xi) = 0 \text{ a.e. on } \sigma(V)\}.$$

Thus, the operator $\mathcal{T}_{\varphi} : L^2[\sigma(V)] \longrightarrow V(\varphi)$ becomes an isomorphism. We also note the following useful properties of \mathcal{T}_{φ} :

- $\widehat{\mathcal{T}_{\varphi}F}(\xi) = F(\xi)\widehat{\varphi}(\xi);$ $\mathcal{T}_{\varphi}[F(\xi)e^{-in\xi}](t) = (\mathcal{T}_{\varphi}F)(t-n), \ n \in \mathbb{Z}.$

3. Multi-channel sampling theory

For $1 \leq j \leq N$, let \mathcal{L}_j be an LTI (linear time-invariant) system with impulse response h_j , that is,

$$\mathcal{L}_j[f](t) := (f * h_j)(t) = \int_{\mathbb{R}} f(s)h_j(t-s)ds \, .$$

Here, we assume that each system \mathcal{L}_j belongs to one of the following three types:

- (i) Its impulse response $h_i(t) = \delta(t + a_i), a_i \in \mathbb{R}$, or
- (ii) $h_j \in L^2(\mathbb{R})$, or
- (iii) $\widehat{h}_j \in L^{\infty}(\mathbb{R})$ whenever $H_{\varphi}(\xi) := \sum_{n \in \mathbb{Z}} |\widehat{\varphi}(\xi + 2n\pi)| \in L^2[0, 2\pi].$

For type (i), $\mathcal{L}[f](t) = f(t+a)$ for any $f \in L^2(\mathbb{R})$, so that $\mathcal{L} : L^2(\mathbb{R}) \longrightarrow L^2(\mathbb{R})$ becomes a unitary operator. In particular, consider $\psi(t) := \mathcal{L}[\varphi](t) = \varphi(t+a)$; for any $f(t) = (\mathbf{c} * \varphi)(t) \in V(\varphi)$ we have that $\mathcal{L}[f](t) = (\mathbf{c} * \psi)(t)$ converges absolutely and uniformly on \mathbb{R} since $\sup_{\mathbb{R}} C_{\psi}(t) = \sum_{n \in \mathbb{Z}} |\psi(t+n)|^2 < \infty$. For types (ii) and (iii) the following result holds:

Lemma 3.1. Let \mathcal{L} be an LTI system with impulse response h of type (ii) or (iii) as above and consider the function $\psi(t) := \mathcal{L}[\varphi](t) = (\varphi * h)(t)$. Then we have:

- (a) The function ψ belongs to the space $C_{\infty}(\mathbb{R}) := \{ u(t) \in C(\mathbb{R}) : \lim_{|t| \to \infty} u(t) = 0 \}$.
- (b) $\sup_{\mathbb{R}} C_{\psi}(t) < \infty$.
- (c) For any $f(t) = (\mathbf{c} * \varphi)(t) \in V(\varphi)$ with $\mathbf{c} \in \ell^2(\mathbb{Z})$, $\mathcal{L}[f](t) = (\mathbf{c} * \psi)(t)$ converges absolutely and uniformly on \mathbb{R} .
- (d) For each fixed $t \in \mathbb{R}$, supp $Z_{\psi}(t, \cdot) \cap [0, 2\pi] \subset \sigma(V)$.

Proof. First assume $h \in L^2(\mathbb{R})$. Since $\widehat{\psi}(\xi) = \widehat{\varphi}(\xi)\widehat{h}(\xi) \in L^1(\mathbb{R})$, the function $\psi \in C_{\infty}(\mathbb{R})$ by using the Riemann-Lebesgue Lemma. The Poisson summation formula (cf. Lemma 5.1 in [15]) gives:

$$C_{\psi}(t) = \sum_{n \in \mathbb{Z}} |\psi(t+n)|^2 = \frac{1}{2\pi} \left\| \sum_{n \in \mathbb{Z}} \psi(t+n) e^{-in\xi} \right\|_{L^2[0,2\pi]}^2$$

$$= \frac{1}{2\pi} \left\| \sum_{n \in \mathbb{Z}} \hat{\psi}(\xi + 2n\pi) e^{it(\xi + 2n\pi)} \right\|_{L^2[0,2\pi]}^2$$

$$\leq \frac{1}{2\pi} \|G_{\varphi}^{\frac{1}{2}} G_h^{\frac{1}{2}}\|_{L^2[0,2\pi]}^2 = \|G_{\varphi}\|_{L^{\infty}(\mathbb{R})} \|h\|_{L^2(\mathbb{R})}.$$

Hence $\sup_{\mathbb{R}} C_{\psi}(t) < \infty$. Since $f(t) = (\mathbf{c} * \varphi)(t)$ converges in $L^2(\mathbb{R})$ for any $\mathbf{c} \in \ell^2(\mathbb{Z})$ and the operator $\mathcal{L} : L^2(\mathbb{R}) \longrightarrow L^\infty(\mathbb{R})$ is bounded by using Young's inequality on the convolution product, we have that $\mathcal{L}[f](t) = \sum_{k \in \mathbb{Z}} c(k) \mathcal{L}[\varphi(t-k)] = \sum_{k \in \mathbb{Z}} c(k) \psi(t-k) = (\mathbf{c} * \psi)(t)$ converges absolutely and uniformly on \mathbb{R} by using (b).

Now assume that $H_{\varphi} \in L^2[0, 2\pi]$ and let $\hat{h} \in L^{\infty}(\mathbb{R})$. Since $\hat{\varphi} \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$, we obtain that $\hat{\psi} = \hat{\varphi} \ \hat{h} \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ and consequently, $\psi \in C_{\infty}(\mathbb{R}) \cap L^2(\mathbb{R})$. Since $\sum_{n \in \mathbb{Z}} |\hat{\psi}(\xi + 2n\pi)| \leq \|\hat{h}\|_{L^{\infty}(\mathbb{R})} H_{\varphi}(\xi)$, using again the Poisson summation formula we have that

$$C_{\psi}(t) = \frac{1}{2\pi} \left\| \sum_{n \in \mathbb{Z}} \widehat{\psi}(\xi + 2n\pi) e^{it(\xi + 2n\pi)} \right\|_{L^{2}[0, 2\pi]}^{2} \le \frac{1}{2\pi} \|\widehat{h}\|_{L^{\infty}(\mathbb{R})}^{2} \|H_{\varphi}\|_{L^{2}[0, 2\pi]}^{2},$$

so that $\sup_{\mathbb{R}} C_{\psi}(t) < \infty$. For any $f \in L^2(\mathbb{R})$,

$$\|\mathcal{L}[f]\|_{L^{2}(\mathbb{R})} = \|f * h\|_{L^{2}(\mathbb{R})} = \frac{1}{\sqrt{2\pi}} \|\widehat{f}(\xi)\widehat{h}(\xi)\|_{L^{2}(\mathbb{R})} \le \|\widehat{h}\|_{L^{\infty}(\mathbb{R})} \|f\|_{L^{2}(\mathbb{R})}.$$

Hence, $\mathcal{L}: L^2(\mathbb{R}) \longrightarrow L^2(\mathbb{R})$ is a bounded linear operator so that, for any $f(t) = (\mathbf{c} * \varphi)(t) \in V(\varphi)$, $\mathcal{L}[f](t) = (\mathbf{c} * \psi)(t)$ converges in $L^2(\mathbb{R})$. Condition (b) implies that $(\mathbf{c} * \psi)(t)$ also converges absolutely and uniformly on \mathbb{R} which proves (c).

Finally to prove (d), consider any $F \in L^2[0, 2\pi]$ with supp $F \subseteq \tau(V)$ and let

$$F(\xi) = \sum_{k \in \mathbb{Z}} c(k) e^{-ik\xi} \quad \text{where} \quad c(k) = \frac{1}{2\pi} \langle F(\xi), e^{-ik\xi} \rangle_{L^2[0,2\pi]}, \ k \in \mathbb{Z}.$$

The sequence $\mathbf{c} \in N(T)$ so that $T(\mathbf{c}) = (\mathbf{c} * \varphi)(t) = 0$. Since

$$\langle F(\xi), \overline{Z_{\psi}(t,\xi)} \rangle_{L^2[0,2\pi]} = 2\pi (\mathbf{c} * \psi)(t) = 2\pi \mathcal{L}[\mathbf{c} * \varphi](t) = 0$$

we finally obtain that supp $Z_{\psi}(t, \cdot) \cap [0, 2\pi] \subset \sigma(V)$.

