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Abstract. Let ϕ be a continuous function in L2(R) such that the sequence {ϕ(t− n)}n∈Z
is a frame sequence in L2(R) and assume that the shift-invariant space V (ϕ) generated by ϕ
has a multi-banded spectrum σ(V ). The main aim in this paper is to derive a multi-channel
sampling theory for the shift-invariant space V (ϕ). By using a type of Fourier duality
between the spaces V (ϕ) and L2[0, 2π] we find necessary and sufficient conditions allowing
us to obtain stable multi-channel sampling expansions in V (ϕ).
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1. Introduction

As a natural extension of the classical Shannon sampling theorem, Papoulis introduced in
[17] generalized sampling for arbitrary multi-channel sampling in Paley-Wiener spaces PWπσ

of band-limited signals: In many common situations the available data are samples of some
filtered versions of the signal itself. Following [17], there have been many generalizations and
applications of the multi-channel sampling. See, for example, [6, 7, 16, 19, 20] and references
therein.

Although Shannon’s sampling theory has had an enormous impact, it has a number of
problems, as pointed out by Unser in [18]: It relies on the use of ideal filters; the band-
limited hypothesis is in contradiction with the idea of a finite duration signal; the band-
limiting operation generates Gibbs oscillations; and finally, the sinc function has a very slow
decay, which makes computation in the signal domain very inefficient.

Moreover, many applied problems impose different a priori constraints on the type of
functions. For this reason, sampling and reconstruction problems have been investigated in
spline spaces, wavelet spaces, and general shift-invariant spaces. Indeed, in many practical
applications, signals are assumed to belong to some shift-invariant space of the form: V (ϕ) :=
spanL2(R){ϕ(t−n) : n ∈ Z} where the function ϕ in L2(R) is called the generator of V (ϕ). In
most of cases in the mathematical literature, it is supposed that the sequence {ϕ(t− n)}n∈Z
forms a Riesz basis for V (ϕ). See, for instance, [1, 2, 3, 4, 12, 15, 18, 21, 22] and the references
therein. Throughout this paper we assume that the sequence {ϕ(t − n)}n∈Z is a frame for
V (ϕ) and that the spectrum of V (ϕ) is multi-banded in [0, 2π] (see Section 3 infra).

On the other hand, suppose thatN linear time-invariant systems (filters) Lj , j = 1, 2, . . . , N ,
are defined on the shift-invariant subspace V (ϕ) of L2(R). In mathematical terms we are
dealing with continuous operators which commute with shifts. The recovery of any function
f ∈ V (ϕ) from samples of the functions Ljf , j = 1, 2, . . . , N , leads to a generalized sampling
in V (ϕ).
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Our challenge problem is the following: Given r,N positive integers and N real numbers
0 ≤ aj < r for 1 ≤ j ≤ N , find multi-channel sampling expansions like

(1.1) f(t) =
N∑
j=1

∑
n∈Z

(Ljf)(aj + rn)Sj,n(t) , t ∈ R ,

valid for any f ∈ V (ϕ), where the sequence of sampling functions
{
Sj,n(t) : 1 ≤ j ≤ N,n ∈ Z

}
forms a frame or a Riesz basis for V (ϕ).

Recently, Garćıa et al. ([8, 9, 10]) introduced a novel idea for developing a sampling
theory on a shift-invariant space V (ϕ) by using an analogous of the Fourier duality between
the spaces V (ϕ) and L2[0, 2π]. In particular, Garćıa and Pérez-Villalón [9] (see also [14])
developed a multi-channel sampling procedure on a shift-invariant space V (ϕ), where ϕ is a
continuous Riesz generator. Unlike the author’s claim (see section 4.1 in [9]), the arguments
used in [9] for the case of Riesz generator cannot be directly extended to the case of a frame
generator.

In the present paper, by assuming that the sequence {ϕ(t − n)}n∈Z is a frame for V (ϕ)
and that the spectrum of V (ϕ) is multi-banded in [0, 2π], and allowing more general filters
than those used in [9], we obtain necessary and sufficient conditions under which there exists
a stable multi-channel sampling expansion on V (ϕ) like that in (1.1). We also provide some
illustrating examples. All these tasks will be carried out throughout the remaining sections.

2. Shift-invariant spaces and Fourier duality type

We start this section by introducing some notation and preliminaries used in the sequel.
Let {ϕn}n∈Z be a sequence of elements in a separable Hilbert space H. We say that

• the sequence {ϕn}n∈Z is a Bessel sequence (with Bessel bound B) in H if there exists
a constant B > 0 such that∑

n∈Z
|〈ϕ,ϕn〉|2 ≤ B‖ϕ‖2 for all ϕ ∈ H ;

• the sequence {ϕn}n∈Z is a frame for H (with frame bounds A and B) if there exist
constants 0 < A ≤ B such that

A‖ϕ‖2 ≤
∑
n∈Z
|〈ϕ,ϕn〉|2 ≤ B‖ϕ‖2 for all ϕ ∈ H ;

• the sequence {ϕn}n∈Z is a Riesz basis for H (with Riesz bounds A and B) if it is a
complete set in H and there exist constants 0 < A ≤ B such that

A‖c‖2 ≤ ‖
∑
n∈Z

c(n)ϕn‖2 ≤ B‖c‖2 for all c = {c(n)}n∈Z ∈ `2(Z) ,

where ‖c‖2 :=
∑
n∈Z
|c(n)|2.

For ϕ ∈ L1(R) ∩ L2(R) we take its Fourier transform to be normalized as

F [ϕ](ξ) = ϕ̂(ξ) :=
∫ ∞
−∞

ϕ(t)e−itξdt ,
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so that 1√
2π
F : L2(R) −→ L2(R) becomes a unitary operator. For any ϕ ∈ L2(R) consider

its related functions

Cϕ(t) :=
∑
n∈Z
|ϕ(t+ n)|2 and Gϕ(ξ) :=

∑
n∈Z
|ϕ̂(ξ + 2nπ)|2.

It is known that the 1-periodic function Cϕ belongs to L1[0, 1] and the 2π-periodic function
Gϕ belongs to L1[0, 2π]; moreover,

‖ϕ‖2L2(R) = ‖Cϕ‖L1[0,1] =
1

2π
‖Gϕ‖L1[0,2π].

