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Abstract

This work intends to serve as an introduction to sampling theory. Ba-
sically, sampling theory deals with the reconstruction of functions through
their values on an appropriate sequence of points by means of sampling
expansions involving these values. Reproducing kernel Hilbert spaces are
suitable spaces for sampling purposes since evaluation functionals are con-
tinuous. As a consequence, the recovery of any function from a sequence
of its samples depends on the basis properties of the reproducing kernel at
the sampling points.

1 Why are RHSKs suitable spaces for sampling

purposes?

Roughly speaking, sampling theory deals with the reconstruction of functions
through their values (samples) on an appropriate sequence of points by means
of sampling expansions involving these values. This is not always possible: for
instance, a continuous function f on R is not completely determined by a sequence
{f(tn)} of its samples. As a consequence, one needs to impose some additional
condition on the function f . Hence, f must belong to some suitable spaces. For
example, assume that the function f belongs to a Hilbert space H of functions
on Ω (generally, a subset of R or C) such that any evaluation functional Et :
f ∈ H 7→ f(t) ∈ C is bounded, i.e., the space H is a reproducing kernel Hilbert
space (RKHS henceforth). Via Riesz representation theorem, for each t ∈ Ω there
exists a unique kt ∈ H such that f(t) = 〈f, kt〉H for every f ∈ H. In this manner,
the stable reconstruction of any f ∈ H from the sequence of samples {f(tn)} at
{tn} ⊂ Ω depends on whether the sequence {ktn} is a frame for H. Recall that
a sequence {xn} is a frame for a separable Hilbert space H if there exist two
constants A,B > 0 (frame bounds) such that

A‖x‖2 ≤
∑
n

|〈x, xn〉|2 ≤ B‖x‖2 for all x ∈ H .
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Given a frame {xn} for H the representation property of any vector x ∈ H as a
series x =

∑
n cn xn is retained, but, unlike the case of Riesz (orthonormal) bases,

the uniqueness of this representation is sacrificed. Suitable frame coefficients
cn which depend continuously and linearly on x are obtained by using the dual
frames {yn} of {xn}, i.e., {yn}n∈Z is another frame for H such that

x =
∑
n

〈x, yn〉xn =
∑
n

〈x, xn〉yn for each x ∈ H . (1)

In particular, frames in H includes orthonormal and Riesz bases for H. Recall
that a Riesz basis in a separable Hilbert space H is the image of an orthonormal
basis by means of a bounded invertible operator. Any Riesz basis {xn} has a
unique biorthogonal (dual) Riesz basis {yn}, i.e., 〈xn, ym〉H = δn,m, such that the
expansions (1) hold for every x ∈ H. An orthonormal basis is a self-dual Riesz
basis. For more details and proofs see (Christensen, 2003; Young, 2001).

In case the sequence {ktn} forms a frame for the RKHS H, and a dual frame
{Sn(t)} is available (a difficult problem in general), the sampling formula in H

f(t) =
∑
n

〈f, kt〉H Sn(t) =
∑
n

f(tn)Sn(t) , t ∈ Ω

holds. Notice that convergence in a RKHS H of functions defined on Ω implies
pointwise convergence in Ω. For simplicity, in what follows only orthonormal
and Riesz bases will be considered. An easy and straightforward sampling result
involving orthonormal bases is the following:

Theorem 1. (Sampling theorem in a RKHS)
Let H be a RKHS of functions defined on a subset Ω with reproducing kernel k.
Assume that there exists a sequence {tn}∞n=1 ⊂ Ω such that {k(·, tn)}∞n=1 is an
orthogonal basis for H. Then, any f ∈ H can be expanded as

f(t) =
∞∑
n=1

f(tn)
k(t, tn)

k(tn, tn)
, t ∈ Ω , (2)

with convergence absolute and uniform on subsets of Ω where the function t 7→
k(t, t) is bounded.

Proof. This result follows from the expansion of f ∈ H in the orthonormal basis{
k(·, tn)/

√
k(tn, tn)

}∞
n=1

. Indeed, for each f ∈ H we obtain

f =
∞∑
n=1

〈
f,

k(·, tn)√
k(tn, tn)

〉
H

k(·, tn)√
k(tn, tn)

=
∞∑
n=1

f(tn)
k(·, tn)

k(tn, tn)
in H .

Now, the convergence in norm in a RKHS H implies pointwise convergence in
Ω which is uniform on subsets of Ω where the function t 7→ k(t, t) is bounded.
Moreover, since an orthonormal basis is an unconditional basis, the above sam-
pling series is pointwise unconditionally convergent for each t ∈ Ω and hence
absolutely convergent.
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The standard Hilbert space `2(N) is a RKHS with reproducing kernel k
the Kronecker delta, i.e., k(m,n) = δm,n, m,n ∈ N. In this case, for any
{x(m)}∞m=1 ∈ `2(N) formula (2) trivially reads: x(m) =

∑∞
n=1 x(n) δm,n, m ∈ N.

Any finite dimensional euclidean space of functions defined on Ω is a RKHS;
next we give two interesting examples in this finite dimensional setting:

Trigonometric polynomials

Consider the space HN of 2π-periodic trigonometric polynomials of degree ≤
N . HN is a closed subspace of L2[−π, π] endowed with the usual inner prod-
uct. An orthonormal basis for HN is given by the set of exponential complex
{eikt/

√
2π}Nk=−N . Therefore, the reproducing kernel for HN is

kN(t, s) =
1

2π

N∑
k=−N

eik(t−s) =
1

2π
DN(t− s) ,

where DN denotes the N -th Dirichlet kernel (Partington, 1997, p. 9)

DN(t) :=
N∑

k=−N

eikt =

{
sin(N+ 1

2
)t

sin t
2

if t ∈ R \ 2πZ
2N + 1 if t ∈ 2πZ

At the points sn = 2πn
2N+1

∈ [−π, π], −N ≤ n ≤ N , the sequence
{
kN(·, sn)

}N
n=−N

is an orthogonal basis for HN since〈
kN(·, sn), kN(·, sm)

〉
L2[−π,π] = kN(sm, sn) =

1

2π

sin π(m− n)

sin π(m−n)
2N+1

=
2N + 1

2π
δmn .

