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Abstract In order to avoid most of the problems associated with classical Shannon’s
sampling theory, nowadays signals are assumed to belong to some shift-invariant
subspace. In this work we consider a general shift-invariant space V 2

Φ
of L2(Rd) with

a set Φ of r stable generators. Besides, in many common situations the available data
of a signal are samples of some filtered versions of the signal itself taken at a sub-
lattice of Zd . This leads to the problem of generalized sampling in shift-invariant
spaces. Assuming that the `2-norm of the generalized samples of any f ∈ V 2

Φ
is

stable with respect to the L2(Rd)-norm of the signal f , we derive frame expansions
in the shift-invariant subspace allowing the recovery of the signals in V 2

Φ
from the

available data. The mathematical technique used here mimics the Fourier duality
technique which works for classical Paley-Wiener spaces.

1 By way of introduction

The classical Whittaker-Shannon-Kotel’nikov sampling theorem (WSK sampling
theorem) [23, 50] states that any function f band-limited to [−1/2,1/2], that is,
f (t) =

∫ 1/2
−1/2 f̂ (w)e2πitwdw for each t ∈ R, may be reconstructed from the sequence

of samples { f (n)}n∈Z as

f (t) =
∞

∑
n=−∞

f (n)
sin π(t−n)

π(t−n)
, t ∈ R .
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Thus, the Paley-Wiener space PW1/2 of band-limited functions to [−1/2,1/2] is
generated by the integer shifts of the cardinal sine function, sinc(t) := sin πt/πt.
A simple proof of this result is given by using the Fourier duality technique which
uses that the Fourier transform

F : PW1/2 −→ L2[−1/2,1/2]
f 7−→ f̂

is an unitary operator from the Paley-Wiener space PW1/2 of band-limited functions
to [−1/2,1/2] onto L2[−1/2,1/2]. Thus, the Fourier series f̂ = ∑

∞
n=−∞ f (n)e−2πinw

of f̂ in L2[−1/2,1/2], by applying the inverse Fourier transform F−1, gives

f (t) =
∞

∑
n=−∞

f (n)F−1[e−2πinw
χ[−π,π](w)

]
(t) =

∞

∑
n=−∞

f (n)
sin π(t−n)

π(t−n)
in L2(R) .

The pointwise convergence comes from the fact that PW1/2 is a reproducing kernel
Hilbert space (written shortly as RKHS) where convergence in norm implies point-
wise convergence (which is, in this case, uniform on R); this comes out from the
inequality: | f (t)| ≤ ‖ f‖ for each t ∈ R and f ∈ PW1/2 (for the RKHS’s theory and
applications, see, for instance, Ref. [36]).

The WSK theorem has its d-dimensional counterpart. Any function f band-
limited to the d-dimensional cube [−1/2,1/2]d , i.e., f (t)=

∫
[−1/2,1/2]d f̂ (x)e2πix>tdx

for each t ∈ Rd (here we are using the notation x>t := x1t1 + · · ·+ xdtd identifying
elements in Rd with column vectors), may be reconstructed from the sequence of
samples { f (α)}

α∈Zd as

f (t) = ∑
α∈Zd

f (α)
sin π(t1−α1)

π(t1−α1)
· · · sin π(td−αd)

π(td−αd)
, t = (t1, . . . , td) ∈ Rd .

Although Shannon’s sampling theory has had an enormous impact, it has a num-
ber of problems, as pointed out by Unser in Refs. [42, 43]: It relies on the use of
ideal filters; the band-limited hypothesis is in contradiction with the idea of a fi-
nite duration signal; the band-limiting operation generates Gibbs oscillations; and
finally, the sinc function has a very slow decay at infinity which makes compu-
tation in the signal domain very inefficient. Besides, in several dimensions it is
also inefficient to assume that a multidimensional signal is band-limited to a d-
dimensional interval. Moreover, many applied problems impose different a priori
constraints on the type of signals. For this reason, sampling and reconstruction
problems have been investigated in spline spaces, wavelet spaces, and general shift-
invariant spaces; signals are assumed to belong to some shift-invariant space of the
form: V 2

ϕ := spanL2{ϕ(t−α) : α ∈ Zd} where the function ϕ in L2(Rd) is called
the generator of V 2

ϕ . See, for instance, Refs. [2, 3, 4, 6, 7, 10, 43, 45, 47, 48, 49, 51]
and the references therein.

In this new context, the analogous of the WSK sampling theorem in a shift-
invariant space V 2

ϕ was first time proved by Walter in [45]:
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1.1 Walter’s sampling theorem in shift-invariant spaces

Let ϕ ∈ L2(R) be a stable generator for the shift-invariant space V 2
ϕ which means

that the sequence {ϕ(·−n)}n∈Z is a Riesz basis for V 2
ϕ . A Riesz basis in a separable

Hilbert space is the image of an orthonormal basis by means of a bounded invertible
operator. Any Riesz basis {xn}∞

n=1 has a unique biorthogonal (dual) Riesz basis
{yn}∞

n=1, i.e., 〈xn,ym〉H = δn,m, such that the expansions

x =
∞

∑
n=1
〈x,yn〉H xn =

∞

∑
n=1
〈x,xn〉H yn ,

hold for every x∈H (see [11] for more details and proofs). Recall that the sequence
{ϕ(·−n)}n∈Z is a Riesz sequence, i.e., a Riesz basis for V 2

ϕ (see, for instance, [11,
p. 143]) if and only if there exist two positive constants 0 < A≤ B such that

A≤ ∑
k∈Z
|ϕ̂(w+ k)|2 ≤ B , a.e. w ∈ [0,1] .

Thus we have that V 2
ϕ =

{
∑n∈Z an ϕ(·−n) : {an} ∈ `2(Z)

}
⊂ L2(R) .

We assume that the functions in the shift-invariant space V 2
ϕ are continuous on

R. This is equivalent to say that the generator ϕ is continuous on R and the function
∑n∈Z |ϕ(t−n)|2 is uniformly bounded on R (see [40]). Thus, any f ∈V 2

ϕ is defined
on R as the pointwise sum f (t) = ∑n∈Z anϕ(t−n) for each t ∈ R.

On the other hand, the space V 2
ϕ is the image of L2[0,1] by means of the isomor-

phism
Tϕ : L2[0,1] −→ V 2

ϕ

{e−2πinx}n∈Z 7−→ {ϕ(t−n)}n∈Z ,

which maps the orthonormal basis {e−2πinw}n∈Z for L2[0,1] onto the Riesz basis
{ϕ(t−n)}n∈Z for V 2

ϕ . For any F ∈ L2[0,1] we have

Tϕ F(t)= ∑
n∈Z
〈F,e−2πinx〉ϕ(t−n)= 〈F, ∑

n∈Z
ϕ(t−n)e−2πinx〉= 〈F,Kt〉L2[0,1] , t ∈R ,

where, for each t ∈ R, the function Kt ∈ L2[0,1] is given by

Kt(x) = ∑
n∈Z

ϕ(t−n)e−2πinx = ∑
n∈Z

ϕ(t +n)e−2πinx = Zϕ(t,x) .

Here, Zϕ(t,x) := ∑n∈Z ϕ(t +n)e−2πinx denotes the Zak transform of the function ϕ .
See [11, 22] for properties and uses of the Zak transform.

As a consequence, the samples in { f (a + m)}m∈Z of f ∈ V 2
ϕ , where a ∈ [0,1) is

fixed, can be expressed as

f (a+m) = 〈F,Ka+m〉= 〈F,e−2πimxKa〉 , m ∈ Z where F = T −1
ϕ f .
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As a consequence, the stable recovery of f ∈ V 2
ϕ from the sequence of its sam-

ples { f (a + m)}m∈Z reduces to the study of the sequence
{

e−2πimxKa(x)
}

m∈Z in
L2[0,1]. The following theorem is easy to prove, having in mind that the opera-
tor mF : L2[0,1]→ L2[0,1] defined as: mF( f ) = F f is well-defined if and only if
F ∈ L∞[0,1]; in this case, it is bounded and its norm ‖mF‖= ‖F‖∞.

Theorem 1. The sequence of functions
{

e−2πimxKa(x)
}

m∈Z is a Riesz basis for
L2[0,1] if and only if the inequalities 0 < ‖Ka‖0 ≤‖Ka‖∞ < ∞ hold, where ‖Ka‖0 :=
ess infx∈[0,1] |Ka(x)| and ‖Ka‖∞ := esssupx∈[0,1] |Ka(x)|. Moreover, its biorthogonal
Riesz basis is

{
e−2πimx/Ka(x)

}
m∈Z.

In particular, the sequence
{

e−2πimxKa(x)
}

m∈Z is an orthonormal basis in L2[0,1] if
and only if |Ka(x)|= 1 a.e. in [0,1].

Let a be a real number in [0,1) such that 0 < ‖Ka‖0 ≤ ‖Ka‖∞ < ∞; next we prove
Walter’s sampling theorem for V 2

ϕ in [45]. Given f ∈ V 2
ϕ , we expand the function

F = T −1
ϕ f ∈ L2[0,1] with respect to the Riesz basis

{
e−2πinx/Ka(x)

}
n∈Z. Thus we

get

F = ∑
n∈Z
〈F,Ka+n〉

e−2πinx

Ka(x)
= ∑

n∈Z
f (a+n)

e−2πinx

Ka(x)
in L2[0,1] .

