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Preface 

When introducing a new book on sampling theory, the author should first justify 
the need for yet another title in an already long list of books and survey papers 
published on the subject. In spite of the fact that a rich mathematical literature in 
sampling already exists, the main reason for this book is to build a new narrative 
from my own experience in sampling research. Since it is almost impossible to be 
exhaustive, it is necessary to make a choice of contents giving a justification for this 
selection. Namely, my choice is guided by the idea that entitles the book: The Use 
of Frames in Sampling Theory. 

Roughly speaking, sampling theory deals with the reconstruction of functions f , 
belonging, in general, to a Hilbert space . H of continuous functions, through their 
values (samples) .{f (tn)} at an appropriate sequence of points .{tn} by means of a 
sampling expansion .f (t)  = ∑

n f (tn) Sn(t) involving these values. Frequently, the 
functions to be recovered belong to a reproducing kernel Hilbert space where the 
point values can be expressed in terms of the reproducing kernels .{ktn} as the inner 
products .f (tn) = 〈f, ktn〉. This leads us to study the properties of the sequence . {ktn} 
in the Hilbert space . H. 

As we will see through this book, another similar situation is very frequent: 
the available data is a sequence .{(Lf )(tn)}, where . L represents the linear device 
involved in the sampling process. The above samples can be expressed as a sequence 
of inner products .{〈x, xn〉} in an auxiliary Hilbert space . K, where .x ∈ K is an 
element univocally related to the function .f ∈ H to be recovered by means of an 
operator .T : K → H—an isomorphism in general–, and .{xn} is a fixed sequence in 
. K. This auxiliary space . K will be usually an . !2 or .L2-space. 

Thus, the task is to recover x (and consequently f ) uniquely from the available 
data .{〈x, xn〉} in a stable way, which means that the norm . ‖{〈x, xn〉} − {〈y, xn〉}‖!2 

is small if and only if .‖x − y‖K is small. 
This leads us to the concept of frame in a separable Hilbert space: the sequence 

.{xn} should be a frame for the auxiliary space . K. Given a frame .{xn} for . K, any  

.x ∈ K can be expanded as the sum .x = ∑
n〈x, xn〉 yn where the sequence .{yn} is a 

vii 
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dual frame of .{xn}. Finally, the relationship .f = Tx will lead to a sampling formula 
like .f = ∑

n(Lf )(tn) Sn(t), where .Sn = Tyn. 
Whenever the space . H where the sampling works has a predetermined structure, 

an appropriate choice, if possible, of the dual frame .{yn} will lead us to a sampling 
formula sharing the same structure as the functions in . H. This is the case for shift-
invariant spaces. 

The main aim of this book is to exhibit how the use of frames, including Riesz 
and orthonormal bases, in the above sampling schemes comprises a variety of 
examples: from the classical Shannon sampling theorem up to average sampling in 
certain subspaces of Hilbert-Schmidt operators. Thus, the book constructs a unified 
narrative which helps to understand how sampling theory works. Naturally, it does 
not intend to be exhaustive and, as a consequence, some important topics are not 
included. 

Although the ideas in the book are partially borrowed from some previous 
research of the author and his collaborators, this does not mean a mere cut and 
paste from previous work. The author has tried to give a unified and comprehensive 
treatment on the subject by completing, when necessary, the presentation of previous 
research. 

The book is divided into seven chapters whose contents we now briefly describe: 
In Chap. 1, sampling theory is presented in a non-rigorous way including a short 

historical note on who is considered its father, namely, Claude E. Shannon, without 
forgetting other important authors, such as J. M. Whittaker, V. Kotel’nikov, K. Ogura 
or I. Someya. Surely, the vast number of its applications has helped the growth of 
sampling theory in other related fields, not least in mathematics itself. In the second 
part of the chapter, an almost self-contained introduction to frame theory is included. 
Frame theory is the main mathematical axis around which the other chapters are 
constructed. Of course, frames include, as particular cases, both orthonormal and 
Riesz bases which probably lead to the more known examples. 

Chapter 2 includes a brief introduction to reproducing kernel Hilbert spaces 
(hereafter RKHSs) leading to the study of an important example of spaces in 
sampling theory: Paley-Wiener spaces .PWπσ . Thus, this chapter may be also useful 
as a mathematical introductory course in sampling theory, avoiding perhaps some 
specialized topics. The needed mathematical background just consists of a classical 
course in harmonic analysis and a basic knowledge of Hilbert spaces, functional 
analysis and complex analysis. 

Chapter 3 is a non-standard collection of results concerning regular sampling 
in shift-invariant subspaces of .L2(Rd ). The first part is devoted to the search of 
Riesz bases giving Shannon-type sampling formulas in shift-invariant subspaces of 
.L2(Rd ). To this end, we follow the main technique in the book. More precisely, 
in the particular .L2(R) case by searching Riesz bases expansions in an auxil-
iary space—here .L2(0, 1)—having the available (regular) samples as coefficients. 
Finally, the inverse Fourier transform—the operator . T in this case—gives the 
desired sampling results. 