A direct application of the sampling formula (2) gives

p(t) =
1

2N + 1

N∑
n=−N

p
( 2πn

2N + 1

)sin
(
2N+1

2

)(
t− 2πn

2N+1

)
sin 1

2

(
t− 2πn

2N+1

) , t ∈ [−π, π)

for every trigonometric polynomial p(t) =
∑N

k=−N cke
ikt in HN . This interpola-

tion formula goes back to (Cauchy, 1841).

Orthogonal polynomials

Another important class of examples is given by finite families of orthogonal
polynomials on an interval of the real line. Consider, as an example, the particular
case of the Legendre polynomials {Pn}∞n=0 defined, for instance, by means of their
Rodrigues formula

Pn(t) =
1

2nn!

dn

dtn
[
(t2 − 1)n

]
, n = 0, 1, . . . .
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It is known that they form an orthogonal basis for L2[−1, 1] and that ‖Pn‖2 =
(n+ 1

2
)−1.

Consider the finite subspace HN of L2[−1, 1] spanned by {P0, P1, . . . , PN}.
The Christoffel-Darboux formula for Legendre polynomials gives its reproducing
kernel

kN(t, s) =
N∑
n=0

(n+
1

2
)Pn(t)Pn(s) =

2N + 1

2

PN+1(t)PN(s)− PN(t)PN+1(s)

t− s
.

Note that

kN(t, t) =
2N + 1

2

[
P ′N+1(t)PN(t)− P ′N(t)PN+1(t)

]
.

We seek points {sn}Nn=0 in [−1, 1] such that kN(sm, sn) = 0 for m 6= n, i.e.,

PN+1(sm)

PN(sm)
=
PN+1(sn)

PN(sn)
.

In particular we can take for {sn}Nn=0 the N + 1 simple roots of PN+1 in (−1, 1).

Thus, for every f(t) =
∑N

k=0 ck

√
(k + 1

2
)Pk(t) the finite sampling formula

f(t) =
N∑
n=0

f(sn)
PN+1(t)

(t− sn)P ′N+1(sn)
, t ∈ R

holds. This formula is nothing but Lagrange interpolation formula for the samples
{f(sn)}Nn=0. In general, one can take as sampling points {sn}Nn=0 the N+1 simple
roots of the polynomial PN+1(t)− cPN(t) in (−1, 1), where c ∈ R. The details on
orthogonal polynomials can be found in (Sansone, 1959; Szego, 1991).

2 A paradigmatic example: Paley-Wiener spaces

A function f ∈ L2(R) is said to be band-limited to the interval [−π, π] if its

Fourier transform f̂ vanishes outside [−π, π], i.e., f̂ is supported in [−π, π]. The
space of band-limited functions to [−π, π] is known in the mathematical literature
as the Paley-Wiener space and denoted by PWπ. That is,

PWπ :=
{
f ∈ L2(R) : supp f̂ ⊆ [−π, π]

}
.

• The space PWπ is a closed subspace of L2(R) since the Fourier transform
F : L2(R) −→ L2(R) is a unitary operator and PWπ = F−1

(
L2[−π, π]

)
; the

space L2[−π, π] is identified to a closed subspace of L2(R) by extending to 0 on R
the functions of L2[−π, π]. Here, the Fourier transform is defined in L1(R)∩L2(R)

as f̂(w) := 1√
2π

∫∞
−∞ f(t) e−iwt dt, and extended to L2(R) in the usual way.
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• By using the inverse Fourier transform, any f ∈ PWπ can be expressed as

f(t) =
1√
2π

∫ π

−π
f̂(w)eiwt dw =

〈
f̂ ,

e−iwt√
2π

〉
L2[−π,π] , t ∈ R . (3)

Cauchy-Schwarz’s inequality and Parseval equality, ‖f‖L2(R) = ‖f̂‖L2[−π,π], give,
for every t ∈ R,

|f(t)| ≤ ‖f̂‖L2[−π,π]‖
e−iwt√

2π
‖L2[−π,π] = ‖f‖L2(R) , f ∈ PWπ .

In other words, evaluation functionals are bounded on PWπ, which consequently

is a RKHS. Its reproducing kernel is kπ(t, s) =
sin π(t− s)
π(t− s)

, t, s ∈ R; indeed,

using Plancherel-Parseval theorem

f(s) =
〈
f̂ ,

e−iws√
2π

〉
L2[−π,π] =

〈
f,

sinπ(· − s)
π(· − s)

〉
L2(R) , s ∈ R .

Notice that

F−1
(e−iws√

2π
χ[−π,π](w)

)
(t) =

sin π(t− s)
π(t− s)

, t ∈ R .

• Since the sequence
{

e−inw√
2π

}
n∈Z

is an orthonormal basis for L2[−π, π] and F−1

is a unitary operator we obtain that the sequence{sin π(t− n)

π(t− n)

}
n∈Z

(4)

is an orthonormal basis for the Paley-Wiener space PWπ.

• Moreover, having in mind that kπ(t, t) = 1 for all t ∈ R, formula (2) yields the
famous Shannon’s sampling theorem (Shannon, 1949):

Theorem 2. (Shannon’s sampling theorem)
Any function f ∈ PWπ, i.e., band-limited to [−π, π], can be recovered from the
sequence of its samples

{
f(n)

}
n∈Z by means of the formula

f(t) =
∞∑

n=−∞

f(n)
sin π(t− n)

π(t− n)
, t ∈ R . (5)

The convergence of the series is absolute and uniform on R.

Another proof of the above theorem is the following (Hardy, 1941): Given

f ∈ PWπ, the expansion of its Fourier transform f̂ ∈ L2[−π, π] with respect to

the orthonormal basis
{

e−inw/
√

2π
}∞
n=−∞

for L2[−π, π] gives

f̂ =
∞∑

n=−∞

〈f̂ , e−inw√
2π
〉 e−inw√

2π
=

∞∑
n=−∞

f(n)
e−inw√

2π
in L2[−π, π] . (6)

5



The inverse Fourier transform F−1 in (6) gives

f =
∞∑

n=−∞

f(n)F−1
(e−inw√

2π
χ[−π,π](w)

)
=

∞∑
n=−∞

f(n)
sin π(t− n)

π(t− n)
in L2(R) .

The convergence properties come again since PWπ is a RKHS.

