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ABSTRACT. Let ¢ be a continuous function in L*(R) such that the sequence {¢(t — n)}nez
is a frame sequence in L?(R) and assume that the shift-invariant space V() generated by ¢
has a multi-banded spectrum o (V). The main aim in this paper is to derive a multi-channel
sampling theory for the shift-invariant space V(¢). By using a type of Fourier duality
between the spaces V() and L?[0,27] we find necessary and sufficient conditions allowing
us to obtain stable multi-channel sampling expansions in V().
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1. INTRODUCTION

As a natural extension of the classical Shannon sampling theorem, Papoulis introduced in
[17] generalized sampling for arbitrary multi-channel sampling in Paley-Wiener spaces PWy,
of band-limited signals: In many common situations the available data are samples of some
filtered versions of the signal itself. Following [17], there have been many generalizations and
applications of the multi-channel sampling. See, for example, [6, 7, 16, 19, 20] and references
therein.

Although Shannon’s sampling theory has had an enormous impact, it has a number of
problems, as pointed out by Unser in [18]: It relies on the use of ideal filters; the band-
limited hypothesis is in contradiction with the idea of a finite duration signal; the band-
limiting operation generates Gibbs oscillations; and finally, the sinc function has a very slow
decay, which makes computation in the signal domain very inefficient.

Moreover, many applied problems impose different a priori constraints on the type of
functions. For this reason, sampling and reconstruction problems have been investigated in
spline spaces, wavelet spaces, and general shift-invariant spaces. Indeed, in many practical
applications, signals are assumed to belong to some shift-invariant space of the form: V() :=
spanzpy{p(t—n) : n € Z} where the function ¢ in L?(R) is called the generator of V(y). In
most of cases in the mathematical literature, it is supposed that the sequence {p(t — n)}nez
forms a Riesz basis for V' (¢). See, for instance, [1, 2, 3, 4, 12, 15, 18, 21, 22] and the references
therein. Throughout this paper we assume that the sequence {¢(t — n)},cz is a frame for
V() and that the spectrum of V() is multi-banded in [0, 27] (see Section 3 infra).

On the other hand, suppose that IV linear time-invariant systems (filters) £;,7 = 1,2,..., N,
are defined on the shift-invariant subspace V(¢) of L?(R). In mathematical terms we are
dealing with continuous operators which commute with shifts. The recovery of any function
f € V(y) from samples of the functions £;f, j =1,2,..., N, leads to a generalized sampling
in V(y).
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Our challenge problem is the following: Given r, N positive integers and N real numbers
0 <aj <rfor1<j <N, find multi-channel sampling expansions like

N
(1.1) FE) =D (L) aj+rn)Sin(t), tER,

j=1nez

valid for any f € V(¢), where the sequence of sampling functions {Sjﬁn(t) 1<j<N,ne€ Z}
forms a frame or a Riesz basis for V().

Recently, Garcia et al. ([8, 9, 10]) introduced a novel idea for developing a sampling
theory on a shift-invariant space V() by using an analogous of the Fourier duality between
the spaces V(¢) and L?[0,27]. In particular, Garcfa and Pérez-Villalén [9] (see also [14])
developed a multi-channel sampling procedure on a shift-invariant space V' (¢), where ¢ is a
continuous Riesz generator. Unlike the author’s claim (see section 4.1 in [9]), the arguments
used in [9] for the case of Riesz generator cannot be directly extended to the case of a frame
generator.

In the present paper, by assuming that the sequence {¢(t — n)},ez is a frame for V(p)
and that the spectrum of V' (¢) is multi-banded in [0, 27], and allowing more general filters
than those used in [9], we obtain necessary and sufficient conditions under which there exists
a stable multi-channel sampling expansion on V' (¢) like that in (1.1). We also provide some
illustrating examples. All these tasks will be carried out throughout the remaining sections.

2. SHIFT-INVARIANT SPACES AND FOURIER DUALITY TYPE
We start this section by introducing some notation and preliminaries used in the sequel.
Let {¢n}nez be a sequence of elements in a separable Hilbert space H. We say that

o the sequence {p,, }nez is a Bessel sequence (with Bessel bound B) in H if there exists
a constant B > 0 such that

> e, on)l? < Bllg|? for all ¢ € H;
ne”L

e the sequence {¢,}nez is a frame for H (with frame bounds A and B) if there exist
constants 0 < A < B such that

Allol? <) e, en)> < Bllg|l* for all ¢ € H;
nez

o the sequence {¢n,}nez is a Riesz basis for H (with Riesz bounds A and B) if it is a
complete set in H and there exist constants 0 < A < B such that

Alle|? < 1> etm)eall® < Blic|? for all ¢ = {c(n)}nez € £*(Z),
nel

where ||c||? :== Y |e(n)]?.
nez
For ¢ € L*(R) N L?(R) we take its Fourier transform to be normalized as

FIE) =€) = [ etear,

— 00
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so that \/%}" : L2(R) — L%(R) becomes a unitary operator. For any ¢ € L%*(R) consider
its related functions