In particular, given an LTI system \mathcal{L} of type (i), (ii) or (iii), for any $f = (\mathcal{T}_{\varphi}F) \in V(\varphi)$, where $F \in L^2[\sigma(V)]$, we have

(3.1)
$$\mathcal{L}[f](t) = \frac{1}{2\pi} \sum_{k \in \mathbb{Z}} \langle F(\xi) \chi_{\sigma(V)}(\xi), e^{ik\xi} \rangle_{L^2[0,2\pi]} \psi(t-k) = \langle F(\xi), \frac{1}{2\pi} \overline{Z_{\psi}(t,\xi)} \rangle_{L^2[\sigma(V)]}.$$

Here $\chi_E(\xi)$ denotes the characteristic function of a measurable set E in \mathbb{R} .

As it was said before, in this work we are involved in the following problem: Given r, N positive integers and N real numbers $0 \le a_j < r$ for $1 \le j \le N$, find multi-channel sampling formulas in $V(\varphi)$ such that, for any $f \in V(\varphi)$,

(3.2)
$$f(t) = \sum_{j=1}^{N} \sum_{n \in \mathbb{Z}} (\mathcal{L}_j f)(a_j + rn) S_{j,n}(t), \quad t \in \mathbb{R}$$

where the sequence of sampling functions $\{S_{j,n}(t) : 1 \leq j \leq N, n \in \mathbb{Z}\}$ forms a frame or a Riesz basis for $V(\varphi)$.

First of all, notice that convergence in the $L^2(\mathbb{R})$ -sense in the sampling series (3.2) implies pointwise convergence since $V(\varphi)$ is a RKHS, which is absolute and uniform on \mathbb{R} . Indeed, let $\{\widetilde{\varphi}(t-n)\}_{n\in\mathbb{Z}}$ be the canonical dual frame of $\{\varphi(t-n)\}_{n\in\mathbb{Z}}$. Then the reproducing kernel of $V(\varphi)$ is

$$q(s,t) := \sum_{n \in \mathbb{Z}} \widetilde{\varphi}(s-n) \overline{\varphi(t-n)}.$$

Since $\sup_{\mathbb{R}} C_{\varphi}(t) < \infty$ the function q(t,t) is uniformly bounded on \mathbb{R} . Hence, the convergence in the $L^2(\mathbb{R})$ -sense implies uniform convergence on \mathbb{R} . The pointwise convergence is also absolute due to the unconditional convergence of a frame or Riesz basis expansion.

In this work we solve this problem for the case where $V(\varphi)$ is a shift-invariant space having a continuous frame generator φ and the spectrum $\sigma(V)$ of $V(\varphi)$ is a multi-banded region such that

$$\sigma(V) = \bigcup_{k=1}^{M} [\alpha_k, \beta_k], \text{ where } 0 \le \alpha_1 < \beta_1 < \alpha_2 < \beta_2 < \dots < \alpha_M < \beta_M \le 2\pi.$$

Notice that through (3.1) and the isomorphism $\mathcal{T}_{\varphi} : L^2[\sigma(V)] \longrightarrow V(\varphi)$, the sampling expansion (3.2) on $V(\varphi)$ is equivalent to the expansion in $L^2[\sigma(V)]$:

$$F(\xi) = \sum_{j=1}^{N} \sum_{n \in \mathbb{Z}} \langle F(\xi), \frac{1}{2\pi} \overline{Z_{\psi_j}(a_j, \xi)} e^{-irn\xi} \rangle_{L^2[\sigma(V)]} s_{j,n}(\xi) , \quad F \in L^2[\sigma(V)] ,$$

where $\{s_{j,n}(\xi) : 1 \le j \le N, n \in \mathbb{Z}\}$ is a frame or a Riesz basis for $L^2[\sigma(V)]$.

From now on we assume that $\sigma(V) = \bigcup_{k=1}^{M} [\alpha_k, \beta_k]$ and we set

$$s_k := \alpha_k - \left[\alpha_k \frac{r}{2\pi}\right] \frac{2\pi}{r}$$
 and $r_k := \beta_k - \left[\beta_k \frac{r}{2\pi}\right] \frac{2\pi}{r}$

so that $0 \le s_k, r_k < \frac{2\pi}{r}, 1 \le k \le M$ ([x] denotes the integer part of $x \ge 0$). Next consider the set of points $\{t_k\}_{k=0}^m$ such that $0 = t_0 < t_1 < \cdots < t_m = \frac{2\pi}{r}$ where

 $\{t_k\}_{k=1}^{m-1} = \{s_k, r_k : 1 \le k \le M\} \setminus \{0\}.$ Then,

$$I := [0, \frac{2\pi}{r}] = \bigcup_{k=1}^{m} \overline{B}_k, \quad B_k = (t_{k-1}, t_k).$$

Lemma 3.2. For each $1 \le k \le m$ and each $1 \le n \le r$, we have that

either
$$\left(B_k + (n-1)\frac{2\pi}{r}\right) \cap \sigma(V) = \emptyset$$
 or $\left(B_k + (n-1)\frac{2\pi}{r}\right) \subset \sigma(V).$

Proof. See Lemma 1 in [20].

For each $1 \le k \le m$ we consider L(k), the subset of $\{1, 2, \ldots, r\}$ defined by

$$L(k) := \left\{ 1 \le n \le r : B_k + (n-1)\frac{2\pi}{r} \subset \sigma(V) \right\},\,$$

and l(k) := #L(k), i.e., its number of elements. Let $\mathcal{P} := \{1 \le k \le m : l(k) > 0\}$; for each $k \in \mathcal{P}$, there are l(k) positive integers $\{n_{k,j}\}_{j=1}^{l(k)}$ such that $1 \le n_{k,1} < n_{k,2} < \cdots < n_{k,l(k)} \le r$ and

$$B_k + (n_{k,j} - 1)\frac{2\pi}{r} \subset \sigma(V), \quad 1 \le j \le l(k).$$

For $k \in \mathcal{P}$, let $\widetilde{B}_k := \bigcup_{j=1}^{l(k)} \left(B_k + (n_{k,j} - 1) \frac{2\pi}{r} \right)$. These sets \widetilde{B}_k are disjoint and $\sigma(V) = \bigcup_{k \in \mathcal{P}} \overline{\widetilde{B}}_k$; hence, $|\sigma(V)| = \sum_{k \in \mathcal{P}} l(k) |B_k|$, where |E| denotes the Lebesgue measure of E.

For each $k \in \mathcal{P}$, consider the unitary operator $D_k : L^2(\widetilde{B}_k) \longrightarrow L^2_{l(k)}(B_k)$ defined by

$$D_k(F)(\xi) := \left[F\left(\xi + (n_{k,1} - 1)\frac{2\pi}{r}\right), \cdots, F\left(\xi + (n_{k,l(k)} - 1)\frac{2\pi}{r}\right) \right]^{\top}, \ F \in L^2(\widetilde{B}_k),$$

where $L^2_{l(k)}(B_k)$ denotes the Hilbert product space $L^2(B_k) \times \cdots \times L^2(B_k)$ (l(k) times).