Applying the operator Tϕ to the above expansion we obtain

f = ∑
n∈Z

f (a+n)Tϕ(e−2πinx/Ka(x)) = ∑
n∈Z

f (a+n)Sa(·−n) in L2(R) ,

where we have used the shifting property Tϕ(e−2πinxF)(t) = (Tϕ F)(t− n), t ∈ R
and n ∈ Z, satisfied by the isomorphism Tϕ for the particular function Sa :=
Tϕ(1/Ka) ∈ V 2

ϕ . As in the Paley-Wiener case, the shift-invariant space V 2
ϕ is a re-

producing kernel Hilbert space. Indeed, for each t ∈ R, the evaluation functional at
t is bounded:

| f (t)| ≤ ‖F‖‖Kt‖≤ ‖T −1
ϕ ‖‖Kt‖‖ f‖= ‖T −1

ϕ ‖
(

∑
n∈Z
|ϕ(t−n)|2

)1/2
‖ f‖ , f ∈V 2

ϕ .

Therefore, the L2-convergence implies pointwise convergence which here is uniform
on R. The convergence is also absolute due to the unconditional convergence of a
Riesz expansion. Thus, for each f ∈V 2

ϕ we get the sampling formula

f (t) =
∞

∑
n=−∞

f (a+n)Sa(t−n) , t ∈ R .

This mathematical technique, which mimics the Fourier duality technique for Paley-
Wiener spaces [23], has been successfully used in deriving sampling formulas in
other sampling settings [14, 16, 17, 19, 21, 24, 30, 31]. Here, it will be used for
obtaining generalized sampling formulas in L2(Rd) shift-invariant subspaces with
multiple stable generators.
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1.2 Statement of the general problem

Assume that our functions (signals) belong to some shift-invariant space of the form:

V 2
Φ := spanL2(Rd)

{
ϕk(t−α) : k = 1,2, . . . ,r and α ∈ Zd} ,

where the functions in Φ := {ϕ1, . . . ,ϕr} in L2(Rd) are called a set of generators for
V 2

Φ
. Assuming that the sequence {ϕk(t−α)}

α∈Zd , k=1,2...,r is a Riesz basis for V 2
Φ

,
the shift-invariant space V 2

Φ
can be described as

V 2
Φ =

{
∑
n∈Z

r

∑
k=1

dk(α) ϕk(t−α) : dk ∈ `2(Zd),k = 1,2 . . . ,r
}

. (1)

See Refs. [8, 9, 35] for the general theory of shift-invariant spaces and their ap-
plications. These spaces and the scaling functions Φ = {ϕ1, . . . ,ϕr} appear in the
multiwavelet setting. Multiwavelets lead to multiresolution analyses and fast algo-
rithms just as scalar wavelets, but they have some advantages: they can have short
support coupled with high smoothness and high approximation order, and they can
be both symmetric and orthogonal (see, for instance, Ref. [28]). Classical sampling
in multiwavelet subspaces has been studied in Refs. [37, 41].

On the other hand, in many common situations the available data are samples
of some filtered versions f ∗ h j of the signal f itself, where the average function
h j reflects the characteristics of the adquisition device. This leads to generalized
sampling (also called average sampling) in V 2

Φ
(see, among others, Refs. [2, 5, 14,

16, 17, 29, 33, 34, 38, 39, 41]).
Suppose that s convolution systems (linear time-invariant systems or filters in en-

gineering jargon) L j, j = 1,2, . . . ,s, are defined on the shift-invariant subspace V 2
Φ

of L2(Rd). Assume also that the sequence of samples {(L j f )(Mα)}
α∈Zd , j=1,2,...,s

for f in V 2
Φ

is available, where the samples are taken at the sub-lattice MZd of Zd ,
where M denotes a matrix of integer entries with positive determinant. If we sam-
ple any function f ∈ V 2

Φ
on MZd , we are using the sampling rate 1/r(detM) and,

roughly speaking, we will need, for the recovery of f ∈V 2
Φ

, the sequence of gener-
alized samples {(L j f )(Mα)}

α∈Zd , j=1,2,...,s coming from s≥ r(detM) convolution
systems L j.

Assume that the sequences of generalized samples satisfy the following stability
condition: There exist two positive constants 0 < A≤ B such that

A‖ f‖2 ≤
s

∑
j=1

∑
α∈Zd

|L j f (Mα)|2 ≤ B‖ f‖2 for all f ∈V 2
Φ .

In [5] is said that the set of systems {L1,L2, . . . ,Ls} is an M-stable filtering sam-
pler for V 2

Φ
. The aim of this work is to obtain sampling formulas in V 2

Φ
having the

form
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f (t) = (detM)
s

∑
j=1

∑
α∈Zd

(L j f )(Mα)S j(t−Mα) , t ∈ Rd , (2)

such that the sequence of reconstruction functions {S j(·−Mα)}
α∈Zd , j=1,2,...,s is a

frame for the shift-invariant space V 2
Φ

. This will be done in the light of the frame
theory for separable Hilbert spaces, by using a similar mathematical technique as in
the above section.

Recall that a sequence {xn} is a frame for a separable Hilbert space H if there
exist two constants A,B > 0 (frame bounds) such that

A‖x‖2 ≤∑
n
|〈x,xn〉|2 ≤ B‖x‖2 for all x ∈H .

Given a frame {xn} for H the representation property of any vector x ∈H as a
series x = ∑n cnxn is retained, but, unlike the case of Riesz bases, the uniqueness
of this representation (for overcomplete frames) is sacrificed. Suitable frame coeffi-
cients cn, depending linearly and continuously on x, are obtained by using the dual
frames {yn} of {xn}, i.e., the sequence {yn} is another frame for H such that, for
each x∈H , the expansions x = ∑n〈x,yn〉xn = ∑n〈x,xn〉yn hold. For more details on
the frame theory see the superb monograph [11] and the references therein.

2 Preliminaries on L2(Rd) shift-invariant subspaces

Let Φ := {ϕ1,ϕ2, . . . ,ϕr}, where ϕk ∈ L2(Rd) k = 1,2, . . . ,r, such that the sequence{
ϕk(t−α)

}
α∈Zd , k=1,2...,r is a Riesz basis for the shift-invariant space

V 2
Φ :=

{
∑

α∈Zd

r

∑
k=1

dk(α) ϕk(t−α) : dk ∈ `2(Zd), k = 1,2 . . . ,r
}
⊂ L2(Rd) .

There exists a necessary and sufficient condition involving the Gramian matrix-
function

GΦ(w) := ∑
α∈Zd

Φ̂(w+α)Φ̂(w+α)
>

, where Φ̂ := (ϕ̂1, ϕ̂2, . . . , ϕ̂r)> ,

which assures that the sequence {ϕk(· −α)}
α∈Zd , k=1,2...,r is a Riesz basis for V 2

Φ
;

namely (see, for instance, [5]): There exist two positive constants c and C such that

cIr ≤ GΦ(w)≤C Ir a.e. w ∈ [0,1)d . (3)

We assume throughout the paper that the functions in the shift-invariant space
V 2

Φ
are continuous on Rd . As in the case of one generator, this is equivalent to the

generators Φ being continuous on Rd with ∑α∈Zd |Φ(t−α)|2 uniformly bounded
on Rd . Thus, any f ∈V 2

Φ
is defined on Rd as the pointwise sum
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f (t) =
r

∑
k=1

∑
α∈Zd

dk(α) ϕk(t−α) , t ∈ Rd . (4)

Besides, the space V 2
Φ

is a RKHS since the evaluation functionals, Et f := f (t) are
bounded on V 2

Φ
. Indeed, for each fixed t ∈ Rd we have

| f (t)|2 =
∣∣∣ ∑

α∈Zd

r

∑
k=1

dk(α) ϕk(t−α)
∣∣∣2 ≤ ( ∑

α∈Zd

r

∑
k=1
|dk(α)|2

)(
∑

α∈Zd

r

∑
k=1
|ϕk(t−α)|2

)
=
(

∑
α∈Zd

r

∑
k=1
|dk(α)|2

)(
∑

α∈Zd

|Φ(t−α)|2
)
≤ ‖ f‖2

c ∑
α∈Zd

|Φ(t−α)|2, f ∈V 2
Φ ,

where we have used Cauchy-Schwarz’s inequality in (4), and the inequality satisfied
for any lower Riesz bound c of the Riesz basis {ϕk(·−α)}

α∈Zd , k=1,2...,r for V 2
Φ

, that
is, c∑α∈Zd ∑

r
k=1 |dk(α)|2 ≤ ‖ f‖2.

Thus, the convergence in V 2
Φ

in the L2(Rd)-sense implies pointwise convergence
which is uniform on Rd .

The product space

L2
r [0,1)d :=

{
F = (F1,F2, . . . ,Fr)> : Fk ∈ L2[0,1)d , k = 1,2, . . . ,r

}
with its usual inner product

〈F,H〉L2
r [0,1)d :=

r

∑
k=1
〈Fk,Hk〉L2[0,1)d =

∫
[0,1)d

H∗(w)F(w)dw

becomes a Hilbert space. Similarly, we introduce the product Banach space L∞
r [0,1)d .

