Generalized sampling in L?(R¢) shift-invariant
subspaces with multiple stable generators

H. R. Fernandez-Morales, A. G. Garcia and G. Pérez-Villalon

Abstract In order to avoid most of the problems associated with classical Shannon’s
sampling theory, nowadays signals are assumed to belong to some shift-invariant
subspace. In this work we consider a general shift-invariant space Vé of L?(R?) with
a set @ of r stable generators. Besides, in many common situations the available data
of a signal are samples of some filtered versions of the signal itself taken at a sub-
lattice of Z¢. This leads to the problem of generalized sampling in shift-invariant
spaces. Assuming that the />-norm of the generalized samples of any f € V(% is
stable with respect to the L?(R?)-norm of the signal f, we derive frame expansions
in the shift-invariant subspace allowing the recovery of the signals in V% from the
available data. The mathematical technique used here mimics the Fourier duality
technique which works for classical Paley-Wiener spaces.

1 By way of introduction

The classical Whittaker-Shannon-Kotel’nikov sampling theorem (WSK sampling

theorem) [23, 50] states that any function f band-limited to [—1/2,1/2], that is,
fo) =/ lﬁz F(w)e2 i dw for each ¢ € R, may be reconstructed from the sequence
of samples { f(n)},ez as
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Thus, the Paley-Wiener space PW /, of band-limited functions to [—~1/2,1/2] is
generated by the integer shifts of the cardinal sine function, sinc(¢) := sin 7t/ 7z
A simple proof of this result is given by using the Fourier duality technique which
uses that the Fourier transform

F 1 PW, ) — L*[-1/2,1/2]
o= f
is an unitary operator from the Paley-Wiener space PW) , of band-limited functions
to [—1/2,1/2] onto L2[—1/2,1/2]. Thus, the Fourier series f = Y= f(n)e 2%
of fin L*[—1/2,1/2], by applying the inverse Fourier transform .% !, gives

oo

=Y fwF ey ] = Y fn)

n——oo n——o0

sin (t —n) in I2(R).
n(t—n)
The pointwise convergence comes from the fact that PW; , is a reproducing kernel
Hilbert space (written shortly as RKHS) where convergence in norm implies point-
wise convergence (which is, in this case, uniform on R); this comes out from the
inequality: [f(z)| < ||f]| for eacht € R and f € PW, ) (for the RKHS’s theory and
applications, see, for instance, Ref. [36]).

The WSK theorem has its d-dimensional counterpart. Any function f band-
limited to the d-dimensional cube [—1/2,1/2]%. i.e.. f(t) = fi_y /5.1 o [ (x)e¥™ 1dlx
for each € R? (here we are using the notation x "¢ := x1#; + - - - 4+ x4t; identifying
elements in RY with column vectors), may be reconstructed from the sequence of
samples { f(¢t)}yeza as

sin 71'(2‘1 —OC]) sin ﬂ(l‘d—OCd)
m(t —ou) 7(tq — &)

. t=(1,...,15) eRY.

f6)="Y fla)

aezd

Although Shannon’s sampling theory has had an enormous impact, it has a num-
ber of problems, as pointed out by Unser in Refs. [42, 43]: It relies on the use of
ideal filters; the band-limited hypothesis is in contradiction with the idea of a fi-
nite duration signal; the band-limiting operation generates Gibbs oscillations; and
finally, the sinc function has a very slow decay at infinity which makes compu-
tation in the signal domain very inefficient. Besides, in several dimensions it is
also inefficient to assume that a multidimensional signal is band-limited to a d-
dimensional interval. Moreover, many applied problems impose different a priori
constraints on the type of signals. For this reason, sampling and reconstruction
problems have been investigated in spline spaces, wavelet spaces, and general shift-
invariant spaces; signals are assumed to belong to some shift-invariant space of the
form: V(g :=3Span, 2 {@(t — &) : @ € Z¢} where the function ¢ in L?(R?) is called
the generator of Vé. See, for instance, Refs. [2, 3, 4, 6, 7, 10, 43, 45, 47, 48, 49, 51]
and the references therein.

In this new context, the analogous of the WSK sampling theorem in a shift-
invariant space Vq% was first time proved by Walter in [45]:
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1.1 Walter’s sampling theorem in shift-invariant spaces

Let ¢ € L?>(R) be a stable generator for the shift-invariant space Vq% which means
that the sequence {@(- —n)},cz is a Riesz basis for Vq%. A Riesz basis in a separable
Hilbert space is the image of an orthonormal basis by means of a bounded invertible
operator. Any Riesz basis {x,}>_; has a unique biorthogonal (dual) Riesz basis
{¥n}t_i, i€, (Xn,Ym) 2 = 8um, such that the expansions

X = Z <X,}’n>jfxn = Z <x7xn>j‘fyna
n=1 n=1
hold for every x € 5 (see [11] for more details and proofs). Recall that the sequence
{@(- —n)},ez is a Riesz sequence, i.e., a Riesz basis for Vq% (see, for instance, [11,
p. 143]) if and only if there exist two positive constants 0 < A < B such that

A< Z P(w+k)><B, aewel0,1].
ez

Thus we have that V(g = {Znezan o(-—n) : {an} € KZ(Z)} C L*(R).

We assume that the functions in the shift-invariant space Vq% are continuous on
R. This is equivalent to say that the generator ¢ is continuous on R and the function
Y.<z |@(t — n)|? is uniformly bounded on R (see [40]). Thus, any f € Vq% is defined
on R as the pointwise sum f(¢) =Y ,c7 a,¢(t —n) for each t € R.

On the other hand, the space V(g is the image of L2[0, 1] by means of the isomor-
phism

T L*0,1] — V3
{e 2" ez — {@(t —n)}nez,

which maps the orthonormal basis {e 27", _ for L?[0,1] onto the Riesz basis
{@(t —n)}nez for Vg. For any F € L*[0,1] we have

ToF (1) = ¥ (F.e ™) (1 —n) = (F, . @i —n)e ™) = (F.K) ooy, 1ER,

nez nez

where, for each ¢ € R, the function K, € L* [0,1] is given by

K (x)= Z Q1 —n)e 2Fm = Z o(t+n)e 2y = Zo(t,x).

nez nez

Here, Z(t,x) := ¥,cz @(t +n)e 27" denotes the Zak transform of the function ¢.
See [11, 22] for properties and uses of the Zak transform.

As a consequence, the samples in {f(a+m)}cz of f € V2, where a € [0,1) is
fixed, can be expressed as

fla+m)=(F,Kyim) = (F,e 2"™K,)  mcZ where F = %_lf.
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As a consequence, the stable recovery of f € Vq% from the sequence of its sam-
ples {f(a+m)}mez reduces to the study of the sequence {e™*""™K,(x)}, _, in

L? [0,1]. The following theorem is easy to prove, having in mind that the opera-
tor mp : L2[0,1] — L?[0,1] defined as: mp(f) = F f is well-defined if and only if
F € L]0, 1]; in this case, it is bounded and its norm ||mp|| = || F||c-

Theorem 1. The sequence of functions {e_zm””‘l(a(x)}mEZ is a Riesz basis for
L2[0,1] if and only if the inequalities 0 < ||K,|lo < ||Ka||e < o hold, where ||K,||o :=
essinfycio,1)|Ka(x)| and [|Kq |l := esssup,co, 1) |[Ka(x)|. Moreover, its biorthogonal

Riesz basis is {e™2™"™ /K, (x)}, _,.