Now, for each $k \in \mathcal{P}$ we consider the $N \times l(k)$ matrix with entries in $L^2(B_k)$

$$\mathbf{G}_{k}(\xi) := [D_{k}(g_{1})(\xi), \cdots, D_{k}(g_{N})(\xi)]^{T} = \left[g_{i}(\xi + (n_{k,j} - 1)\frac{2\pi}{r})\right]_{1 \le i \le N, \ 1 \le j \le l(k)},$$

and the $l(k) \times l(k)$ matrix with entries in $L^1(B_k)$

$$\mathbf{H}_k(\xi) := \mathbf{G}_k^*(\xi) \mathbf{G}_k(\xi) \,,$$

where $\mathbf{G}_{k}^{*}(\xi)$ denotes the adjoint of the matrix $\mathbf{G}_{k}(\xi)$, being

$$g_i(\xi) := \frac{1}{2\pi} Z_{\psi_i}(a_i, \xi) \in L^2[\sigma(V)], \quad 1 \le i \le N.$$

Let $\lambda_{\min,k}(\xi)$ (respectively $\lambda_{\max,k}(\xi)$) be the smallest (respectively the largest) eigenvalue of the positive semidefinite matrix $\mathbf{H}_k(\xi)$ and the constants

(3.3)
$$\alpha_G := \min_{k \in \mathcal{P}} \|\lambda_{\min,k}\|_{L^0(B_k)} \quad \text{and} \quad \beta_G := \max_{k \in \mathcal{P}} \|\lambda_{\max,k}\|_{L^\infty(B_k)}.$$

Here $||u||_{L^0(E)}$ and $||u||_{L^\infty(E)}$ denote the essential infimum and the essential supremum of a measurable function u on E. We are now ready to state and prove our main sampling results.

Theorem 3.3. Assume that the function $Z_{\psi_j}(a_j,\xi) \in L^{\infty}[\sigma(V)]$ for $1 \leq j \leq N$. Then the following statements are equivalent:

(i) There is a frame $\{S_j(t-rn): 1 \leq j \leq N, n \in \mathbb{Z}\}$ for $V(\varphi)$ such that for each $f \in V(\varphi)$ the sampling formula

(3.4)
$$f(t) = \sum_{j=1}^{N} \sum_{n \in \mathbb{Z}} (\mathcal{L}_j f) (a_j + rn) S_j (t - rn), \quad t \in \mathbb{R}$$

holds.

(ii) There is a frame $\{S_{j,n}(t) : 1 \leq j \leq N, n \in \mathbb{Z}\}$ for $V(\varphi)$ such that for each $f \in V(\varphi)$ the sampling formula

(3.5)
$$f(t) = \sum_{j=1}^{N} \sum_{n \in \mathbb{Z}} (\mathcal{L}_j f)(a_j + rn) S_{j,n}(t), \quad t \in \mathbb{R}$$

holds.

(iii) $\alpha_G > 0$.

Proof. Condition (i) implies condition (ii) trivially. Assume condition (ii); applying the isomorphism $\mathcal{T}_{\varphi}^{-1}: V(\varphi) \longrightarrow L^2[\sigma(V)]$ to (3.5) gives:

(3.6)
$$F(\xi) = \sum_{j=1}^{N} \sum_{n \in \mathbb{Z}} \langle F(\xi), \overline{g_j(\xi)} e^{-irn\xi} \rangle_{L^2[\sigma(V)]} s_{j,n}(\xi), \quad F \in L^2[\sigma(V)],$$

where $\{s_{j,n}(\xi): 1 \leq j \leq N, n \in \mathbb{Z}\}$ is a frame for $L^2[\sigma(V)]$. By using Lemma 3.5 (i) below, the sequence $\{\overline{g_j(\xi)}e^{-irn\xi}: 1 \leq j \leq N, n \in \mathbb{Z}\}$ is a Bessel sequence in $L^2[\sigma(V)]$. The expansion (3.6) on $L^2[\sigma(V)]$ implies that the sequence $\{\overline{g_j(\xi)}e^{-irn\xi}: 1 \leq j \leq N, n \in \mathbb{Z}\}$ must be a frame for $L^2[\sigma(V)]$ (see Lemma 5.6.2 in [5]). Hence, condition (iii) holds by using Lemma 3.5 (ii) below.

Finally assume condition (iii); the sequence $\{\overline{g_j(\xi)}e^{-irn\xi} : 1 \leq j \leq N, n \in \mathbb{Z}\}$ with $g_j(\xi) = \frac{1}{2\pi} Z_{\psi_j}(a_j,\xi)$ is a frame for $L^2[\sigma(V)]$ by Lemma 3.5 (ii) below. Let $\{s_j(\xi)e^{-irn\xi} : 1 \leq j \leq N, n \in \mathbb{Z}\}$ be a dual frame of $\{\overline{g_j(\xi)}e^{-irn\xi} : 1 \leq j \leq N, n \in \mathbb{Z}\}$ (cf. Lemma 3.6 below). Thus we have the following frame expansion in $L^2[\sigma(V)]$:

(3.7)
$$F(\xi) = \sum_{j=1}^{N} \sum_{n \in \mathbb{Z}} \langle F(\xi), \overline{g_j(\xi)} e^{-irn\xi} \rangle_{L^2[\sigma(V)]} s_j(\xi) e^{-irn\xi}, \quad F \in L^2[\sigma(V)].$$

Applying the isomorphism $\mathcal{T}_{\varphi} : L^2[\sigma(V)] \longrightarrow V(\varphi)$ to (3.7) gives (3.4) with $S_j = \mathcal{T}_{\varphi}(s_j)$, $1 \leq j \leq N$, which proves condition (i).

For later use, notice that $\alpha_G > 0$ implies $l(k) \leq N$ for all $k \in \mathcal{P}$. For N = r = 1 in Theorem 3.3, we obtain:

Corollary 3.4. Let \mathcal{L} be an LTI system of type (i), (ii) or (iii). There is a frame $\{S(t-n) : n \in \mathbb{Z}\}$ for $V(\varphi)$ such that for each $f \in V(\varphi)$

(3.8)
$$f(t) = \sum_{n \in \mathbb{Z}} (\mathcal{L}f)(a+n)S(t-n), \quad t \in \mathbb{R}$$

if and only if

(3.9)
$$0 < \|Z_{\psi}(a,\xi)\|_{L^{0}[\sigma(V)]} \le \|Z_{\psi}(a,\xi)\|_{L^{\infty}[\sigma(V)]} < \infty.$$

Moreover, in this case,

(3.10)
$$\widehat{S}(\xi) = \frac{\widehat{\varphi}(\xi)}{Z_{\psi}(a,\xi)} \chi_{\operatorname{supp} G_{\varphi}}(\xi).$$

Proof. Whenever r = 1, $L(k) = \{1\}$ and $\widetilde{B}_k = B_k$ for all $k \in \mathcal{P}$; thus D_k becomes the identity operator. Therefore, $\mathbf{G}_k(\xi) = g(\xi) = \frac{1}{2\pi} Z_{\psi}(a,\xi)$ and $\mathbf{H}_k(\xi) = \frac{1}{(2\pi)^2} |Z_{\psi}(a,\xi)|^2$ for $k \in \mathcal{P}$ and $\xi \in B_k$. Hence $0 < \alpha_G \leq \beta_G < \infty$ if and only if condition (3.9) holds. As a consequence, (3.9) implies (3.8) by Theorem 3.3. Conversely, assume that (3.8) holds. Then $\varphi(t) = \sum_{n \in \mathbb{Z}} \psi(a+n)S(t-n)$ so that $\widehat{\varphi}(\xi) = Z_{\psi}(a,\xi)\widehat{S}(\xi)$ and $G_{\varphi}(\xi) = |Z_{\psi}(a,\xi)|^2 G_S(\xi)$ from which (3.9) and (3.10) follow.