Co(t) =) lpt+n)> and Gu(€) =D |B(£+ 2nm).
neZ nez

It is known that the 1-periodic function C, belongs to L'[0,1] and the 2m-periodic function
G, belongs to L'[0, 27]; moreover,

1
H@H%Q(R) = ||C<PHL1[O,1] = %HGMLHQ%]-

Let V(¢) := spanpsg){p(t —n) : n € Z} be the shift-invariant space generated by ¢, that
is, the closed subspace of L%(R) spanned by {((t — n)},ez and supp G, the support of the
locally integrable function G, as a distribution on R. Let o(V') := supp G, N [0, 27] be the
spectrum of V() and 7(V) := [0,27] \ o(V). For any ¢ = {c(n)}nez in £2(Z), let

c(§) = Z c(n)e" e
nez

be the discrete Fourier transform of the sequence c. In [5] we find the following result:

Proposition 2.1. Let ¢ € L?(R) and 0 < A < B. The following statements hold:
(a) The sequence {p(t —n)}nez is a Bessel sequence with a Bessel bound B for V (p) if

and only if
G,(&) < B ae. on [0,27].
(b) The sequence {p(t —n)}tnez is a frame for V() with frame bounds A, B if and only
if
A< Gy§)<Baeono(V).
(c) The sequence {¢(t —n)}nez is a Riesz basis for V(@) with Riesz bounds A, B if and
only if
A< Gy(€) < Bae. on [0,27].

For any ¢ € L?(R) and ¢ = {c(k)}rez € (?(Z), let T(c) := (cx¢)(t) = 3 c(k)p(t — k) be
the pre-frame operator of {¢(t — n)},cz. Proposition 2.1 can be restatedszsz(cf. [5]):
e The sequence {¢(t — n)}necz is a Bessel sequence with a Bessel bound B if and only
if T is a bounded linear operator from ¢2(Z) into V() with ||T|| < VB.
e The sequence {p(t —n)}necz is a frame for V() with frame bounds A, B if and only
if T is a bounded linear operator from ¢?(Z) onto V() and

Allel® < IT()l72) < Bllel*, ¢ € N(T)*,
where N(T) := {c € £3(Z) : T(c) = 0} and N(T)* is the orthogonal complement of
N(T) in (*(7Z).
o The sequence {p(t — n)}nez is a Riesz basis for V(¢) with Riesz bounds A, B if and
only if T' is an isomorphism from ¢2(Z) onto V(¢) and

Allel® < IT(0)[32g) < Blle|?, < € &(2).
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Lemma 2.2. Let ¢ € L*(R) such that the sequence {@(t — n)}nez is a Bessel sequence in
L3(R). Then for any ¢ = {c(n)}nez in (*(Z),

T(c)(§) = <(©)@(&),

so that
1 S N 1 2 N
(2.1) 1O = 5 [ BOPOPE =5 [ PG,
Proof. See Lemma 7.2.1 in [5] and Lemma 2.2 in [11]. O

In what follows, we always assume that the function ¢ € L?(R) N C(R) is a continuous
frame generator (i.e., the sequence {p(t — n)}nez is a frame for V(yp)), and satisfying the
condition: supg Cy(t) < co. Thus V(p) = {(c* ¢)(t) : ¢ € £*(Z)} is a reproducing kernel
Hilbert space (RKHS in short) and any f(t) = (c*)(t) in V(@) converges both in the L?(R)
sense, and absolutely and uniformly on R to a continuous function on R (see [15, 22]).

By using (2.1), we have that N(T) = {c € ¢*(Z) : €(£) = 0 a.e. on o(V)} and consequently
(2.2) N(T)*: ={ce*(Z):¢() =0 ae. on7(V)}.

Now, we introduce a Fourier duality for V() useful for sampling purposes as we will see in
the next section.
Let 7, : L?[0,27] — V() be the linear operator defined by

1 i |
(T,F)(t) :== o Z<F(§)7e ") L2p0.2me(t — k) = (F(E), ﬂzw(tyﬁ»m[o,zﬂ ;
keZ
where Z,, denotes the Zak transform of ¢ given as Z,(t,&) := > ¢(t + k)e ¢ (see [12]).

keZ
Notice that {¢(t — n)}tnez € (2(Z) for each t in R. By using (2.2), 7, is a bounded linear

operator from L2[0,27] onto V(¢) with kernel
N(T,) = {F(¢) € L*0,2n] : F(§) =0 a.e. on o(V)}.

Thus, the operator 7, : L?[o(V)] — V(g) becomes an isomorphism. We also note the
following useful properties of 7:

o TF(€) = F(OB©);
o T[F(&)e ™(t) = (T,F)(t —n), n € Z.