In particular, the sequence {e "™ K,(x)} _, isan orthonormal basis in L[0, 1] if

and only if |K,(x)] = 1 a.e. in [0, 1].

meZ

Let a be a real number in [0, 1) such that 0 < ||K,|jo < ||Kg|| < o0; next we prove
Walter’s sampling theorem for V(g in [45]. Given f € V2, we expand the function
F =9, f € L?0,1] with respect to the Riesz basis {e” > /K,(x)}, _,. Thus we
get

—2minx —2minx

F= ZFKMe ~ Y fla+

nez Ky (x) =Y/ Ka (x)

Applying the operator .7, to the above expansion we obtain

in L2[0,1].

f=Y flatn)Tp(e ™™ [Ku(x) = ) fla+n)Sa(- —n) in L*(R),

nez nez

where we have used the shifting property 7y (e *"™F)(t) = (Z,F)(t —n),t € R
and n € Z, satisfied by the isomorphism .7, for the particular function S, :=
To(1/K,) € Vq%. As in the Paley-Wiener case, the shift-invariant space Vé is a re-
producing kernel Hilbert space. Indeed, for each ¢t € R, the evaluation functional at
t is bounded:

1/2
If(t)léHFIIIIKZIISH%’lHllKrHl\fll:II%’III(Z|<P(t—n)\2> £, fEVy.

ne7z

Therefore, the L?>-convergence implies pointwise convergence which here is uniform
on R. The convergence is also absolute due to the unconditional convergence of a
Riesz expansion. Thus, for each f € Vé we get the sampling formula

oo

f6y="Y fla+n)Su(t—n), teR.

n=-—oo

This mathematical technique, which mimics the Fourier duality technique for Paley-
Wiener spaces [23], has been successfully used in deriving sampling formulas in
other sampling settings [14, 16, 17, 19, 21, 24, 30, 31]. Here, it will be used for
obtaining generalized sampling formulas in L?(R?) shift-invariant subspaces with
multiple stable generators.
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1.2 Statement of the general problem

Assume that our functions (signals) belong to some shift-invariant space of the form:
V3 = spaan(Rd){(pk(t— o) k=1.2,...,randx € 2},

where the functions in @ := { ¢y, ..., ®,} in L?(R?) are called a set of generators for
V2. Assuming that the sequence { @y (f — &)} gezd, k=12.., 1S @ Riesz basis for V2,

the shift-invariant space quf, can be described as

V3= { Yy idk(a) ot — @) dp € (2% k = 1,2...,r}. (1)
neZk=1

See Refs. [8, 9, 35] for the general theory of shift-invariant spaces and their ap-
plications. These spaces and the scaling functions @ = {¢@y,...,,} appear in the
multiwavelet setting. Multiwavelets lead to multiresolution analyses and fast algo-
rithms just as scalar wavelets, but they have some advantages: they can have short
support coupled with high smoothness and high approximation order, and they can
be both symmetric and orthogonal (see, for instance, Ref. [28]). Classical sampling
in multiwavelet subspaces has been studied in Refs. [37, 41].

On the other hand, in many common situations the available data are samples
of some filtered versions f x h; of the signal f itself, where the average function
h; reflects the characteristics of the adquisition device. This leads to generalized
sampling (also called average sampling) in V(% (see, among others, Refs. [2, 5, 14,
16, 17, 29, 33, 34, 38, 39, 41]).

Suppose that s convolution systems (linear time-invariant systems or filters in en-
gineering jargon) .Z;, j =1,2,...,s, are defined on the shift-invariant subspace Vq%
of L*(R?). Assume also that the sequence of samples {(.Z; /) (M)} ycza 12,

for f in Vq% is available, where the samples are taken at the sub-lattice M 72 of 74,
where M denotes a matrix of integer entries with positive determinant. If we sam-
ple any function f € V3 on MZ?, we are using the sampling rate 1/r(detM) and,
roughly speaking, we will need, for the recovery of f € Vq%, the sequence of gener-
alized samples {(Z; /) (M)} yeza =12
systems ..

Assume that the sequences of generalized samples satisfy the following stability
condition: There exist two positive constants 0 < A < B such that

AIFIP<Y, ¥ 1Zf(Ma)? < BIIf|*>  forall feVg.

J=laczd

In [5] is said that the set of systems {.%},.%,...,-%;} is an M-stable filtering sam-
pler for V(%. The aim of this work is to obtain sampling formulas in V(% having the
form
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N
= (detM) Z Y (L) Ma)S;(t—Ma), teR?, )
J=laezd
such that the sequence of reconstruction functions {S;(- —M&)}yeza j_1,, s isa
frame for the shift-invariant space V3. This will be done in the light of the frame
theory for separable Hilbert spaces, by using a similar mathematical technique as in
the above section.
Recall that a sequence {x,} is a frame for a separable Hilbert space .7 if there
exist two constants A, B > 0 (frame bounds) such that

Allx) < Y60 > < Blx||* forall x € 7.
n

Given a frame {x,} for .# the representation property of any vector x € J# as a
series x = Y, cuX, is retained, but, unlike the case of Riesz bases, the uniqueness
of this representation (for overcomplete frames) is sacrificed. Suitable frame coeffi-
cients c¢,, depending linearly and continuously on x, are obtained by using the dual
frames {y,} of {x,}, i.e., the sequence {y,} is another frame for .7 such that, for
each x € 77, the expansions x = Y., (X, V) Xy = Y., {X, X, )y, hold. For more details on
the frame theory see the superb monograph [11] and the references therein.

2 Preliminaries on L?(RY) shift-invariant subspaces

Let @ :={¢,¢a,...,0.}, where ¢ € L>(RY) k=1,2,...,r, such that the sequence
{o(t—a) }and 415, s aRiesz basis for the shift-invariant space

{Z de ot — ):dkeﬁz(Zd),kzl,Z...,r}CLz(Rd).

aeZd k=

There exists a necessary and sufficient condition involving the Gramian matrix-
function

-~ T -~
Go(w):= Y @(w+a)P(w+a) , where ®:=(¢1,P2,...,9) "

aczZd

which assures that the sequence {@y(- — @)} 44 41, is a Riesz basis for V3;
namely (see, for instance, [5]): There exist two positive constants ¢ and C such that

cl, <Ggo(w) <CI, ae. wel0,1)7. 3)

We assume throughout the paper that the functions in the shift-invariant space
V(% are continuous on R?. As in the case of one generator, this is equivalent to the
generators @ being continuous on R? with ¥« |® (¢ — a)|* uniformly bounded
on R?. Thus, any f € V2 is defined on R? as the pointwise sum
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Zde o(t—a), teR?. (4)

k=1aezd

Besides, the space V2 is a RKHS since the evaluation functionals, E, f := f(t) are
bounded on V(%. Indeed, for each fixed t € R? we have

0 =| £ Ya@ae-af <( L Lia@r)( L Flnt-af)

oaeczZd k= aczd k=1 aczd k=1
(L Lu@p)( L 1ee-af) <Ly ae-ap. revi,
aczd k=1 aczd aczd

where we have used Cauchy-Schwarz’s inequality in (4), and the inequality satisfied
for any lower Riesz bound c of the Riesz basis {¢x(- — @)} yeze -1, for V2, that

: 2 2
is, Y gzt Lo |di(0)|” < [I£]]"-

Thus, the convergence in V(% in the L?(R¥)-sense implies pointwise convergence
which is uniform on R¢.