The second part of Chap. 3 deals with a topic that does not usually appear in the 
sampling literature. Very often, in interpolation theory, input data are transformed 
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by using differences of the given data: thus we are skipping irrelevant information 
when changes between neighbors are not very significant. The (regular) Shannon-
type sampling formulas obtained are (infinite) interpolation formulas; in intervals 
where a function does not change too much, the available data can be reduced by 
using regular samples with a bigger sampling period along with their differences. 
New sampling formulas can be obtained in a straightforward way by using the same 
technique as in Sect. 3.1. 

Finally, the third part is devoted to generalizing shift-invariant subspaces: the 
shift operator can be replaced by another unitary operator U , leading to the concept 
of U -invariant subspaces. Some results are proven in this new setting that directly 
apply to the shift-invariant case. 

Chapter 4 concerns to the so-called Kramer sampling theorem. The Kramer 
sampling theorem has been the cornerstone for a significant mathematical literature 
which has flourished for the past few years on the topic of sampling theorems 
associated with differential or difference problems. In this chapter, we take a unified 
and abstract point of view, enlightened with a variety of examples belonging to 
different areas in mathematics: orthogonal polynomials and moment problems, 
difference and differential problems, entire functions, reproducing kernel Hilbert 
spaces, Lagrange and Hermite interpolation, semi-inner-product Banach spaces, or 
Hilbert spaces of distributions with reproducing distribution. In short, this chapter 
shows, by means of a unified approach, how sampling theory is transversal to other 
mathematical fields. 

In Chap. 5, a generalized sampling theory is proposed. It is based on dealing with 
convolution systems on discrete abelian groups as a unifying strategy. On the one 
hand, working in locally compact abelian groups allows us to gather all the classical 
groups along with their products covering most of practical situations. On the other 
hand, we see that most of linear sampling devices can be treated as convolution 
systems defined on appropriate spaces. Thus a sampling theory is developed by 
following the master line that guides the proposal of this book. A comprehensive 
list of examples showcases the richness of the followed approach. 

Chapter 6 is devoted to the study of sampling-related frames in finite-dimensional 
U -invariant subspaces of a separable Hilbert space. In applications, frames in finite-
dimensional spaces are required and, as in finite dimension a frame is nothing but a 
spanning set of vectors, finite frames require control of condition numbers and over 
the spectrum of certain matrices. Thus, frame theory, firstly considered as a part 
of applied harmonic analysis, meets matrix analysis and numerical linear algebra. 
As an important example, the theory developed in this chapter encompasses the 
problem of periodic extensions of finite signals. The chapter includes also a section 
devoted to finite sampling associated with a non-abelian group defined as the knit 
product of two groups. 

Finally, Chap. 7 is focused on the average sampling problem in shift-invariant-
like subspaces of Hilbert-Schmidt operators in .L2(Rd ). This problem is motivated 
by the recovery of a time-varying system from its diagonal channel samples, a 
signal processing problem appearing in orthogonal frequency-division multiplexing. 
Hilbert-Schmidt operators are the simplest examples of time-varying systems whose 
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models are, in general, pseudo-differential operators. Having in mind the properties 
of certain operators (including the Hilbert-Schmidt ones), we can define shift-
invariant-like subspaces of Hilbert-Schmidt operators and average samples as in the 
classical .L2(Rd ) setting. The diagonal channel samples appear as a particular case. 
Following the general steps outlined in Chap. 5, we obtain the desired sampling 
results. These results are intimately related with topics belonging to time-frequency 
analysis. 

A list of references closes each chapter of the book. It does not intend to be 
exhaustive and the author apologizes in advance for any important omission. The 
list includes, for obvious reasons, several references due to the author and his 
collaborators. 

I would like to mention my sampling students: P. E. Fernández-Moncada, H. R. 
Fernández-Morales, M. A. Hernández-Medina, G. Pérez-Villalón and A. Portal, and 
also my sampling coauthors in papers cited in this book: W. N. Everitt, A. Ibort, 
K. H. Kwon, L. L. Littlejohn, J. Moro, M. J. Muñoz-Bouzo, A. Ortega, F. H. 
Szafraniec and A. Zayed. Thanks a lot, it was my pleasure to do mathematics with 
all of you. 

I would like also to express here an anonymous acknowledgment to those authors 
who, over the years, taught me sampling theory, and the most important thing, to 
enjoy the mathematics that come with it. 

Most of the results stated throughout this book are well-known or have been 
previously published. The author, at this stage, only claims originality in the way 
they have been set out. He will be satisfied if this contributes to make sampling 
theory better known to the overall scientific community. 

Finally, I would like to thank Prof. Francisco Marcellán for encouraging me to 
carry out this nice project. Many thanks go also to the anonymous reviewers for their 
critical reading of the book; their comments and suggestions helped me to improve 
both the presentation and the contents of the book. 

Leganés-Madrid, Spain Antonio García García 
April 2024 
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