When the impulse response h is the Dirac delta distribution $\delta(t)$, the system \mathcal{L} is the identity operator, and Corollary 3.4 reduces to a regular shifted sampling in $V(\varphi)$ (see Theorem 1 in [22] and Theorem 3.4 in [15]). The next technical lemma used in the proof of Theorem 3.3 enlarges the results of Lemma 3 in [9]:

Lemma 3.5. Let g_j be in $L^2[\sigma(V)]$ for $1 \le j \le N$ and let α_G , β_G be the constants given by (3.3). Then we have:

- (i) The sequence $\{\overline{g_j(\xi)}e^{-irn\xi}: 1 \leq j \leq N, n \in \mathbb{Z}\}\$ is a Bessel sequence in $L^2[\sigma(V)]$ if and only if $\beta_G < \infty$, that is, $g_j(\xi) \in L^{\infty}[\sigma(V)]$ for each $1 \leq j \leq N$.
- (ii) The sequence $\{\overline{g_j(\xi)}e^{-irn\xi}: 1 \le j \le N, n \in \mathbb{Z}\}$ is a frame for $L^2[\sigma(V)]$ if and only if

$$(3.11) 0 < \alpha_G \le \beta_G < \infty.$$

Proof. First note that for any $F \in L^2[\sigma(V)]$ we have

$$\langle F(\xi), \overline{g_j(\xi)}e^{-irn\xi} \rangle_{L^2[\sigma(V)]} = \int_{\sigma(V)} F(\xi)g_j(\xi)e^{irn\xi}d\xi = \sum_{k \in \mathcal{P}} \int_{B_k} [D_k(g_j)]^T(\xi)D_k(F_k)(\xi)e^{irn\xi}d\xi = \langle \sum_{k \in \mathcal{P}} [D_k(g_j)]^T D_k(F_k)\chi_{B_k}, e^{-irn\xi} \rangle_{L^2(I)},$$

where $F_k(\xi) := F(\xi)\chi_{\widetilde{B}_k}(\xi)$. Since $\{\sqrt{\frac{r}{2\pi}}e^{-irn\xi}\}_{n\in\mathbb{Z}}$ is an orthonormal basis for $L^2(I)$ and the sets B_k are disjoint, we have

$$\sum_{n\in\mathbb{Z}} \left| \langle F(\xi), \overline{g_j(\xi)}e^{-irn\xi} \rangle_{L^2[\sigma(V)]} \right|^2 = \frac{2\pi}{r} \left\| \sum_{k\in\mathcal{P}} D_k(g_j)^T D_k(F_k) \chi_{B_k}(\xi) \right\|_{L^2(I)}^2$$
$$= \frac{2\pi}{r} \sum_{k\in\mathcal{P}} \left\| D_k(g_j)^T D_k(F_k) \right\|_{L^2(B_k)}^2$$
$$= \frac{2\pi}{r} \sum_{k\in\mathcal{P}} \langle \overline{D_k(g_j)} D_k(g_j)^T D_k(F_k), D_k(F_k) \rangle_{L^2_{l(k)}(B_k)}$$

Hence,

(3.12)
$$\sum_{j=1}^{N} \sum_{n \in \mathbb{Z}} |\langle F(\xi), \overline{g_j(\xi)}e^{-irn\xi} \rangle|^2$$
$$= \frac{2\pi}{r} \sum_{k \in \mathcal{P}} \langle \sum_{j=1}^{N} \overline{D_k(g_j)} D_k(g_j)^T D_k(F_k), D_k(F_k) \rangle_{L^2_{l(k)}(B_k)}$$
$$= \frac{2\pi}{r} \sum_{k \in \mathcal{P}} \langle \mathbf{H}_k(\xi) D_k(F_k), D_k(F_k) \rangle_{L^2_{l(k)}(B_k)}.$$

For (i), assume that $\beta_G < \infty$. By using (3.12), for any $F \in L^2[\sigma(V)]$ we have

$$\sum_{j=1}^{N} \sum_{n \in \mathbb{Z}} \left| \langle F(\xi), \overline{g_j(\xi)} e^{-irn\xi} \rangle_{L^2[\sigma(V)]} \right|^2 \leq \frac{2\pi}{r} \beta_G \sum_{k \in \mathcal{P}} \langle D_k(F_k), D_k(F_k) \rangle_{L^2_{l(k)}(B_k)}$$
$$= \frac{2\pi}{r} \beta_G \|F\|^2_{L^2[\sigma(V)]}$$

so that $\{\overline{g_j(\xi)}e^{-irn\xi}: 1 \le j \le N, n \in \mathbb{Z}\}$ is a Bessel sequence with bound $\frac{2\pi}{r}\beta_G$.

On the other hand, for any constant K with $0 \leq K < \beta_G$ we have that $K < \|\lambda_{\max,k}(\xi)\|_{\infty}$ for some $k \in \mathcal{P}$. Then there is a measurable set $E \subset B_k$ of positive measure such that $\lambda_{\max,k}(\xi) \geq K$ on E. Choose a measurable vector-valued function $\mathbf{F}_k(\xi) := \{F_{k,j}(\xi)\}_{j=1}^{l(k)}$ on E such that $\sum_{j=1}^{l(k)} |F_{k,j}(\xi)|^2 = 1$ on E and $\mathbf{H}_k(\xi)\mathbf{F}_k(\xi) = \lambda_{\max,k}(\xi)\mathbf{F}_k(\xi)$ on E. This function can be constructed as in [13, Lemma 2.4]. Extend $\mathbf{F}_k(\xi)$ over B_k by setting $\mathbf{F}_k(\xi) = 0$ on $B_k \setminus E$. Thus $\mathbf{F}_k \in L^{\infty}_{l(k)}(B_k)$ and $\mathbf{H}_k(\xi)\mathbf{F}_k(\xi) = \lambda_{\max,k}(\xi)\mathbf{F}_k(\xi)$ on B_k . Let F be such that $F = D_k^{-1}(\mathbf{F}_k)$ on \widetilde{B}_k and $F(\xi) = 0$ on $\sigma(V) \setminus \widetilde{B}_k$. This function F belongs to $L^{\infty}[\sigma(V)]$ and satisfies

$$\sum_{j=1}^{N} \sum_{n \in \mathbb{Z}} \left| \langle F(\xi), \overline{g_j(\xi)} e^{-irn\xi} \rangle_{L^2[\sigma(V)]} \right|^2 = \frac{2\pi}{r} \langle \mathbf{H}_k(\xi) \mathbf{F}_k(\xi), \mathbf{F}_k(\xi) \rangle_{L^2_{l(k)}(B_k)}$$
$$\geq \frac{2\pi}{r} K \langle \mathbf{F}_k, \mathbf{F}_k \rangle_{L^2_{l(k)}(E)} = \frac{2\pi}{r} K \|F\|_{L^2[\sigma(V)]}^2.$$

As a consequence, $\frac{2\pi}{r}\beta_G$ is the optimal Bessel bound for $\{\overline{g_j(\xi)}e^{-irn\xi}: 1 \leq j \leq N, n \in \mathbb{Z}\}$. Moreover, if $\beta_G = \infty$, the sequence $\{\overline{g_j(\xi)}e^{-irn\xi}: 1 \leq j \leq N, n \in \mathbb{Z}\}$ cannot be a Bessel sequence. Finally, note that the spectral norm of a matrix is equivalent to its Frobenius norm. Hence $\beta_G < \infty$ if and only if all entries of $\mathbf{H}_k(\xi)$ for $k \in \mathcal{P}$ are essentially bounded which is also equivalent to $g_j \in L^{\infty}[\sigma(V)]$ for $1 \leq j \leq N$.

For (ii), assume that $0 < \alpha_G \leq \beta_G < \infty$. A similar reasoning as the one in (i) gives that $\{\overline{g_j(\xi)}e^{-irn\xi} : 1 \leq j \leq N, n \in \mathbb{Z}\}$ is a frame for $L^2[\sigma(V)]$, where $\frac{2\pi}{r}\beta_G \geq \frac{2\pi}{r}\alpha_G$ are the optimal upper and lower bounds. In particular, if either $\alpha_G = 0$ or $\beta_G = \infty$, then $\{\overline{g_j(\xi)}e^{-irn\xi} : 1 \leq j \leq N, n \in \mathbb{Z}\}$ cannot be a frame for $L^2[\sigma(V)]$.