Let V (ϕ) := spanL2(R){ϕ(t− n) : n ∈ Z} be the shift-invariant space generated by ϕ, that
is, the closed subspace of L2(R) spanned by {ϕ(t − n)}n∈Z and supp Gϕ the support of the
locally integrable function Gϕ as a distribution on R. Let σ(V ) := supp Gϕ ∩ [0, 2π] be the
spectrum of V (ϕ) and τ(V ) := [0, 2π] \ σ(V ). For any c = {c(n)}n∈Z in `2(Z), let

ĉ(ξ) :=
∑
n∈Z

c(n)e−inξ

be the discrete Fourier transform of the sequence c. In [5] we find the following result:

Proposition 2.1. Let ϕ ∈ L2(R) and 0 < A ≤ B. The following statements hold:

(a) The sequence {ϕ(t − n)}n∈Z is a Bessel sequence with a Bessel bound B for V (ϕ) if
and only if

Gϕ(ξ) ≤ B a.e. on [0, 2π] .

(b) The sequence {ϕ(t− n)}n∈Z is a frame for V (ϕ) with frame bounds A,B if and only
if

A ≤ Gϕ(ξ) ≤ B a.e. on σ(V ) .

(c) The sequence {ϕ(t− n)}n∈Z is a Riesz basis for V (ϕ) with Riesz bounds A,B if and
only if

A ≤ Gϕ(ξ) ≤ B a.e. on [0, 2π] .

For any ϕ ∈ L2(R) and c = {c(k)}k∈Z ∈ `2(Z), let T (c) := (c ∗ϕ)(t) =
∑
k∈Z

c(k)ϕ(t− k) be

the pre-frame operator of {ϕ(t− n)}n∈Z. Proposition 2.1 can be restated as (cf. [5]):

• The sequence {ϕ(t− n)}n∈Z is a Bessel sequence with a Bessel bound B if and only
if T is a bounded linear operator from `2(Z) into V (ϕ) with ‖T‖ ≤

√
B .

• The sequence {ϕ(t− n)}n∈Z is a frame for V (ϕ) with frame bounds A, B if and only
if T is a bounded linear operator from `2(Z) onto V (ϕ) and

A‖c‖2 ≤ ‖T (c)‖2L2(R) ≤ B‖c‖
2, c ∈ N(T )⊥,

where N(T ) := {c ∈ `2(Z) : T (c) = 0} and N(T )⊥ is the orthogonal complement of
N(T ) in `2(Z) .
• The sequence {ϕ(t− n)}n∈Z is a Riesz basis for V (ϕ) with Riesz bounds A, B if and

only if T is an isomorphism from `2(Z) onto V (ϕ) and

A‖c‖2 ≤ ‖T (c)‖2L2(R) ≤ B‖c‖
2, c ∈ `2(Z) .
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Lemma 2.2. Let ϕ ∈ L2(R) such that the sequence {ϕ(t − n)}n∈Z is a Bessel sequence in
L2(R). Then for any c = {c(n)}n∈Z in `2(Z),

T̂ (c)(ξ) = ĉ(ξ)ϕ̂(ξ) ,

so that

(2.1) ‖T (c)‖2L2(R) =
1

2π

∫ ∞
−∞
|ĉ(ξ)ϕ̂(ξ)|2dξ =

1
2π

∫ 2π

0
|ĉ(ξ)|2Gϕ(ξ)dξ .

Proof. See Lemma 7.2.1 in [5] and Lemma 2.2 in [11]. �

In what follows, we always assume that the function ϕ ∈ L2(R) ∩ C(R) is a continuous
frame generator (i.e., the sequence {ϕ(t − n)}n∈Z is a frame for V (ϕ)), and satisfying the
condition: supRCϕ(t) < ∞. Thus V (ϕ) = {(c ∗ ϕ)(t) : c ∈ `2(Z)} is a reproducing kernel
Hilbert space (RKHS in short) and any f(t) = (c∗ϕ)(t) in V (ϕ) converges both in the L2(R)
sense, and absolutely and uniformly on R to a continuous function on R (see [15, 22]).

By using (2.1), we have that N(T ) = {c ∈ `2(Z) : ĉ(ξ) = 0 a.e. on σ(V )} and consequently

(2.2) N(T )⊥ = {c ∈ `2(Z) : ĉ(ξ) = 0 a.e. on τ(V )}.

Now, we introduce a Fourier duality for V (ϕ) useful for sampling purposes as we will see in
the next section.

Let Tϕ : L2[0, 2π] −→ V (ϕ) be the linear operator defined by

(TϕF )(t) :=
1

2π

∑
k∈Z
〈F (ξ), e−ikξ〉L2[0,2π]ϕ(t− k) = 〈F (ξ),

1
2π
Zϕ(t, ξ)〉L2[0,2π] ,

where Zϕ denotes the Zak transform of ϕ given as Zϕ(t, ξ) :=
∑
k∈Z

ϕ(t + k)e−ikξ (see [12]).

Notice that {ϕ(t − n)}n∈Z ∈ `2(Z) for each t in R. By using (2.2), Tϕ is a bounded linear
operator from L2[0, 2π] onto V (ϕ) with kernel

N(Tϕ) = {F (ξ) ∈ L2[0, 2π] : F (ξ) = 0 a.e. on σ(V )} .

Thus, the operator Tϕ : L2[σ(V )] −→ V (ϕ) becomes an isomorphism. We also note the
following useful properties of Tϕ:

• T̂ϕF (ξ) = F (ξ)ϕ̂(ξ);
• Tϕ[F (ξ)e−inξ](t) = (TϕF )(t− n), n ∈ Z.

3. Multi-channel sampling theory

For 1 ≤ j ≤ N , let Lj be an LTI (linear time-invariant) system with impulse response hj ,
that is,

Lj [f ](t) := (f ∗ hj)(t) =
∫

R
f(s)hj(t− s)ds .

Here, we assume that each system Lj belongs to one of the following three types:

(i) Its impulse response hj(t) = δ(t+ aj), aj ∈ R, or
(ii) hj ∈ L2(R), or
(iii) ĥj ∈ L∞(R) whenever Hϕ(ξ) :=

∑
n∈Z |ϕ̂(ξ + 2nπ)| ∈ L2[0, 2π].
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For type (i), L[f ](t) = f(t + a) for any f ∈ L2(R), so that L : L2(R) −→ L2(R) becomes
a unitary operator. In particular, consider ψ(t) := L[ϕ](t) = ϕ(t + a); for any f(t) =
(c ∗ ϕ)(t) ∈ V (ϕ) we have that L[f ](t) = (c ∗ ψ)(t) converges absolutely and uniformly on R
since supRCψ(t) =

∑
n∈Z |ψ(t+ n)|2 <∞. For types (ii) and (iii) the following result holds:

Lemma 3.1. Let L be an LTI system with impulse response h of type (ii) or (iii) as above
and consider the function ψ(t) := L[ϕ](t) = (ϕ ∗ h)(t). Then we have:

(a) The function ψ belongs to the space C∞(R) :=
{
u(t) ∈ C(R) : lim|t|→∞ u(t) = 0

}
.