3. MULTI-CHANNEL SAMPLING THEORY

For 1 <j < N, let £; be an LTI (linear time-invariant) system with impulse response h;,
that is,

L0 = (=)0 = [ F6)hy(e = s)ds.
Here, we assume that each system L; belongs to one of the following three types:

(i) Its impulse response h;(t) = §(t + a;), a; € R, or
(ii) h; € L*(R), or
(iii) h; € L>°(R) whenever Hy(€) := >, o5 |P(€ + 2n)| € L?[0, 27].
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For type (i), L[f](t) = f(t + a) for any f € L?(R), so that £ : L?(R) — L*(R) becomes
a unitary operator. In particular, consider ¥(t) := Llp](t) = ¢(t + a); for any f(t) =
(cxp)(t) € V() we have that L[f](t) = (c x)(t) converges absolutely and uniformly on R
since supg Cy(t) = >°,,c7 [¥(t + n)|? < oo. For types (ii) and (iii) the following result holds:

Lemma 3.1. Let £ be an LTI system with impulse response h of type (ii) or (iii) as above
and consider the function 1(t) := L[p](t) = (¢ * h)( ). Then we have:
(a) The function v belongs to the space Cw = {u ) limpy oo u(t) = 0} .
(b) supg Cy(t) < 0.
() For any f(t) = (c x9)(t) € V(p) with ¢ € 2(@), L) = (¢ )(t) converges
absolutely and uniformly on R.

(d) For each fized t € R, supp Zy(t,-) N [0,27] C (V).

Proof. First assume h € L?(R). Since 12(5) = @(f)ﬁ({) € LY(R), the function ¢ € C(R) by
using the Riemann-Lebesgue Lemma. The Poisson summation formula (cf. Lemma 5.1 in
[15]) gives:

Cy(?)

> et +n)? —HZan —iné |

ne”

= *H Z Y (& + 2nm)e it(e+2nm) |2

nez

1 1 1
< %HG(?; Gﬁ“%qo,m = |Goll Lo 1Pl 2 (m)

L2[0,2m]

£2[0,27]

Hence supg Cy () < oo. Since f(t) = (c* ¢)(t) converges in L*(R) for any ¢ € ¢*(Z) and the
operator £ : L?(R) — L*°(R) is bounded by using Young’s inequality on the convolution

product, we have that L[f](t) = > ,czc(k)Llo(t — k)] = D iczclk)p(t — k) = (c*¥)(t)
converges absolutely and uniformly on R by using (b).

Now assume that H, € L?[0,2n] and let he L*(R). Since ¢ € L'(R) N L?(R), we obtain
that » = ¢ h € L'(R) N L?*(R) and consequently, ¢ € Coo(R) N L*(R). Since Y, .5 [¢(€ +
2n7)| < ||| oo (m)yHy(€), using again the Poisson summation formula we have that

Gl 7“ Z P&+ 2nm)e it(e+2anm)||?

neZ
so that supg Cy(t) < oo. For any f € L%(R),

1 ~ o~ ~
1L N 22wy = I1f * Rl 2wy = Eﬂf(f)h(f)HL‘Z(R) < [l oo m) 1l 2 (m) -

Hence, £ : L?*(R) — L?(R) is a bounded linear operator so that, for any f(t) = (c* p)(t) €
V(p), LIf]() = (c*)(t) converges in L*(R). Condition (b) implies that (c x 1)(t) also
converges absolutely and uniformly on R which proves (c).

Finally to prove (d), consider any F € L?[0, 2] with supp F C 7(V) and let

&) = Y k)™ where oK) = o—(F(6),e ™) 1aan) , k€ Z.
keZ

The sequence ¢ € N(T') so that T'(c) = (c * ¢)(t) = 0. Since
(F'(§), Zy(t,€)) r2j0,0m = 2m(cx ¥)(t) = 2mL[c = ¢](t) =0,

1 ~
e [ A

L£2[0,27]
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we finally obtain that supp Zy(¢,-) N[0,27] C o(V). O

In particular, given an LTI system £ of type (i), (ii) or (iii), for any f = (7,F) € V(y),
where F € L?[o(V)], we have

(31 LIA® = = S EE) o) ), €5 120 mh(t — F) = (F(©),

2
keZ

1
%Z¢(t7£)>L2[o(V)}'

Here xp(§) denotes the characteristic function of a measurable set E in R.

As it was said before, in this work we are involved in the following problem: Given r, N
positive integers and N real numbers 0 < a; < r for 1 < j < N, find multi-channel sampling
formulas in V() such that, for any f € V(yp),

N
(3.2) F&) =Y (Lif)aj +rn)Sjn(t), tER,

J=1n€ez
where the sequence of sampling functions {Sj,n(t) 1< j<N,ne€e Z} forms a frame or a
Riesz basis for V().

First of all, notice that convergence in the L?(IR)-sense in the sampling series (3.2) implies

pointwise convergence since V() is a RKHS, which is absolute and uniform on R. Indeed,
let {@(t —n)}nez be the canonical dual frame of {¢(t —n)}nez. Then the reproducing kernel

of V(i) is
Z B(s —n)p(t —n).
nez
Since supg C,(t) < oo the function ¢(t,t) is uniformly bounded on R. Hence, the convergence
in the L?(R)-sense implies uniform convergence on R. The pointwise convergence is also
absolute due to the unconditional convergence of a frame or Riesz basis expansion.
In this work we solve this problem for the case where V() is a shift-invariant space having
a continuous frame generator ¢ and the spectrum o (V') of V(¢) is a multi-banded region such
that
M
U g, Brl, where 0 <o < f1 < ag < fo < -+ < apy < By < 2.

