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† Departamento de Matemáticas, Universidad Carlos III de Madrid, Avda. de la
Universidad 30, 28911 Leganés-Madrid, Spain.
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Abstract

As a starting point we assume to have a continuous frame in a Hilbert space with
respect to a measure space. This frame inherits a unitary structure from a unitary
representation of a locally compact abelian group in the Hilbert space. In this
setting we state a continuous sampling result for the range space of the associated
analysis frame operator. The data sampling are functions also defined by using
the underlying unitary structure. The result is illustrated by using continuous
frames in Paley-Wiener and shift-invariant spaces generated by translates of fixed
functions. A sampling strategy working only for discrete abelian groups is also
discussed.
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1 Introduction

The aim of this note is to state some basic ideas on continuous stable sampling by using
continuous frames in a Hilbert space with respect to a measure space. Here, the data
sampling are functions instead of sequences obtained from the function to be recovered.
Thus, in this general setting, we could include the tomography related with the Radon
transform, the continuous wavelet or Gabor transforms, etc. We restrict ourselves to
the case where the continuous frame has a unitary structure given by the action of a
locally compact abelian (LCA) group G on a Hilbert space H by means of a unitary
representation g 7→ U(g) of the group G on H. The sampling will be carried out in
the range space of the analysis operator associated with the continuous frame, a closed
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subspace of L2(G). Recall that a unitary representation of G on H is a continuous
homomorphism of G into the group of unitary operators in H. The main features on
continuous frames can be found in a brief included in Section 2. In particular, the
definition of a continuous frame with respect to a measure space is given in Eq. (1)
below.

More specifically, we assume that for a fixed a ∈ H the family {U(t)a}t∈G is a
continuous frame for the Hilbert space Ha := spanH

{
U(t)a

}
t∈G with respect to (G,µ)

where µ denotes the Haar measure associated to the group G. The idea is to recover is
a stable way any function Fx, defined for x ∈ Ha, as Fx(t) =

〈
x, U(t)a

〉
H, t ∈ G, from

a finite set of sampling functions LmFx(t) :=
〈
x, U(t)bm

〉
H, t ∈ G, where bm ∈ Ha for

m = 1, 2, . . . ,M .

In a wide sense the sampling and reconstruction problem consists of the stable re-
covering of any function f ∈ Vsamp, usually a closed subspace of a Hilbert space H,
from some available data Lf = (L1f,L2f, . . . ,LM f) associated with the function f .
This available data Lf could be a sequence of its samples {f(tn)}, a vector sequence of

averages of the function
({
〈f, ψm(· − tn)〉

})M
m=1

, a vector sequence of filtered versions

of a related function f̃ , i.e.,
({
f̃ ∗ ψm)(tn)

})M
m=1

, or whatever data information provid-
ing a stable reconstruction in Vsamp. The last means that the available data provides
an equivalent norm to that in the space Vsamp, i.e., there two exist positive constants
0 < A ≤ B such that A‖f‖2 ≤ ‖Lf‖2 ≤ B‖f‖2 for any f ∈ Vsamp.

In general, this is done by using a suitable representation of the data Lf in an
auxiliary space Vaux where ‖Lf‖ is just the norm of Lf in this space Vaux. For instance,
consider the classical Paley-Wiener space PWπ of bandlimited functions in L2(R) to
the interval [−π, π], i.e.,

PWπ =
{
f ∈ L2(R) : supp f̂ ⊆ [−π, π]

}
,

where f̂ denotes the Fourier transform of f . For each f ∈ PWπ, we have the expres-
sion for the samples f(n) = 1√

2π

〈
f̂ , e−inw

〉
L2[−π,π]

, n ∈ Z. Since { e−inw√
2π
}n∈Z is an

orthonormal basis for L2[−π, π], by using Parseval equality, we get∑
n∈Z
|f(n)|2 = ‖f̂‖2 = ‖f‖2 for any f ∈ PWπ

Finally, the famous WSK sampling formula

f(t) =
∑
n∈Z

f(n) sinc(t− n) , t ∈ R ,

where sinc denotes the sine cardinal function sinπt
πt , is obtained by applying the inverse

Fourier transform F−1 in the expansion of f̂ ∈ L2[−π, π] with respect to the above
orthonormal basis. Besides, PWπ is a reproducing kernel Hilbert space (RKHS here-
after) where convergence in norm implies pointwise convergence. Recall that a RKHS
is a Hilbert space of functions in the same domain where any evaluation functional
Et : f 7→ f(t) is bounded. Usually, this auxiliary space is an L2[a, b] or an `2(Z) space
(see, for instance, Refs. [13, 14] and references therein).
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The above consideration is a general pattern in dealing with sampling and recon-
struction problems. The available data Lf will be expressed in terms of a frame for
the auxiliary space Vaux. For the definition of a (discrete) frame {un} for a separable
Hilbert space H see Eq. (2) below. Given a frame {un} for H the representation prop-
erty of any vector u ∈ H as a series u =