The product space
L2[0,1)!:={F = (F,F,....F,)" : e L*[0,1)", k=1,2,....r}

with its usual inner product

,
(F,H) (0 1y Z Fie, Hi) 210,10 = 0 l)dH*(W)F(W)dW
becomes a Hilbert space. Similarly, we introduce the product Banach space L0, 1)4.
The system {e’z”"aTwek}aezd‘ k=12, where e; denotes the vector of R” with
all the components null except the k-th component which is equal to one, is an
orthonormal basis for L2[0,1)4.
The shift-invariant space V3 is the image of L2|0, 1)¢ by means of the isomor-
phism

T : L2]0, 1)d — V2
{e—2ma wek}aezd k=120 — {(Pk(f—a)}aezd,kzl,z,...,ra
which maps the orthonormal basis {e’Z”i“TWek}aezd o1 for L}[0,1)¢ onto

the Riesz basis {Qx(t — &)} yeza 41, for V2. For each F = (Fy,...,F,)' €
L2[0,1)¢ we have

ToF (1) Z Z<F 6:7271:105T LZ[Ol)d(Pk( a), teRY. (5)

acZd k=

The isomorphism 7 can also be expressed by



8 Fernandez-Morales, Garcia and Pérez-Villalon

f(t) = y‘PF(I) = <F7K1>L%[0,1)f1’ te Rd7

where the kernel transform RY > ¢ — K, € L2[0,1)¢ is defined as K; (x) := Z®(z,x),
and Z® denotes the Zak transform of @, i.e.,

(Z®)(1,w):= Y D(t+a)e 2T,
aczd
Note that (Z®) = (Z¢y,...,Z¢,) " where Z denotes the usual Zak transform.
The following shifting property of Zg will be used later: For F € L2[0,1)? and
a € 74 we have

T [F()e 2] (1) = TpF(t — ), 1R’ (6)

2.1 The convolution systems .Z; on V(%

We consider s convolution systems .Z; f = fxh;, j=1,2,...,s, defined for f € Vq%
where each impulse response h; belongs to one of the following three types:

(a) The impulse response h; is a linear combination of partial derivatives of shifted
delta functionals, i.e.,

(Zif)0):="Y ¢;pDPf(t+d;p), teRe.
|BI<N;

If there is a system of this type, we also assume that ¥, 4 |DP@(r — a)|? is
uniformly bounded on R? for |B| < N; .

(b) The impulse response h; of .Z; belongs to L? (Rd). Thus, for any f € V% we
have

(L)) =7 h)0) = [, SO, —idz, 1< R,
(c) The function h; € L=(R?) whenever Hy, () := ¥ gepa |Pk(x + )| € L2[0,1)¢
forallk=1,2,...,r.

Lemma 1. Ler £ be a convolution system of the type (b) or (¢). Then for each fixed
t € RY the sequence {(Z o)t + &)} e 74 belongs to 2(Z4) for eachk=1,...,r.

Proof. First assume that h € L?(R?); then we have
—omiaTx||2 2
Zd ‘g(pk(t+a)‘2 = H ng(Pk(t‘Fa)e 2 XHLZ[O,])(! = HZX(Pk(fvx)HLz[OJ)d
oEZ oEZ

=[| ¥ (Zoo)(x+a)eX™ L0

acZd
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where, in the last equality, we have used a version of the Poisson summation for-
mula [20, Lemma 2.1]. Notice that @;,h € L?>(R¢) implies, by Cauchy-Schwarz’s
inequality, that gyh = Z¢, € L' (R?). Now,

| Z f‘»"k (x+ )Pt IHLZOI

aczd
~ . T2

=|| Z Pi(x + ) (x + o) ) t’|L2[O,l)d

aczd

~ 1/2 ~ 17212
(X @trar) " (X RataP) L <y,
and aezd [0.1)
where we have used (3) and the fact that ||h||?, (RY) = | Egeza [hCx+ )2 0,1)4-

Finally, assume that Hy, € L%[0,1)¢; since @ € L1 (RY) N L?(R?) we obtain that

Lo, = @eh € L' (RY) N L2(RY). Since ¥gep [ Lo+ )| < [[h]] =g Hop, (1),
using again [20, Lemma 2.1] we get

Y [ Zox+a)| *H Y Z(Pk (x+ o)™t ) rHLz[Ol
aczd acrs
S ||hHLm(Rd>||H(Pk||iz[0al>d

O

Lemma 2. Let & be a convolution system of the type (a), (b) or (¢). Then, for each
fe V% we have

(Zf) )= (F,(ZZ D) (t, ) 20,1)¢ where F= Ty f.

Proof. Assume that .Z is a convolution system of type (a). Under our hypothesis
on.?, form=0,1,2...,N we have that

Z Z Fi.e” 2miol " ( )([_ )

acZd k=

Having in mind we have assumed that ¥,z |®" (t — )|? is uniformly bounded
on R?, we obtain that

N

(L1 Zcmf'" (t+dy) = Z Z Z e 2N oM (g, — ar)
m=0 m=0 Z k=1

3
gg["]z

Z (Pk t+d - ) 72niaT->L2[O’l)d

and

Z o —2mia’ Z F, Zf(l)k )>L2[0.1)"'
o k=1

i
-
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Assume now that % is a convolution system of the type (b) or (c). For each € R?,
considering the function y(x) := h(—x), we have

(gf)(t):<faW('7t)>L2(Rd):< Z Z<Fk’e_2nia—r.>(pk('7a)all/('7t)>L2<]Rd)
acZd k=1
r i
= ZdeZ’]<Fk7€ 2mict >L2[0,1)d<(pk7W('7t+a)>L2(Rd>
ac =
= dezl <Fk7e_2ﬂiaT'>L2[071)d°§/ﬂ(pk(t - a) .
aeZf k=

Since the sequence {(-L @) (t + &)} yeza € £2(Z7), Parseval’s equality gives

(Z ) ki’ <Fk7 Z ?(pk(t —a) e—ZniaT->L2[071)d = <Fa (ZLD)(t, ')>L3(0,1) )
=1

aezZd

which ends the proof. a

2.2 Sampling at a lattice of 7°: An expression for the samples

Given a nonsingular matrix M with integer entries, we consider the lattice in Z¢
generated by M, i.e.,
Ay ={Mo:aczi}czi.

Without loss of generality we can assume that detM > 0; otherwise we can consider
M’ = ME where E is some d x d integer matrix satisfying detE = —1. Trivially,
Ay =A};. We denote by M and M~ " the transpose matrices of M and M~ respec-
tively. The following useful generalized orthogonal relationship holds (see [44]):

Yy Ty {detM, ac Ay -
pe V(M) 0 ceZ \AM
where
N M"Y =740 {M x:xe0,1)"} 8)
The set A~ (MT) has detM elements (see [44] or [46]). One of these elements is
zero, say i1 = 0; we denote the rest of elements by i, ..., igerps ordered in any form;

from now on, A (M ") = {ij = 0,ia,...,igesr } C Z9.
Note that the sets, defined as Q; := M~ "}, +M‘T[O, l)d, [=1,2,...,detM, sat-
isfy (see [46, p. 110]):

detM
0NQy=0if 141" and V01< U Q,> =1.

=1
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Thus, fjo,1y¢ F (x)dx = LM [, F (x)dx, for any function F integrable in [0, 1)¢ and
Z4-periodic.