The system
{

e−2πiα>wek
}

α∈Zd , k=1,2,...,r, where ek denotes the vector of Rr with
all the components null except the k-th component which is equal to one, is an
orthonormal basis for L2

r [0,1)d .
The shift-invariant space V 2

Φ
is the image of L2

r [0,1)d by means of the isomor-
phism

TΦ : L2
r [0,1)d −→ V 2

Φ

{e−2πiα>wek}α∈Zd , k=1,2,...,r 7−→ {ϕk(t−α)}
α∈Zd , k=1,2,...,r ,

which maps the orthonormal basis
{

e−2πiα>wek
}

α∈Zd , k=1,2,...,r for L2
r [0,1)d onto

the Riesz basis {ϕk(t − α)}
α∈Zd , k=1,2,...,r for V 2

Φ
. For each F = (F1, . . . ,Fr)> ∈

L2
r [0,1)d we have

TΦ F(t) := ∑
α∈Zd

r

∑
k=1

〈
Fk,e−2πiα>·〉

L2[0,1)d ϕk(t−α) , t ∈ Rd . (5)

The isomorphism TΦ can also be expressed by
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f (t) = TΦ F(t) = 〈F,Kt〉L2
r [0,1)d , t ∈ Rd ,

where the kernel transform Rd 3 t 7→Kt ∈ L2
r [0,1)d is defined as Kt(x) := ZΦ(t,x),

and ZΦ denotes the Zak transform of Φ , i.e.,

(ZΦ)(t,w) := ∑
α∈Zd

Φ(t +α)e−2πiα>w .

Note that (ZΦ) = (Zϕ1, . . . ,Zϕr)> where Z denotes the usual Zak transform.
The following shifting property of TΦ will be used later: For F ∈ L2

r [0,1)d and
α ∈ Zd we have

TΦ

[
F(·)e−2πiα>·](t) = TΦ F(t−α) , t ∈ Rd . (6)

2.1 The convolution systems L j on V 2
Φ

We consider s convolution systems L j f = f ∗h j, j = 1,2, . . . ,s, defined for f ∈V 2
Φ

where each impulse response h j belongs to one of the following three types:

(a) The impulse response h j is a linear combination of partial derivatives of shifted
delta functionals, i.e.,(

L j f
)
(t) := ∑

|β |≤N j

c j,β Dβ f (t +d j,β ) , t ∈ Rd .

If there is a system of this type, we also assume that ∑α∈Zd |Dβ ϕ(t −α)|2 is
uniformly bounded on Rd for |β | ≤ N j .

(b) The impulse response h j of L j belongs to L2(Rd). Thus, for any f ∈ V 2
ϕ we

have (
L j f

)
(t) := [ f ∗h j](t) =

∫
Rd

f (x)h j(t− x)dx, t ∈ Rd .

(c) The function ĥ j ∈ L∞(Rd) whenever Hϕk(x) := ∑α∈Zd |ϕ̂k(x + α)| ∈ L2[0,1)d

for all k = 1,2, . . . ,r.

Lemma 1. Let L be a convolution system of the type (b) or (c). Then for each fixed
t ∈ Rd the sequence {

(
L ϕk

)
(t +α)}

α∈Zd belongs to `2(Zd) for each k = 1, . . . ,r.

Proof. First assume that h ∈ L2(Rd); then we have

∑
α∈Zd

|L ϕk(t +α)|2 =
∥∥ ∑

α∈Zd

L ϕk(t +α)e−2πiα>x∥∥2
L2[0,1)d =

∥∥ZL ϕk(t,x)
∥∥2

L2[0,1)d

=
∥∥ ∑

α∈Zd

(
L̂ ϕk

)
(x+α)e2πi(x+α)>t∥∥2

L2[0,1)d ,
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where, in the last equality, we have used a version of the Poisson summation for-
mula [20, Lemma 2.1]. Notice that ϕ̂k, ĥ ∈ L2(Rd) implies, by Cauchy-Schwarz’s
inequality, that ϕ̂kĥ = L̂ ϕk ∈ L1(Rd). Now,∥∥ ∑

α∈Zd

(
L̂ ϕk

)
(x+α)e2πi(x+α)>t∥∥2

L2[0,1)d

=
∥∥ ∑

α∈Zd

ϕ̂k(x+α)ĥ(x+α)e2πi(x+α)>t∥∥2
L2[0,1)d

≤
∥∥∥( ∑

α∈Zd

|ϕ̂k(x+α)|2
)1/2(

∑
α∈Zd

|ĥ(x+α)|2
)1/2∥∥∥2

L2[0,1)d
≤C1/2‖h‖2

L2[0,1)d ,

where we have used (3) and the fact that ‖h‖2
L2(Rd) = ‖∑α∈Zd |ĥ(x+α)|2‖L1[0,1)d .

Finally, assume that Hϕk ∈ L2[0,1)d ; since ϕ̂k ∈ L1(Rd)∩ L2(Rd) we obtain that
L̂ ϕk = ϕ̂kĥ ∈ L1(Rd)∩ L2(Rd). Since ∑α∈Zd |L ϕk(x + α)| ≤ ‖ĥ‖L∞(Rd)Hϕk(x),
using again [20, Lemma 2.1] we get

∑
α∈Zd

|L ϕk(x+α)|2 =
∥∥ ∑

α∈Zd

(
L̂ ϕk

)
(x+α)e2πi(x+α)>t∥∥2

L2[0,1)d

≤ ‖ĥ‖2
L∞(Rd)‖Hϕk‖

2
L2[0,1)d .

ut

Lemma 2. Let L be a convolution system of the type (a), (b) or (c). Then, for each
f ∈V 2

Φ
we have(

L f
)
(t) = 〈F,

(
ZL Φ

)
(t, ·)〉L2

r [0,1)d , where F = T −1
Φ

f .

Proof. Assume that L is a convolution system of type (a). Under our hypothesis
on L , for m = 0,1,2 . . . ,N we have that

f (m)(t) = ∑
α∈Zd

r

∑
k=1
〈Fk,e−2πiα>·〉ϕ(m)

k (t−α) .

Having in mind we have assumed that ∑α∈Zd |Φ (m)(t−α)|2 is uniformly bounded
on Rd , we obtain that

(L f )(t) =
N

∑
m=0

cm f (m)(t +dm) =
N

∑
m=0

cm ∑
α∈Zd

r

∑
k=1

〈
Fk,e−2πiα>·〉

ϕ
(m)
k (t +dm−α)

=
r

∑
k=1

〈
Fk,

N

∑
m=0

cm ∑
α∈Zd

ϕk
(m)(t +dm−α)e−2πiα>·〉

L2[0,1)d

=
r

∑
k=1

〈
Fk, ∑

α∈Zd

L ϕk(t−α)e−2πiα>·〉=
r

∑
k=1

〈
Fk,(ZL ϕk)(t, ·)

〉
L2[0,1)d .
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Assume now that L is a convolution system of the type (b) or (c). For each t ∈Rd ,
considering the function ψ(x) := h(−x), we have

(L f )(t) =
〈

f ,ψ(·− t)
〉

L2(Rd) =
〈

∑
α∈Zd

r

∑
k=1

〈
Fk,e−2πiα>·〉

ϕk(·−α),ψ(·− t)
〉

L2(Rd)

= ∑
α∈Zd

r

∑
k=1

〈
Fk,e−2πiα>·〉

L2[0,1)d

〈
ϕk,ψ(·− t +α)

〉
L2(Rd)

= ∑
α∈Zd

r

∑
k=1

〈
Fk,e−2πiα>·〉

L2[0,1)d L ϕk(t−α) .

Since the sequence {(L ϕk)(t +α)}
α∈Zd ∈ `2(Zd), Parseval’s equality gives

(L f )(t) =
r

∑
k=1

〈
Fk, ∑

α∈Zd

L ϕk(t−α)e−2πiα>·〉
L2[0,1)d =

〈
F,(ZL Φ)(t, ·)

〉
L2

r (0,1) ,

which ends the proof. ut

2.2 Sampling at a lattice of Zd: An expression for the samples

Given a nonsingular matrix M with integer entries, we consider the lattice in Zd

generated by M, i.e.,
ΛM := {Mα : α ∈ Zd} ⊂ Zd .

Without loss of generality we can assume that detM > 0; otherwise we can consider
M′ = ME where E is some d× d integer matrix satisfying detE = −1. Trivially,
ΛM = Λ ′M . We denote by M> and M−> the transpose matrices of M and M−1 respec-
tively. The following useful generalized orthogonal relationship holds (see [44]):

∑
p∈N (M>)

e−2πiα>M−T p =

{
detM, α ∈ΛM

0 α ∈ Zd \ΛM
(7)

where
N (M>) := Zd ∩{M>x : x ∈ [0,1)d} (8)

The set N (M>) has detM elements (see [44] or [46]). One of these elements is
zero, say i1 = 0; we denote the rest of elements by i2, . . . , idetM ordered in any form;
from now on, N (M>) = {i1 = 0, i2, . . . , idetM} ⊂ Zd .