• Shannon’s sampling formula is an orthonormal expansion in PWπ; Parseval’s
identity says that ‖f‖2 =

∑∞
n=−∞ |f(n)|2 for all f ∈ PWπ. In other words, the

energy Ef := ‖f‖2 of the band-limited function f ∈ PWπ is contained in its
samples

{
f(n)

}
n∈Z. The following commutative diagram goes into the meaning

of the sampling formula in PWπ:

f ∈ PWπ
F−−−→ f̂ ∈ L2[−π, π]

S
y yP

{f(n)}n∈Z ∈ `2(Z)
F−−−→ f̂p ∈ L2

p[−π, π]

All mappings included in this diagram are unitary operators:

(a) S denotes the sampling mapping with sampling period Ts = 1.

(b) P is the 2π-periodization mapping which extends a function f̂ in [−π, π] to
the whole R with period 2π.

(c) The other two mappings are, respectively, the functional Fourier transform in
L2(R) and the Fourier transform in `2(Z), defining the latter as F({an})(w) :=∑∞

n=−∞ an
e−inw√

2π
.

The situation described by the diagram is depicted in Figure 1:

F−−−→

S
y yP

F−−−→

Figure 1: Time-frequency interpretation of Shannon’s sampling theorem

• As the space PWπ is a RKHS contained in the Hilbert space L2(R), the repro-
ducing formula when applied to any f ∈ L2(R) gives its orthogonal projection
onto PWπ

PPWπf(s) =
〈
f,

sinπ(· − s)
π(· − s)

〉
L2(R) =

(
f ∗ sinc

)
(s) , s ∈ R ,
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where ∗ means the convolution operator and sinc denotes the cardinal sine func-
tion sinc t := sinπt/πt, t ∈ R.

• The crucial feature in PWπ is that the sampling period is Ts = 1 and it is not
relevant the points where the samples are taken. In fact, any function f ∈ PWπ

can be recovered from the sequence of samples
{
f(n + a)

}∞
n=−∞, for a fixed a ∈

R. Observe that
{

e−i(n+a)w/
√

2π
}
n∈Z

is also an orthonormal basis for L2[−π, π]

which goes, via F−1, onto the orthonormal basis
{sin π(t− n− a)

π(t− n− a)

}
n∈Z

for PWπ.

The expansion of any f ∈ PWπ with respect to this basis yields the new sampling
formula

f(t) =
∞∑

n=−∞

f(n+ a)
sin π(t− n− a)

π(t− n− a)
, t ∈ R .

• Shannon’s sampling formula (5) is nothing but a Lagrange-type interpolation
series. Indeed, formula (5) can be rewritten as

f(t) =
∞∑

n=−∞

f(n)
(−1)n sin πt

π(t− n)
=

∞∑
n=−∞

f(n)
P (t)

P ′(n)(t− n)
, t ∈ R .

where P (t) := sinπt, t ∈ R.

• In general, one can consider the Paley-Wiener space PWπσ, σ > 0, of band-
limited functions to [−πσ, πσ] defined as

PWπσ :=
{
f ∈ L2(R) : supp f̂ ⊆ [−πσ, πσ]

}
.

In this case the associated sampling period is Ts = 1/σ. Indeed, for f ∈ PWπσ

define g(t) := f(t/σ). Since ĝ(w) = σf̂(σw), the function g ∈ PWπ. Therefore

g(t) = f(t/σ) =
∞∑

n=−∞

f(n/σ)
sin π(t− n)

π(t− n)
, t ∈ R .

The change of variable t/σ = s gives, for any f ∈ PWπσ, the sampling formula

f(s) =
∞∑

n=−∞

f(n/σ)
sinπ(σs− n)

π(σs− n)
, s ∈ R .

The reproducing kernel for PWπσ is kπσ(t, s) = σ sincσ(t− s), t, s ∈ R.

• Usually, the band of frequencies is centered at 0 since this is the case for real
band-limited functions. Indeed, for a real valued function f one has |f̂(w)|2 =

f̂(w)f̂(w) = f̂(w)f̂(−w), i.e., it is an even function. Let f be a function in L2(R)
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band-limited to the interval [w0−π,w0+π]. Since ĝ(w) = f̂(w+w0), the function
g(t) := e−iw0tf(t) is band-limited to the interval [−π, π]. As a consequence

g(t) = e−iw0tf(t) =
∞∑

n=−∞

e−iw0nf(n)
sin π(t− n)

π(t− n)
, t ∈ R ,

from which the sampling formula for f reads

f(t) =
∞∑

n=−∞

f(n) eiw0(t−n) sin π(t− n)

π(t− n)
, t ∈ R .

Undersampling and oversampling

If one samples a function f in PWπ with a general sampling period Ts > 0, the
question arises whether it is possible to reconstruct it from its samples {f(nTs)}.
It is indeed possible in the case where 0 < Ts ≤ 1, i.e., sampling the signal at a
frequency higher than that given by its bandwidth [−π, π]. For sampling periods
Ts > 1, we cannot reconstruct the signal due to the aliasing phenomenon, which
will be explained below.

Firstly, it is easy to study the relationship between to sample f and to pe-
riodize its Fourier transform f̂ . To this end, consider the sequence of samples
{f(nTs)}n∈Z taken from a function f ∈ PWπ with a sampling period Ts > 0. Let

f̂p be the 2π
Ts

-periodized version of f̂ , i.e., f̂p(ω) =
∑∞

n=−∞ f̂
(
ω + 2π

Ts
n
)
.

Obviously, f̂p is a 2π
Ts

-periodic function which belongs to L2[0, 2π
Ts

]. Its Fourier

expansion with respect to the orthonormal basis
{√

Ts
2π

e−imTsω
}
m∈Z of L2[0, 2π

Ts
]

has Fourier coefficients

cm =

√
Ts
2π

∫ 2π
Ts

0

f̂p(ω)eimTsωdω =

√
Ts
2π

∫ 2π
Ts

0

∞∑
n=−∞

f̂
(
ω +

2π

Ts
n
)
eimTsωdω

=

√
Ts
2π

∞∑
n=−∞

∫ 2π
Ts

0

f̂
(
ω +

2π

Ts
n
)
eimTsωdω , m ∈ Z .