Now assume that we sample the filtered versions .Z; f of f € Vq%, j=12,...s,
at a lattice Ay;. Having in mind Lemma 2, for j = 1,2,...,s and « € Z¢ we obtain
that

(Zif) (Ma) = (F,ZZ;®(Ma, ) = (F,ZZ;B(0,-)e 27 My b0 (9)
where F = 7, f € 12[0,1)4. Denote
gi(x):=2L;P0,x), j=1.2,...,s, (10)

in other words, g}— (x) == (gj,1(x),8j2(x),...,8j(x)), where g x(x) = ZZ; (0, x)
forl <j<sand 1 <k<r.

As a consequence of expression (9) for generalized samples, a challenge prob-
lem is to study the completeness, Bessel, frame, or Riesz basis properties of any

o (x)e—2mioT M x 0 72 d : :
sequence {g;(x)e }aezd, im0, ML [0,1)¢. To this end we introduce

the s x r(det M) matrix of functions

gl (x) g (x+M Tip) - gl (x+ M Tigerns)
g (x) g (x+M Tip) - g) (x+ M Tigerm) an

g (x) g/ (x+M Tip) - gl (x+ M Tigerns)
and its related constants

Ag := essinf Apin[G* (x)G(x)], Bg = esssup Amax[G*(x)G(x)],
x€[0,1)4 x€[0,1)4

where G*(x) denotes the transpose conjugate of the matrix G(x), and Ay, (re-
spectively Amax) the smallest (respectively the largest) eigenvalue of the positive
semidefinite matrix G*(x)G(x). Observe that 0 < Ag < Bg < oo. Note that in the
definition of the matrix G(x) we are considering the Z“-periodic extension of the
involved functions g;, j = 1,2,...,s. Regardless the functions g; in L2[0,1)?,
j=1,2,...,s, are given by (10), the following result holds:

Lemma 3. Let g; be in L2[0,1)? for j =1,2,...,s and let G(x) be its associated
matrix as in (11). Then,
—2m‘aTMTx}

(a) The sequence {g;(x)e wezd. j—12.. s i acomplete system for L2[0,1)¢

if and only if the rank of the matrix G(x) is r(detM) a.e. in [0,1)4.

(b) The sequence {g; (x)e_zm"‘TMT"} , is a Bessel sequence for L2[0,1)¢

acZd, j=1.2,..,
if and only if g; € L0, 1) (or equivalently Bg < o). In this case, the optimal
Bessel bound is Bg /(detM).
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(c) The sequence {gj(x)e’zmaTMTx}aezd im0, S a frame for L2[0,1) if and
only if 0 < Ag < Bg < oo. In this case, the optimal frame bounds are A /(detM)
and Bg/(detM).

(d) The sequence {gj(x)e wezd j=12...
and only if it is a frame and s = r(detM).

_Z”iO‘TMTx} , is a Riesz basis for L2[0,1)? if
Proof. For any F € L2[0,1)? we have

o.(x) oM T i T T
F(x),gj(x)e—Zma M x>L%[O,1)" :/[0 e ZFk(x)gj.’k(x)GZma Mix gy
) k=1

detM .
Z/QFk(x)gj,k(x)e M dx
=17

—~

detM

x
x

= / oy Z Fk(x+M7Ti1)gj)k(X+M7Til) eQm'aTMTxdx (12)
=1
r detM o
:/ Z Z Fk x+M )gj,k(x—l—M*Til) @2 M x gy
M-T[0,1)d
detM

= Z g] (x+M Ti)F(x+M i) e e2mio M Tx gy
M-T[0,1)d

where we have considered the Z¢-periodic extension of F. Then,

5 omic TMT 2
Z Z ‘ 781( Je2Fe M X>L2[0,1)d =
j=1 EZ‘[
s detM T - T 2
; M~ ip)F M i .
dethg’l Z’ g (x+ in)F(x+ i) L2(M-T[0,1)9)

Denoting F(x) := [F' (x),FT(x+ M~ "i5),--- ,FT(x—&—M_TidetM)]T, the equality

above reads

Yy

J=laeczd

1

—— _omia "M x 2
x),gj(x)e e M) = qent I COF@ o1

. (13)

L2[0,1)?

On the other hand, using that the function g; is Z4-periodic, we obtain that the set
{gj(x+M Ti+M Tiy),gi(x+ M Ti+ M Th), ..., gi(x+ M Tii+ M Tigen) }
has the same elements as {g;(x+M " "i1),g;(x+M " Tip),....8;(x + M~ Tigerm) }.
Thus the matrix G(x+ M~ " i;) has the same columns of G(x), possibly in a different
order. Hence, rank G(x) = r(detM) a.e. in [0, 1) if and only if rank G (x) = r(detM)
a.e.in M~ T[0,1)¢. Moreover,

Ag = essinf Anin[G*(x)G(x)], Bg = esssup Amax[G'(x)G(x)]. (14)
xeM-T[0,1)d xeM-T[0,1)?
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To prove (a), assume that there exists a set Q C M~ " [0, l)d with positive measure

such that rank G(x) < r(detM) for ech x € Q. Then, there exists a measurable func-

tion v(x), x € £, such that G(x)v(x) = 0 and ||v(x)||Lz( Mo = 1 in . This
r(detM ’

function can be constructed as in [27, Lemma 2.4]. Define F € L2[0,1)¢ such that
F(x) = v(x) if x € 2, and F(x) = 0 if x € M~T[0,1)? \ Q. Hence, from (13) we
obtain that the system is not complete. Conversely, if the system is not complete, by
using (13) we obtain a IF(x) different from 0 in a set with positive measure such that
G(x)F(x) = 0. Thus rank G(x) < r(detM) on a set with positive measure.

To prove (b) notice that

1

_omia M x 2

Z Y |(F(x),g)e ™ M) g o | = GEF )00,

j=laezd (15)
! F* (1) G* (x) G(x)F (x)dx.

- detM Jm-T(0,1)d
If Bg < o then, for each F, we have

1
detM Jm-T0,1)4

F ()G (WP < 28 IR v

Bg 2
= deut ¥ 2200,

(16)

. — e val .
from which the sequence {g;(x)e 2% M x} is a Bessel sequence

a€zd, j=12,..s
and its optimal Bessel bound is less than or equal to B¢ /(detM).
Let K < Bg; there exists a set Qg C M~"[0,1)? with positive measure such that

Amax,cq, [GT ()G (x)] 2 K. Let F € L2[0,1)¢ such that its associated vector function

Fis0if x € M~T[0,1)¢\ Qk and F is an eigenvector of norm 1 associated with the
largest eigenvalue of G*(x)G(x) if x € Qg. Using (15), we obtain

Z Y K ‘ (x),g;(x)e _2maTMTx>L%[071)d

aczd

K 2
> WHFHLg[OJ)J

Therefore if Bg = oo the sequence {g;(x)e 27 M x} is not a Bessel

a€Zd, j=12,...s
sequence, and the optimal Bessel bound is Bg /(detM).