Notice that through (3.1) and the isomorphism 7, : L*[c(V)] — V(y), the sampling
expansion (3.2) on V() is equivalent to the expansion in L?[o(V)]:

F(©) = 32 S F(©). 520, 06 ™oy 53l F € LoV,

where {s;,(§):1<j < N,n € Z} is a frame or a Riesz basis for L?[o(V)].

From now on we assume that o (V) = Ji_, [o, Br] and we set
r 2w 2m

Sk = o — [%2*} — and 1= - [ﬁk*} —

nlr r

so that 0 < s, 7 < 27, 1 < k < M ([z] denotes the integer part of = > 0).
Next consider the set of points {t;}7-, such that 0 =t < t; < --- < b, = 27” where
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{te} ! = {sp, 75 : 1 <k < M} )\ {0}. Then,

2 m
I:=10,—] = B B = (tr_1,t1).
[,r] kL_Jlk, k= (tk—1,tr)

Lemma 3.2. For each 1 <k <m and each 1 <n <r, we have that
either (Bk + (n— 1)277T) No(V)=0 or (Bk +(n— 1)277T) co(V).
Proof. See Lemma 1 in [20]. O
For each 1 < k < m we consider L(k), the subset of {1,2,...,r} defined by
L(k) ::{1gngr:Bk+(n—1)27”cU(V)},

and [(k) := #L(k), i.e., its number of elements. Let P := {1 < k < m : [(k) > 0}; for each
k € P, there are I(k) positive integers {nk.]}é(:k)l such that 1 <ng; <mngo < <ngp) <7
and

2
By + (g, — 1)77r co(V), 1<j<Ik).

For k € P, let By, := Ug(f)l (Bi+ (nk,j—1)2%). These sets B, are disjoint and o(V) = Ukepgk;

hence, |o(V)| = > ,cp l(k)|Bx|, where |E| denotes the Lebesgue measure of E.
For each k € P, consider the unitary operator Dy, : L?(By,) — L?(k)(Bk) defined by

2
T

DuF)E) = [F(e+ i = 1)2T), o F (64 (i ~ D)) F e (B

where L%(k)(Bk) denotes the Hilbert product space L?(By) x --- x L?(By) (I(k) times).
Now, for each k € P we consider the N x I(k) matrix with entries in L?(By,)

2

Gi(&) == [Dr(g1)(€), -+, Drlgn) ()" = {gz‘(f + (e — 1)7)} 1<i<N, 1<j<I(k)’

and the I(k) x (k) matrix with entries in L'(By)
H;,(§) = G(§)Gk(E),

where G (§) denotes the adjoint of the matrix G(§), being

gi(§) = %

Let Amin i (€) (respectively Amax x(€)) be the smallest (respectively the largest) eigenvalue of

Zy.(a;,€) € L*o(V)], 1<i<N.

the positive semidefinite matrix Hy(€) and the constants

(3.3) aqg = ggg H/\min,kHLO(Bk) and ﬁG = rl?ea% H)\max,k’ Lo (By,)-

Here |[ul|Lo(p) and |ul[z () denote the essential infimum and the essential supremum of a
measurable function v on E. We are now ready to state and prove our main sampling results.

Theorem 3.3. Assume that the function Zy (a;,§) € L=[o(V)] for 1 < j < N. Then the
following statements are equivalent:
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(i) There is a frame {S;(t —rn) : 1 < j < N,n € Z} for V(p) such that for each
f € V(p) the sampling formula

N
(3.4) F@O) =D (Lif)a;+rn)S;(t—rn), tER

J=1nez
holds.
(ii) There is a frame {S;n(t) : 1 < j < N,n € Z} for V(p) such that for each f € V(p)
the sampling formula

N
(3.5) F& =33 (Lif)a;+mn)S;a(t), teR

j=1n€ezZ
holds.
(iii) ag > 0.
Proof. Condition (i) implies condition (ii) trivially. Assume condition (ii); applying the
isomorphism ’]:;1 : V() — L?[o(V)] to (3.5) gives:

N
(3.6) F(€) =) (F(6),9(E)e"™) 2oy 8in(&),  F € LP[o(V)],

j=1n€ezZ
where {s;,(£) : 1 < j < N,n € Z} is a frame for L?[o(V)]. By using Lemma 3.5 (i) below, the
sequence {g;(£)e”" .1 < j < N,n € Z} is a Bessel sequence in L?[o(V)]. The expansion
(3.6) on L2[o(V)] implies that the sequence {me_"”g :1<j < N,né€Z} must be a
frame for L?[o(V)] (see Lemma 5.6.2 in [5]). Hence, condition (iii) holds by using Lemma
3.5 (ii) below.