It is useful to note that condition (3.11) is equivalent to $g_j \in L^{\infty}[\sigma(V)]$ for $1 \leq j \leq N$ and $\min_{k \in \mathcal{P}} \|\det \mathbf{H}_k(\xi)\|_{L^0(B_k)} > 0.$

Lemma 3.6. Let g_j be in $L^2[\sigma(V)]$ for $1 \le j \le N$ such that $\{\overline{g_j(\xi)}e^{-irn\xi} : 1 \le j \le N, n \in \mathbb{Z}\}$ is a frame for $L^2[\sigma(V)]$. Then any dual frame of $\{\overline{g_j(\xi)}e^{-irn\xi} : 1 \le j \le N, n \in \mathbb{Z}\}$ having

the form $\{s_j(\xi)e^{-irn\xi}: 1 \leq j \leq N, n \in \mathbb{Z}\}$ is obtained from the equation

(3.13)
$$\frac{2\pi}{r} \mathbf{S}_k(\xi)^\top = \mathbf{G}_k(\xi)^\dagger + \mathbf{E}_k(\xi) \left(\mathbf{I}_N - \mathbf{G}_k(\xi) \mathbf{G}_k(\xi)^\dagger \right), \quad k \in \mathcal{P}$$

where \mathbf{I}_N is the $N \times N$ identity matrix, $\mathbf{E}_k(\xi)$ is any arbitrary $l(k) \times N$ matrix with entries in $L^{\infty}(B_k)$, $\mathbf{G}_k(\xi)^{\dagger} := \left[\mathbf{G}_k(\xi)^* \mathbf{G}_k(\xi)\right]^{-1} \mathbf{G}_k(\xi)$ is the pseudo-inverse matrix of $\mathbf{G}_k(\xi)$,

(3.14)
$$\mathbf{S}_{k}(\xi) := [D_{k}(s_{1,k})(\xi), \cdots, D_{k}(s_{N,k})(\xi)]$$

and $s_{j,k}(\xi) = s_j(\xi)\chi_{\widetilde{B}_k}(\xi)$ for $1 \le j \le N$.

Proof. Assume that the sequence $\{s_j(\xi)e^{-irn\xi}: 1 \leq j \leq N, n \in \mathbb{Z}\}$ is a dual frame of the sequence $\{\overline{g_j(\xi)}e^{-irn\xi}: 1 \leq j \leq N, n \in \mathbb{Z}\}$. Then $s_j \in L^{\infty}[\sigma(V)]$ for $1 \leq j \leq N$. For any F_1 and F_2 in $L^2[\sigma(V)]$ we also have (cf. Lemma 5.6.2 in [5]):

(3.15)
$$\langle F_1, F_2 \rangle_{L^2[\sigma(V)]} = \sum_{j=1}^N \sum_{n \in \mathbb{Z}} \langle F_1, s_j e^{-irn\xi} \rangle_{L^2[\sigma(V)]} \langle \overline{g_j} e^{-irn\xi}, F_2 \rangle_{L^2[\sigma(V)]}$$
$$= \frac{2\pi}{r} \sum_{k \in \mathcal{P}} \langle D_k(F_{1,k}), \mathbf{S}_k(\xi) \mathbf{G}_k(\xi) D_k(F_{2,k}) \rangle_{L^2_{l(k)}(B_k)}$$

with $\mathbf{S}_k(\xi)$ as in (3.14). Since

$$\langle F_1, F_2 \rangle_{L^2[\sigma(V)]} = \sum_{k \in \mathcal{P}} \langle D_k(F_{1,k}), D_k(F_{2,k}) \rangle_{L^2_{l(k)}(B_k)}$$

(3.15) implies that $\frac{2\pi}{r} \mathbf{S}_k(\xi)$ must be a left inverse of the matrix $\mathbf{G}_k(\xi)$. Finally, the right hand side of (3.13) is a left inverse of $\mathbf{G}_k(\xi)$ and any left inverse $\frac{2\pi}{r} \mathbf{S}_k(\xi)^{\top}$ of $\mathbf{G}_k(\xi)$ is obtained from (3.13) by choosing $\mathbf{E}_k(\xi) = \frac{2\pi}{r} \mathbf{S}_k(\xi)^{\top}$.

One can easily check that the canonical dual frame of $\{\overline{g_j(\xi)}e^{-irn\xi} : 1 \le j \le N, n \in \mathbb{Z}\}$ is obtained from (3.13) by choosing $\mathbf{E}_k(\xi) = 0$ for each $k \in \mathcal{P}$.

Next we give the Riesz basis counterpart to Theorem 3.3:

Theorem 3.7. There exists a Riesz basis $\{S_{j,n}(t) : 1 \leq j \leq N, n \in \mathbb{Z}\}$ for $V(\varphi)$ for which the sampling expansion (3.5) holds on $V(\varphi)$ if and only if

(3.16)
$$0 < \alpha_G \leq \beta_G < \infty$$
 and $l(k) = N$ for all $1 \leq k \leq m$.

Moreover, in this case,

$$(3.17) S_{j,n}(t) = S_j(t-rn), \ 1 \le j \le N \text{ and } n \in \mathbb{Z}_2$$

(3.18)
$$(\mathcal{L}_j S_k)(a_j + rn) = \delta_{j,k} \delta_{n,0}, \ 1 \le j,k \le N \text{ and } n \in \mathbb{Z};$$

(3.19)
$$|\sigma(V)| = 2\pi \frac{N}{r} \text{ (which implies } N \le r).$$

Proof. Assuming (3.16), Lemma 3.8 below proves that the sequence $\{\overline{g_j(\xi)}e^{-irn\xi}: 1 \leq j \leq N, n \in \mathbb{Z}\}$ is a Riesz basis for $L^2[\sigma(V)]$. Thus we have the Riesz basis expansion (3.7), where $\{s_j(\xi)e^{-irn\xi}: 1 \leq j \leq N, n \in \mathbb{Z}\}$ is the dual Riesz basis of $\{\overline{g_j(\xi)}e^{-irn\xi}: 1 \leq j \leq N, n \in \mathbb{Z}\}$. The isomorphism \mathcal{T}_{φ} gives the sampling expansion (3.5), where $S_{j,n}(t) = S_j(t - rn)$ and $S_j(t) = \mathcal{T}_{\varphi}(s_j(\xi))(t)$. Conversely assume that the Riesz basis expansion (3.5) holds on $V(\varphi)$. Applying the isomorphism $\mathcal{T}_{\varphi}^{-1}$ to (3.5) gives the Riesz basis expansion (3.6) on $L^2[\sigma(V)]$.

Then $\{\overline{g_j(\xi)}e^{-irn\xi}: 1 \leq j \leq N, n \in \mathbb{Z}\}$ must be the dual Riesz basis of $\{s_{j,n}(\xi): 1 \leq j \leq N, n \in \mathbb{Z}\}$ so that (3.16) holds by Lemma 3.8 below. Since $\{s_{j,n}(\xi): 1 \leq j \leq N, n \in \mathbb{Z}\}$ is the dual Riesz basis of $\{\overline{g_j(\xi)}e^{-irn\xi}: 1 \leq j \leq N, n \in \mathbb{Z}\}$, $s_{j,n}(\xi) = s_j(\xi)e^{-irn\xi}$ where $s_j \in L^{\infty}[\sigma(V)]$ (cf. Lemma 3.6). Therefore, $S_{j,n}(t) = \mathcal{T}_{\varphi}(s_j(\xi)e^{-irn\xi})(t) = S_j(t-rn)$, where $S_j = \mathcal{T}_{\varphi}(s_j), 1 \leq j \leq N$, so that (3.17) holds. Applying the sampling formula (3.4) to S_k gives

$$S_k(t) = \sum_{j=1}^N \sum_{n \in \mathbb{Z}} (\mathcal{L}_j S_k) (a_j + rn) S_j(t - rn) , \quad t \in \mathbb{R} ,$$

from which (3.18) follows. Finally (3.19) follows immediately from (3.16) having in mind that $|\sigma(V)| = \sum_{k \in \mathcal{P}} l(k)|B_k|$.

Whenever $\sigma(V) = [0, 2\pi]$, φ becomes a Riesz generator for $V(\varphi)$. As a consequence, Theorems 3.3 and 3.7 are the extended frame versions of Theorem 2 and Corollary 1 in [9]; there φ is a Riesz generator and the LTI system \mathcal{L}_j has impulse response h_j in $L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ for $1 \leq j \leq N$.