(b) supRCψ(t) <∞ .
(c) For any f(t) = (c ∗ ϕ)(t) ∈ V (ϕ) with c ∈ `2(Z), L[f ](t) = (c ∗ ψ)(t) converges

absolutely and uniformly on R .
(d) For each fixed t ∈ R, supp Zψ(t, ·) ∩ [0, 2π] ⊂ σ(V ).

Proof. First assume h ∈ L2(R). Since ψ̂(ξ) = ϕ̂(ξ)ĥ(ξ) ∈ L1(R), the function ψ ∈ C∞(R) by
using the Riemann-Lebesgue Lemma. The Poisson summation formula (cf. Lemma 5.1 in
[15]) gives:

Cψ(t) =
∑
n∈Z
|ψ(t+ n)|2 =

1
2π

∥∥∥∑
n∈Z

ψ(t+ n)e−inξ
∥∥∥2

L2[0,2π]

=
1

2π

∥∥∥∑
n∈Z

ψ̂(ξ + 2nπ)eit(ξ+2nπ)
∥∥∥2

L2[0,2π]

≤ 1
2π
‖G

1
2
ϕ G

1
2
h ‖

2
L2[0,2π] = ‖Gϕ‖L∞(R)‖h‖L2(R).

Hence supRCψ(t) <∞. Since f(t) = (c ∗ϕ)(t) converges in L2(R) for any c ∈ `2(Z) and the
operator L : L2(R) −→ L∞(R) is bounded by using Young’s inequality on the convolution
product, we have that L[f ](t) =

∑
k∈Z c(k)L[ϕ(t − k)] =

∑
k∈Z c(k)ψ(t − k) = (c ∗ ψ)(t)

converges absolutely and uniformly on R by using (b).
Now assume that Hϕ ∈ L2[0, 2π] and let ĥ ∈ L∞(R). Since ϕ̂ ∈ L1(R) ∩ L2(R), we obtain

that ψ̂ = ϕ̂ ĥ ∈ L1(R) ∩ L2(R) and consequently, ψ ∈ C∞(R) ∩ L2(R). Since
∑

n∈Z |ψ̂(ξ +
2nπ)| ≤ ‖ĥ‖L∞(R)Hϕ(ξ), using again the Poisson summation formula we have that

Cψ(t) =
1

2π

∥∥∥∑
n∈Z

ψ̂(ξ + 2nπ)eit(ξ+2nπ)
∥∥∥2

L2[0,2π]
≤ 1

2π
‖ĥ‖2L∞(R)‖Hϕ‖2L2[0,2π] ,

so that supRCψ(t) <∞. For any f ∈ L2(R),

‖L[f ]‖L2(R) = ‖f ∗ h‖L2(R) =
1√
2π
‖f̂(ξ)ĥ(ξ)‖L2(R) ≤ ‖ĥ‖L∞(R)‖f‖L2(R).

Hence, L : L2(R) −→ L2(R) is a bounded linear operator so that, for any f(t) = (c ∗ ϕ)(t) ∈
V (ϕ), L[f ](t) = (c ∗ ψ)(t) converges in L2(R). Condition (b) implies that (c ∗ ψ)(t) also
converges absolutely and uniformly on R which proves (c).
Finally to prove (d), consider any F ∈ L2[0, 2π] with supp F ⊆ τ(V ) and let

F (ξ) =
∑
k∈Z

c(k)e−ikξ where c(k) =
1

2π
〈F (ξ), e−ikξ〉L2[0,2π] , k ∈ Z .

The sequence c ∈ N(T ) so that T (c) = (c ∗ ϕ)(t) = 0. Since

〈F (ξ), Zψ(t, ξ)〉L2[0,2π] = 2π(c ∗ ψ)(t) = 2πL[c ∗ ϕ](t) = 0 ,
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we finally obtain that supp Zψ(t, ·) ∩ [0, 2π] ⊂ σ(V ). �

In particular, given an LTI system L of type (i), (ii) or (iii), for any f = (TϕF ) ∈ V (ϕ),
where F ∈ L2[σ(V )], we have

(3.1) L[f ](t) =
1

2π

∑
k∈Z
〈F (ξ)χσ(V )(ξ), e

ikξ〉L2[0,2π]ψ(t− k) = 〈F (ξ),
1

2π
Zψ(t, ξ)〉L2[σ(V )].

Here χE(ξ) denotes the characteristic function of a measurable set E in R.

As it was said before, in this work we are involved in the following problem: Given r,N

positive integers and N real numbers 0 ≤ aj < r for 1 ≤ j ≤ N , find multi-channel sampling
formulas in V (ϕ) such that, for any f ∈ V (ϕ),

(3.2) f(t) =
N∑
j=1

∑
n∈Z

(Ljf)(aj + rn)Sj,n(t) , t ∈ R ,

where the sequence of sampling functions
{
Sj,n(t) : 1 ≤ j ≤ N,n ∈ Z

}
forms a frame or a

Riesz basis for V (ϕ).
First of all, notice that convergence in the L2(R)-sense in the sampling series (3.2) implies

pointwise convergence since V (ϕ) is a RKHS, which is absolute and uniform on R. Indeed,
let {ϕ̃(t−n)}n∈Z be the canonical dual frame of {ϕ(t−n)}n∈Z. Then the reproducing kernel
of V (ϕ) is

q(s, t) :=
∑
n∈Z

ϕ̃(s− n)ϕ(t− n).

Since supRCϕ(t) <∞ the function q(t, t) is uniformly bounded on R. Hence, the convergence
in the L2(R)-sense implies uniform convergence on R. The pointwise convergence is also
absolute due to the unconditional convergence of a frame or Riesz basis expansion.

In this work we solve this problem for the case where V (ϕ) is a shift-invariant space having
a continuous frame generator ϕ and the spectrum σ(V ) of V (ϕ) is a multi-banded region such
that

σ(V ) =
M⋃
k=1

[αk, βk], where 0 ≤ α1 < β1 < α2 < β2 < · · · < αM < βM ≤ 2π .

Notice that through (3.1) and the isomorphism Tϕ : L2[σ(V )] −→ V (ϕ), the sampling
expansion (3.2) on V (ϕ) is equivalent to the expansion in L2[σ(V )]:

F (ξ) =
N∑
j=1

∑
n∈Z
〈F (ξ),

1
2π
Zψj (aj , ξ)e

−irnξ〉L2[σ(V )] sj,n(ξ) , F ∈ L2[σ(V )] ,

where {sj,n(ξ) : 1 ≤ j ≤ N,n ∈ Z} is a frame or a Riesz basis for L2[σ(V )].