Finally assume condition (iii); the sequence {Me‘””S :1 <37 < N,n ¢ Z} with
gi(&) = %Z%(aj,ﬁ) is a frame for L?[o(V)] by Lemma 3.5 (ii) below. Let {s;(£)e ™" :1 <
j < N,n € Z} be a dual frame of {g;(£)e™¢ : 1< j < N,n € Z} (cf. Lemma 3.6 below).
Thus we have the following frame expansion in L2[o(V)]:

N
(3.7) F(&) =3 (F(&),9;(9e ™) r2pprysi(§e ™, F e Lo(V)].

j=1nez
Applying the isomorphism 7, : L%[o(V)] — V() to (3.7) gives (3.4) with S; = T,(s;),
1 < j < N, which proves condition (i).
U

For later use, notice that ag > 0 implies [(k) < N for all k € P. For N =r =1 in
Theorem 3.3, we obtain:

Corollary 3.4. Let L be an LTI system of type (i), (ii) or (iii). There is a frame {S(t—n) :
n € Z} for V(g) such that for each f € V(p)

(3.8) f&) =Y (Lf)a+n)St—n), teR

nez
if and only if

(3.9) 0 < (1 Zy(a, ) rovy < N1 Zp(a, )| Loofovy < oo
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Moreover, in this case,

o~

(310) g(g) = Z;P((f)g)XSuppGgp (g)

Proof. Whenever r = 1, L(k) = {1} and By, = By for all k € P; thus Dj becomes the
identity operator. Therefore, Gy(§) = g(£) = 5=Zy(a, &) and Hg(§) = ﬁ\Zw(a,f)P for
k € P and £ € B. Hence 0 < ag < g < oo if and only if condition (3.9) holds. As a
consequence, (3.9) implies (3.8) by Theorem 3.3. Conversely, assume that (3.8) holds. Then
p(t) = Y,z t(a+n)S(t —n) so that B(€) = Zy(a,)S(8) and Gy(§) = |Zy(a,§)PGs(6)
from which (3.9) and (3.10) follow. O

When the impulse response h is the Dirac delta distribution 6(t), the system L is the iden-
tity operator, and Corollary 3.4 reduces to a regular shifted sampling in V' (¢) (see Theorem
1 in [22] and Theorem 3.4 in [15]). The next technical lemma used in the proof of Theorem
3.3 enlarges the results of Lemma 3 in [9]:

Lemma 3.5. Let g; be in L*[o(V)] for 1 < j < N and let ag, Bc be the constants given by
(8.3). Then we have:

(i) The sequence {g;(€)e™"™ :1 < j < N,n € Z} is a Bessel sequence in L*[o(V)] if
and only if g < oo, that is, g;(§) € L>®[o(V)] for each 1 < j < N.
(ii) The sequence {gj(f)e_""f :1<j<N,ne€ Z} is a frame for L*[o(V)] if and only if

(3.11) 0< ag < fg < .

Proof. First note that for any F € L?[o(V)] we have

(F(€),95(©e™ ™) 2ovy) = F(&)g;(§)e™d¢
= X | D) ODu(F () de

. <Z[Dk(gj)] Di(Fi)xBy €™ ) 21,
keP

where Fj(&) = F(g)xék (€). Since {y/5=e "}, ¢z is an orthonormal basis for L?(I) and
the sets By are disjoint, we have

2

—irn. 2
> |F )e ) ey = TFHZDk(gﬂ')TDk(F’f)XBk(@’Lm)
nez keP
2
= 31Dk D E 2
keP
27T

= — D _(Dr(9;)Dil9;)" Di(Fk), Di(Fr)) 2
keP

Li ) (Br)*
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Hence,
N

(3.12) DD HF(©), ;e )

Jj=1nez

N
2m
= 7;< E 1 Di(9;)D(95)" Di(Fi), Di(Fi)) 12 (8
€P J=

= =5 X (He(©)Du(F), Du(Fi)) 2, (5,)-

r
keP

For (i), assume that 3¢ < co. By using (3.12), for any F € L?[o(V)] we have

N
S S F©. 5@ ™) oy < B S (DF), D(Fsz, (s

: i(k)
j=1 neZ keP
2m 2
= —BcllF Lz

so that {me_imf :1<j<Nne Z} is a Bessel sequence with bound 27’Tﬂg

On the other hand, for any constant K with 0 < K < g we have that K < |[Amax k(€)oo
for some k € P. Then there is a measurable set £ C Bj of positive measure such that
Amax k() > K on E. Choose a measurable vector-valued function Fy(§) := {Fk](f)}é(f)l on
E such that Y} [Fo;(€)* = 1 on E and Hy(€)F5(€) = Amaxk (§)Fi(€) on E. This function
can be constructed as in [13, Lemma 2.4]. Extend F(§) over By by setting F(£{) = 0 on
B\ E. Thus Fy, € L;’(Ok)(Bk) and Hy(§)Fr (&) = Amaxk(§)Fr(§) on By. Let F be such that
F = D;*(Fx) on By and F(£) = 0 on (V) \ By. This function F belongs to L®[¢(V)] and
satisfies