∑
n cn un is retained, but, unlike the case of

Riesz (orthonormal) bases, the uniqueness of this representation is sacrificed. Suitable
frame coefficients cn which depend continuously and linearly on u are obtained by using
the dual frames {vn} of {un}, i.e., {vn}n∈Z is another frame for H such that

u =
∑
n

〈u, vn〉un =
∑
n

〈u, un〉vn for each u ∈ H .

In particular, frames include orthonormal and Riesz bases for H. For more details and
proofs see Ref. [7].

In this paper the vector sampling function Lf will be expressed in terms of a
continuous frame in an auxiliary space. Thus we will deal with continuous frames in a
Hilbert space with respect to a measure space; we include a summary of the main results
along with a set of references on this topic and their most important applications in
Section 2. Continuous and discrete frames share the main needed properties which are
included in the brief. The rest of the paper is organized as follows: Section 3 is devoted
to show as convolution systems is a good strategy in sampling theory which only works
for discrete groups G. In Section 4 we give a continuous sampling result valid for the
range space of the analysis operator of U -structured continuous frames. Finally, this
result is illustrated in the case of continuous frames obtained from translates of fixed
functions in the Paley-Wiener PWπ, or in a principal shift-invariant subspace of L2(R).

2 A brief on continuous frames

Let H be a Hilbert space and let (Ω, µ) be a measure space. A mapping F : Ω→ H is
a continuous frame for H with respect to (Ω, µ) if F is weakly measurable, i.e., for each
f ∈ H the function w 7→ 〈f, F (w)〉 is measurable, and there exist constants 0 < A ≤ B
such that

A‖f‖2 ≤
∫

Ω

∣∣〈f, F (w)〉
∣∣2dµ(w) ≤ B‖f‖2 for each f ∈ H . (1)

The constants A and B are the lower and upper continuous frame bounds respectively.
The mapping F is a tight continuous frame if A = B; a Parseval continuous frame if
A = B = 1. The mapping F is called Bessel if the right hand inequality holds. Along
this paper we refer a continuous frame as the mapping F : Ω → H, or as the family
{F (w)}w∈Ω or {Fw}w∈Ω in the Hilbert space H. The counting measure µ on Ω = N
gives the classical definition of (discrete) frame {fn}∞n=1:

A‖f‖2 ≤
∞∑
n=1

|〈f, fn〉|2 ≤ B‖f‖2 for each f ∈ H . (2)

There are a lot of examples of continuous frames in the mathematical literature; among
them we encounter:
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• Let H ⊂ L2(Ω, µ) be a RKHS (reproducing kernel Hilbert space) of functions
defined on Ω with reproducing kernel kx(t), i.e., f(x) = 〈f, kx〉, x ∈ Ω, for each
f ∈ H. Then, the family {kx}x∈Ω is a Parseval continuous frame for H with
respect to (Ω, µ). Indeed, for each f ∈ H we have∫

Ω
|〈f, kx〉|2dµ(x) =

∫
Ω
|f(x)|2dµ(x) = ‖f‖2 .

• For a fixed non zero function g ∈ L2(Rd), the Gabor system defined as
{
EξTxg :

(x, ξ) ∈ Rd × Rd
}

is a tight continuous frame for L2(Rd) with respect to
(
Rd ×

Rd, dx dξ
)
, where Eξ and Tx denote the modulation and translation operators in

L2(Rd) respectively (see, for instance, Ref. [7]).

• For an admissible function ψ ∈ L2(R), i.e., a function for which the constant

Cψ :=
∫
R
|ψ̂(w)|2
|w| dw < +∞, the wavelet system defined by

{
ψa,b := TbDaψ :

(a, b) ∈ (R\{0})×R
}

is a tight continuous frame for L2(R) with respect to
(
(R\

{0})× R,
dadb

a2

)
, where Tb and Da denote the translation and dilation operators

in L2(R) respectively (see, for instance, Ref. [7]).

• Other examples involve coherent states in physics (Refs. [3, 4]), square-integrable
group representations (Refs. [1, 2]), Gabor/wavelet frames on the sphere (Refs.
[6, 20, 21]), or mixed Gabor/wavelet transform (Ref. [10]).