From now on we assume that σ(V ) =
⋃M
k=1[αk, βk] and we set

sk := αk −
[
αk

r

2π

]2π
r

and rk := βk −
[
βk

r

2π

]2π
r
,

so that 0 ≤ sk, rk < 2π
r , 1 ≤ k ≤M ([x] denotes the integer part of x ≥ 0).

Next consider the set of points {tk}mk=0 such that 0 = t0 < t1 < · · · < tm = 2π
r where
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{tk}m−1
k=1 = {sk, rk : 1 ≤ k ≤M} \ {0}. Then,

I := [0,
2π
r

] =
m⋃
k=1

Bk , Bk = (tk−1, tk).

Lemma 3.2. For each 1 ≤ k ≤ m and each 1 ≤ n ≤ r, we have that

either
(
Bk + (n− 1)

2π
r

)
∩ σ(V ) = ∅ or

(
Bk + (n− 1)

2π
r

)
⊂ σ(V ).

Proof. See Lemma 1 in [20]. �

For each 1 ≤ k ≤ m we consider L(k), the subset of {1, 2, . . . , r} defined by

L(k) :=
{

1 ≤ n ≤ r : Bk + (n− 1)
2π
r
⊂ σ(V )

}
,

and l(k) := #L(k), i.e., its number of elements. Let P := {1 ≤ k ≤ m : l(k) > 0}; for each
k ∈ P, there are l(k) positive integers {nk,j}

l(k)
j=1 such that 1 ≤ nk,1 < nk,2 < · · · < nk,l(k) ≤ r

and

Bk + (nk,j − 1)
2π
r
⊂ σ(V ) , 1 ≤ j ≤ l(k).

For k ∈ P, let B̃k := ∪l(k)
j=1

(
Bk+(nk,j−1)2π

r

)
. These sets B̃k are disjoint and σ(V ) = ∪k∈PB̃k;

hence, |σ(V )| =
∑

k∈P l(k)|Bk|, where |E| denotes the Lebesgue measure of E.
For each k ∈ P, consider the unitary operator Dk : L2(B̃k) −→ L2

l(k)(Bk) defined by

Dk(F )(ξ) :=
[
F
(
ξ + (nk,1 − 1)

2π
r

)
, · · · , F

(
ξ + (nk,l(k) − 1)

2π
r

)]>
, F ∈ L2(B̃k) ,

where L2
l(k)(Bk) denotes the Hilbert product space L2(Bk)× · · · × L2(Bk) (l(k) times).

Now, for each k ∈ P we consider the N × l(k) matrix with entries in L2(Bk)

Gk(ξ) := [Dk(g1)(ξ), · · · , Dk(gN )(ξ)]T =
[
gi(ξ + (nk,j − 1)

2π
r

)
]

1≤i≤N, 1≤j≤l(k)
,

and the l(k)× l(k) matrix with entries in L1(Bk)

Hk(ξ) := G∗k(ξ)Gk(ξ) ,

where G∗k(ξ) denotes the adjoint of the matrix Gk(ξ), being

gi(ξ) :=
1

2π
Zψi(ai, ξ) ∈ L

2[σ(V )] , 1 ≤ i ≤ N .

Let λmin,k(ξ) (respectively λmax,k(ξ)) be the smallest (respectively the largest) eigenvalue of
the positive semidefinite matrix Hk(ξ) and the constants

(3.3) αG := min
k∈P
‖λmin,k‖L0(Bk) and βG := max

k∈P
‖λmax,k‖L∞(Bk).

Here ‖u‖L0(E) and ‖u‖L∞(E) denote the essential infimum and the essential supremum of a
measurable function u on E. We are now ready to state and prove our main sampling results.

Theorem 3.3. Assume that the function Zψj (aj , ξ) ∈ L∞[σ(V )] for 1 ≤ j ≤ N . Then the
following statements are equivalent:
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(i) There is a frame
{
Sj(t − rn) : 1 ≤ j ≤ N,n ∈ Z

}
for V (ϕ) such that for each

f ∈ V (ϕ) the sampling formula

(3.4) f(t) =
N∑
j=1

∑
n∈Z

(Ljf)(aj + rn)Sj(t− rn) , t ∈ R

holds.
(ii) There is a frame

{
Sj,n(t) : 1 ≤ j ≤ N,n ∈ Z

}
for V (ϕ) such that for each f ∈ V (ϕ)

the sampling formula

(3.5) f(t) =
N∑
j=1

∑
n∈Z

(Ljf)(aj + rn)Sj,n(t) , t ∈ R

holds.
(iii) αG > 0 .

Proof. Condition (i) implies condition (ii) trivially. Assume condition (ii); applying the
isomorphism T −1

ϕ : V (ϕ) −→ L2[σ(V )] to (3.5) gives:

(3.6) F (ξ) =
N∑
j=1

∑
n∈Z
〈F (ξ), gj(ξ)e−irnξ〉L2[σ(V )] sj,n(ξ), F ∈ L2[σ(V )],

where {sj,n(ξ) : 1 ≤ j ≤ N,n ∈ Z} is a frame for L2[σ(V )]. By using Lemma 3.5 (i) below, the
sequence

{
gj(ξ)e−irnξ : 1 ≤ j ≤ N,n ∈ Z

}
is a Bessel sequence in L2[σ(V )]. The expansion

(3.6) on L2[σ(V )] implies that the sequence
{
gj(ξ)e−irnξ : 1 ≤ j ≤ N,n ∈ Z

}
must be a

frame for L2[σ(V )] (see Lemma 5.6.2 in [5]). Hence, condition (iii) holds by using Lemma
3.5 (ii) below.

Finally assume condition (iii); the sequence
{
gj(ξ)e−irnξ : 1 ≤ j ≤ N,n ∈ Z

}
with

gj(ξ) = 1
2πZψj (aj , ξ) is a frame for L2[σ(V )] by Lemma 3.5 (ii) below. Let

{
sj(ξ)e−irnξ : 1 ≤

j ≤ N,n ∈ Z
}

be a dual frame of
{
gj(ξ)e−irnξ : 1 ≤ j ≤ N,n ∈ Z

}
(cf. Lemma 3.6 below).

Thus we have the following frame expansion in L2[σ(V )]:

(3.7) F (ξ) =
N∑
j=1

∑
n∈Z
〈F (ξ), gj(ξ)e−irnξ〉L2[σ(V )]sj(ξ)e

−irnξ, F ∈ L2[σ(V )] .

Applying the isomorphism Tϕ : L2[σ(V )] −→ V (ϕ) to (3.7) gives (3.4) with Sj = Tϕ(sj),
1 ≤ j ≤ N , which proves condition (i).