The change of variable ω + 2π
Ts
n = x allows us to obtain

cm =

√
Ts
2π

∞∑
n=−∞

∫ 2π
Ts

(n+1)

2π
Ts
n

f̂(x)eimTsxdx =

√
Ts
2π

∫ π

−π
f̂(x)eimTsxdx

=
√
Tsf(mTs) .

Thus, the Fourier expansion for f̂p is

f̂p(ω) =
∞∑

n=−∞

f̂
(
ω +

2π

Ts
n
)

= Ts

∞∑
m=−∞

f(mTs)
e−imTsω√

2π
. (7)
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Formula (7) is the so-called Poisson summation formula applied to f̂ with period
2π/Ts. It says that:

The Fourier transform of the sequence {f(mTs)}m∈Z, i.e., the sampled function, is
precisely (up to a scale factor) the 2π

Ts
-periodized version of the Fourier transform

f̂ of f .

• In the oversampling case, where 0 < Ts ≤ 1, the Fourier transform f̂ of f can
be recovered from the Fourier transform of the sampled function. Hence, the
function f can be also recovered. In terms of Shannon sampling theorem, the
explanation is easy: if a function is band-limited to the interval [−π, π], is also
band-limited to any interval [−πσ, πσ] with σ ≥ 1. This situation is depicted in
Figure 2:

F−→

Figure 2: Oversampling case

• In the undersampling case, where Ts > 1, we cannot obtain the Fourier trans-
form of f from the Fourier transform of the sampled function because the copies
of f̂ overlap in f̂p. Hence, it is impossible to recover the function from its samples.
The alluded overlap produces the aliasing phenomenon, i.e., some frequencies go
under the name of another ones. As pointed out in (Hamming, 1973), this is a
familiar phenomenon to the watchers of TV and western movies. As the stage
coach starts up, the wheels start going faster and faster, but then they gradually
slow down, stop, go backwards, slow down, stop, go forward, etc. This effect is
due solely to the sampling the picture makes of the real scene. The undersampling
situation is depicted in Figure 3:

F−→

Figure 3: Undersampling case

This undersampling/oversampling discussion clarifies the crucial role of the

critical Nyquist period which is given by Ts = 1/σ whenever supp f̂ ⊆ [−πσ, πσ].

Robust reconstruction: oversampling technique. The actual computation
of the cardinal series presents some numerical difficulties since the cardinal sine
function behaves like 1/t as |t| → ∞. An easy example is the given by the
numerical calculation of f(1/2), for a function f in PWπ, from a noisy sequence
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of samples {f(n)+δn}. The error in this case
∣∣∣∑n

(−1)nδn
π(n− 1

2
)

∣∣∣, even when all |δn| ≤ δ,

could be infinity.
One way to overcome this difficulty is the oversampling technique, i.e., sam-

pling the signal at a frequency higher than that given by its bandwidth. In this
way we obtain sampling functions converging to zero at infinity faster than the
cardinal sine functions. Indeed, consider the band-limited function

f(t) =
1√
2π

∫ πσ

−πσ
F (ω) eiωt dω with F ∈ L2[−πσ, πσ] and σ < 1 .

Extending F to be zero in [−π, π] \ [−πσ, πσ], we have

F (ω) =
∞∑

n=−∞

f(n)
e−inω√

2π
in L2[−π, π] .

Let θ(ω) be a smooth function taking the value 1 in [−πσ, πσ], and 0 outside
[−π, π]. As a consequence,

F (ω) = θ(ω)F (ω) =
∞∑

n=−∞

f(n)θ(ω)
e−inω√

2π
in L2[−π, π] ,

and the sampling expansion

f(t) =
∞∑

n=−∞

f(n)Sθ(t− n) , t ∈ R ,

holds, where Sθ(t) is the inverse Fourier transform F−1 of the function θ(w)/
√

2π.
Consequently, Sθ(t−n) = F−1[θ(ω) e−inω/

√
2π](t). Furthermore, using the prop-

erties of the Fourier transform, as smoother θ is, the faster the decay of Sθ is as
|t| → ∞. However, the new sampling functions {Sθ(t − n)}∞n=−∞ are no longer
orthogonal and they do not belong to PWπσ.

Next, let us consider an illustrative example. Take σ = 1− ε with 0 < ε < 1,
and consider for θ(w) the trapezoidal function

θ(ω) =


1 si |ω| ≤ π(1− ε),
1

ε

(
1− |ω|

π

)
si π(1− ε) ≤ |ω| ≤ π,

0 si |ω| ≥ π.

One can easily obtain Sθ(t) =
sin επt

επt

sin πt

πt
, t ∈ R, which behaves like 1/t2 as

|t| → ∞. The corresponding sampling expansion takes the form

f(t) =
∞∑

n=−∞

f(n)
sin επ(t− n)

επ(t− n)

sin π(t− n)

π(t− n)
, t ∈ R .

In this example, if each sample f(n) is subject to an error δn such that |δn| ≤
δ, then the total error in the above calculated f(t) is bounded by a constant
depending only on δ and ε (Partington, 1997, p. 211).
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The Paley-Wiener space PWπ as a RKHS of entire functions

Any function f ∈ PWπ can be extended to any z ∈ C as

f(z) =
1√
2π

∫ π

−π
f̂(ω)eizωdω . (8)

This extended function f is proved to be a continuous function on C by using
a standard argument allowing interchange the limit with the integral. Taking
γ : [a, b] −→ C a closed curve in C, the integral∫

γ

f(z) dz =
1√
2π

∫ b

a

(∫ π

−π
f̂(ω)eiγ(t)ωdω

)
γ′(t)dt

is shown to be zero by interchanging the order of the integrals. Hence, Morera’s
theorem says that f is an entire function.

Moreover, f is a function of exponential type at most π, i.e., f satisfies an
inequality |f(z)| ≤ Aeπ|z| for all z ∈ C and some positive constant A. It follows
from (8) by using the Cauchy-Schwarz inequality. Indeed, for z = x+ iy ∈ C one
has

|f(x+ iy)| ≤ 1√
2π

∫ π

−π
|f̂(ω)| e−yω dω ≤ eπ|y|√

2π

∫ π

−π
|f̂(ω)| dω ≤ eπ|z|‖f‖PWπ .