Associated to a continuous frame there exists a unique operator SF : H → H such
that

〈SF f, g〉 =

∫
Ω
〈f, F (w)〉 〈F (w), g〉dµ(w) , f, g ∈ H .

This operator SF is bounded, self-adjoint, positive and invertible and it is called the
continuous frame operator of F . We use the notation

SF f =

∫
Ω
〈f, F (w)〉F (w) dµ(w) .

For any f ∈ H we have the weakly representations

f = S−1
F SF f =

∫
Ω
〈f, F (w)〉S−1

F F (w)dµ(w) ,

f = SFS
−1
F f =

∫
Ω
〈f, S−1

F F (w)〉F (w)dµ(w) .

The operator TF : L2(Ω, µ)→ H weakly defined by

〈TFϕ, h〉 =

∫
Ω
ϕ(w)〈F (w), h〉dµ(w) , h ∈ H ,

is linear and bounded; it is called the synthesis operator of F . Its adjoint operator
T ∗F : H → L2(Ω, µ) is given by (T ∗Fh)(w) = 〈h, F (w)〉, w ∈ Ω, and it is called the
analysis operator of F . Moreover, SF = TF T

∗
F . In case (Ω, µ) is a σ-finite measure
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space, the mapping F is a continuous frame with respect (Ω, µ) for H if and only if the
operator SF is a bounded invertible operator.

The analysis operator f 7→ 〈f, F (w)〉 defines a linear transform in H which is
bounded and boundedly invertible on its range. In the case of a Gabor system is the so
called short-time Fourier transform, and for a wavelet system is the continuous wavelet
transform.

Let F and G be continuous frames for H with respect to (Ω, µ). We call G a dual
of F if

〈f, g〉 =

∫
Ω
〈f, F (w)〉 〈G(w), g〉 dµ(w) , f, g ∈ H

holds. Thus for any f ∈ H we have the weak representation

f =

∫
Ω
〈f, F (w)〉G(w) dµ(w) .

This is equivalent to TG T
∗
F = IH. In particular, S−1

F F is always a dual of F called the
standard dual frame for F .

A continuous frame F is a Riesz-type frame if F has only one dual. The following
characterization of Riesz-type frame holds, the mapping F is a Riesz-type frame if and
only if RangeT ∗F = L2(Ω, µ), i.e, T ∗F is an isomorphism between H and L2(Ω, µ).

For more details on continuous frames see, for instance, Refs. [3, 5, 9, 12, 16, 19, 22].

3 Convolution systems on locally compact abelian groups
and sampling

Let H be a separable Hilbert space, and let t ∈ G 7→ U(t) ∈ U(H) be a unitary
representation of a LCA group (G,+) on H, i.e., it satisfies that U(t+ s) = U(t)U(s),
U(−t) = U−1(t) = U∗(t) for t, s ∈ G, and the map t 7→ U(t) is strongly continuous for
each t ∈ G.

For a fixed ϕ ∈ H, assume that the family {U(t)ϕ}t∈G is Bessel in H with respect
to (G,µ), where µ = µG denotes the Haar measure in G. We can define elements in H,
in the weak sense, as follows: Consider the sesquilinear form

Ψ : L2(G)×H −→ C

(x, f) 7−→
∫
G
x(t)〈U(t)ϕ, f〉 dµ(t) .

Cauchy-Schwarz’s inequality and the Bessel character shows that Ψ is bounded. As a
consequence of Theorem 2.3.6 in Ref. [18] there exists a unique operator u : L2(G)→ H
such that Ψ(x, f) = 〈u(x), f〉, for all x ∈ L2(G) and f ∈ H. Moreover, ‖u‖ = ‖Ψ‖. As
usual, we will use the notation u(x) =

∫
G x(t)U(t)ϕdµ(t).

Now, we consider N generators Φ = {ϕ1, ϕ2, . . . , ϕN} in H, and we assume in
addition that the family

{
U(t)ϕn

}
t∈G;n=1,2,...,N

is a continuous frame for the closed
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subspace of H defined by VΦ := spanH{U(t)ϕn}t∈G;n=1,2,...,N with respect to (G,µ).
Hence, the closed subspace VΦ of H can be described (in the weak sense) as

VΦ =
{ N∑
n=1

∫
G
xn(t)U(t)ϕn dµ(t) : xn ∈ L2(G), n = 1, 2, . . . , N

}
. (3)

Besides, the mapping defined by

TU,Φ : L2
N (G) −→ VΦ

x = (x1, x2, . . . , xN )> 7−→ u =
N∑
n=1

∫
G
xn(t)U(t)ϕn dµ(t) ,

is a bounded operator from the Hilbert space L2
N (G) := L2(G)×· · ·×L2(G) (N times)

onto VΦ. Indeed, it is bounded since
{
U(t)ϕn

}
t∈G;n=1,2,...,N

is a Bessel family and onto
since it is a continuous frame for VΦ. Moreover, due to the invariance of the Haar
measure µ on G, the operator TU,Φ satisfies the shifting property

TU,Φ
(
Tt x

)
= U(t)TU,Φx , x ∈ L2

N (G) , (4)

where Tt x(s) = x(s− t), t, s ∈ G.