Lemma 3.8. Let g_j be a function in $L^2[\sigma(V)]$ for $1 \le j \le N$ and let α_G , β_G be the constants given by (3.3). Then, the sequence $\{\overline{g_j(\xi)}e^{-irn\xi} : 1 \le j \le N, n \in \mathbb{Z}\}$ is a Riesz basis for $L^2[\sigma(V)]$ if and only if

(3.20)
$$0 < \alpha_G \le \beta_G < \infty$$
 and $l(k) = N$ for all $1 \le k \le m$.

Proof. Note that $\{\overline{g_j(\xi)}e^{-irn\xi}: 1 \leq j \leq N, n \in \mathbb{Z}\}$ is a Riesz basis for $L^2[\sigma(V)]$ if and only if it is complete set in $L^2[\sigma(V)]$ and there are constants $0 < A \leq B$ such that

(3.21)
$$A \|\mathbf{c}\|^{2} \leq \|\sum_{j=1}^{N} \sum_{n \in \mathbb{Z}} c_{j}(n) \overline{g_{j}(\xi)} e^{-irn\xi} \|_{L^{2}[\sigma(V)]}^{2} \leq B \|\mathbf{c}\|^{2},$$

where $\mathbf{c} = (\mathbf{c}_1, \dots, \mathbf{c}_N) \in \ell^2_N(\mathbb{Z})$ and $\|\mathbf{c}\|^2 := \sum_{j=1}^N \sum_{n \in \mathbb{Z}} |c_j(n)|^2$. For the middle term in (3.21) we have

$$\begin{split} & \left\|\sum_{j=1}^{N}\sum_{n\in\mathbb{Z}}c_{j}(n)\overline{g_{j}(\xi)}e^{-irn\xi}\right\|_{L^{2}[\sigma(V)]}^{2} = \int_{\sigma(V)}\left|\sum_{j=1}^{N}\overline{g_{j}(\xi)}\widehat{c}_{j}(r\xi)\right|^{2}d\xi \\ &= \sum_{k\in\mathcal{P}}\sum_{j=1}^{l(k)}\int_{B_{k}}|\mathbf{g}^{*}(\xi+(n_{k,j}-1)\frac{2\pi}{r})\widehat{\mathbf{c}}(r\xi)|^{2}d\xi \\ &= \sum_{k\in\mathcal{P}}\langle\sum_{j=1}^{l(k)}\mathbf{g}(\xi+(n_{k,j}-1)\frac{2\pi}{r})\mathbf{g}^{*}(\xi+(n_{k,j}-1)\frac{2\pi}{r})\widehat{\mathbf{c}}(r\xi),\widehat{\mathbf{c}}(r\xi)\rangle_{L^{2}_{N}(B_{k})} \\ &= \sum_{k\in\mathcal{P}}\langle\widetilde{\mathbf{H}}_{k}(\xi)\widehat{\mathbf{c}}(r\xi),\widehat{\mathbf{c}}(r\xi)\rangle_{L^{2}_{N}(B_{k})}, \end{split}$$

where $\mathbf{g}(\xi) := [g_1(\xi), \cdots, g_N(\xi)]^\top$, $\widehat{\mathbf{c}}(\xi) := [\widehat{c}_1(\xi), \cdots, \widehat{c}_N(\xi)]^\top$ and $\widehat{\mathbf{H}}_k(\xi) := \mathbf{G}_k(\xi)\mathbf{G}_k^*(\xi)$. On the other hand,

$$\|\mathbf{c}\|^{2} = \frac{r}{2\pi} \|\widehat{\mathbf{c}}(r\xi)\|_{L^{2}_{N}(I)}^{2} = \frac{r}{2\pi} \sum_{k=1}^{m} \|\widehat{\mathbf{c}}(r\xi)\|_{L^{2}_{N}(B_{k})}^{2}$$

Hence, condition (3.21) is equivalent to

$$(3.22) \quad A\frac{r}{2\pi} \sum_{k=1}^{m} \|\widehat{\mathbf{c}}(r\xi)\|_{L^{2}_{N}(B_{k})}^{2} \leq \sum_{k \in \mathcal{P}} \langle \widetilde{\mathbf{H}}_{k}(\xi)\widehat{\mathbf{c}}(r\xi), \widehat{\mathbf{c}}(r\xi) \rangle_{L^{2}_{N}(B_{k})} \leq B\frac{r}{2\pi} \sum_{k=1}^{m} \|\widehat{\mathbf{c}}(r\xi)\|_{L^{2}(B_{k})^{N}}^{2},$$

which holds if and only if $\mathcal{P} = \{1, 2, \dots, m\}$ and $0 < \widetilde{\alpha}_G \leq \widetilde{\beta}_G < \infty$, where $\widetilde{\alpha}_G := \min_{1 \leq k \leq m} \|\widetilde{\lambda}_{\min,k}\|_0$, $\widetilde{\beta}_G := \max_{1 \leq k \leq m} \|\widetilde{\lambda}_{\max,k}\|_\infty$, and $\widetilde{\lambda}_{\min,k}$ (respectively $\widetilde{\lambda}_{\max,k}(\xi)$) is the smallest (respectively the largest) eigenvalue of the matrix $\widetilde{\mathbf{H}}_k(\xi)$.

Now assume that $\{\overline{g_j(\xi)}e^{-irn\xi} : 1 \leq j \leq N, n \in \mathbb{Z}\}$ is a Riesz basis for $L^2[\sigma(V)]$. Since (3.11) holds, we deduce that $l(k) \leq N$ for any $k \in \mathcal{P}$; but we also have (3.22) so that $N \leq l(k)$ for any $1 \leq k \leq m$. Hence, l(k) = N for all $1 \leq k \leq m$. Conversely, assume that (3.20) holds. Thus, $\{\overline{g_j(\xi)}e^{-irn\xi} : 1 \leq j \leq N, n \in \mathbb{Z}\}$ is a complete set in $L^2[\sigma(V)]$ since it is a frame for $L^2[\sigma(V)]$. For each $1 \leq k \leq m$, since $\alpha_G \mathbf{I}_N \leq \mathbf{H}_k(\xi) \leq \beta_G \mathbf{I}_N$, for any $\mathbf{F}_k \in L^2_N(B_k)$ we have

$$\alpha_G \|\mathbf{F}_k\|_{L^2_N(B_k)}^2 \le \|\mathbf{G}_k(\xi)\mathbf{F}_k(\xi)\|_{L^2_N(B_k)}^2 \le \beta_G \|\mathbf{F}_k\|_{L^2_N(B_k)}^2$$

and there exists the inverse matrix $\mathbf{G}_k(\xi)^{-1}$ a.e. with entries essentially bounded. Then $\mathbf{G}_k(\xi)$ and $\mathbf{G}_k^*(\xi)$ are isomorphisms from $L_N^2(B_k)$ onto $L_N^2(B_k)$. Hence, for any $k = 1, 2, \dots, m$ we have

$$\alpha_{G} \|\mathbf{F}_{k}\|_{L^{2}_{N}(B_{k})}^{2} \leq \|\mathbf{G}_{k}^{*}(\xi)\mathbf{F}_{k}(\xi)\|_{L^{2}_{N}(B_{k})}^{2} = \langle \widetilde{\mathbf{H}}_{k}(\xi)\mathbf{F}_{k}(\xi), \mathbf{F}_{k}(\xi) \rangle_{L^{2}_{N}(B_{k})} \leq \beta_{G} \|\mathbf{F}_{k}\|_{L^{2}_{N}(B_{k})}^{2},$$

for any $\mathbf{F}_k \in L^2_N(B_k)$. Thus (3.22) or, equivalently, (3.21) holds, from which we deduce that the sequence $\{\overline{g_j(\xi)}e^{-irn\xi}: 1 \leq j \leq N, n \in \mathbb{Z}\}$ is a Riesz basis for $L^2[\sigma(V)]$.