Conversely, Paley-Wiener theorem, whose proof can be found, for instance, in
(Young, 2001, p. 101) says us that these properties characterize the space PWπ:

Theorem 3. (Paley-Wiener theorem) Let f be an entire function such that
|f(z)| ≤ Ceπ|z|, for any z ∈ C, and f |R ∈ L2(R). Then there exists a function
F ∈ L2[−π, π] such that

f(z) =
1√
2π

∫ π

−π
F (w) e−izwdw , z ∈ C .

Consequently, PWπ ≡
{
f ∈ H(C) : |f(z)| ≤ Aeπ|z|, f |R ∈ L2(R)

}
. Consider-

ing the space PWπ as a RKHS of entire functions, its reproducing kernel is given
by

kπ(z, w) = sinc(z − w) , z, w ∈ C ,

since

f(w) =
〈
f̂ ,

e−iw·√
2π

〉
L2[−π,π] =

〈
f,

sinπ(· − w)

π(· − w)

〉
L2(R)

for any w ∈ C .
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Irregular sampling: Paley-Wiener-Levinson’s theorem

Let {tn}n∈Z be a sequence of real numbers such that D := supn∈Z |tn − n| < 1/4;
hence, by 1

4
-Kadec’s theorem (Young, 2001, p. 42) the sequence

{
e−itnw/

√
2π
}
n∈Z

is a Riesz basis for L2[−π, π]. Consider its dual Riesz basis {hn}n∈Z in L2[−π, π];

given f ∈ PWπ, expand its Fourier transform f̂ ∈ L2[−π, π] with respect to
{hn}n∈Z obtaining

f̂ =
∞∑

n=−∞

〈f̂ , e−itnw/
√

2π〉hn =
∞∑

n=−∞

f(tn)hn in L2[−π, π] .

The inverse Fourier transform F−1 gives in PWπ the sampling formula

f(t) =
∞∑

n=−∞

f(tn) (F−1hn)(t) , t ∈ R . (9)

The problem consists of identifying the sampling functions (F−1hn)(t). By using
entire functions techniques, Paley-Wiener-Levinson (Levinson, 1940) proved that

(F−1hn)(t) =
G(t)

(t− tn)G′(tn)
where G(t) = (t− t0)

∞∏
n=1

(
1− t

tn

)(
1− t

t−n

)
.

In other words, sampling formula (9) is again a Lagrange-type interpolation series.
As a consequence, the sequences{sin π(t− tn)

π(t− tn)

}
n∈Z

and
{ G(t)

(t− tn)G′(tn)

}
n∈Z

form a pair of dual Riesz bases for PWπ.
The irregular sampling studied here corresponds to that associated with the

time-jitter error, i.e., tn = n + δn, n ∈ Z. The general case concerns with real
sequences {tn}n∈Z for which there exist constants 0 < A ≤ B <∞ such that

A‖f‖2 ≤
∑
n∈Z

|f(tn)|2 ≤ B‖f‖2 for all f ∈ PWπ .

This means that the sequence
{

e−itnw/
√

2π
}
n∈Z is a frame for L2[−π, π]. See,

for instance, Refs. (Benedetto, 1992; Duffin and Schaeffer, 1952; Feichtinger and
Gröchenig, 1994).

Sampling by using samples of the derivative

It is possible to recover any function f ∈ PWπ by using its samples {f(2n)}n∈Z
taken at half the due sampling rate, along with the samples {f ′(2n)}n∈Z taken
from its first derivative. Namely,

12



Any function f ∈ PWπ can be recovered from the two sets of samples {f(2n)}n∈Z
and {f ′(2n)}n∈Z by means of the formula

f(t) =
∞∑

n=−∞

{
f(2n) + (t− 2n)f ′(2n)

}[sin π
2
(t− 2n)

π
2
(t− 2n)

]2
, t ∈ R .

For the proof, let f̂ ∈ L2[−π, π] be the Fourier transform of f ; having in mind
its 2π-periodic extension, the following Fourier expansions in L2[−π, π] hold

f̂(ω) =
∞∑

n=−∞

f(n)
e−inω√

2π
and f̂(ω − π) =

∞∑
n=−∞

(−1)nf(n)
e−inω√

2π
.

As a consequence, the function S(ω) =
1

2
[f̂(ω) + f̂(ω − π))] admits the Fourier

expansion

S(ω) =
∞∑

n=−∞

f(2n)
e−i2nω√

2π
in L2[0, π] .

In a similar way, since

f ′(t) =
1√
2π

∫ π

−π
iωf̂(ω)eitωdω , t ∈ R ,

the following expansions in L2[−π, π] hold

iωf̂(ω) =
∞∑

n=−∞

f ′(n)
e−inω√

2π
and i(ω − π)f̂(ω − π) =

∞∑
n=−∞

(−1)nf ′(n)
e−inω√

2π
.

Hence, the function R(ω) =
i

2
[ωf̂(ω) + (ω − π)f̂(ω − π)] admits the Fourier

expansion

R(ω) =
∞∑

n=−∞

f ′(2n)
e−i2nω√

2π
in L2[0, π] .

Grouping both expansions, for ω ∈ [0, π], we have(
S(ω)
R(ω)

)
=

1

2

(
1 1
iω i(ω − π)

)(
f̂(ω)

f̂(ω − π)

)
,

or, inverting the matrix(
f̂(ω)

f̂(ω − π)

)
=

2i

π

(
i(ω − π) −1
−iω 1

)(
S(ω)
R(ω)

)
. (10)
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Introducing this splitting of f̂ into (3) yields after some calculations

f(t) =
1√
2π

∫ π

−π
f̂(ω)eitωdω

=
1√
2π

∫ 0

−π

∞∑
n=−∞

[ 2

π
(ω + π)f(2n) +

2i

π
f ′(2n)

]e−i2nω√
2π

eitωdω

+
1√
2π

∫ π

0

∞∑
n=−∞

[ 2

π
(π − ω)f(2n)− 2i

π
f ′(2n)

]e−i2nω√
2π

eitωdω

=
1√
2π

∞∑
n=−∞

{∫ π

−π

√
2

π

(
1− |ω|

π

)
f(2n)ei(t−2n)ωdω

+
2

π

∫ π

−π

(−i sgnω)√
2π

f ′(2n)ei(t−2n)ωdω
}
, t ∈ R .