N
—1irn. 2 2
> 2 MF©: 0@ papo|” = HHROFRE). )1z, (5)
Jj=1n€ezZ
2T 27 2
> —K(FeFr)z )= KIF Lm0

As a consequence, 277%@ is the optimal Bessel bound for {Me*"”g :1<j< N,ne Z}.
Moreover, if g = oo, the sequence {M@‘imf :1 <5< N,ne€ Z} cannot be a Bessel
sequence. Finally, note that the spectral norm of a matrix is equivalent to its Frobenius
norm. Hence g < oo if and only if all entries of Hy(§) for k € P are essentially bounded
which is also equivalent to g; € L>®[o(V)] for 1 < j < N.

For (ii), assume that 0 < ag < fg < oo. A similar reasoning as the one in (i) gives
that {g;(§)e™™¢ : 1 < j < N,n € Z} is a frame for L*[o(V)], where 2Z8; > Zag are
the optimal upper and lower bounds. In particular, if either ag = 0 or Bg = oo, then
{g;(€)e™ :1 < j < N,n € Z} cannot be a frame for L?[o(V)]. O

It is useful to note that condition (3.11) is equivalent to g; € L>[o (V)] for 1 < j < N and
mingep || det Hy ()l Lo(s,) > 0.

Lemma 3.6. Let g; be in L*[o(V)] for 1 < j < N such that {g;({)e”"™¢ :1 < j < N,n € Z}
is a frame for L?[c(V)]. Then any dual frame of {gj(f)e_”’”g :1<j<Nn¢€ Z} having
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the form {s;(§)e™"™¢ :1 < j < N,n € Z} is obtained from the equation

(3.13) TSu(6) = GulO)! + By(&) (I~ Gu(OGu(e)), ke,

where Iy is the N x N identity matriz, Eg(§) is any arbitrary [(k) x N matriz with entries
in L®(By), Gp(&)T := [Gk(ﬁ)*Gk(f)]_le(f) is the pseudo-inverse matriz of Gi(§),

(3.14) Sk(€) = [Di(s16)(€), -+, Di(snp) (&)
and 5, (§) = 5j(§)xp, () for 1<j<N.

Proof. Assume that the sequence {sj(f)e_"”5 :1<j< N,n¢€ Z} is a dual frame of the
sequence {g;({)e "¢ : 1< j < N,n € Z}. Then s; € L®[o(V)] for 1 < j < N. For any Fy
and Fy in L?[o(V)] we also have (cf. Lemma 5.6.2 in [5]):

N
(FL )2y = 3D (1 sie7 ™) papy{Gie ™, o) papo(vy)
Jj=1nez

(3.15) = S (DR(F), SHOGHO DR (P 12, )

keP
with Sg(€) as in (3.14). Since
(F1, F2) p2(o(vy) = ];D<Dk‘(Fl,k)v Di(Far))iz, ()
(3.15) implies that 2XS;(£) must be a left inverse of the matrix Gy (€). Finally, the right hand
side of (3.13) is a left inverse of Gy (¢) and any left inverse 228, (€)7 of G(€) is obtained
from (3.13) by choosing E(§) = Q%Sk(g)T. O

One can easily check that the canonical dual frame of { gi(&e™™ME 1< j< N,n¢€ Z} is
obtained from (3.13) by choosing Ex(¢) = 0 for each k € P.
Next we give the Riesz basis counterpart to Theorem 3.3:

Theorem 3.7. There exists a Riesz basis {Sjn(t) : 1 < j < N,n € Z} for V(p) for which
the sampling expansion (3.5) holds on V() if and only if

(3.16) 0<ag<pPg<oo and [(k)=N foral 1<k<m.
Moreover, in this case,

(3.17) Sin(t)=8Sj(t—rn), 1 <j< N and n € Z;
(3.18) (LjSk)(aj +1n) =0;10no, 1 <j,k <N and n € Z;
(3.19) lo(V)] = 271'% (which implies N < r).

Proof. Assuming (3.16), Lemma 3.8 below proves that the sequence {M@‘imE 1<5<
N,n € Z} is a Riesz basis for L?[o(V')]. Thus we have the Riesz basis expansion (3.7), where
{sj(f)e_"”g :1<j<N,ne€ Z} is the dual Riesz basis of {Me‘""s :1<j<N,ne€ Z}.
The isomorphism 7, gives the sampling expansion (3.5), where S;,(t) = S;(t —rn) and
Sj(t) = T,(s5(£))(t). Conversely assume that the Riesz basis expansion (3.5) holds on V().
Applying the isomorphism Zp_l to (3.5) gives the Riesz basis expansion (3.6) on L2[o(V)].
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Then {We‘im& :1<j < N,n € Z} must be the dual Riesz basis of {s;,(£):1 < j <
N,n € Z} so that (3.16) holds by Lemma 3.8 below. Since {s;,(§) : 1 < j < N,n € Z}
is the dual Riesz basis of {gj(§ —ime 1 < j < Nyn € Z}, sjn(§) = sj(£)e ™ where
sj € L®[o(V)] (cf. Lemma 3.6). Therefore, S;,(t) = T,(s;(£)e™ ) (t) = Sj(t — rn), where
S; = Ty(sj), 1 < j < N, so that (3.17) holds. Applying the sampling formula (3.4) to Sy
gives