To prove (c) assume first that 0 < Ag < Bg < o. By using part (b), the sequence

—— i TayT
{gj(x)e2me M X}aEZd,j:I,Z,...,s
(15) and the Rayleigh-Ritz theorem (see [25, p. 176]), for each F € L2[0,1)¢
obtain

is a Bessel sequence in L2[0, 1)¢. Moreover, using

—Zm'aTMTx 2 Ag
0| = Gz 112y a0

,g]

(17)
Ag

detM ” ”L%[O,l)d
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— T gl . . .
Hence the sequence {g;(x)e 2" M} j—1....., is a frame with optimal lower

bound larger that or equal to Ag /(detM).

o TMT .
—2mia M x}aezd =12, 18 a frame for L2[0,1)¢ we know

Conversely if {g;(x)e
by part (b) that Bg < oo. In order to prove that Ag > 0, consider any constant
K > Ag. Then there exists a set Qx C M~ '[0,1)? with positive measure such
that Amin,, [G*(x)G(x)] < K. Let F € L2[0,1)¢ such that its associated F(x) is
0 if x € M~T[0,1)?\ Qk and F(x) is an eigenvector of norm 1 associated with
the smallest eigenvalue of G*(x)G(x) if x € Q. Since F is bounded, we have that
G(x)F(x) € L2(M~T[0,1)4). From (15) we get

s
Y X
J=laeczd

K

a2 M 2 2
(F(x),gj(x)e zjony| < detM||F||Lf(de(M)(M’T[°*1)d)

(18)
K 2

= mllFlng[oJ)d :
Denoting by A the optimal lower frame bound of {Me’z’"“w’ T"} 4eZd, j=12,..5"
we have obtained that K /(detM) > A for each K > Ag; thus Ag/(detM) > A and
consequently, Ag > 0. Moreover, under the hypotheses of part (c) we deduce that
Ag/(detM) and Bg/(detM) are the optimal frame bounds.
The proof of (d) is based in the following result ([11, Theorem 6.1.1]): A frame is a
Riesz basis if and only if it has a biorthogonal sequence. Assume that the sequence
{mefzmaTMTx}aEZd 1y

,J=12,..s

thjatgeza, j=12,...,¢ its biorthogonal sequence. Using (12) we get

is a Riesz basis for L2[0,1)¢ being the sequence

detM T
/AH[O . Y g (x4 M iphy o(x+ M i) 2 M T gy
=1

—— _omioa M.
= <hj',0(')’gj(x)e amic M )= 6j,j’5w0~
Therefore,

detM
Y &) (M Tihy (e + M i) 274X = (detM)§; ; ace. inMT[0,1)7.
=1

Thus the matrix G(x) has a right inverse a.e. in M~ [0,1)¢ and, in particular,
s < r(detM). On the other hand, Ag > 0 implies that det[G*(x)G(x)] > 0, a.e. in
M~T[0,1), and there exists the matrix [G*(x)G(x)]~!G*(x) a.e. in M~ "[0,1)%.
This matrix is a left inverse of the matrix G(x) which implies s > r(detM). Thus,
we obtain that r(detM) = s.

Conversely, assume that {me’zmo‘TMTx}aezd, j—12....s is @ frame for L2[0,1)¢
and r(detM) = s. In this case G(x) is a square matrix and det[G(x)*(x)G(x)(x)] > 0
a.e.in M~ [0, 1) implies that detG(x) # 0 a.e. in M~ [0, 1)¢. Having in mind the
structure of G(x) its inverse must be the r(detM) X s matrix
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¢ (x) . CS(X)T
c(x+M ™ "ip) ... es(x+M i)
G_I(X): . . )
- =
ci(x+M™ Vigerm) - (XM Vigerm)

where, for each j =1,2,...,s, the function ¢; € L% [0, l)d.
It is easy to verify that the sequence {(detM)cj(x)e_zmo‘TMTx }

—2mia ' M x }

aezd, j=12,..5 13

a biorthogonal sequence of { gj(x)e wezd j=12... , and therefore, it is a

Riesz basis for L2[0,1)“. O

3 Generalized regular sampling in qub

In this section we prove that expression (9) allows us to obtain F = .7, ' from
the generalized samples {.Z; f(M@)} yeza. ;—1 5. as aconsequence, applying the
isomorphism Jg we recover the function f in V3.

Assume that the functions g; given in (10) belong to € L°[0,1)¢ for j =
1,2,...,s; thus, g;-r (x)F(x) € L?[0,1)?. Having in mind (7) and the expression (9)
for the generalized samples, we have that

...... .8

(detM) Y. (Zf) (Mar)e 2o M

=/

— Z (ngf)(a)e—Zﬂ:iaTx Z e—ZﬂIaTM’Tp

aezd peN (MT)

— Z Z .i”f 7277:10& (x+M~Tp)

peN (M) aezd

_ Z Z 2() —2m‘aTMT.> 20,10 o 2mia! (x+M~ T p)
= 18] 12[0,1)d
peN (M) aezd '

_ o—2mia My )e—zmoﬁ(wM*T p)
/[ oy Z )8k (y y

pe T aezd

= Z ZFk (x+M~"p)gjx(x+M " "p)
pe v MT)k=1

= ) g;!—(x+M_Tp) F(x+M~p).
peN (MT)

Defining F(x) := [F" (x),F" (x+M~"i2),...,F' (x+ M~ Tigeenr)] T, the above equal-
ity allows us to writte, in matrix form, that G(x) F(x) equals to
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(detM)[ Y (Af)Ma)e e M Y (L f) (Mor)e M

acZd oaezd

In order to recover the function F = 9@_ ! f, assume the existence of an r X s matrix
a(x) := [a;(x),...,as(x)], with entries in L*[0,1)¢, such that

[al(x)v s 7as(x)] G(X) = [Hﬁ@(dethl)rXr] a.e.in [Oa 1)d'

If we left multiply G(x)F(x) by a(x), we get
= (detM) zs: Z (L) (Ma)aj(x)e 2 M xin 20, 1) (19)
j=laezd
Finally, the isomorphism Jg gives
f0) = @)Y ¥ (Zf)(Ma)(Toa)i—Ma), 1R,

J=laeczd

where we have used the shifting property (6) and that the space V(% is aRKHS. Much
more can be said about the above sampling result. In fact, the following theorem
holds:

Theorem 2. Assume that the functions g; given in (10) belong to L0, 1)? for each
j=1,2,....s. Let G(x) be the associated matrix defined in [0,1)¢ as in (11). The
following statements are equivalents:

(a) Ag > 0.
(b) There exists an r x s matrix a(x) := [a; (x),...,a4(x)] with columns a; € L0, 1)
satisfying
[a1(x),...,a,(x)]G(x) = L, Odetm—1yrxr] @ in [0, 1)4. (20)

(c) There exists a frame for V3 having the form {S;a(- —Ma)}yeza j_yn.. s Such
that for any f € V¢2,

S
(detM) Z Z (ZLif)(Ma)S;a(-—Ma) in L*(RY).  (21)
j=laezd
(d) There exists a frame {Sj ()} geza j—12, s for V2 such that for any f € V3

f = (detM) ZS: Y (L Ma)S;e in L2(RY). (22)

J=laczd

Proof. First we prove that (a) implies (b). As the determinant of the semiposi-
tive definite matrix G*(x)G(x) is equal to the product of its eigenvalues, condi-
tion (a) implies that essinf s det{G*(x)G(x)] > 0. Hence, there exists the left
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pseudo-inverse matrix G'(x) := [G*(x)(G(x)}’lG*(x), a.e.in [0,1)4, and it satisfies
G'(x)G(x) =T r(detm)- The first r rows of G'(x) form an r x s matrix [a; (x),...,a,(x)]
which satisfies (20). Moreover, the functions a;(x), j = 1,2,...,s, are essentially
bounded since the condition essinf, (g |4 det[(G*( )G(x)] >0 holds.