The desired result comes by using the Fourier duals

sinc

(
t

2

)
sin

(
πt

2

)
=

1√
2π

∫ π

−π

(−i sgnω)√
2π

eitωdω

and

sinc2
(
t

2

)
=

1√
2π

∫ π

−π

√
2

π

(
1− |ω|

π

)
eitωdω .

For derivative sampling, see (Higgins, 1999) and references therein.

3 Generalizing Paley-Wiener spaces

Paley-Wiener spaces can be generalized in different ways; two of these genera-
lizations are briefly developed:

1. The first one consists in substituting the Hilbert space L2[−π, π] and the
Fourier kernel in expression (3) by an arbitrary Hilbert spaceH and a kernel
K : Ω 3 t 7→ K(t) ∈ H, and thus consider, for each x ∈ H, the function
fx(t) =

〈
x,K(t)

〉
H, t ∈ Ω.

2. According to Shannon’s sampling theorem, Paley-Wiener space PWπ is a
shift-invariant subspace in L2(R) generated by the sinc function, i.e., it can
be described as PWπ ≡

{∑
n∈Z an sinc(t− n) where {an} ∈ `2(Z)

}
. Other

generalization consists of replacing the sinc function by another generating
function ϕ ∈ L2(R) having better properties.

Of course, these generalizations do not cover all the possible situations. For
example, de Branges spaces are RKHSs of entire functions which also generalize
Paley-Wiener spaces. Sampling results in de Branges spaces can be found in
(Garćıa et al., 2013; Nashed and Walter, 1991).
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3.1 RKHSs obtained by duality from an arbitrary Hilbert
space

Let H be a separable Hilbert space and let K : Ω −→ H be an H-valued map-
ping. Assume that there exists a sequence {tn}∞n=1 in Ω such that the sequence
{K(tn)}∞n=1 is an orthogonal basis for H. Under these circumstances:

1. Consider the set of functions defined on Ω

HK :=
{
fx : Ω→ C : fx(t) = 〈x,K(t)〉H where x ∈ H

}
.

The map TK : H → HK defined by TK(x) := fx is a linear and bijective mapping.
To obtain that TK is one-to-one, suppose that fx = 0 in HK . In particular,

fx(tn) = 0 = 〈x,K(tn)〉H for all n ∈ N ,

which implies x = 0 since the sequence {K(tn)}∞n=1 is a complete set in H.

2. The space HK endowed with the inner product 〈fx, fy〉HK := 〈x, y〉H is a
Hilbert space which inherits the hilbertian structure of H. Moreover, it is a
RKHS; indeed, for each t ∈ R, the evaluation functional at t ∈ Ω is bounded
since Cauchy-Schwarz’s inequality gives

|fx(t)| = |〈x,K(t)〉H| ≤ ‖x‖H‖K(t)‖H = ‖fx‖HK‖K(t)‖H , f ∈ HK .

Besides, the mapping TK is, obviously, a unitary operator between the spaces H
and HK . The reproducing kernel in HK is

k(t, s) = 〈K(s), K(t)〉H , t, s ∈ Ω .

Indeed, for each fixed s ∈ Ω, the function k(·, s) = TK
(
K(s)

)
belongs to HK , and

the reproducing property

fx(s) = 〈x,K(s)〉H = 〈TK(x), TK
(
K(s)

)
〉HK = 〈fx, k(·, s)〉HK , s ∈ Ω , fx ∈ HK ,

holds. One can find these spaces, for instance, in (Parzen, 1970; Saitoh, 1997).

3. Since 〈k(·, tn), k(·, tm)〉HK = k(tm, tn) = 〈K(tn), K(tm)〉H, it is easy to check
that the sequence

{
K(tn)

}∞
n=1

is an orthogonal basis for the auxiliary Hilbert

space H if and only if the sequence
{
k(·, tn)

}∞
n=1

is an orthogonal basis for the
RKHS HK . Thus, in this context, for any f ∈ HK the sampling formula (2) reads

f(t) =
∞∑
n=1

f(tn)
〈K(tn), K(t)〉H
‖K(tn)‖2

, t ∈ Ω .

The convergence is absolute and uniform on subsets of Ω where the function
t 7→ ‖K(t)‖H is bounded. The above sampling formula is nothing but an abstract
version of the Kramer sampling theorem; see (Garćıa et al., 2014; Higgins, 1996;
Zayed, 1993), for instance.
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Some illustrative examples

Next, some examples following the above construction are exhibited; for the omit-
ted details see (Garćıa, 2000; Garćıa, 2002):

(i) Consider the Hilbert space H := L2[0, π], the mapping Kc : R −→ L2[0, π]
such that Kc(t)(w) := cos tw, w ∈ [0, π], and the sequence {tn} = {0}∪N. Then,
any function f defined as

f(t) =
〈
F,Kc(t)

〉
L2[0,π]

=

∫ π

0

F (w) cos tw dw , t ∈ R ,

for some F ∈ L2[0, π], can be recovered from the sampling formula

f(t) = f(0)
sin πt

πt
+

2

π

∞∑
n=1

f(n)
(−1)n t sin πt

t2 − n2
, t ∈ R .

The reproducing kernel of the corresponding HKc space is

kc(t, s) =
1

t2 − s2
[
t sin πt cosπs− s cosπt sin πs

]
, t, s ∈ R .

(ii) Analogously, considering Ks(t)(w) := sin tw, w ∈ [0, π], and the sequence
{tn} = N one obtains the sampling formula

f(t) =
2

π

∞∑
n=1

f(n)
(−1)nn sinπt

t2 − n2
, t ∈ R ,

for any function f having the form

f(t) =
〈
F,Ks(t)

〉
L2[0,π]

=

∫ π

0

F (w) sin tw dw , t ∈ R ,

where F ∈ L2[0, π].
Functions in example (i) coincide with even functions in the Paley-Wiener

PWπ, whilst functions in example (ii) coincide with odd functions in PWπ. In
fact, the orthogonal sum PWπ = HKc ⊕HKs holds.