N
t) = Z Z(L'jSk.)(aj +rn)Sj(t—rn), teR,

j=1nezZ
from which (3.18) follows. Finally (3.19) follows immediately from (3.16) having in mind
that |o(V)] = X pep () By O
Whenever (V) = [0,27], ¢ becomes a Riesz generator for V(¢). As a consequence,

Theorems 3.3 and 3.7 are the extended frame versions of Theorem 2 and Corollary 1 in [9];
there ¢ is a Riesz generator and the LTI system £; has impulse response h; in L(R) N L?(R)
for1<j<N.

Lemma 3.8. Let g; be a function in L*[c(V)] for 1 < j < N and let ag, g be the constants
given by (3.3). Then, the sequence {g;j(§)e”"* : 1 < j < N,n € Z} is a Riesz basis for
L2[o(V)] if and only if

(3.20) 0<ag<fg<oo and [(k)=N forall 1<k<m.

Proof. Note that {g;({)e”""¢ :1 < j < N,n € Z} is a Riesz basis for L?[o(V)] if and only if
it is complete set in L2[o(V)] and there are constants 0 < A < B such that

N
(3:21) Allel? < [ 323 ¢ (m)gy @ 2ap oy < Bllel
j=1n€ezZ
where ¢ = (ci,...,cy) € £4(Z) and |c|? = Zjvzl > ez lei(n)]?. For the middle term in

(3.21) we have

N . 2
H;%Cj(n)gj(oeﬂmg L2o(V / ‘ZQJ £)c; 7“5‘ d§
(k) o
=22/mamm>><n&
keP j=1
{®) o o
= > O glE+ (- 1)= )87 (€4 (e — 1)7)6(T§),E(T§)>L§V(3k)
keP j=1
= Z(ﬁk(f)e(ri)a6(T§)>L§V(Bk)7
keP

where g(¢) = [91(€),--+,gn (9], €&) = [@1(&),--- . en ()] and Hi() := Gr(§)G(9).
On the other hand,

T o~ T’mA
Ief? = SRIECEN ) = 57 2 1RO 5,
=1
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Hence, condition (3.21) is equivalent to

(322) AL S Q002 ) < SO FK(ER(E), €r)) 13, < B Zﬂrumm
k=1 keP

which holds if and only it P ={1,2,---,m} and 0 < ag < ﬁG < 00, where ag =

ming <p<m ||)\ ﬁG = max|<g<m ||)\,mX k||cos and )\mlnk (respectively )\maxk(f)) is the

smallest (respectlvely the largest) eigenvalue of the matrix Hy, ().

Now assume that {g;({)e”""¢ : 1 < j < N,n € Z} is a Riesz basis for L*[¢(V)]. Since
(3.11) holds, we deduce that I(k) < N for any k € P; but we also have (3.22) so that N < I(k)
for any 1 < k < m. Hence, I(k) = N for all 1 < k < m. Conversely, assume that (3.20) holds.
Thus, {M@‘”’”g 1< j3<N,n¢c Z} is a complete set in L?[o(V)] since it is a frame for
L*[o(V)]. For each 1 < k < m, since ag In < Hi(€) < B¢ Iy, for any Fy, € L3, (By) we have

oGl Fsl12s (5 < IGHEFRO2: (5, < BclFilla 5,

~1 a.e. with entries essentially bounded. Then Gy (€)

and there exists the inverse matrix G (€)
and G} (€) are isomorphisms from L% (By) onto L% (By). Hence, for any k =1,2,--+ ,m we

have

oG Fil2a 50y < IGHEOFKON2s (5, = FEFR(E). Ful€)) 13,5, < Sl FillZs 5,

for any Fy, € L4 (Bg). Thus (3.22) or, equivalently, (3.21) holds, from which we deduce that
the sequence {g;({)e™"¢ :1 < j < N,n € Z} is a Riesz basis for L2[o(V)]. O

For the particular case N = 1, Theorem 3.7 reads:

Corollary 3.9. Let £ be an LTI system of type (i), (ii) or (iii). Then, there exists a Riesz
basis {Sy(t) : n € Z} for V(¢) such that, for any f € V (), the sampling formula

(3.23) F&) =Y (Lf)(a+7n)Salt), tER,

neL
holds if and only if

(3.:24) 0 <[[Zy(a,)lrojevy < 12y (a; €)ooy < o0 and I(k) =1 for all 1 <k < m.