�

For later use, notice that αG > 0 implies l(k) ≤ N for all k ∈ P. For N = r = 1 in
Theorem 3.3, we obtain:

Corollary 3.4. Let L be an LTI system of type (i), (ii) or (iii). There is a frame
{
S(t−n) :

n ∈ Z
}

for V (ϕ) such that for each f ∈ V (ϕ)

(3.8) f(t) =
∑
n∈Z

(Lf)(a+ n)S(t− n) , t ∈ R

if and only if

(3.9) 0 < ‖Zψ(a, ξ)‖L0[σ(V )] ≤ ‖Zψ(a, ξ)‖L∞[σ(V )] <∞.
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Moreover, in this case,

(3.10) Ŝ(ξ) =
ϕ̂(ξ)

Zψ(a, ξ)
χsuppGϕ(ξ).

Proof. Whenever r = 1, L(k) = {1} and B̃k = Bk for all k ∈ P; thus Dk becomes the
identity operator. Therefore, Gk(ξ) = g(ξ) = 1

2πZψ(a, ξ) and Hk(ξ) = 1
(2π)2
|Zψ(a, ξ)|2 for

k ∈ P and ξ ∈ Bk. Hence 0 < αG ≤ βG < ∞ if and only if condition (3.9) holds. As a
consequence, (3.9) implies (3.8) by Theorem 3.3. Conversely, assume that (3.8) holds. Then
ϕ(t) =

∑
n∈Z ψ(a + n)S(t − n) so that ϕ̂(ξ) = Zψ(a, ξ)Ŝ(ξ) and Gϕ(ξ) = |Zψ(a, ξ)|2GS(ξ)

from which (3.9) and (3.10) follow. �

When the impulse response h is the Dirac delta distribution δ(t), the system L is the iden-
tity operator, and Corollary 3.4 reduces to a regular shifted sampling in V (ϕ) (see Theorem
1 in [22] and Theorem 3.4 in [15]). The next technical lemma used in the proof of Theorem
3.3 enlarges the results of Lemma 3 in [9]:

Lemma 3.5. Let gj be in L2[σ(V )] for 1 ≤ j ≤ N and let αG, βG be the constants given by
(3.3). Then we have:

(i) The sequence
{
gj(ξ)e−irnξ : 1 ≤ j ≤ N,n ∈ Z

}
is a Bessel sequence in L2[σ(V )] if

and only if βG <∞, that is, gj(ξ) ∈ L∞[σ(V )] for each 1 ≤ j ≤ N .
(ii) The sequence

{
gj(ξ)e−irnξ : 1 ≤ j ≤ N,n ∈ Z

}
is a frame for L2[σ(V )] if and only if

(3.11) 0 < αG ≤ βG <∞.

Proof. First note that for any F ∈ L2[σ(V )] we have

〈F (ξ), gj(ξ)e−irnξ〉L2[σ(V )] =
∫
σ(V )

F (ξ)gj(ξ)eirnξdξ

=
∑
k∈P

∫
Bk

[Dk(gj)]T (ξ)Dk(Fk)(ξ)eirnξdξ

= 〈
∑
k∈P

[Dk(gj)]TDk(Fk)χBk , e
−irnξ〉L2(I),

where Fk(ξ) := F (ξ)χ eBk(ξ). Since {
√

r
2πe
−irnξ}n∈Z is an orthonormal basis for L2(I) and

the sets Bk are disjoint, we have

∑
n∈Z

∣∣〈F (ξ), gj(ξ)e−irnξ〉L2[σ(V )]

∣∣2 =
2π
r

∥∥∥∑
k∈P

Dk(gj)TDk(Fk)χBk(ξ)
∥∥∥2

L2(I)

=
2π
r

∑
k∈P

∥∥Dk(gj)TDk(Fk)
∥∥2

L2(Bk)

=
2π
r

∑
k∈P
〈Dk(gj)Dk(gj)TDk(Fk), Dk(Fk)〉L2

l(k)
(Bk).
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Hence,
N∑
j=1

∑
n∈Z
|〈F (ξ), gj(ξ)e−irnξ〉|2(3.12)

=
2π
r

∑
k∈P
〈
N∑
j=1

Dk(gj)Dk(gj)TDk(Fk), Dk(Fk)〉L2
l(k)

(Bk)

=
2π
r

∑
k∈P
〈Hk(ξ)Dk(Fk), Dk(Fk)〉L2

l(k)
(Bk).

For (i), assume that βG <∞. By using (3.12), for any F ∈ L2[σ(V )] we have
N∑
j=1

∑
n∈Z

∣∣〈F (ξ), gj(ξ)e−irnξ〉L2[σ(V )]

∣∣2 ≤ 2π
r
βG
∑
k∈P
〈Dk(Fk), Dk(Fk)〉L2

l(k)
(Bk)

=
2π
r
βG‖F‖2L2[σ(V )]

so that
{
gj(ξ)e−irnξ : 1 ≤ j ≤ N,n ∈ Z

}
is a Bessel sequence with bound 2π

r βG.
On the other hand, for any constant K with 0 ≤ K < βG we have that K < ‖λmax,k(ξ)‖∞
for some k ∈ P. Then there is a measurable set E ⊂ Bk of positive measure such that
λmax,k(ξ) ≥ K on E. Choose a measurable vector-valued function Fk(ξ) := {Fk,j(ξ)}

l(k)
j=1 on

E such that
∑l(k)

j=1 |Fk,j(ξ)|2 = 1 on E and Hk(ξ)Fk(ξ) = λmax,k(ξ)Fk(ξ) on E. This function
can be constructed as in [13, Lemma 2.4]. Extend Fk(ξ) over Bk by setting Fk(ξ) = 0 on
Bk \ E. Thus Fk ∈ L∞l(k)(Bk) and Hk(ξ)Fk(ξ) = λmax,k(ξ)Fk(ξ) on Bk. Let F be such that

F = D−1
k (Fk) on B̃k and F (ξ) = 0 on σ(V ) \ B̃k. This function F belongs to L∞[σ(V )] and

satisfies
N∑
j=1

∑
n∈Z

∣∣〈F (ξ), gj(ξ)e−irnξ〉L2[σ(V )]

∣∣2 =
2π
r
〈Hk(ξ)Fk(ξ),Fk(ξ)〉L2

l(k)
(Bk)

≥ 2π
r
K〈Fk,Fk〉L2

l(k)
(E) =

2π
r
K‖F‖2L2[σ(V )].

As a consequence, 2π
r βG is the optimal Bessel bound for

{
gj(ξ)e−irnξ : 1 ≤ j ≤ N,n ∈ Z

}
.