(iii) The Fourier–Bessel set
{√

w Jν(wtn)
}∞
n=1

is known to be an orthogonal basis
for L2[0, 1], where tn is the n-th positive zero of the Bessel function Jν(t), ν > −1.
The Bessel function of order ν is given by

Jν(t) =
tν

2νΓ(ν + 1)

[
1 +

∞∑
n=1

(−1)n

n!(1 + ν) · · · (n+ ν)

(
t

2

)2n ]
, t ∈ R .

For any t ∈ R, consider Kν(t) ∈ L2[0, 1] defined by Kν(t)(w) :=
√
wt Jν(wt),

w ∈ [0, 1], and the sequence of zeros {tn}∞n=1. Any function f defined as

f(t) =
〈
F,Kν(t)

〉
L2[0,1]

=

∫ 1

0

F (w)
√
wt Jν(wt) dw , t ∈ R ,
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where F ∈ L2[0, 1], can be recovered by means of the sampling formula

f(t) =
∞∑
n=1

f(tn)
2
√
t tnJν(t)

J ′ν(tn)(t2 − t2n)
, t ∈ R .

The reproducing kernel of the corresponding RKHS Hν is

kν(s, t) =

√
st

t2 − s2
[
tJν+1(t)Jν(s)− sJν+1(s)Jν(t)

]
, t, s ∈ R .

(iv) Finally, consider K : R −→ L2[−π, π] defined by K(t)(w) := ei(t
2+w2−wt),

w ∈ [−π, π]. For the sampling points {tn} = Z the sequence {K(tn)}n∈Z is an
orthogonal basis for L2[−π, π]. Hence, any function f given as

f(t) =
〈
F,K(t)

〉
L2[−π,π] =

∫ π

−π
F (w) e−i(t

2+w2−wt) dw , t ∈ R ,

where F ∈ L2[−π, π], can be expressed as the sampling series

f(t) =
∞∑

n=−∞

f(n) e−i(t
2−n2) sinπ(t− n)

π(t− n)
, t ∈ R .

The above formula is the corresponding sampling formula valid for band-limited
functions to the interval [−π, π] in the sense of the fractional Fourier transform
(FRFT).

3.2 Shift-invariant subspaces in L2(R)

Although Shannon’s sampling theory has had an enormous impact, it has a num-
ber of problems, as pointed out in (Unser, 2000): It relies on the use of ideal filters

(in other words, in Figure 1, f̂ can be obtained from f̂p multiplying by the char-
acteristic function χ[−π,π]); the band-limited hypothesis is in contradiction with
the idea of a finite duration signal (f is an entire function); the band-limiting
operation generates Gibbs oscillations; and finally, the sinc function has a very
slow decay at infinity which makes computation in the signal domain very ineffi-
cient. Moreover, many applied problems impose different a priori constraints on
the type of signals. For this reason, sampling and reconstruction problems have
been investigated in spline spaces, wavelet spaces, and general shift-invariant
spaces; signals are assumed to belong to some shift-invariant space of the form:
V 2
ϕ := spanL2{ϕ(t− n)}n∈Z where the function ϕ in L2(R) is called the generator

of V 2
ϕ .

Let V 2
ϕ := span

{
ϕ(· − n)

}
n∈Z be a shift-invariant space with stable generator

ϕ ∈ L2(R) which means that the sequence {ϕ(· − n)}n∈Z is a Riesz basis for V 2
ϕ .
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The sequence {ϕ(· − n)}n∈Z is a Riesz sequence in L2(R), i.e., a Riesz basis
for V 2

ϕ if and only if there exist two positive constants 0 < A ≤ B such that

A ≤
∑
k∈Z

|ϕ̂(w + k)|2 ≤ B , a.e. w ∈ [0, 1] ,

where ϕ̂ stands for the Fourier transform of ϕ
(
here, it is defined in L1(R)∩L2(R)

as ϕ̂(w) :=
∫∞
−∞ ϕ(t) e−2πiwtdt

)
(Christensen, 2003, p. 143). Thus we have that

V 2
ϕ =

{∑
n∈Z

an ϕ(· − n) : {an} ∈ `2(Z)
}
⊂ L2(R) .

It is also assumed that the functions in the shift-invariant space V 2
ϕ are continuous

on R. This is equivalent to say that the generator ϕ is continuous on R and the
function t 7→

∑
n∈Z |ϕ(t−n)|2 is bounded on R as proved in (Zhou and Sun, 1999).

Thus, any f ∈ V 2
ϕ is defined on R as the pointwise sum f(t) =

∑
n∈Z anϕ(t− n)

for each t ∈ R.
On the other hand, the space V 2

ϕ is the image of the Hilbert space L2[0, 1] by
means of the isomorphism

Tϕ : L2[0, 1] −→ V 2
ϕ

{e−2πinx}n∈Z 7−→ {ϕ(t− n)}n∈Z ,

which maps the orthonormal basis {e−2πinw}n∈Z for L2[0, 1] onto the Riesz basis
{ϕ(t− n)}n∈Z for V 2

ϕ . For any f ∈ V 2
ϕ there exists F ∈ L2[0, 1] such that

f(t) = TϕF (t) =
∑
n∈Z

〈F, e−2πinx〉ϕ(t− n) =
〈
F,
∑
n∈Z

ϕ(t− n)e−2πinx
〉

=
〈
F,Kt

〉
, t ∈ R ,

(11)

where, for each t ∈ R, the function Kt ∈ L2[0, 1] is given by

Kt(x) :=
∑
n∈Z

ϕ(t− n)e−2πinx =
∑
n∈Z

ϕ(t+ n)e−2πinx = Zϕ(t, x) . (12)

Here, Zϕ(t, x) :=
∑

n∈Z ϕ(t+ n)e−2πinx is just the Zak transform of the function
ϕ; see (Christensen, 2003, p. 215) for properties and uses of the Zak transform.
As a consequence, the shift-invariant space V 2

ϕ is a RKHS in L2(R).
The mapping Tϕ has the shifting property Tϕ(e−2πimxF )(t) = (TϕF )(t − m),
t ∈ R and m ∈ Z.
From (11), for a ∈ [0, 1) fixed and m ∈ Z we have

f(a+m) = 〈F,Ka+m〉L2[0,1] = 〈F, e−2πimxKa〉L2[0,1] , F = T −1ϕ f .