Note that the sets, defined as Ql := M−>il +M−>[0,1)d , l = 1,2, . . . ,detM, sat-
isfy (see [46, p. 110]):

Ql ∩Ql′ = /0 if l 6= l′ and Vol
(detM⋃

l=1

Ql

)
= 1 .
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Thus,
∫
[0,1)d F(x)dx = ∑

detM
l=1

∫
Ql

F(x)dx, for any function F integrable in [0,1)d and
Zd-periodic.

Now assume that we sample the filtered versions L j f of f ∈V 2
Φ

, j = 1,2, . . . ,s,
at a lattice ΛM . Having in mind Lemma 2, for j = 1,2, . . . ,s and α ∈ Zd we obtain
that(

L j f
)
(Mα) = 〈F,ZL jΦ(Mα, ·)〉= 〈F,ZL jΦ(0, ·)e−2πiα>M>·〉L2

r [0,1)d , (9)

where F = T −1
Φ

f ∈ L2
r [0,1)d . Denote

g j(x) := ZL jΦ(0,x) , j = 1,2, . . . ,s , (10)

in other words, g>j (x) :=
(
g j,1(x),g j,2(x), . . . ,g j,r(x)

)
, where g j,k(x) = ZL jϕk(0,x)

for 1≤ j ≤ s and 1≤ k ≤ r.
As a consequence of expression (9) for generalized samples, a challenge prob-

lem is to study the completeness, Bessel, frame, or Riesz basis properties of any
sequence

{
g j(x)e−2πiα>M>x

}
α∈Zd , j=1,2,...,s in L2

r [0,1)d . To this end we introduce
the s× r(detM) matrix of functions

G(x) :=


g>1 (x) g>1 (x+M−>i2) · · · g>1 (x+M−>idetM)
g>2 (x) g>2 (x+M−>i2) · · · g>2 (x+M−>idetM)

...
...

...
...

g>s (x) g>s (x+M−>i2) · · · g>s (x+M−>idetM)

 , (11)

and its related constants

AG := ess inf
x∈[0,1)d

λmin[G∗(x)G(x)], BG := esssup
x∈[0,1)d

λmax[G∗(x)G(x)] ,

where G∗(x) denotes the transpose conjugate of the matrix G(x), and λmin (re-
spectively λmax) the smallest (respectively the largest) eigenvalue of the positive
semidefinite matrix G∗(x)G(x). Observe that 0 ≤ AG ≤ BG ≤ ∞. Note that in the
definition of the matrix G(x) we are considering the Zd-periodic extension of the
involved functions g j, j = 1,2, . . . ,s. Regardless the functions g j in L2

r [0,1)d ,
j = 1,2, . . . ,s, are given by (10), the following result holds:

Lemma 3. Let g j be in L2
r [0,1)d for j = 1,2, . . . ,s and let G(x) be its associated

matrix as in (11). Then,

(a) The sequence
{

g j(x)e−2πiα>M>x
}

α∈Zd , j=1,2,...,s is a complete system for L2
r [0,1)d

if and only if the rank of the matrix G(x) is r(detM) a.e. in [0,1)d .
(b) The sequence

{
g j(x)e−2πiα>M>x

}
α∈Zd , j=1,2,...,s is a Bessel sequence for L2

r [0,1)d

if and only if g j ∈ L∞
r [0,1)d (or equivalently BG < ∞). In this case, the optimal

Bessel bound is BG/(detM).
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(c) The sequence
{

g j(x)e−2πiα>M>x
}

α∈Zd , j=1,2,...,s is a frame for L2
r [0,1)d if and

only if 0 < AG ≤ BG < ∞. In this case, the optimal frame bounds are AG/(detM)
and BG/(detM).

(d) The sequence
{

g j(x)e−2πiα>M>x
}

α∈Zd , j=1,2,...,s is a Riesz basis for L2
r [0,1)d if

and only if it is a frame and s = r(detM).

Proof. For any F ∈ L2
r [0,1)d we have

〈F(x),g j(x)e−2πiα>M>x〉L2
r [0,1)d =

∫
[0,1)d

r

∑
k=1

Fk(x)g j,k(x)e2πiα>M>x dx

=
r

∑
k=1

detM

∑
l=1

∫
Ql

Fk(x)g j,k(x)e2πiα>M>x dx

=
r

∑
k=1

∫
M−>[0,1)d

detM

∑
l=1

Fk(x+M−>il)g j,k(x+M−>il) e2πiα>M>x dx

=
∫

M−>[0,1)d

r

∑
k=1

detM

∑
l=1

Fk(x+M−>il)g j,k(x+M−>il) e2πiα>M>x dx

=
∫

M−>[0,1)d

detM

∑
l=1

g>j (x+M−>il)F(x+M−>il) e2πiα>M>x dx ,

(12)

where we have considered the Zd-periodic extension of F. Then,

s

∑
j=1

∑
α∈Zd

∣∣∣〈F(x),g j(x)e−2πiα>M>x〉L2
r [0,1)d

∣∣∣2 =

1
detM

s

∑
j=1

∥∥∥detM

∑
l=1

g>j (x+M−>il)F(x+M−>il)
∥∥∥2

L2
r (M−>[0,1)d)

.

Denoting F(x) :=
[
F>(x),F>(x + M−>i2), · · · ,F>(x + M−>idetM)

]>, the equality
above reads

s

∑
j=1

∑
α∈Zd

∣∣∣〈F(x),g j(x)e−2πiα>M>x〉L2
r [0,1)d

∣∣∣2 =
1

detM

∥∥G(x)F(x)
∥∥2

L2
s (M−>[0,1)d) . (13)

On the other hand, using that the function g j is Zd-periodic, we obtain that the set{
g j(x+M−>il +M−>i1),g j(x+M−>il +M−>i2), . . . ,g j(x+M−>il +M−>idetM)

}
has the same elements as

{
g j(x + M−>i1),g j(x + M−>i2), . . . ,g j(x + M−>idetM)

}
.

Thus the matrix G(x+M−>il) has the same columns of G(x), possibly in a different
order. Hence, rankG(x) = r(detM) a.e. in [0,1)d if and only if rankG(x) = r(detM)
a.e. in M−>[0,1)d . Moreover,

AG = ess inf
x∈M−>[0,1)d

λmin[G∗(x)G(x)], BG = esssup
x∈M−>[0,1)d

λmax[G∗(x)G(x)] . (14)



Generalized sampling in L2(Rd) shift-invariant subspaces 13

To prove (a), assume that there exists a set Ω ⊆M−>[0,1)d with positive measure
such that rankG(x) < r(detM) for ech x ∈Ω . Then, there exists a measurable func-
tion v(x), x ∈Ω , such that G(x)v(x) = 0 and ‖v(x)‖L2

r(detM)(M
−>[0,1)d) = 1 in Ω . This

function can be constructed as in [27, Lemma 2.4]. Define F ∈ L2
r [0,1)d such that

F(x) = v(x) if x ∈ Ω , and F(x) = 0 if x ∈ M−>[0,1)d \Ω . Hence, from (13) we
obtain that the system is not complete. Conversely, if the system is not complete, by
using (13) we obtain a F(x) different from 0 in a set with positive measure such that
G(x)F(x) = 0. Thus rankG(x) < r(detM) on a set with positive measure.
To prove (b) notice that

s

∑
j=1

∑
α∈Zd

∣∣∣〈F(x),g j(x)e−2πiα>M>x〉L2
r [0,1)d

∣∣∣2 =
1

detM

∥∥G(x)F(x)
∥∥2

L2
s (M−>[0,1)d)

=
1

detM

∫
M−>[0,1)d

F∗(x)G∗(x)G(x)F(x)dx .

(15)

If BG < ∞ then, for each F, we have

1
detM

∫
M−>[0,1)d

F∗(x)G∗(x)G(x)F(x)dx≤ BG
detM

‖F‖2
L2

r(detM)(M
−>[0,1)d)

=
BG

detM
‖F‖2

L2
r [0,1)d ,

(16)

from which the sequence
{

g j(x)e−2πiα>M>x
}

α∈Zd , j=1,2,...,s is a Bessel sequence
and its optimal Bessel bound is less than or equal to BG/(detM).
Let K < BG; there exists a set ΩK ⊂ M−>[0,1)d with positive measure such that
λmaxx∈ΩK

[G∗(x)G(x)]≥ K. Let F ∈ L2
r [0,1)d such that its associated vector function

F is 0 if x ∈M−>[0,1)d \ΩK and F is an eigenvector of norm 1 associated with the
largest eigenvalue of G∗(x)G(x) if x ∈ΩK . Using (15), we obtain

s

∑
j=1

∑
α∈Zd

∣∣∣〈F(x),g j(x)e−2πiα>M>x〉L2
r [0,1)d

∣∣∣2 ≥ K
detM

‖F‖2
L2

r [0,1)d .