Next, we prove that (b) implies (c). For j =1,2,...,s, let aj(x) be a function in
L°[0,1)%, and satisfying [a; (x),. . .,a,(x)]G(x) = [I,, Ogetm—1)rxr)- In (19) we have
proved that, for each F = 7, (f) € L2[0,1)?, we have the expansion

F(x):(detM)i Y (Zf) (Ma)aj(x)e 2 e M5 in 120, 1),

J=laczd

from which

(detM) Z Z (ZLif)(Ma)S;a(-—Ma) in L*(RY),
j=laezd

where S, := Jpa; for j=1,2,...,s. Since we have assumed that g; € L[0, 1)4

for each j =1,2,...,s, the sequence {gj(x)e‘Z”i“TMT"} is a Bessel

a€Zd, j=12,..s

sequence in L2[0, 1)¢ by using part (b) in Lemma 3. The same argument proves that
(y)e—2mioT M x

the sequence {(detM)a;(x)e Yaezd, im12..s

L2[0,1)%. These two Bessel sequences satisfy for each F € L2[0,1)¢

is also a Bessel sequence in

F(x) = (det) Y Y (F,gje 27 M Ya (x)e 20 M x in 12[0,1)7

J=laeczd

Hence, they are a pair of dual frames for L% [0, 1)d (see [11, Lemma 5.6.2]). Since

¢ is an isomorphism, the sequence {Sm(t fMoc)}an[,7 j—12,.5182 frame for

V(%; hence (b) implies (c). Statement (c) implies (d) trivially.
Assume condition (d), applying the isomorphism 7 "'to the expansion (22) we get

N
Fo) = (detM) Yo Y (F.gie ™™ M )7, (Sj0) () inL20.1), 23)
J=laeczd
where {951&0:}0,624 i1, is a frame for L2[0,1)¢. By using Lemma 3, the
sequence {Me’2”i“TMTx}aezd7 j—12..s 18 a Bessel sequence; expansion (23)
implies that is also a frame (see [11, Lemma 5.6.2]). Hence, by using again Lemma
3, condition (a) holds. O

In the case that the functions g;, j = 1,2,...,s, are continuous on R? (for in-
stance, if the sequences of generalized samples {.Zj ()} 4 belongs to ¢! (Z?)
for 1 < j<sand 1 <k <r), the following corollary holds:

oeZ

Corollary 1. Assume that the functions g;, j = 1,2,...,s, in (10) are continuous on
R?. Then, the following assertions are equivalents:
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(a) rank G(x) = r(detM) for all x € RY.
(b) There exists a frame {Sja(- —rn)}nez, j=12,..s for Vq% satisfying the sampling
formula (21).

Proof. Whenever the functions g;, j = 1,2,...,s, are continuous on R?, condi-
tion Ag > 0 is equivalent to that det [G*(x)G(x)] # 0 for all x € R?. Indeed, if
detG*(x)G(x) > 0 then the r first rows of the matrix G'(x) := [G* (x)G(x)] "' G*(x),
give an r X s matrix a(x) = [aj(x),a2(x),...,a5(x)] satisfying statement (b) in The-
orem 2, and therefore Ag > 0.

The reciprocal follows from the fact that det [G*(x)G(x)] > de[M ) for all x €
R?. Since det [G*(x)G(x)] # 0 is equivalent to rank G(x) r(detM) for all x € R,

the result is a consequence of Theorem 2. a

The reconstruction functions §; ,, j=1,2,...,s, are determined from the Fourier
coefficients of the components of a;(x) := [a ;(x),a2,j(x),....,ar;] ", j=1,2,...,s
More specifically, if @ ;(e) := [jo 1)a ax, j(x)e2mie xdx we get

Siat) =Y, Y aj(a)g(t—a), teR? (24)
d k=1

acz

The Fourier transform in (24) gives .’S?j’a(x) =Y ak,j(xX) @ (x).

Assume that the r x s matrix a(x) = [a;(x),a2(x),...,a,(x)] satisfies (20). We
k,

consider the periodic extension of ay j, i.e., ar j(x + &) = a ;(x), & € Z%. For all
x €10,1)%, the r(detM) x s matrix

aj(x) ay(x) e ag(x)
AT() = a1(x+1:‘4_Tiz) az(x+1:"1_Tiz) as(X—H:VI_Tiz) @)

a(x+ M Tigenr) a2 (x+ M Tigerns) - ag(x+ M Vigerns)

is a left inverse matrix of G(x), i.e.., AT (x)G(x) = L (gens)-

Provided that condition (20) is satisfied, it can be easily checked that all matrices
a(x) with entries in L[0,1)¢, and satisfying (20) correspond to the first 7 rows of
the matrices of the form

AT(x) =G (x) + U(x) [I, - G(x)G' (x)], (26)

where U(x) is any r(detM) x s matrix with entries in L=[0,1)¢, and G' denotes the
left pseudo-inverse G'(x) := [G*(x)G (x)] "' G*(x).

Notice that if s = r(detM) there exists a unique matrix a(x), given by the first r
rows of G~!(x); if s > r(detM) there are many solutions according to (26).

T agT . .
—2mie M- ,» associated with

Moreover, the sequence {(detM)a;(-)e wezd j=12....
T

the r x s matrix [af (x),a}(x), ... ,al (x)] obtained from the r first rows of G¥ (x), gives
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precisely the canonical dual frame of the frame {Zj(-)e’zni“TMT'} aeZd. =12,

72m'thMT-}

Indeed, the frame operator . associated to {gj(-)e wezd j12..5 19
given by o
| N _
SF(x) = EyY; [gl (x),82(x),... ,gs(x)]G(x)IF(x) , Fe Lz [0, 1)‘17

from which one gets

7 [(detd)al()e 2 M (1) = gi(x)e 2@ MY j=12 . sandaeZC.

Something more can be said in the case where s = r(detM):

Theorem 3. Assume that the functions g;, j = 1,2,...,s, given in (10) belong to
L2[0,1)? and s = r(detM). The following statements are equivalent:

(a) Ag > 0.
(b) There exists a Riesz basis {Sja}tyezd, j—12..
the expansion

f=(detM) Y i(zj f)Ma)S;q, 27

aczd j=1
holds in L*(R?).

In case the equivalent conditions are satisfied, necessarily S; q(t) = Sja(t —Ma),
t eRY where Sia=Js(a)), j=1,2,...,5, and the r x s matrixa:= [aj,as,...,a
is formed with the r first rows of the inverse matrix G~'. The sampling functions S .
j=1,2,...,s, satisfy the interpolation property (ZLyS;a)(Ma) = &; 04,0, where
j,i'=12,...,sand o € 7.

Proof. Assume that Ag > 0; since G(x) is a square matrix, this implies that
essinf, g |detG(x)| > 0. Therefore, the r first rows of G~!(x) gives a solution
of the equation [a;(x),...,a,(x)|G(x) = [I;, O(gerpr—1)rx,] With a; € LT[0, 1)? for
j=1,2,... 5. According to Theorem 2, the sequence

{Sj.,a}aezd, =12, {Sj,a(t—Ma)}and, =12,

where S; , = Io(a j), satisfies the sampling formula (27). Moreover, the sequence

_omio ' M _
{(detM)aj(x)e Fie M x}aezd, =128 = {<7<1> ISLa('_MO‘)}and, j=1,2,...s

is a frame for L2[0,1)¢. Since r(detM) = s, according to Lemma 3 it is a Riesz basis
V(% and condition (b) is proved.