For the particular case N = 1, Theorem 3.7 reads:

Corollary 3.9. Let \mathcal{L} be an LTI system of type (i), (ii) or (iii). Then, there exists a Riesz basis $\{S_n(t) : n \in \mathbb{Z}\}$ for $V(\varphi)$ such that, for any $f \in V(\varphi)$, the sampling formula

(3.23)
$$f(t) = \sum_{n \in \mathbb{Z}} (\mathcal{L}f)(a+rn) S_n(t), \quad t \in \mathbb{R},$$

holds if and only if

 $(3.24) \quad 0 < \|Z_{\psi}(a,\xi)\|_{L^{0}[\sigma(V)]} \le \|Z_{\psi}(a,\xi)\|_{L^{\infty}[\sigma(V)]} < \infty \text{ and } l(k) = 1 \text{ for all } 1 \le k \le m.$

Moreover, in this case:

- $S_n(t) = S(t rn), \ n \in \mathbb{Z};$
- $(\mathcal{L}S)(a+rn) = \delta_{n,0}, \ n \in \mathbb{Z};$
- $|\sigma(V)| = \frac{2\pi}{r}$.

Proof. Assume l(k) = 1 for all $1 \leq k \leq m$; for each $k = 1, 2, \cdots, m$, there is a unique integer n_k with $1 \leq n_k \leq r$ such that $\widetilde{B}_k = B_k + (n_k - 1)\frac{2\pi}{r} \subseteq \sigma(V)$. Thus, $\mathbf{G}_k(\xi) = D_k(g)(\xi) = \frac{1}{2\pi} Z_{\psi}(a, \xi + (n_k - 1)\frac{2\pi}{r})$ and $\mathbf{H}_k(\xi) = \frac{1}{(2\pi)^2} |Z_{\psi}(a, \xi + (n_k - 1)\frac{2\pi}{r})|^2$ for $\xi \in B_k$. Hence, $0 < \alpha_G \leq \beta_G < \infty$ if and only if $0 < ||Z_{\psi}(a, \xi)||_{L^0[\sigma(V)]} \leq ||Z_{\psi}(a, \xi)||_{L^{\infty}[\sigma(V)]} < \infty$ and, as a consequence, Corollary 3.9 follows from Theorem 3.7.

Furthermore, if r = 1 in Corollary 3.9, then φ must be a Riesz generator since $\sigma(V) = [0, 2\pi]$ and $\widehat{S}(\xi) = \widehat{\varphi}(\xi) / [Z_{\psi}(a, \xi)].$

Finally, it is worth to notice that in sampling formula (3.2) we may allow a rational sampling period $r = \frac{p}{q}$, where p and q are coprime positive integers, since

$$\left\{ (\mathcal{L}_j f)(a_j + rn) : n \in \mathbb{Z} \right\} = \left\{ (\mathcal{L}_j f)(a_j + r(k-1) + pn) : 1 \le k \le q \text{ and } n \in \mathbb{Z} \right\}.$$

4. An illustrative example

Let
$$\varphi(t) = \frac{1}{2} \operatorname{sinc} \frac{t}{2} = \frac{\sin \pi \frac{t}{2}}{\pi t}$$
 so that $\widehat{\varphi}(\xi) = \chi_{[-\frac{\pi}{2}, \frac{\pi}{2}]}(\xi)$. On $[0, 2\pi]$ we have,
 $G_{\varphi}(\xi) = \begin{cases} 1 & \text{on } [0, \frac{\pi}{2}] \cup [\frac{3\pi}{2}, 2\pi] \\ 0 & \text{on } (\frac{\pi}{2}, \frac{3\pi}{2}) \end{cases}$

so that φ is a continuous frame generator of $V(\varphi)$ and $\sigma(V) = [0, \frac{\pi}{2}] \cup [\frac{3\pi}{2}, 2\pi]$. By the Poisson summation formula, we also have

$$C_{\varphi}(t) = \sum_{n \in \mathbb{Z}} |\varphi(t+n)|^2 = \frac{1}{2\pi} \|Z_{\varphi}(t,\cdot)\|_{L^2[0,2\pi]}^2 = \frac{1}{2\pi} \|\sum_{n \in \mathbb{Z}} \widehat{\varphi}(\cdot+2n\pi)e^{it(\cdot+2n\pi)}\|_{L^2[0,2\pi]}^2$$
$$\leq \frac{1}{2\pi} \|\sum_{n \in \mathbb{Z}} |\widehat{\varphi}(\cdot+2n\pi)| \|_{L^2[0,2\pi]}^2 = \frac{1}{2}, \quad t \in \mathbb{R}.$$

(a) First take N = 2, $\hat{h}_j(\xi) = (i\xi)^{j-1}\chi_{[-\frac{\pi}{2},\frac{\pi}{2}]}(\xi)$ for j = 1, 2, r = 4 and $a_1 = a_2 = 0$. For any $f \in V(\varphi)$

$$\mathcal{L}_j[f](t) = f^{(j-1)}(t)$$
 for $j = 1, 2$

For $\psi_j(t) = \mathcal{L}_j[\varphi](t)$, the Poisson summation formula gives

$$Z_{\psi_j}(0,\xi) = \sum_{n \in \mathbb{Z}} \psi_j(n) e^{-in\xi} = \sum_{n \in \mathbb{Z}} \hat{\psi}_j(\xi + 2n\pi), \ j = 1, 2,$$

so that

$$Z_{\psi_1}(0,\xi) = \begin{cases} 1 & \text{on } [0,\frac{\pi}{2}] \cup [\frac{3\pi}{2},2\pi] \\ 0 & \text{on } (\frac{\pi}{2},\frac{3\pi}{2}) \end{cases}$$

and

$$Z_{\psi_2}(0,\xi) = \begin{cases} i\xi & \text{on } [0,\frac{\pi}{2}] \\ 0 & \text{on } (\frac{\pi}{2},\frac{3\pi}{2}) \\ i(\xi - 2\pi) & \text{on } [\frac{3\pi}{2},2\pi] \end{cases}$$

Hence, $Z_{\psi_j}(0,\xi) \in L^{\infty}[0,2\pi]$ for j = 1, 2.

On the other hand, since $\sigma(V) = [0, \frac{\pi}{2}] \cup [\frac{3\pi}{2}, 2\pi]$ and $I = [0, \frac{\pi}{2}]$, m = 1 and $L(1) = \{1, 4\}$ so that l(1) = 2. Hence,

$$2\pi \mathbf{G}_{1}(\xi) = \begin{bmatrix} 1 & 1\\ i\xi & i(\xi - \frac{\pi}{2}) \end{bmatrix}, \ 0 \le \xi \le \frac{\pi}{2}$$

and consequently,

$$(2\pi)^{2}\mathbf{H}_{1}(\xi) = \begin{bmatrix} 1+\xi^{2} & 1+\xi(\xi-\frac{\pi}{2})\\ 1+\xi(\xi-\frac{\pi}{2}) & 1+(\xi-\frac{\pi}{2})^{2} \end{bmatrix}, \ 0 \le \xi \le \frac{\pi}{2}$$

Hence, det $\mathbf{H}_1(\xi) = |\det \mathbf{G}_1(\xi)|^2 = 1/(64\pi^2)$ and we deduce that $\alpha_G > 0$. Therefore, by using Theorem 3.7, there exists a Riesz basis $\{S_j(t-4n) : j=1, 2 \text{ and } n \in \mathbb{Z}\}$ for $V(\varphi)$ such that, for any $f \in V(\varphi)$

$$f(t) = \sum_{n \in \mathbb{Z}} \left\{ f(4n)S_1(t-4n) + f'(4n)S_2(t-4n) \right\}, \quad t \in \mathbb{R}.$$