Therefore if BG = ∞ the sequence
{

g j(x)e−2πiα>M>x
}

α∈Zd , j=1,2,...,s is not a Bessel
sequence, and the optimal Bessel bound is BG/(detM).
To prove (c) assume first that 0 < AG ≤ BG < ∞. By using part (b), the sequence{

g j(x)e−2πiα>M>x
}

α∈Zd , j=1,2,...,s is a Bessel sequence in L2
r [0,1)d . Moreover, using

(15) and the Rayleigh-Ritz theorem (see [25, p. 176]), for each F ∈ L2
r [0,1)d we

obtain

s

∑
j=1

∑
α∈Zd

∣∣∣〈F(x),g j(x)e−2πiα>M>x〉L2
r [0,1)d

∣∣∣2 ≥ AG
detM

‖F‖2
L2

r(detM)(M
−>[0,1)d)

=
AG

detM
‖F‖2

L2
r [0,1)d

(17)
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Hence the sequence
{

g j(x)e−2πiα>M>x
}

α∈Zd , j=1,2,...,s is a frame with optimal lower
bound larger that or equal to AG/(detM).
Conversely if

{
g j(x)e−2πiα>M>x

}
α∈Zd , j=1,2,...,s is a frame for L2

r [0,1)d we know
by part (b) that BG < ∞. In order to prove that AG > 0, consider any constant
K > AG. Then there exists a set ΩK ⊂ M−>[0,1)d with positive measure such
that λminx∈ΩK

[G∗(x)G(x)] ≤ K. Let F ∈ L2
r [0,1)d such that its associated F(x) is

0 if x ∈ M−>[0,1)d \ΩK and F(x) is an eigenvector of norm 1 associated with
the smallest eigenvalue of G∗(x)G(x) if x ∈ ΩK . Since F is bounded, we have that
G(x)F(x) ∈ L2

s (M
−>[0,1)d). From (15) we get

s

∑
j=1

∑
α∈Zd

∣∣∣〈F(x),g j(x)e−2πiα>M>x〉L2
r [0,1)d

∣∣∣2 ≤ K
detM

‖F‖2
L2

r(detM)(M
−>[0,1)d)

=
K

detM
‖F‖2

L2
r [0,1)d .

(18)

Denoting by A the optimal lower frame bound of
{

g j(x)e−2πiα>M>x
}

α∈Zd , j=1,2,...,s,
we have obtained that K/(detM) ≥ A for each K > AG; thus AG/(detM) ≥ A and
consequently, AG > 0. Moreover, under the hypotheses of part (c) we deduce that
AG/(detM) and BG/(detM) are the optimal frame bounds.
The proof of (d) is based in the following result ([11, Theorem 6.1.1]): A frame is a
Riesz basis if and only if it has a biorthogonal sequence. Assume that the sequence{

g j(x)e−2πiα>M>x
}

α∈Zd , j=1,2,...,s is a Riesz basis for L2
r [0,1)d being the sequence

{h j,α}α∈Zd , j=1,2,...,s its biorthogonal sequence. Using (12) we get

∫
M−>[0,1)d

detM

∑
l=1

g>j (x+M−>il)h j′,0(x+M−>il) e2πiα>M>x dx

= 〈h j′,0(·),g j(x)e−2πiα>M>·〉= δ j, j′δα,0 .

Therefore,

detM

∑
l=1

g>j (x+M−>il)h j′,0(x+M−>il) e2πiα>M>x = (detM)δ j, j′ a.e. in M−>[0,1)d .

Thus the matrix G(x) has a right inverse a.e. in M−>[0,1)d and, in particular,
s ≤ r(detM). On the other hand, AG > 0 implies that det[G∗(x)G(x)] > 0, a.e. in
M−>[0,1)d , and there exists the matrix [G∗(x)G(x)]−1G∗(x) a.e. in M−>[0,1)d .
This matrix is a left inverse of the matrix G(x) which implies s ≥ r(detM). Thus,
we obtain that r(detM) = s.
Conversely, assume that

{
g j(x)e−2πiα>M>x

}
α∈Zd , j=1,2,...,s is a frame for L2

r [0,1)d

and r(detM) = s. In this case G(x) is a square matrix and det[G(x)∗(x)G(x)(x)] > 0
a.e. in M−>[0,1)d implies that detG(x) 6= 0 a.e. in M−>[0,1)d . Having in mind the
structure of G(x) its inverse must be the r(detM)× s matrix
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G−1(x) =


c1(x) . . . cs(x)

c1(x+M−>i2) . . . cs(x+M−>i2)
...

...
c1(x+M−>idetM) . . . cs(x+M−>idetM)

 ,

where, for each j = 1,2, . . . ,s, the function c j ∈ L2
r [0,1)d .

It is easy to verify that the sequence
{
(detM)c j(x)e−2πiα>M>x

}
α∈Zd , j=1,2,...,s is

a biorthogonal sequence of
{

g j(x)e−2πiα>M>x
}

α∈Zd , j=1,2,...,s and therefore, it is a

Riesz basis for L2
r [0,1)d . ut

3 Generalized regular sampling in V 2
Φ

In this section we prove that expression (9) allows us to obtain F = T −1
Φ

f from
the generalized samples {L j f (Mα)}

α∈Zd , j=1,2,...,s; as a consequence, applying the
isomorphism TΦ we recover the function f in V 2

Φ
.

Assume that the functions g j given in (10) belong to ∈ L∞
r [0,1)d for j =

1,2, . . . ,s; thus, g>j (x)F(x) ∈ L2[0,1)d . Having in mind (7) and the expression (9)
for the generalized samples, we have that

(detM) ∑
α∈Zd

(
L j f

)
(Mα)e−2πiα>M>x

= ∑
α∈Zd

(
L j f

)
(α)e−2πiα>x

∑
p∈N (M>)

e−2πiα>M−>p

= ∑
p∈N (M>)

∑
α∈Zd

(
L j f

)
(α)e−2πiα>(x+M−>p)

= ∑
p∈N (M>)

∑
α∈Zd

〈F,g j(·)e−2πiα>M>·〉L2
r [0,1)d e−2πiα>(x+M−>p)

= ∑
p∈N (M>)

∑
α∈Zd

(∫
[0,1)d

r

∑
k=1

Fk(y)g j,k(y)e−2πiα>M>ydy
)

e−2πiα>(x+M−>p)

= ∑
p∈N (M>)

r

∑
k=1

Fk(x+M−>p)g j,k(x+M−>p)

= ∑
p∈N (M>)

g>j (x+M−>p) F(x+M−>p) .

Defining F(x) :=
[
F>(x),F>(x+M−>i2), . . . ,F>(x+M−>idetM)

]>, the above equal-
ity allows us to writte, in matrix form, that G(x)F(x) equals to
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(detM)
[

∑
α∈Zd

(
L1 f

)
(Mα)e−2πiα>M>x, . . . , ∑

α∈Zd

(
Ls f

)
(Mα)e−2πiα>M>x

]>
.

In order to recover the function F = T −1
Φ

f , assume the existence of an r× s matrix
a(x) := [a1(x), . . . ,as(x)], with entries in L∞[0,1)d , such that[

a1(x), . . . ,as(x)
]

G(x) = [Ir,O(detM−1)r×r] a.e. in [0,1)d .

If we left multiply G(x)F(x) by a(x), we get

F(x) = (detM)
s

∑
j=1

∑
α∈Zd

(
L j f

)
(Mα)a j(x)e−2πiα>M>x in L2

r [0,1)d . (19)

Finally, the isomorphism TΦ gives

f (t) = (detM)
s

∑
j=1

∑
α∈Zd

(
L j f

)
(Mα)(TΦ a j)(t−Mα) , t ∈ Rd ,

where we have used the shifting property (6) and that the space V 2
Φ

is a RKHS. Much
more can be said about the above sampling result. In fact, the following theorem
holds:

Theorem 2. Assume that the functions g j given in (10) belong to L∞
r [0,1)d for each

j = 1,2, . . . ,s. Let G(x) be the associated matrix defined in [0,1)d as in (11). The
following statements are equivalents:

(a) AG > 0.
(b) There exists an r×s matrix a(x) :=

[
a1(x), . . . ,as(x)

]
with columns a j ∈L∞

r [0,1)d

satisfying [
a1(x), . . . ,as(x)]G(x) = [Ir,O(detM−1)r×r] a.e. in [0,1)d . (20)

(c) There exists a frame for V 2
Φ

having the form {S j,a(·−Mα)}
α∈Zd , j=1,2,...,s such

that for any f ∈V 2
Φ

f = (detM)
s

∑
j=1

∑
α∈Zd

(L j f )(Mα)S j,a(·−Mα) in L2(Rd) . (21)

(d) There exists a frame {S j,α(·)}
α∈Zd , j=1,2,...,s for V 2

Φ
such that for any f ∈V 2

Φ

f = (detM)
s

∑
j=1

∑
α∈Zd

(L j f )(Mα)S j,α in L2(Rd) . (22)

Proof. First we prove that (a) implies (b). As the determinant of the semiposi-
tive definite matrix G∗(x)G(x) is equal to the product of its eigenvalues, condi-
tion (a) implies that ess infx∈Rd det[G∗(x)G(x)] > 0. Hence, there exists the left
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pseudo-inverse matrix G†(x) := [G∗(x)G(x)]−1G∗(x), a.e. in [0,1)d , and it satisfies
G†(x)G(x)= Ir(detM). The first r rows of G†(x) form an r×s matrix [a1(x), . . . ,as(x)]
which satisfies (20). Moreover, the functions a j(x), j = 1,2, . . . ,s, are essentially
bounded since the condition ess infx∈[0,1)d det[G∗(x)G(x)] > 0 holds.
Next, we prove that (b) implies (c). For j = 1,2, . . . ,s, let a j(x) be a function in
L∞

r [0,1)d , and satisfying [a1(x), . . . ,as(x)]G(x) = [Ir,O(detM−1)r×r]. In (19) we have
proved that, for each F = T −1