Moreover, if βG = ∞, the sequence
{
gj(ξ)e−irnξ : 1 ≤ j ≤ N,n ∈ Z

}
cannot be a Bessel

sequence. Finally, note that the spectral norm of a matrix is equivalent to its Frobenius
norm. Hence βG < ∞ if and only if all entries of Hk(ξ) for k ∈ P are essentially bounded
which is also equivalent to gj ∈ L∞[σ(V )] for 1 ≤ j ≤ N .

For (ii), assume that 0 < αG ≤ βG < ∞. A similar reasoning as the one in (i) gives
that

{
gj(ξ)e−irnξ : 1 ≤ j ≤ N,n ∈ Z

}
is a frame for L2[σ(V )], where 2π

r βG ≥
2π
r αG are

the optimal upper and lower bounds. In particular, if either αG = 0 or βG = ∞, then{
gj(ξ)e−irnξ : 1 ≤ j ≤ N,n ∈ Z

}
cannot be a frame for L2[σ(V )]. �

It is useful to note that condition (3.11) is equivalent to gj ∈ L∞[σ(V )] for 1 ≤ j ≤ N and
mink∈P ‖det Hk(ξ)‖L0(Bk) > 0.

Lemma 3.6. Let gj be in L2[σ(V )] for 1 ≤ j ≤ N such that
{
gj(ξ)e−irnξ : 1 ≤ j ≤ N,n ∈ Z

}
is a frame for L2[σ(V )]. Then any dual frame of

{
gj(ξ)e−irnξ : 1 ≤ j ≤ N,n ∈ Z

}
having
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the form
{
sj(ξ)e−irnξ : 1 ≤ j ≤ N,n ∈ Z

}
is obtained from the equation

(3.13)
2π
r

Sk(ξ)> = Gk(ξ)† + Ek(ξ)
(
IN −Gk(ξ)Gk(ξ)†

)
, k ∈ P ,

where IN is the N ×N identity matrix, Ek(ξ) is any arbitrary l(k)×N matrix with entries
in L∞(Bk), Gk(ξ)† :=

[
Gk(ξ)∗Gk(ξ)

]−1Gk(ξ) is the pseudo-inverse matrix of Gk(ξ),

(3.14) Sk(ξ) := [Dk(s1,k)(ξ), · · · , Dk(sN,k)(ξ)]>

and sj,k(ξ) = sj(ξ)χ eBk(ξ) for 1 ≤ j ≤ N .

Proof. Assume that the sequence
{
sj(ξ)e−irnξ : 1 ≤ j ≤ N,n ∈ Z

}
is a dual frame of the

sequence
{
gj(ξ)e−irnξ : 1 ≤ j ≤ N,n ∈ Z

}
. Then sj ∈ L∞[σ(V )] for 1 ≤ j ≤ N . For any F1

and F2 in L2[σ(V )] we also have (cf. Lemma 5.6.2 in [5]):

〈F1, F2〉L2[σ(V )] =
N∑
j=1

∑
n∈Z
〈F1, sje

−irnξ〉L2[σ(V )]〈gje−irnξ, F2〉L2[σ(V )]

=
2π
r

∑
k∈P
〈Dk(F1,k),Sk(ξ)Gk(ξ)Dk(F2,k)〉L2

l(k)
(Bk)(3.15)

with Sk(ξ) as in (3.14). Since

〈F1, F2〉L2[σ(V )] =
∑
k∈P
〈Dk(F1,k), Dk(F2,k)〉L2

l(k)
(Bk) ,

(3.15) implies that 2π
r Sk(ξ) must be a left inverse of the matrix Gk(ξ). Finally, the right hand

side of (3.13) is a left inverse of Gk(ξ) and any left inverse 2π
r Sk(ξ)> of Gk(ξ) is obtained

from (3.13) by choosing Ek(ξ) = 2π
r Sk(ξ)>. �

One can easily check that the canonical dual frame of
{
gj(ξ)e−irnξ : 1 ≤ j ≤ N,n ∈ Z

}
is

obtained from (3.13) by choosing Ek(ξ) = 0 for each k ∈ P.
Next we give the Riesz basis counterpart to Theorem 3.3:

Theorem 3.7. There exists a Riesz basis {Sj,n(t) : 1 ≤ j ≤ N,n ∈ Z} for V (ϕ) for which
the sampling expansion (3.5) holds on V (ϕ) if and only if

(3.16) 0 < αG ≤ βG <∞ and l(k) = N for all 1 ≤ k ≤ m.

Moreover, in this case,

(3.17) Sj,n(t) = Sj(t− rn), 1 ≤ j ≤ N and n ∈ Z;

(3.18) (LjSk)(aj + rn) = δj,kδn,0, 1 ≤ j, k ≤ N and n ∈ Z;

(3.19) |σ(V )| = 2π
N

r
(which implies N ≤ r).

Proof. Assuming (3.16), Lemma 3.8 below proves that the sequence
{
gj(ξ)e−irnξ : 1 ≤ j ≤

N,n ∈ Z
}

is a Riesz basis for L2[σ(V )]. Thus we have the Riesz basis expansion (3.7), where{
sj(ξ)e−irnξ : 1 ≤ j ≤ N,n ∈ Z

}
is the dual Riesz basis of

{
gj(ξ)e−irnξ : 1 ≤ j ≤ N,n ∈ Z

}
.

The isomorphism Tϕ gives the sampling expansion (3.5), where Sj,n(t) = Sj(t − rn) and
Sj(t) = Tϕ(sj(ξ))(t). Conversely assume that the Riesz basis expansion (3.5) holds on V (ϕ).
Applying the isomorphism T −1

ϕ to (3.5) gives the Riesz basis expansion (3.6) on L2[σ(V )].
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Then
{
gj(ξ)e−irnξ : 1 ≤ j ≤ N,n ∈ Z

}
must be the dual Riesz basis of

{
sj,n(ξ) : 1 ≤ j ≤

N,n ∈ Z
}

so that (3.16) holds by Lemma 3.8 below. Since
{
sj,n(ξ) : 1 ≤ j ≤ N,n ∈ Z

}
is the dual Riesz basis of

{
gj(ξ)e−irnξ : 1 ≤ j ≤ N,n ∈ Z

}
, sj,n(ξ) = sj(ξ)e−irnξ where

sj ∈ L∞[σ(V )] (cf. Lemma 3.6). Therefore, Sj,n(t) = Tϕ(sj(ξ)e−irnξ)(t) = Sj(t− rn), where
Sj = Tϕ(sj), 1 ≤ j ≤ N , so that (3.17) holds. Applying the sampling formula (3.4) to Sk
gives

Sk(t) =
N∑
j=1

∑
n∈Z

(LjSk)(aj + rn)Sj(t− rn) , t ∈ R ,

from which (3.18) follows. Finally (3.19) follows immediately from (3.16) having in mind
that |σ(V )| =

∑
k∈P l(k)|Bk|. �

Whenever σ(V ) = [0, 2π], ϕ becomes a Riesz generator for V (ϕ). As a consequence,
Theorems 3.3 and 3.7 are the extended frame versions of Theorem 2 and Corollary 1 in [9];
there ϕ is a Riesz generator and the LTI system Lj has impulse response hj in L1(R)∩L2(R)
for 1 ≤ j ≤ N .