Conversely, assume now that {Sj,a}aezd, j=12,...s 1s a Riesz basis for Vq% satis-
fying (27). From the uniqueness of the coefficients in a Riesz basis, we get that the
interpolatory condition (.£S; «)(Ma') = §; 04 o holds for j,j/ =1,2,...,s and
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a,o € 7. Since yq_;] is an isomorphism, {:74;151'70:}%2[1‘ j=12...s 1S a Riesz ba-
. . .= T T
sis for L2[0,1)?. Expanding the function g (x)e2mio’ M x

basis of {74 'Sjataezt, j-1 2., denoted by {Gja}geza, j_1....s We Obtain

with respect to the dual

— _ g T T _ i/T T, _
gj,(x)e 2mio ' M Z Z g] 2mic ' M ,y(p 1Sj,oc>L2[071)f1Gj,O!(x)

aczd j=

= Z .,%j,SLa MO! )Gjﬂ(x) = Gjlya/(.x).

aczd

Therefore, the sequence {g;(x)e 2@ M'x} wezd j—12,. s i the dual basis of the

Riesz basis {9¢flSj,a}a€Z,17 j—12,.s- In particular it is a Rlesz basis for L2[0,1),
which implies, according to Lemma 3, that Ag > 0; this proves (a). Moreover, the
sequence { T 'Sj a}qeza j=12,..s is necessarily the unique dual basis of the Riesz
basis {g;(x)e e 2mio M xy aczd, j=12,..s Lherefore, this proves the uniqueness of the

Riesz basis {Sja}qezd, =12, . for ch satisfying (27). 0

3.1 Reconstruction functions with prescribed properties

The generalized sampling formula in the shift-invariant space V3

f(t):(detM)i Y (L) Ma)Sja(t—Ma), teR, (28)

J=laezd

can be read as a filter bank. Indeed, introducing the expression for the sampling

functions S;a(t) = Ygezd Yi—1 arj(B)ou(t —B) .t € R9, the change ¥ = 8 + M«
in the summation’s index gives

= (detM) zr" Y {i % (ZLif)(Ma)ay j(y— Moc)}(pk(t—y), reRY.

=1yezd

Thus, the relevant data

)= Y Y (L) (M), (y—Ma), vezd, 1<k<r,

J=laezd

for the recovery of the signal f € V(% is obtained by means of r filter banks whose
impulse responses involve the Fourier coefficients of the entries of the r X s matrix
a:= [al ,a2,. .. ,as] in (20), and the input is given by the sampling data.

Notice that reconstruction functions S , with compact support in the above sam-
pling formula implies low computational complexities and avoids truncation errors.
This occurs whenever the generators ¢ have compact support and the sum in (24) is
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finite. These sums are finite if and only if the entries of the r X s matrix a are trigono-
metric polynomials. In this case, all the filter banks involved in the reconstruction
process are FIR (finite impulse response) filters.

Before to give a necessary and sufficient condition assuring compactly sup-
ported reconstruction functions S; , in formula (28), we introduce first some com-
plex notation, more convenient for this study. We denote z% := z]"252 .. .zg" for

z=(z1,...,24) €C4 a = (a,...,09) € Z¢, and the d-torus by T := {z € C* :

|zi| =|z2]=...=lzq| =1}. For 1 < j < sand 1 <k <r we define
gix(z) =Y Zig(wz ¥, g (2):=(g1(2),g2(2),....8,,(2),
uezd

and the s x r(detM) matrix

T T
G(z):= [gJT (zie®™min .z e ”)} =12, 29)
k=1.2,..r; I=1.2,.. detM
where mj,...,my denote the columns of the matrix M~!. Note that for the values
x=(x1,...,%) € [0,1)? and z = (e2*™1 ... e**¥) € T¢ we have G(x) = G(z).

Provided that the functions g; are continuous on R, Corollary 1 can be reformu-
lated as follows: There exists an r x s matrix a(z) = [a;(z),...,a,(z)] with entries
essentially bounded in the torus T¢ and satisfying

a(2)G(z) = [I;,O(gerpr—1)rx,]  forallz € T (30)
if and only if
rank G(z) = r(detM) forallze T¢. 31
Denoting the columns of the matrix a(z) as a}r(z) = (a1,j(2),...,a(2)), j =
1,2,...,s, the corresponding reconstruction functions S; , in sampling formula (28)
are .
Sia) =Y, Yar(@)et—a), reR, (32)
aezd k=1

where 3y ;(at), o0 € Z¢, are the Laurent coefficients of the functions a ;(z), that is,

a(z)= Y aj(o)z“. (33)

aczd

Note that, in order to obtain compactly supported reconstruction functions S; 5
in (28) we need an r X s matrix a(z) whose entries are Laurent polynomials, i.e., the
sum in (33) is finite. The following result, which proof can be found in [16] under
minor changes, holds:

Theorem 4. Assume that the generators @y and the functions @y, 1 <k <r and
1 < j <'s, have compact support. Then, there exists an r(detM) x s matrix a(z)
whose entries are Laurent polynomials and satisfying (30) if and only if
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rank G(z) = r(detM) forall z € (C\ {0})4.

The reconstruction functions Sja, j=1,2,...,s, obtained from such matrix a(z)
through Eq. (32) have compact support.

From one of these r x s matrices, say a(z) = [a1(z),...,35(z)], we can get all
of them. Indeed, it is easy to check that they are given by the r first rows of the
r(detM) x s matrices of the form

A(z) = A(z) +U(z) I, - G(z)A(2)] , (34)

where - .
~ s omimTi omimTi
A(z) := [aj(me T zgeT M ll)}k:l,Z,...,r; 1=12,....detM >
j=12....s
and U(z) is any r(detM) x s matrix with Laurent polynomial entries. Remember
that my,...,my denote the columns of the sampling matrix M, and iy,...,igep the
elements of 4 (M ") defined in (8).

Next we study the existence of reconstruction functions S;,, j =1,2,...,s, in
(28) having exponential decay; it means that there exist constants C > 0 and g €
(0,1) such that |S; 5 (t)| < Cg!"l for each t € R?. In so doing, we introduce the algebra
7 (T?) of all holomorphic functions in a neighborhood of the d-torus T¢. Note that
the elements in .7°(T¢) are characterized as admitting a Laurent series where the
sequence of coefficients decays exponentially fast [26].

The following theorem, which proof can be found in [16] under minor changes,
holds:

Theorem 5. Assume that the generators @y and the functions L@y, j=1,2,...,s
and k = 1,2,...,r, have exponential decay. Then, there exists an r X s matrix
a(z) = [a1(2),...,a5(z)] with entries in 7 (T¢) and satisfying (30) if and only if
rank G(z) = r(detM) for all z € T.

In this case, all of such matrices a(z) are given as the first r rows of a r(detM) x s
matrix A(z) of the form

A(z) = G'(z) +U(2) [I, - G(2)G' (z)], (35)

where U(z) denotes any r(detM) x s matrix with entries in the algebra 7 (T“) and
Gi(z):= [G*(2)G(z)] ! G*(z). The corresponding reconstruction functions S; 5, j =
1,2,...,s, given by (32) have exponential decay.