Φ
( f ) ∈ L2

r [0,1)d , we have the expansion

F(x) = (detM)
s

∑
j=1

∑
α∈Zd

(
L j f

)
(Mα)a j(x)e−2πiα>M>x in L2

r [0,1)d ,

from which

f = (detM)
s

∑
j=1

∑
α∈Zd

(
L j f

)
(Mα)S j,a(·−Mα) in L2(Rd) ,

where S j,a := TΦ a j for j = 1,2, . . . ,s . Since we have assumed that g j ∈ L∞
r [0,1)d

for each j = 1,2, . . . ,s , the sequence
{

g j(x)e−2πiα>M>x
}

α∈Zd , j=1,2,...,s is a Bessel

sequence in L2
r [0,1)d by using part (b) in Lemma 3. The same argument proves that

the sequence
{
(detM)a j(x)e−2πiα>M>x

}
α∈Zd , j=1,2,...,s is also a Bessel sequence in

L2
r [0,1)d . These two Bessel sequences satisfy for each F ∈ L2

r [0,1)d

F(x) = (detM)
s

∑
j=1

∑
α∈Zd

〈F,g je−2πiα>M>·〉a j(x)e−2πiα>M>x in L2
r [0,1)d .

Hence, they are a pair of dual frames for L2
r [0,1)d (see [11, Lemma 5.6.2]). Since

TΦ is an isomorphism, the sequence
{

S j,a(t −Mα)
}

α∈Zd , j=1,2,...,s is a frame for
V 2

Φ
; hence (b) implies (c). Statement (c) implies (d) trivially.

Assume condition (d), applying the isomorphism T −1
Φ

to the expansion (22) we get

F(x) = (detM)
s

∑
j=1

∑
α∈Zd

〈F,g je−2πiα>M>·〉T −1
Φ

(S j,α)(x) in L2
r [0,1)d , (23)

where
{
T −1

Φ
S j,α

}
α∈Zd , j=1,2,...,s is a frame for L2

r [0,1)d . By using Lemma 3, the

sequence
{

g j(x)e−2πiα>M>x
}

α∈Zd , j=1,2,...,s is a Bessel sequence; expansion (23)
implies that is also a frame (see [11, Lemma 5.6.2]). Hence, by using again Lemma
3, condition (a) holds. ut

In the case that the functions g j, j = 1,2, . . . ,s, are continuous on Rd (for in-
stance, if the sequences of generalized samples

{
L jϕk(α)

}
α∈Zd belongs to `1(Zd)

for 1≤ j ≤ s and 1≤ k ≤ r), the following corollary holds:

Corollary 1. Assume that the functions g j, j = 1,2, . . . ,s, in (10) are continuous on
Rd . Then, the following assertions are equivalents:
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(a) rank G(x) = r(detM) for all x ∈ Rd .
(b) There exists a frame {S j,a(· − rn)}n∈Z, j=1,2,...,s for V 2

Φ
satisfying the sampling

formula (21).

Proof. Whenever the functions g j, j = 1,2, . . . ,s, are continuous on Rd , condi-
tion AG > 0 is equivalent to that det

[
G∗(x)G(x)

]
6= 0 for all x ∈ Rd . Indeed, if

detG∗(x)G(x) > 0 then the r first rows of the matrix G†(x) := [G∗(x)G(x)]−1G∗(x),
give an r× s matrix a(x) = [a1(x),a2(x), . . . ,as(x)] satisfying statement (b) in The-
orem 2, and therefore AG > 0.

The reciprocal follows from the fact that det
[
G∗(x)G(x)

]
≥ Ar(detM)

G for all x ∈
Rd . Since det

[
G∗(x)G(x)

]
6= 0 is equivalent to rank G(x) = r(detM) for all x ∈Rd ,

the result is a consequence of Theorem 2. ut

The reconstruction functions S j,a, j = 1,2, . . . ,s , are determined from the Fourier
coefficients of the components of a j(x) := [a1, j(x),a2, j(x), . . . ,ar, j]>, j = 1,2, . . . ,s.
More specifically, if âk, j(α) :=

∫
[0,1)d ak, j(x)e2πiα>xdx we get

S j,a(t) = ∑
α∈Zd

r

∑
k=1

âk, j(α)ϕk(t−α) , t ∈ Rd . (24)

The Fourier transform in (24) gives Ŝ j,a(x) = ∑
r
k=1 ak, j(x)ϕ̂k(x).

Assume that the r× s matrix a(x) =
[
a1(x),a2(x), . . . ,as(x)

]
satisfies (20). We

consider the periodic extension of ak, j, i.e., ak, j(x + α) = ak, j(x), α ∈ Zd . For all
x ∈ [0,1)d , the r(detM)× s matrix

A>(x) :=


a1(x) a2(x) · · · as(x)

a1(x+M−>i2) a2(x+M−>i2) · · · as(x+M−>i2)
...

...
...

a1(x+M−>idetM) a2(x+M−>idetM) · · · as(x+M−>idetM)

 (25)

is a left inverse matrix of G(x), i.e., A>(x)G(x) = Ir(detM).

Provided that condition (20) is satisfied, it can be easily checked that all matrices
a(x) with entries in L∞[0,1)d , and satisfying (20) correspond to the first r rows of
the matrices of the form

A>(x) = G†(x)+U(x)
[
Is−G(x)G†(x)

]
, (26)

where U(x) is any r(detM)× s matrix with entries in L∞[0,1)d , and G† denotes the
left pseudo-inverse G†(x) := [G∗(x)G(x)]−1G∗(x).

Notice that if s = r(detM) there exists a unique matrix a(x), given by the first r
rows of G−1(x); if s > r(detM) there are many solutions according to (26).

Moreover, the sequence
{
(detM)a†

j(·)e−2πiα>M>·}
α∈Zd , j=1,2,...,s, associated with

the r×s matrix [a†
1(x),a

†
2(x), . . . ,a

†
s (x)] obtained from the r first rows of G†(x), gives
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precisely the canonical dual frame of the frame
{

g j(·)e−2πiα>M>·}
α∈Zd , j=1,2,...,s.

Indeed, the frame operator S associated to
{

g j(·)e−2πiα>M>·}
α∈Zd , j=1,2,...,s is

given by

S F(x) =
1

detM

[
g1(x),g2(x), . . . ,gs(x)

]
G(x)F(x) , F ∈ L2

r [0,1)d ,

from which one gets

S
[
(detM)a†

j(·)e
−2πiα>M>·](x) = g j(x)e−2πiα>M>x , j = 1,2, . . . ,s and α ∈ Zd .

Something more can be said in the case where s = r(detM):

Theorem 3. Assume that the functions g j, j = 1,2, . . . ,s , given in (10) belong to
L∞

r [0,1)d and s = r(detM). The following statements are equivalent:

(a) AG > 0.
(b) There exists a Riesz basis {S j,α}α∈Zd , j=1,2,...,s for V 2

Φ
such that for any f ∈V 2

Φ
,

the expansion

f = (detM) ∑
α∈Zd

s

∑
j=1

(L j f
)
(Mα) S j,α , (27)

holds in L2(Rd).

In case the equivalent conditions are satisfied, necessarily S j,α(t) = S j,a(t−Mα),
t ∈Rd , where S j,a = TΦ(a j), j = 1,2, . . . ,s , and the r×s matrix a := [a1,a2, . . . ,as]
is formed with the r first rows of the inverse matrix G−1. The sampling functions S j,a,
j = 1,2, . . . ,s , satisfy the interpolation property (L j′S j,a)(Mα) = δ j, j′δα,0, where
j, j′ = 1,2, . . . ,s and α ∈ Zd .

Proof. Assume that AG > 0; since G(x) is a square matrix, this implies that
ess infx∈Rd |detG(x)| > 0. Therefore, the r first rows of G−1(x) gives a solution
of the equation [a1(x), . . . ,as(x)]G(x) = [Ir,O(detM−1)r×r] with a j ∈ L∞

r [0,1)d for
j = 1,2, . . . ,s. According to Theorem 2, the sequence

{S j,α}α∈Zd , j=1,2,...,s := {S j,a(t−Mα)}
α∈Zd , j=1,2,...,s ,

where S j,a = TΦ(a j), satisfies the sampling formula (27). Moreover, the sequence

{(detM)a j(x)e−2πiα>M>x}
α∈Zd , j=1,2,...,s = {T −1

Φ
S j,a(·−Mα)}

α∈Zd , j=1,2,...,s

is a frame for L2
r [0,1)d . Since r(detM) = s, according to Lemma 3 it is a Riesz basis

for L2
r [0,1)d . Hence, the sequence {S j,a(t−Mα)}

α∈Zd , j=1,2,...,s is a Riesz basis for
V 2

Φ
and condition (b) is proved.
Conversely, assume now that {S j,α}α∈Zd , j=1,2,...,s is a Riesz basis for V 2

Φ
satis-

fying (27). From the uniqueness of the coefficients in a Riesz basis, we get that the
interpolatory condition (L j′S j,α)(Mα ′) = δ j, j′δα,α ′ holds for j, j′ = 1,2, . . . ,s and
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α,α ′ ∈ Zd . Since T −1
Φ

is an isomorphism, {T −1
Φ

S j,α}α∈Zd , j=1,2,...,s is a Riesz ba-

sis for L2
r [0,1)d . Expanding the function g j′(x)e−2πiα ′>M>x with respect to the dual

basis of {T −1
Φ

S j,α}α∈Zd , j=1,2,...,s, denoted by {G j,α}α∈Zd , j=1,2,...,s, we obtain

g j′(x)e
−2πiα ′>M>x = ∑

α∈Zd

s

∑
j=1
〈g j′(·)e−2πiα ′>M>·,T −1

Φ
S j,α〉L2[0,1)d G j,α(x)

= ∑
α∈Zd

L j′S j,α(Mα
′)G j,α(x) = G j′,α ′(x) .