Given M elements ψm in H, m = 1, 2, . . . ,M , non necessarily in VΦ, for each u ∈ VΦ

we define, for m = 1, 2, . . . ,M , the generalized average sampling function as

Lmu(t) :=
〈
u, U(t)ψm

〉
H, t ∈ G . (5)

This definition is motivated by the average sampling in classical shift-invariant sub-
spaces of L2(Rd). The sampling function in (5) can be expressed as the output

of a convolution system. Indeed, for any u =
N∑
n=1

∫
G
xn(t)U(t)ϕndµ(t) in VΦ, and

m = 1, 2, . . . ,M one gets

Lmu(t) =
〈 N∑
n=1

∫
G
xn(s)U(s)ϕndµ(s), U(t)ψm

〉
H

=
N∑
n=1

∫
G
xn(s)〈U(s)ϕn, U(t)ψm〉H =

N∑
n=1

∫
G
xn(s)〈ϕn, U(t− s)ψm〉H

=
N∑
n=1

∫
G
xn(s) am,n(t− s)dµ(s) =

N∑
n=1

(am,n ∗ xn)(t), t ∈ G ,

where am,n(t) := 〈ϕn, U(t)ψm〉H , t ∈ G. Notice that each am,n belongs to L2(G) since
the sequence {U(t)ϕn}t∈G;n=1,2,...,N is, in particular, a Bessel family in H with respect
to (G,µ).

This particular example leads us to introduce, in general, a convolution sampling
procedure in VΦ as follows: Given a matrix A = [am,n] ∈MM×N (L2(G)), i.e., a M ×N
matrix with entries in L2(G), we consider the convolution system defined in L2

N (G) as

A(x) = A ∗ x , x = (x1, x2, . . . , xN )> ∈ L2
N

(G) ,
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where A ∗ x denotes the (matrix) convolution

(A ∗ x)(t) =
∑
s∈G

A(t− s)x(s), t ∈ G .

Note that the m-th entry of A ∗ x is
∑N

n=1(am,n ∗ xn), where xn denotes the n-th

entry of x ∈ L2
N

(G). For u =
∑N

n=1

∫
G xn(t)U(t)ϕn dµ(t) in VΦ we define the sampling

function Lf as

Lu(t) :=
(
L1u(t),L2u(t), . . . ,LMu(t)

)>
= (A ∗ x)(t) =

[
A(x)

]
(t) , t ∈ G .

where x = (x1, x2, . . . , xN )> ∈ L2
N (G).

We say that the convolution sampling procedure Lu(t) =
(
A ∗ x)(t), t ∈ G, defined

in VΦ by means of the convolution system A : L2
N (G)→ L2

M (G) is stable if there exist
two positive constants 0 < α ≤ β such that α‖u‖2 ≤ ‖Lu‖2 ≤ β‖u‖2 for all u ∈ VΦ.

The inequality in the right side is related to the boundedness of the convolution
system A : L2

N (G) → L2
M (G), meanwhile the left one is related to the existence of a

bounded convolution operator B : L2
M (G)→ L2

N (G) such that BA = IL2
N (G), i.e., a left-

inverse bounded convolution system of A. Thus, roughly speaking, we could recover
any function u ∈ VΦ from its sampling function Lu ∈ L2

M (G) in a stable way.
In next section we present in short the results obtained in the case of a countable

discrete abelian group G; more details and examples can be found in Ref. [14].

3.1 The case where G is a countable discrete group

Let (G,+) be a countable discrete abelian group and let T = {z ∈ C : |z| = 1} be the
unidimensional torus. We say that ξ : G 7→ T is a character of G if ξ(g+g′) = ξ(g)ξ(g′)
for all g, g′ ∈ G. We denote ξ(g) = (g, ξ). By defining (ξ+ ξ′)(g) = ξ(g)ξ′(g), the set of
characters Ĝ is a group, called the dual group of G. In case G is a countable discrete
group, its dual group Ĝ is compact (see Ref. [8]). There exists a unique measure, the
Haar measure µ = µ

Ĝ
on Ĝ satisfying µ(ξ + E) = µ(E), for every Borel set E ⊂ Ĝ,

and µ(Ĝ) = 1.
Recall that for x ∈ `1(G) its Fourier transform is defined as

x̂(ξ) :=
∑
g∈G

x(g)(g, ξ) =
∑
g∈G

x(g)(−g, ξ) , ξ ∈ Ĝ .