In order to obtain a sampling formula in V 2
ϕ , we look for sampling points of the

form tm := a+m, m ∈ Z, such that the sequence
{

e−2πimxKa(x)
}
m∈Z is a Riesz

basis for L2[0, 1].
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Recalling that the multiplication operator mg : L2[0, 1] → L2[0, 1] given as
the product mg(f) = gf is well-defined if and only if g ∈ L∞[0, 1], and then, it is
bounded with norm ‖mg‖ = ‖g‖∞, the following result comes out:

The sequence of functions
{

e−2πimxKa(x)
}
m∈Z is a Riesz basis for L2[0, 1] if

and only if the inequalities 0 < ‖Ka‖0 ≤ ‖Ka‖∞ < ∞ hold, where ‖Ka‖0 :=
ess infx∈[0,1] |Ka(x)| and ‖Ka‖∞ := ess supx∈[0,1] |Ka(x)|. Moreover, its dual Riesz

basis is
{

e−2πimx/Ka(x)
}
m∈Z.

In particular, the sequence
{

e−2πimxKa(x)
}
m∈Z is an orthonormal basis in

L2[0, 1] if and only if |Ka(x)| = 1 a.e. in [0, 1].
Let a be a real number in [0, 1) such that 0 < ‖Ka‖0 ≤ ‖Ka‖∞ < ∞. Any

F ∈ L2[0, 1] can be expanded as

F =
∑
m∈Z

〈F, e−2πimxKa〉
e−2πimx

Ka(x)
=
∑
m∈Z

f(a+m)
e−2πimx

Ka(x)
in L2[0, 1] . (13)

Having in mind the shifting property of Tϕ,〈
e−2πimx/Ka(x), Kt(x)

〉
L2[0,1]

= Tϕ
(
e−2πimx/Ka(x)

)
(t) = Sa(t−m) , t ∈ R ,

where Sa := Tϕ
(
1/Ka

)
∈ V 2

ϕ . Thus, the isomorphism Tϕ acting in formula (13)
gives the sampling result in V 2

ϕ :

Any function f ∈ V 2
ϕ can be expanded as the sampling series

f(t) =
∞∑

n=−∞

f(a+ n)Sa(t− n) , t ∈ R . (14)

The convergence of the series in (14) is absolute and uniform on R since the
function t 7→ ‖Kt‖2 =

∑
n∈Z |ϕ(t− n)|2 is bounded on R.

Some examples involving B-splines

Consider the space V 2
ϕ for the generator ϕ := Nm where Nm is the B-spline of

order m − 1, i.e., Nm := N1 ∗ N1 ∗ · · · ∗ N1 (m times) and N1 := χ[0,1], i.e.,
the characteristic function of the interval [0, 1]. It is known that the sequence{
Nm(t−n)

}
n∈Z is a Riesz basis for V 2

Nm
(Christensen, 2003, p. 69). For example,

the following sampling formulas hold:

(1) For the quadratic spline N3 we have ZN3(t, x) = t2

2
+
[
3
4
− (t− 1

2
)2
]
z+ (1−t)2

2
z2

where z = e−2πix. Thus, for t = 0 we have ZN3(0, x) = z
2
(1+z) which vanishes at

x = 1/2. However, for t = 1/2 we have ZN3(1/2, x) = 1
8
(1 + 6z + z2); according

to (12) we deduce 0 < ‖K1/2‖0 ≤ ‖K1/2‖∞ < ∞. Hence, for any f ∈ V 2
N3

, we
have

f(t) =
∞∑

n=−∞

f(n+
1

2
)S1/2(t− n) , t ∈ R ,
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where S1/2(t) =
√

2
∑∞

n=−∞(2
√

2 − 3)|n+1| N3(t − n). This function has been
obtained from the Laurent expansion of the function 8(1 + 6z + z2)−1 in the
annulus 3− 2

√
2 < |z| < 3 + 2

√
2.

(2) Since ZN4(0, x) = z
6

(
1 + 4z + z2

)
= z

6
(z − λ)(z − 1/λ) where z = e−2πix and

λ =
√

3− 2, according to (12) we deduce that 0 < ‖K0‖0 ≤ ‖K0‖∞ <∞. Thus,
for any f ∈ V 2

N4
we have

f(t) =
∞∑

n=−∞

f(n)S0(t− n) , t ∈ R ,

where S0(t) =
√

3
∑∞

n=−∞(−1)n(2−
√

3)|n| N4(t− n+ 2). To obtain the function
S0 we have used the Laurent expansion of the function 6(z + 4z2 + z3)−1 in the
annulus 2−

√
3 < |z| < 2 +

√
3.

4 Some final comments

In this introductory work the basic sampling theory in a RKHS is exhibited. The
leitmotiv was the classical sampling theory in Paley-Wiener spaces, which includes
the well-known Shannon’s sampling theorem, and some of its generalizations,
including shift-invariant spaces in L2(R). In the literature one can find nice
surveys (Butzer, 1983; Higgins, 1985; Jerri, 1977; Nashed and Walter, 1991; Yao,
1967) or books (Higgins, 1996; Zayed, 1993) on this subject.

Although sampling theory is not only privative of RKHSs (Butzer and Stens,
1992; Higgins, 1996; Nashed and Sun, 2010, 2012; Zhang and Zhang, 2011) this
is the setting where the theory becomes more natural. Besides, another impor-
tant topic concerns to sampling and interpolation in spaces of analytic functions,
including, in particular, RKHSs of entire functions; see, for instance, (Seip, 2004)
and the references therein.

The first sampling result in shift-invariant spaces was published in 1982 (Wal-
ter, 1982); it was the beginning of a significant literature on sampling and recon-
struction problems in spline spaces, wavelet spaces, and general shift-invariant
spaces. Moreover, in many common situations, the available data are samples
of some filtered (convolved) versions f ∗ hj, j = 1, 2, . . . , s, of the function f
itself, where each average function hj reflects the characteristics of an acquisition
device. This leads to generalized or average sampling in shift-invariant spaces;
notice that derivative sampling in Paley-Wiener spaces is a particular case. See
(Aldroubi and Gröchenig, 2001; Aldroubi, 2002; Aldroubi et al., 2005; Garćıa and
Pérez-Villalón, 2006; Garćıa et al., 2012; Kang and Kwon, 2011; Sun and Zhou,
2003; Zhou and Sun, 1999) and the references therein.
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