Therefore, the sequence {g j(x)e−2πiα>M>x}
α∈Zd , j=1,2,...,s is the dual basis of the

Riesz basis {T −1
Φ

S j,α}α∈Zd , j=1,2,...,s . In particular it is a Riesz basis for L2
r [0,1)d ,

which implies, according to Lemma 3, that AG > 0; this proves (a). Moreover, the
sequence {T −1

Φ
S j,α}α∈Zd , j=1,2,...,s is necessarily the unique dual basis of the Riesz

basis {g j(x)e−2πiα>M>x}
α∈Zd , j=1,2,...,s. Therefore, this proves the uniqueness of the

Riesz basis {S j,α}α∈Zd , j=1,2,...,s for V 2
Φ

satisfying (27). ut

3.1 Reconstruction functions with prescribed properties

The generalized sampling formula in the shift-invariant space V 2
Φ

f (t) = (detM)
s

∑
j=1

∑
α∈Zd

(L j f )(Mα)S j,a(t−Mα) , t ∈ Rd , (28)

can be read as a filter bank. Indeed, introducing the expression for the sampling
functions S j,a(t) = ∑β∈Zd ∑

r
k=1 âk, j(β )ϕk(t−β ) , t ∈ Rd , the change γ = β + Mα

in the summation’s index gives

f (t) = (detM)
r

∑
k=1

∑
γ∈Zd

{ s

∑
j=1

∑
α∈Zd

(L j f )(Mα)âk, j(γ−Mα)
}

ϕk(t− γ) , t ∈ Rd .

Thus, the relevant data

dk(γ) :=
s

∑
j=1

∑
α∈Zd

(L j f )(Mα)âk, j(γ−Mα) , γ ∈ Zd , 1≤ k ≤ r ,

for the recovery of the signal f ∈ V 2
Φ

is obtained by means of r filter banks whose
impulse responses involve the Fourier coefficients of the entries of the r× s matrix
a :=

[
a1,a2, . . . ,as

]
in (20), and the input is given by the sampling data.

Notice that reconstruction functions S j,a with compact support in the above sam-
pling formula implies low computational complexities and avoids truncation errors.
This occurs whenever the generators ϕk have compact support and the sum in (24) is
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finite. These sums are finite if and only if the entries of the r×s matrix a are trigono-
metric polynomials. In this case, all the filter banks involved in the reconstruction
process are FIR (finite impulse response) filters.

Before to give a necessary and sufficient condition assuring compactly sup-
ported reconstruction functions S j,a in formula (28), we introduce first some com-
plex notation, more convenient for this study. We denote zα := zα1

1 zα2
2 . . .zαd

d for
z = (z1, . . . ,zd) ∈ Cd , α = (α1, . . . ,αd) ∈ Zd , and the d-torus by Td := {z ∈ Cd :
|z1|= |z2|= . . . = |zd |= 1}. For 1≤ j ≤ s and 1≤ k ≤ r we define

g j,k(z) := ∑
µ∈Zd

L jϕk(µ)z−µ , g>j (z) :=
(
g j,1(z),g j,2(z), . . . ,g j,r(z)

)
,

and the s× r(detM) matrix

G(z) :=
[
g>j (z1e2πim>1 il , . . . ,zde2πim>d il )

]
j=1,2,...,s

k=1,2,...,r; l=1,2,...,detM
(29)

where m1, . . . ,md denote the columns of the matrix M−1. Note that for the values
x = (x1, . . . ,xd) ∈ [0,1)d and z = (e2πix1 , . . . ,e2πixd ) ∈ Td we have G(x) = G(z).

Provided that the functions g j are continuous on Rd , Corollary 1 can be reformu-
lated as follows: There exists an r× s matrix a(z) =

[
a1(z), . . . ,as(z)

]
with entries

essentially bounded in the torus Td and satisfying

a(z)G(z) = [Ir,O(detM−1)r×r] for all z ∈ Td (30)

if and only if
rank G(z) = r(detM) for all z ∈ Td . (31)

Denoting the columns of the matrix a(z) as a>j (z) =
(
a1, j(z), . . . ,ar, j(z)

)
, j =

1,2, . . . ,s , the corresponding reconstruction functions S j,a in sampling formula (28)
are

S j,a(t) = ∑
α∈Zd

r

∑
k=1

âk, j(α)ϕ(t−α) , t ∈ Rd , (32)

where âk, j(α), α ∈ Zd , are the Laurent coefficients of the functions ak, j(z), that is,

ak, j(z) = ∑
α∈Zd

âk, j(α)z−α . (33)

Note that, in order to obtain compactly supported reconstruction functions S j,a
in (28) we need an r× s matrix a(z) whose entries are Laurent polynomials, i.e., the
sum in (33) is finite. The following result, which proof can be found in [16] under
minor changes, holds:

Theorem 4. Assume that the generators ϕk and the functions L jϕk, 1 ≤ k ≤ r and
1 ≤ j ≤ s, have compact support. Then, there exists an r(detM)× s matrix a(z)
whose entries are Laurent polynomials and satisfying (30) if and only if
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rank G(z) = r(detM) for all z ∈ (C\{0})d .

The reconstruction functions S j,a, j = 1,2, . . . ,s, obtained from such matrix a(z)
through Eq. (32) have compact support.

From one of these r× s matrices, say ã(z) = [ã1(z), . . . , ãs(z)], we can get all
of them. Indeed, it is easy to check that they are given by the r first rows of the
r(detM)× s matrices of the form

A(z) = Ã(z)+U(z)
[
Is−G(z)Ã(z)

]
, (34)

where
Ã(z) :=

[
ã j(z1e2πim>1 il , . . . ,zde2πim>d il )

]
k=1,2,...,r; l=1,2,...,detM

j=1,2,...,s
,

and U(z) is any r(detM)× s matrix with Laurent polynomial entries. Remember
that m1, . . . ,md denote the columns of the sampling matrix M, and i1, . . . , idetM the
elements of N (M>) defined in (8).

Next we study the existence of reconstruction functions S j,a, j = 1,2, . . . ,s , in
(28) having exponential decay; it means that there exist constants C > 0 and q ∈
(0,1) such that |S j,a(t)| ≤Cq|t| for each t ∈Rd . In so doing, we introduce the algebra
H (Td) of all holomorphic functions in a neighborhood of the d-torus Td . Note that
the elements in H (Td) are characterized as admitting a Laurent series where the
sequence of coefficients decays exponentially fast [26].

The following theorem, which proof can be found in [16] under minor changes,
holds:

Theorem 5. Assume that the generators ϕk and the functions L jϕk, j = 1,2, . . . ,s
and k = 1,2, . . . ,r, have exponential decay. Then, there exists an r × s matrix
a(z) = [a1(z), . . . ,as(z)] with entries in H (Td) and satisfying (30) if and only if
rank G(z) = r(detM) for all z ∈ Td .

In this case, all of such matrices a(z) are given as the first r rows of a r(detM)×s
matrix A(z) of the form

A(z) = G†(z)+U(z)
[
Is−G(z)G†(z)

]
, (35)

where U(z) denotes any r(detM)× s matrix with entries in the algebra H (Td) and
G†(z) :=

[
G∗(z)G(z)

]−1
G∗(z). The corresponding reconstruction functions S j,a, j =

1,2, . . . ,s, given by (32) have exponential decay.

3.2 Some illustrative examples

We include here some examples illustrating Theorem 4, a particular case of Theo-
rem 2, by taking B-splines as generators; they certainly are important for practical
purposes [42].
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3.2.1 The case d = 1, r = 1, M = 2 and s = 3

Let N3(t) := χ[0,1) ∗ χ[0,1) ∗ χ[0,1)(t) be the quadratic B-spline, where χ[0,1) denotes
the characteristic function of the interval [0,1), and let L j, j = 1,2,3 , be the sys-
tems:

L1 f (t) = f (t); L2 f (t) = f (t +
2
3
) and L3 f (t) = f (t +

4
3
) .