(b) We now take N = 3, $\hat{h}_j(\xi) = (i\xi)^{j-1} \chi_{[-\frac{\pi}{2}, \frac{\pi}{2}]}(\xi)$ for j = 1, 2, 3, r = 5 and $a_1 = a_2 = a_3 = 0$. For $f \in V(\varphi)$,

$$\mathcal{L}_j[f](t) = f^{(j-1)}(t) \text{ for } j = 1, 2, 3,$$

and

$$Z_{\psi_3}(0,\xi) = \begin{cases} -\xi^2 & \text{on } [0,\frac{\pi}{2}] \\ 0 & \text{on } (\frac{\pi}{2},\frac{3\pi}{2}) \\ -(\xi-2\pi)^2 & \text{on } [\frac{3\pi}{2},2\pi] . \end{cases}$$

so that $Z_{\psi_j}(0,\xi) \in L^{\infty}[0,2\pi]$ for j = 1,2,3. Since $\sigma(V) = [0,\frac{\pi}{2}] \cup [\frac{3\pi}{2},2\pi]$ and $I = [0,\frac{2\pi}{5}]$, m = 3 and $\{t_j\}_{j=0}^3 = \{0,\frac{\pi}{10},\frac{3\pi}{10},\frac{2\pi}{5}\}$, so that $L(1) = \{1,2,5\}, L(2) = \{1,5\}, L(3) = \{1,4,5\}$. We then have

$$2\pi \mathbf{G}_{1}(\xi) = \begin{bmatrix} 1 & 1 & 1 \\ i\xi & i(\xi + \frac{2\pi}{5}) & i(\xi - \frac{2\pi}{5}) \\ -\xi^{2} & -(\xi + \frac{2\pi}{5})^{2} & -(\xi - \frac{2\pi}{5})^{2} \end{bmatrix}, \ \xi \in B_{1} = (0, \frac{\pi}{10});$$

$$2\pi \mathbf{G}_{2}(\xi) = \begin{bmatrix} 1 & 1 \\ i\xi & i(\xi - \frac{2\pi}{5}) \\ -\xi^{2} & -(\xi - \frac{2\pi}{5})^{2} \end{bmatrix}, \ \xi \in B_{2} = (\frac{\pi}{10}, \frac{3\pi}{10});$$

$$2\pi \mathbf{G}_{3}(\xi) = \begin{bmatrix} 1 & 1 & 1 \\ i\xi & i(\xi - \frac{4\pi}{5}) & i(\xi - \frac{2\pi}{5})^{2} \\ -\xi^{2} & -(\xi - \frac{4\pi}{5})^{2} & -(\xi - \frac{2\pi}{5})^{2} \end{bmatrix}, \ \xi \in B_{3} = (\frac{3\pi}{10}, \frac{2\pi}{5}).$$

Thus, for $\mathbf{H}_{j}(\xi) = \mathbf{G}_{j}^{*}(\xi)\mathbf{G}_{j}(\xi), \ j = 1, 2, 3$, we have det $\mathbf{H}_{1}(\xi) = \det \mathbf{H}_{3}(\xi) = (2/125)^{2}$ and

$$(2\pi)^4 \det \mathbf{H}_2(\xi) = (x^2\xi - x\xi^2)^2 + (x^2 - \xi^2)^2 + (x - \xi)^2 \ge (x - \xi)^2 = \frac{4\pi^2}{25},$$

where $x = \xi - \frac{2\pi}{5}$; hence $\alpha_G > 0$. Therefore, by Theorem 3.3, there exists a frame $\{S_j(t-5n) :$ j = 1, 2, 3 and $n \in \mathbb{Z}$ for $V(\varphi)$ such that, for each $f \in V(\varphi)$ we have

$$f(t) = \sum_{n \in \mathbb{Z}} \left\{ f(5n)S_1(t-5n) + f'(5n)S_2(t-5n) + f''(5n)S_3(t-5n) \right\}, \quad t \in \mathbb{R}$$

Acknowledgments. The first author is supported by the grant MTM2009–08345 from the Spanish Ministerio de Ciencia e Innovación (MICINN). The 3rd author is partially supported by Korea Research Foundation (Grant No. 2009-0084583).

References

- [1] A. Aldroubi and K. Gröchenig. Non-uniform sampling and reconstruction in shift-invariant spaces. SIAM Rev., 43(4), 2001, 585-620.
- [2] A. Aldroubi, Q. Sun and W-S. Tang. Convolution, average sampling, and a Calderon resolution of the identity for shift-invariant spaces. J. Fourier Anal. Appl., 11(2), 2005, 215-244.
- [3] A. Aldroubi and M. Unser, Sampling procedures in function spaces and asymptotic equivalence with Shannon sampling theorem, Numer. Funct. Anal. Optim., 15, 1994, 1-21.
- [4] W. Chen and S. Itoh, A sampling theorem for shift invariant subspaces, IEEE Trans. Signal Process., 46, 1998, 2822-2824.
- [5] O. Christensen, An introduction to frames and Riesz bases, Birkhäuser, Boston, 2003.
- [6] I. Djokovic and P. P. Vaidyanathan, Generalized sampling theorems in multiresolution subspaces, IEEE Trans. Signal Process., 45, 1997, 583-599.
- [7] A. Feuer, On the necessity of Papoulis' result for multi-dimensional GSE, *IEEE Signal Process. Lett.*, 11, 2004, 420-422.

- [8] A. G. García, M. A. Hernández-Medina and G. Pérez-Villalón, Generalized sampling in shift-invariant spaces with multiple stable generators, J. Math. Anal. Appl., 337(1), 2008, 69-84.
- [9] A. G. García and G. Pérez-Villalón, Dual frames in L²(0,1) connected with generalized sampling in shift invariant spaces, Appl. Comput. Harm. Anal., 20, 2006, 422-433.
- [10] A. G. García, G. Pérez-Villalón and A. Portal, Riesz bases in $L^2(0, 1)$ related to sampling in shift invariant spaces, J. Math. Anal. Appl., 308(2), 2005, 703-713.
- [11] Y. M. Hong, J. M. Kim, K. H. Kwon and E. H. Lee, Channeled sampling in shift invariant spaces, Int. J. Wavelets Multiresolut. Inform. Process., 5, 2007, 753-767.
- [12] A. J. E. M. Janssen, The Zak transform and sampling theorems for wavelet subspaces, *IEEE Trans. Signal Process.*, 41, 1993, 3360-3364.
- [13] R. Q. Jia and Z. Shen. Multiresolution and wavelets. Proc. Edinburgh Math. Soc., 37, 1994, 271–300.
- [14] S. Kang, J. M. Kim and K. H. Kwon, Asymmetric multi-channel sampling in shift invariant spaces, J. Math. Anal. Appl., to appear, 2010.
- [15] J. M. Kim and K. H. Kwon, Sampling expansion in shift invariant spaces, Int. J. Wavelets Multiresolut. Inform. Process., 6, 2008, 223-248.
- [16] J. M. Kim and K. H. Kwon, Vector sampling expansion in Riesz basis setting and its aliasing error, Appl. Comput. Harmon. Anal., 25, 2008, 315-334.
- [17] A. Papoulis, Generalized sampling expansion, IEEE Trans. Circuits Systems, 24(11), 1977, 652-654.
- [18] M. Unser. Sampling 50 Years After Shannon. Proc. IEEE, 88(4), 2000, 569-587.
- [19] M. Unser and J. Zerubia, A generalized sampling theory without band-limiting constraints, *IEEE Trans. Circuits Syst.*, 45, 1998, 959-969.
- [20] R. Venkataramani and Y. Bresler, Sampling Theorems for uniform and periodic nonuniform MIMO sampling of multiband signals, *IEEE Trans. Signal Process.*, 51, 2003, 3152-3163.
- [21] G. G. Walter, A sampling theorem for wavelet subspaces, IEEE Trans. Inform. Theory, 38, 1992, 881-884.
- [22] X. Zhou and W. Sun, On the sampling theorem for wavelet subspaces, J. Fourier Anal. Appl., 5, 1999, 347-354.

¹Departamento de Matemáticas, Universidad Carlos III de Madrid

28911 Leganés, Madrid, Spain

e-mail: agarcia@math.uc3m.es

²Department of Bio and Brain Engineering, KAIST

Daejeon 305-701, Korea

e-mail: franzkim@gmail.com

³National Institute of Mathematical Sciences

Daejeon 305-340, Korea

e-mail: khkwon@kaist.edu, ykj@nims.re.kr