Moreover, in this case:
e Su(t)=S(t—rn), n€Z;
o (LS)(a+1n)=0n0, nEZL
o lo(V)] = 2.

Proof. Assume [(k) = 1 for all 1 < k < m; for each kK = 1,2,--- ,;m, there is a unique
integer ny with 1 < nj, < r such that B = By + (ng — 1)22 C (V). Thus, G(£) =
Di(9)(§) = 5 Zy(a,& + (ng — 1)27) and Hy,() = gy |Zy(a, & + (ng — 1)27)[ for € € By,
Hence, 0 < ag < 8¢ < oo if and only if 0 < [[Zy(a,&)|rojevy < 1Zy(a, )| Loeovy < o0
and, as a consequence, Corollary 3.9 follows from Theorem 3.7. O

Furthermore, if » = 1 in Corollary 3.9, then ¢ must be a Riesz generator since o(V) =

[0,27] and S(€) = @()/[Zy(a, €)].
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Finally, it is worth to notice that in sampling formula (3.2) we may allow a rational
sampling period r = g, where p and ¢ are coprime positive integers, since

{(if)(aj+rn):neZ}={(Ljf)(aj+r(k—1)+pn):1<k<qgandnecZ}.
4. AN ILLUSTRATIVE EXAMPLE

1(€). On [0,27] we have,

1.t sinmi

7= so that ¢(§) = x—

)

NE

w\:} (VB

1 onl0,Z]U [327r,27r]

o= {1 n

so that ¢ is a continuous frame generator of V(i) and (V) = [0, Z2]U[2F, 27]. By the Poisson
summation formula, we also have

1 1 o it(-+2nm
=D lelt+ )l = 526 [agam = ]| 20 B0 + 2mmpetH
neL
1

nez
L 56+ 2| R
- : -2, teR
27TH7§ZM + "W)”m[o,m 2’

2

L2[0,27]

IN

(a) First take N = 2, ﬁj(g) = (if)j_lx[—gv%}(f) for j =1,2,r =4 and a1 = ay = 0. For any
fevie) |
L;[f1(t) = f97D() for j =1,2.

For 9;(t) = L;[¢](t), the Poisson summation formula gives

Zy (0,8) = hi(n)e™™ = "api(&+ 2nm), j=1,2,

nez nez
so that ;
Z, (0,€) = {(1) zz [%723}; (3, 271]
and
13 on [0, 7]
Zyp,(0,€) =<0 on (3, 3m)

2
i(€ —2m) on [T, 27].
Hence, Zy,(0,§) € L>[0,2n] for j =1,2.
On the other hand, since o(V) = [0, 3] U [3F,27] and I = [0, Z], m = 1 and L(1) = {1,4}
so that [(1) = 2. Hence,

and consequently,

1+¢? 1+§(£—”)} m
2m)?H, (§) = . 250, 0<€6< -,
(ﬂ-) 1(€) [1_1_5(5_2) 1+(§_§)2 _5_2
Hence, det Hy (€) = |det G1(€)|? = 1/(647?) and we deduce that ag > 0. Therefore, by using
Theorem 3.7, there exists a Riesz basis {S;j(t —4n) : j = 1,2 and n € Z} for V(¢) such that,
for any f € V(p)
= Z {f(4n)S1(t — 4n) + f'(4n)Sa(t —4n)}, tER.

ne”
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(b) We now take N = 3, h;(£) = (i) 'xp-x =1(§) for j = 1,2,3, 7 = 5and a1 = az = a3 = 0.
For f € V(yp),
Li[f1(t) = f9D() for j = 1,2.3,
and
_52 on [Oa %]
Zy5(0,6) =40 on (7, 3T)
—(&—2m)? on [37,27].
so that Z,.(0,€) € L>[0,27] for j = 1,2,3.
Since o(V)) = [0, 2] U [3F,27] and I = [0, 2], m = 3 and {tj}?zo ={0,%,3% 281 5o that
L(1) ={1,2,5}, L(2) = {1,5}, L(3) = {1,4,5}. We then have

1 1 1
2rG (&) = | i€ i+ ) i(c-) |, e B =(0,2);
—€ e+ T —(€-F) 0
e _ 1 . _1% B, — T 37r.
™ 2(5) = _Z§2 —Zg B 257r§2 , £ € By = (TO’ TO)’
1 1 1 37 27
2rGy(¢) = | i W= F)  WE—F) |, € By = (355

e - -y
Thus, for H;(§) = G}(§)G;(§), 1 =1,2,3, we have det Hy(§) = det H3(¢) = (2/125)2 and
472
95
where z = £ — %’T; hence ai > 0. Therefore, by Theorem 3.3, there exists a frame {S;(t—5n) :
j=1,2,3 and n € Z} for V(¢) such that, for each f € V() we have

F) = {f(n)Si(t = 5n) + f(5n)Sa(t — 5n) + f"(5n)Ss(t —5n)}, teR.

neZ

(2m)* det Ha(€) = (276 — 2€?)* + (2 =€)’ + (2 = €)* 2 (¢ = €)* =
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