Since the functions L jN3, j = 1,2,3 , have compact support, then the entries of
the 3× 2 matrix G(z) in (29) are Laurent polynomials and we can try to search a
vector a(z) := [a1(z),a2(z),a3(z)] satisfying (30) with Laurent polynomials entries
also. This implies reconstruction functions S j,a, j = 1,2,3 , with compact support.
Proceeding as in [14] we obtain that any function f ∈V 2

N3
can be recovered through

the sampling formula:

f (t) = ∑
n∈Z

3

∑
j=1

L j f (2n)S j,a(t−2n) , t ∈ R ,

where the reconstruction functions, according to (32), are given by

S1,a(t) =
1

16
[
N3(t +3)−3N3(t +2)−3N3(t +1)+N3(t)

]
,

S2,a(t) =
1

16
[
27N3(t +1)−9N3(t)

]
,

S3,a(t) =
1

16
[
−9N3(t +1)+27N3(t)

]
, t ∈ R .

3.2.2 The case d = 1, r = 2, M = 1 and s = 3

Consider the Hermite cubic splines defined as

ϕ1(t) =


(t +1)2(1−2t), t ∈ [−1,0]
(1− t)2(1+2t), t ∈ [0,1]
0, |t|> 1

and ϕ2(t) =


(t +1)2t, t ∈ [−1,0]
(1− t)2t, t ∈ [0,1]
0, |t|> 1

.

They are stable generators for the space V 2
ϕ1,ϕ2

(see Ref. [12]). Consider the sampling
period M = 1 and the systems L j, j = 1,2,3 , defined by

L1 f (t) :=
∫ t+1/3

t
f (u)du , L2 f (t) := L1 f

(
t +

1
3
)
, L3 f (t) := L1 f

(
t +

2
3
)
.

Since the functions L jϕk, j = 1,2,3 and k = 1,2 , have compact support, then the
entries of the 3× 2 matrix G(z) in (29) are Laurent polynomials and we can try
to search an 2× 3 matrix a(z) := [a1(z),a2(z),a3(z)] satisfying (30) with Laurent
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polynomials entries also. This leads to reconstruction functions S j,a, j = 1,2,3 , with
compact support. Proceeding as in [17] we obtain in V 2

ϕ1,ϕ2
the following sampling

formula:

f (t) = ∑
n∈Z

3

∑
j=1

L j f (n)S j,a(t−n) , t ∈ R ,

where the sampling functions, according to (32), are

S1,a(t) :=
85
44

ϕ1(t)+
1

11
ϕ1(t−1)+

85
4

ϕ2(t)−ϕ2(t−1) ,

S2,a(t) :=
−23
44

ϕ1(t)−
23
44

ϕ1(t−1)− 23
4

ϕ2(t)+
23
4

ϕ2(t−1) ,

S3,a(t) :=
1

11
ϕ1(t)+

85
44

ϕ1(t−1)+ϕ2(t)−
85
4

ϕ2(t−1) , t ∈ R .

3.3 L2-approximation properties

Consider an r×s matrix a(x) :=
[
a1(x),a2(x), . . . ,as(x)

]
with entries ak, j ∈L∞[0,1)d ,

1 ≤ k ≤ r, 1 ≤ j ≤ s, and satisfying (20). Let S j,a be the associated reconstruction
functions, j = 1,2, . . . ,s , given in Theorem 2. The aim of this section is to show
that if the set of generators Φ satisfies the Strang-Fix conditions of order `, then the
scaled version of the sampling operator

Γa f (t) :=
s

∑
j=1

∑
α∈Zd

(L j f )(Mα)S j,a(t−Mα) , t ∈ Rd ,

gives L2- approximation order ` for any smooth function f (in a Sobolev space).
In do doing, we take advantage of the good approximation properties of the scaled
space σ1/hV 2

Φ
, where for h > 0 we are using the notation: σh f (t) := f (ht), t ∈ Rd .

The set of generators Φ = {ϕk}r
k=1 is said to satisfy the Strang-Fix conditions

of order ` if there exist r finitely supported sequences bk : Zd → C such that the
function ϕ(t) = ∑

r
k=1 ∑α∈Zd bk(α)ϕk(t −α) satisfies the Strang-Fix conditions of

order `, i.e.,

ϕ̂(0) 6= 0, Dβ
ϕ̂(α) = 0, |β |< `, α ∈ Zd \{0} . (36)

We denote by W `
2 (Rd) := { f : ‖Dγ f‖2 < ∞ , |γ| ≤ `} the usual Sobolev space, and

by | f |`,2 := ∑|β |=` ‖Dβ f‖2 the corresponding seminorm of a function f ∈W `
2 (Rd).

When 2` > d we identify f ∈W `
2 (Rd) with its continuous choice (see [1]).

It is well-known that if Φ satisfies the Strang-Fix conditions of order `, and
the generators ϕk satisfy a suitable decay condition, the space V 2

Φ
provides L2-

approximation order ` for any function f regular enough. For instance, Lei et al.
proved in [32, Theorem 5.2] the following result: If a set Φ = {ϕk}r

k=1 of stable
generators satisfies the Strang-Fix conditions of order `, and the decay condition
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ϕk(t) = O
(
[1 + |t|]−d−`−ε

)
for each k = 1,2, . . . ,r and some ε > 0, then, for any

f ∈W `
2 (Rd), there exists a function fh ∈ σ1/hV 2

Φ
such that

‖ f − fh‖2 ≤C | f |`,2 h` , (37)

where the constant C does not depend on h and f .
In this section we assume that all the systems L j, j = 1,2, . . . ,s, are of type (a),

i.e., L j f = f ∗h j, belonging the impulse response h j to the Hilbert space L 2(Rd).
Recall that a Lebesgue measurable function h : Rd −→ C belongs to the Hilbert
space L 2(Rd) if

|h|2 :=
(∫

[0,1)d

(
∑

α∈Zd

|h(t−α)|
)2

dt
)1/2

< ∞ .

Notice that L 2(Rd)⊂ L1(Rd)∩L2(Rd). For f ∈ L2(Rd) and h ∈L 2(Rd), the fol-
lowing inequality holds:

∥∥{h ∗ f (α)}
α∈Zd

∥∥
2 ≤ |h|2 ‖ f‖2 (see [26, Theorem 3.1]);

thus the sequence of generalized samples {(L j f )(Mα)}
α∈Zd , j=1,2,...,s belongs to

`2(Zd) for any f ∈ L2(Rd).
First we note that the operator Γa :

(
L2(Rd),‖ · ‖2

)
−→

(
V 2

Φ
,‖ · ‖2

)
given by

(Γa f )(t) := (detM)
s

∑
j=1

∑
α∈Zd

(L j f )(Mα)S j,a(t−Mα) , t ∈ Rd ,

is a well-defined bounded operator onto V 2
Φ

. Besides, Γd f = f for all f ∈V 2
Φ

.
Under appropriate hypotheses we prove that the scaled operator Γ h

a := σ1/hΓaσh

approximates, in the L2-norm sense, any function f in the Sobolev space W `
2 (Rd) as

h→ 0+. Specifically we have:

Theorem 6. Assume 2` > d and that all the systems L j satisfy L j f = f ∗ h j with
h j ∈L 2(Rd), j = 1, . . . ,s. Then,

‖ f −Γ
h

a f‖2 ≤ (1+‖Γa‖) inf
g∈σ1/hV 2

Φ

‖ f −g‖2, f ∈W `
2 (Rd),

where ‖Γa‖ denotes the norm of the sampling operator Γa. If the set of gener-
ators Φ = {ϕk}r

k=1 satisfies the Strang-Fix conditions of order ` and, for each
k = 1,2, . . . ,r , the decay condition ϕk(t) = O

(
[1+ |t|]−d−`−ε

)
for some ε > 0, then

‖ f −Γ
h

a f‖p ≤C | f |`,2 h` , for all f ∈W `
2 (Rd),

where the constant C does not depend on h and f .

Proof. Using that Γ h
a g = g for each g ∈ σ1/hV 2

Φ
then, for each f ∈ L2(Rd) and

g ∈ σ1/hV 2
Φ

, Lebesgue’s Lemma [13, p. 30] gives

‖ f −Γ
h

a f‖2 ≤ ‖ f −g‖2 +‖Γ h
a g−Γ

h
a f‖2 ≤ (1+‖Γa‖) inf

g∈σ1/hV 2
Φ

‖ f −g‖2 ,
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where we have used that ‖Γ h
a ‖ = ‖Γa‖ for h > 0. Now, for each f ∈W `

2 (Rd) and
h > 0, there exists a function fh ∈σ1/hV 2

Φ
such that (37) holds, from which we obtain

the desired result. ut

More results on approximation by means of generalized sampling formulas can
be found in Refs. [15, 18].
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12. Dahmen, W., Han, B., Jia, R. Q., Kunoth, A.: Biorthogonal multiwavelets on the interval:

cubic Hermite spline. Constr. Approx. 16, 221–259 (2000)
13. DeVore, R., Lorentz, G.: Constructive Approximation. Springer-Verlag, Berlin (1993)
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18. Garcı́a, A.G., Muñoz-Bouzo, M.J., Pérez-Villalón, G.: Regular multivariate sampling and

approximation in Lp shift-invariant spaces. J. Math. Anal. Appl. 380, 607–627 (2011)



Generalized sampling in L2(Rd) shift-invariant subspaces 27
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