Lemma 3.8. Let gj be a function in L2[σ(V )] for 1 ≤ j ≤ N and let αG, βG be the constants
given by (3.3). Then, the sequence

{
gj(ξ)e−irnξ : 1 ≤ j ≤ N,n ∈ Z

}
is a Riesz basis for

L2[σ(V )] if and only if

(3.20) 0 < αG ≤ βG <∞ and l(k) = N for all 1 ≤ k ≤ m.

Proof. Note that
{
gj(ξ)e−irnξ : 1 ≤ j ≤ N,n ∈ Z

}
is a Riesz basis for L2[σ(V )] if and only if

it is complete set in L2[σ(V )] and there are constants 0 < A ≤ B such that

(3.21) A‖c‖2 ≤
∥∥ N∑
j=1

∑
n∈Z

cj(n)gj(ξ)e−irnξ
∥∥2

L2[σ(V )]
≤ B‖c‖2,

where c = (c1, . . . , cN ) ∈ `2N (Z) and ‖c‖2 :=
∑N

j=1

∑
n∈Z |cj(n)|2. For the middle term in

(3.21) we have ∥∥∥ N∑
j=1

∑
n∈Z

cj(n)gj(ξ)e−irnξ
∥∥∥2

L2[σ(V )]
=
∫
σ(V )

∣∣∣ N∑
j=1

gj(ξ)ĉj(rξ)
∣∣∣2dξ

=
∑
k∈P

l(k)∑
j=1

∫
Bk

|g∗(ξ + (nk,j − 1)
2π
r

)ĉ(rξ)|2dξ

=
∑
k∈P
〈
l(k)∑
j=1

g(ξ + (nk,j − 1)
2π
r

)g∗(ξ + (nk,j − 1)
2π
r

)ĉ(rξ), ĉ(rξ)〉L2
N (Bk)

=
∑
k∈P
〈H̃k(ξ)ĉ(rξ), ĉ(rξ)〉L2

N (Bk),

where g(ξ) := [g1(ξ), · · · , gN (ξ)]>, ĉ(ξ) := [ĉ1(ξ), · · · , ĉN (ξ)]> and H̃k(ξ) := Gk(ξ)G∗k(ξ).
On the other hand,

‖c‖2 =
r

2π
‖ĉ(rξ)‖2L2

N (I) =
r

2π

m∑
k=1

‖ĉ(rξ)‖2L2
N (Bk).
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Hence, condition (3.21) is equivalent to

(3.22) A
r

2π

m∑
k=1

‖ĉ(rξ)‖2L2
N (Bk) ≤

∑
k∈P
〈H̃k(ξ)ĉ(rξ), ĉ(rξ)〉L2

N (Bk) ≤ B
r

2π

m∑
k=1

‖ĉ(rξ)‖2L2(Bk)N ,

which holds if and only if P = {1, 2, · · · ,m} and 0 < α̃G ≤ β̃G < ∞, where α̃G :=
min1≤k≤m ‖λ̃min,k‖0, β̃G := max1≤k≤m ‖λ̃max,k‖∞, and λ̃min,k (respectively λ̃max,k(ξ)) is the
smallest (respectively the largest) eigenvalue of the matrix H̃k(ξ).

Now assume that
{
gj(ξ)e−irnξ : 1 ≤ j ≤ N,n ∈ Z

}
is a Riesz basis for L2[σ(V )]. Since

(3.11) holds, we deduce that l(k) ≤ N for any k ∈ P; but we also have (3.22) so that N ≤ l(k)
for any 1 ≤ k ≤ m. Hence, l(k) = N for all 1 ≤ k ≤ m. Conversely, assume that (3.20) holds.
Thus,

{
gj(ξ)e−irnξ : 1 ≤ j ≤ N,n ∈ Z

}
is a complete set in L2[σ(V )] since it is a frame for

L2[σ(V )]. For each 1 ≤ k ≤ m, since αG IN ≤ Hk(ξ) ≤ βG IN , for any Fk ∈ L2
N (Bk) we have

αG‖Fk‖2L2
N (Bk) ≤ ‖Gk(ξ)Fk(ξ)‖2L2

N (Bk) ≤ βG‖Fk‖
2
L2
N (Bk) ,

and there exists the inverse matrix Gk(ξ)−1 a.e. with entries essentially bounded. Then Gk(ξ)
and G∗k(ξ) are isomorphisms from L2

N (Bk) onto L2
N (Bk). Hence, for any k = 1, 2, · · · ,m we

have

αG‖Fk‖2L2
N (Bk) ≤ ‖G

∗
k(ξ)Fk(ξ)‖2L2

N (Bk) = 〈H̃k(ξ)Fk(ξ),Fk(ξ)〉L2
N (Bk) ≤ βG‖Fk‖2L2

N (Bk) ,

for any Fk ∈ L2
N (Bk). Thus (3.22) or, equivalently, (3.21) holds, from which we deduce that

the sequence
{
gj(ξ)e−irnξ : 1 ≤ j ≤ N,n ∈ Z

}
is a Riesz basis for L2[σ(V )]. �

For the particular case N = 1, Theorem 3.7 reads:

Corollary 3.9. Let L be an LTI system of type (i), (ii) or (iii). Then, there exists a Riesz
basis {Sn(t) : n ∈ Z} for V (ϕ) such that, for any f ∈ V (ϕ), the sampling formula

(3.23) f(t) =
∑
n∈Z

(Lf)(a+ rn)Sn(t), t ∈ R ,

holds if and only if

(3.24) 0 < ‖Zψ(a, ξ)‖L0[σ(V )] ≤ ‖Zψ(a, ξ)‖L∞[σ(V )] <∞ and l(k) = 1 for all 1 ≤ k ≤ m.

Moreover, in this case:

• Sn(t) = S(t− rn), n ∈ Z;
• (LS)(a+ rn) = δn,0, n ∈ Z;
• |σ(V )| = 2π

r .