3.2 Some illustrative examples

We include here some examples illustrating Theorem 4, a particular case of Theo-
rem 2, by taking B-splines as generators; they certainly are important for practical
purposes [42].
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3.2.1 Thecased=1,r=1,M=2and s =3

Let N3(t) := Xjo,1) * X[o,1) * X[o,1)(¢) be the quadratic B-spline, where ¥ ;) denotes
the characteristic function of the interval [0,1), and let 2, j=1,2,3, be the sys-
tems:

2 4

Af)=f(); Lf()=f0+ g) and L3/ (1) :f(f‘i‘g)-
Since the functions .Z;N3, j = 1,2,3, have compact support, then the entries of
the 3 x 2 matrix G(z) in (29) are Laurent polynomials and we can try to search a
vector a(z) := [a;(z),a2(z),a3(z)] satisfying (30) with Laurent polynomials entries
also. This implies reconstruction functions S; ., j = 1,2,3, with compact support.
Proceeding as in [14] we obtain that any function f € V133 can be recovered through
the sampling formula:

3
fOy=Y Y Zifn)Sjalt—2n), t€R,

nez j=1

where the reconstruction functions, according to (32), are given by

S17a(t) = i [N3([+3) —3N3(t+2) —3N3(l+ 1)-‘r-1\/3(t)]7

16
Spalt) = % [27N3(1 4 1) — N3 (1)),
S37a(t):%[—9N3(t+1)+27N3(t)], {ER.

3.2.2 Thecased=1,r=2,M=1and s =3

Consider the Hermite cubic splines defined as

(t+1)2(1-2¢), t€[-1,0] (t+1)%, te[-1,0]
o1(t) =< (1—1)2(1421), t€[0,1] and @ (t)=< (1—1)%, t€]0,1]
0, [t] > 1 0, lt] > 1

They are stable generators for the space Vq%l ., (see Ref. [12]). Consider the sampling
period M = 1 and the systems .%;, j = 1,2,3, defined by

141/3 1 2
Lift) = /t flwdu, Lf(t):=Af(t+ §)’ Lif(t) = .iﬁf(wrg) )
Since the functions 2@, j =1,2,3 and k = 1,2, have compact support, then the
entries of the 3 x 2 matrix G(z) in (29) are Laurent polynomials and we can try
to search an 2 x 3 matrix a(z) := [a;(z),a2(2),a3(z)] satisfying (30) with Laurent
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polynomials entries also. This leads to reconstruction functions S; 5, j =1,2,3, with
compact support. Proceeding as in [17] we obtain in Vq%] ¢, the following sampling

formula: ;
= Z Zogjf(n)sj,a(t_n)a teR,
nez j=1

where the sampling functions, according to (32), are

$14(0) 1= L9+ 10— 1)+ ()~ gt 1),
$20(1) = o 01(0) - jjw(r—l) 2o+ 2l -1),

S3a(t) := 111<p()+ (P1(t—1)+(p2()—§(p2(t—l), teR.

3.3 L*-approximation properties

Consider an r x s matrix a(x) := [a; (x),a(x), ..., a,(x)] with entries ax ; € L[0,1)¢,
1 <k<r, 1< j<s, and satisfying (20). Let S; 2 be the associated reconstruction
functions, j = 1,2,...,s, given in Theorem 2. The aim of this section is to show
that if the set of generators & satisfies the Strang-Fix conditions of order ¢, then the
scaled version of the sampling operator

ZS: Y (Zif)(Ma)S;a(t—Ma), teR?,

j=laeczd

gives L2- approximation order ¢ for any smooth function f (in a Sobolev space).
In do doing, we take advantage of the good approximation properties of the scaled
space O'I/hV%, where for 1 > 0 we are using the notation: oy, f(¢) := f(ht), t € R%.

The set of generators @ = {¢y};_, is said to satisfy the Strang-Fix conditions
of order ¢ if there exist r finitely supported sequences by : Z¢ — C such that the
function @(t) = Yj_ | ¥ peza bi(@) @i (t — o) satisfies the Strang-Fix conditions of
order /, i.e.,

$(0)#0, DPG(a)=0, |B] <t aczZ\{0}. (36)

We denote by Wy (R?) := {f : [|[DYf||» < e, |y| < ¢} the usual Sobolev space, and
by [flez = Xg=¢ ||DP f|2 the corresponding seminorm of a function f € Wy (R?).
When 2¢ > d we identify f € Wy (R?) with its continuous choice (see [1]).

It is well-known that if & satisfies the Strang-Fix conditions of order ¢, and
the generators ¢ satisfy a suitable decay condition, the space V% provides L?-
approximation order ¢ for any function f regular enough. For instance, Lei et al.
proved in [32, Theorem 5.2] the following result: If a set @ = {¢};_, of stable
generators satisfies the Strang-Fix conditions of order ¢, and the decay condition
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@(t) = O([1 +¢]]74~*~¢) for each k = 1,2,....r and some & > 0, then, for any
fe WZE (R9), there exists a function f;, € o, /hV(% such that

1f = full2 SC|fleah’, (37)

where the constant C does not depend on /4 and f.

In this section we assume that all the systems .Z;, j =1,2,...,s, are of type (a),
ie., Zf = fxh;, belonging the impulse response h; to the Hilbert space -#*(R?).
Recall that a Lebesgue measurable function h : RY — C belongs to the Hilbert
space .Z2(RY) if

lhjy = (/[o,l)d( y |h(t—a)|>2dt> C e

aezd

Notice that #?(R?) C L'(RY) NL*(RY). For f € L*>(R¢) and h € .£*(R?), the fol-
lowing inequality holds: ||{h f(0t)} yezal|, < [hl2 [ f]l2 (see [26, Theorem 3.1]);
thus the sequence of generalized samples {(Zf)(M@)}qeczd ;-1 belongs to
?2(Z%) for any f € L>(R?).

First we note that the operator I, : (L*(R?), | -[|2) — (V.|| [|2) given by

(L) (t) = (detM) i Y (L) Ma)S;a(t—Ma), teR?,

j=laeczd

is a well-defined bounded operator onto V%. Besides, Iqf = f forall f € Vq%.

Under appropriate hypotheses we prove that the scaled operator I := o, /nla0n
approximates, in the L?-norm sense, any function f in the Sobolev space Wf (R9) as
h — 0. Specifically we have:

Theorem 6. Assume 2 > d and that all the systems £ satisfy £;f = f *h; with
hj€ L*(RY), j=1,...,s. Then,

If =Ll < L+ IGI) inf |lf—gll2, feWs(RY),

8€0y 4V, q:>

where ||L,|| denotes the norm of the sampling operator I,. If the set of gener-
ators ® = {@};,_, satisfies the Strang-Fix conditions of order { and, for each
k=1,2,...,r, the decay condition @(t) = O([1 + [t|]~4~*"%) for some & > 0, then

If -1t for all f € Wy (R?),

where the constant C does not depend on h and f.

Proof. Using that I['g = g for each g € 6y/,V3 then, for each f € L*(R?) and
g€ ol/,,v(%, Lebesgue’s Lemma [13, p. 30] gives

If=Lfl <Ilf—gle+ L' fll < (1+ L)) inf _||If —gll2,

g€,V
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where we have used that |I;'|| = ||| for & > 0. Now, for each f € Wy (R?) and
h > 0, there exists a function f;, € 0} /th% such that (37) holds, from which we obtain
the desired result. O

More results on approximation by means of generalized sampling formulas can
be found in Refs. [15, 18].
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