Proof. Assume l(k) = 1 for all 1 ≤ k ≤ m; for each k = 1, 2, · · · ,m , there is a unique
integer nk with 1 ≤ nk ≤ r such that B̃k = Bk + (nk − 1)2π

r ⊆ σ(V ). Thus, Gk(ξ) =
Dk(g)(ξ) = 1

2πZψ(a, ξ + (nk − 1)2π
r ) and Hk(ξ) = 1

(2π)2
|Zψ(a, ξ + (nk − 1)2π

r )|2 for ξ ∈ Bk.
Hence, 0 < αG ≤ βG < ∞ if and only if 0 < ‖Zψ(a, ξ)‖L0[σ(V )] ≤ ‖Zψ(a, ξ)‖L∞[σ(V )] < ∞
and, as a consequence, Corollary 3.9 follows from Theorem 3.7. �

Furthermore, if r = 1 in Corollary 3.9, then ϕ must be a Riesz generator since σ(V ) =
[0, 2π] and Ŝ(ξ) = ϕ̂(ξ)/[Zψ(a, ξ)].
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Finally, it is worth to notice that in sampling formula (3.2) we may allow a rational
sampling period r = p

q , where p and q are coprime positive integers, since{
(Ljf)(aj + rn) : n ∈ Z

}
=
{

(Ljf)(aj + r(k − 1) + pn) : 1 ≤ k ≤ q and n ∈ Z
}
.

4. An illustrative example

Let ϕ(t) = 1
2sinc t2 = sinπ t

2
πt so that ϕ̂(ξ) = χ[−π

2
,π
2

](ξ). On [0, 2π] we have,

Gϕ(ξ) =

{
1 on [0, π2 ] ∪ [3π

2 , 2π]
0 on (π2 ,

3π
2 )

so that ϕ is a continuous frame generator of V (ϕ) and σ(V ) = [0, π2 ]∪ [3π
2 , 2π]. By the Poisson

summation formula, we also have

Cϕ(t) =
∑
n∈Z
|ϕ(t+ n)|2 =

1
2π

∥∥Zϕ(t, ·)
∥∥2

L2[0,2π]
=

1
2π

∥∥∥∑
n∈Z

ϕ̂(·+ 2nπ)eit(·+2nπ)
∥∥∥2

L2[0,2π]

≤ 1
2π

∥∥∥∑
n∈Z
|ϕ̂(·+ 2nπ)|

∥∥∥2

L2[0,2π]
=

1
2
, t ∈ R.

(a) First take N = 2, ĥj(ξ) = (iξ)j−1χ[−π
2
,π
2

](ξ) for j = 1, 2 , r = 4 and a1 = a2 = 0. For any
f ∈ V (ϕ)

Lj [f ](t) = f (j−1)(t) for j = 1, 2 .

For ψj(t) = Lj [ϕ](t), the Poisson summation formula gives

Zψj (0, ξ) =
∑
n∈Z

ψj(n)e−inξ =
∑
n∈Z

ψ̂j(ξ + 2nπ), j = 1, 2 ,

so that

Zψ1(0, ξ) =

{
1 on [0, π2 ] ∪ [3π

2 , 2π]
0 on (π2 ,

3π
2 )

and

Zψ2(0, ξ) =


iξ on [0, π2 ]
0 on (π2 ,

3π
2 )

i(ξ − 2π) on [3π
2 , 2π] .

Hence, Zψj (0, ξ) ∈ L∞[0, 2π] for j = 1, 2.
On the other hand, since σ(V ) = [0, π2 ] ∪ [3π

2 , 2π] and I = [0, π2 ], m = 1 and L(1) = {1, 4}
so that l(1) = 2. Hence,

2πG1(ξ) =
[

1 1
iξ i(ξ − π

2 )

]
, 0 ≤ ξ ≤ π

2
and consequently,

(2π)2H1(ξ) =
[

1 + ξ2 1 + ξ(ξ − π
2 )

1 + ξ(ξ − π
2 ) 1 + (ξ − π

2 )2

]
, 0 ≤ ξ ≤ π

2
.

Hence, det H1(ξ) = | det G1(ξ)|2 = 1/(64π2) and we deduce that αG > 0. Therefore, by using
Theorem 3.7, there exists a Riesz basis {Sj(t− 4n) : j = 1, 2 and n ∈ Z} for V (ϕ) such that,
for any f ∈ V (ϕ)

f(t) =
∑
n∈Z

{
f(4n)S1(t− 4n) + f ′(4n)S2(t− 4n)

}
, t ∈ R .
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(b) We now take N = 3, ĥj(ξ) = (iξ)j−1χ[−π
2
,π
2

](ξ) for j = 1, 2, 3, r = 5 and a1 = a2 = a3 = 0.
For f ∈ V (ϕ),

Lj [f ](t) = f (j−1)(t) for j = 1, 2, 3 ,

and

Zψ3(0, ξ) =


−ξ2 on [0, π2 ]
0 on (π2 ,

3π
2 )

−(ξ − 2π)2 on [3π
2 , 2π] .

so that Zψj (0, ξ) ∈ L∞[0, 2π] for j = 1, 2, 3.
Since σ(V ) = [0, π2 ] ∪ [3π

2 , 2π] and I = [0, 2π
5 ], m = 3 and {tj}3j=0 =

{
0, π10 ,

3π
10 ,

2π
5

}
, so that

L(1) = {1, 2, 5}, L(2) = {1, 5}, L(3) = {1, 4, 5}. We then have

2πG1(ξ) =

 1 1 1
iξ i(ξ + 2π

5 ) i(ξ − 2π
5 )

−ξ2 −(ξ + 2π
5 )2 −(ξ − 2π

5 )2

 , ξ ∈ B1 = (0,
π

10
);

2πG2(ξ) =

 1 1
iξ i(ξ − 2π

5 )
−ξ2 −(ξ − 2π

5 )2

 , ξ ∈ B2 = (
π

10
,
3π
10

);

2πG3(ξ) =

 1 1 1
iξ i(ξ − 4π

5 ) i(ξ − 2π
5 )

−ξ2 −(ξ − 4π
5 )2 −(ξ − 2π

5 )2

 , ξ ∈ B3 = (
3π
10
,
2π
5

).

Thus, for Hj(ξ) = G∗j (ξ)Gj(ξ), j = 1, 2, 3 , we have det H1(ξ) = det H3(ξ) = (2/125)2 and

(2π)4 det H2(ξ) = (x2ξ − xξ2)2 + (x2 − ξ2)2 + (x− ξ)2 ≥ (x− ξ)2 =
4π2

25
,

where x = ξ− 2π
5 ; hence αG > 0. Therefore, by Theorem 3.3, there exists a frame {Sj(t−5n) :

j = 1, 2, 3 and n ∈ Z} for V (ϕ) such that, for each f ∈ V (ϕ) we have

f(t) =
∑
n∈Z

{
f(5n)S1(t− 5n) + f ′(5n)S2(t− 5n) + f ′′(5n)S3(t− 5n)

}
, t ∈ R .
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