The Plancherel theorem extends uniquely the Fourier transform on `1(G) ∩ `2(G) to a
unitary isomorphism from `2(G) to L2(Ĝ). For the details see, for instance, Ref. [8].
We will denote the involved Lp spaces as `2(G), `2

N
(G), or `2

M
(G) respectively, and

L∞(Ĝ) ⊂ L2(Ĝ). The following result on the convolution in `2(G) holds [11]: Assume
that a, b ∈ `2(G) and â(ξ) b̂(ξ) ∈ L2(Ĝ). Then the convolution a ∗ b belongs to `2(G)

and â ∗ b(ξ) = â(ξ) b̂(ξ), a.e. ξ ∈ Ĝ.

Whenever G is a countable discrete abelian group, the closed subspace VΦ of H in
(3) can be described as

VΦ =
{ N∑
n=1

∑
t∈G

xn(t)U(t)ϕn : xn ∈ `2(G), n = 1, 2, . . . , N
}
.
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Consider A = [am,n] ∈ MM×N (`2(G)) such that its transfer matrix defined by Â :=

[ âm,n] has entries in L∞(Ĝ). Thus, the convolution system A(x) := A ∗ x defines a
bounded operator A : `2

N
(G)→ `2

M
(G).

It is known that its adjoint operator A∗ : `2
M

(G) → `2
N

(G) is also a bounded
convolution system with associated matrix A∗ = [a∗m,n]> ∈ MN×M (`2(G)), where its

entries are given by the involution a∗m,n(t) = am,n(−t), t ∈ G. By using properties of

the Fourier transform in `2(G), the transfer matrix of A∗ is Â∗(ξ) = Â(ξ)∗, a.e. ξ ∈ Ĝ,
i.e., the transpose conjugate of matrix Â(ξ).

The bounded operator A∗A is invertible if and only if operator A is injective with
a closed range which happens if and only if the constant

δA := ess inf
ξ∈Ĝ

det[Â(ξ)∗Â(ξ)] > 0 . (6)

Therefore, choosing the operator B = (A∗A)−1A∗ we get BA = I`2N (G). The transfer
matrix of B is given by the Moore-Penrose pseudo-inverse

Â(ξ)† =
[
Â(ξ)∗Â(ξ)

]−1
Â(ξ)∗

which has entries in L∞(Ĝ). Moreover, notice that any N ×M matrix B̂(ξ) solution of
B̂(ξ)Â(ξ) = IN a.e. ξ ∈ Ĝ with entries in L∞(Ĝ) can be expressed in terms of Â(ξ)† as

B̂(ξ) := Â(ξ)† + C(ξ)
[
IM − Â(ξ)Â(ξ)†

]
,

where C(ξ) denotes any N ×M matrix with entries in L∞(Ĝ).

The above considerations have an easy interpretation in terms of discrete frames
of translates in `2N (G) as follows. For u = TU,Φx ∈ VΦ consider the sampling function
Lu(t) = (A ∗ x)(t) =

[
A(x)

]
(t), t ∈ G. The m-th component of Lu(t) satisfies

Lmu(t) = [A(x)]m(t) = [A ∗ x]m(t) =
〈
x, Tt a

∗
m

〉
`2
N

(G)
, (7)

where a∗m = (am,1, am,2, . . . , am,N )> ∈ `2
N

(G) denotes the m-th column of the matrix
A∗, the associated matrix of the adjoint operator A∗ of the convolution system A, and
Tt a

∗
m = a∗m(· − t).
As a consequence, the sampling procedure L is stable in VΦ if and only if the

sequence
{
Tt a

∗
m

}
t∈G;m=1,2,...,M

is a (discrete) frame for `2
N

(G). Moreover, the operator
A is its analysis operator.

Therefore, its frame operator A∗A must be a bounded invertible operator. In case,
the operator A is bounded, it will be invertible if and only if δA > 0, where δA is the
constant introduced in Eq. (6).

Now, let B̂ be a matrix in MN×M

(
L∞(Ĝ)

)
such that B̂(ξ) Â(ξ) = IN , a.e. ξ ∈ Ĝ.

Consider the m-th column bm = (b1,m, b2,m, . . . , bN,m)> ∈ `2
N

(G) of the matrix B in

MN×M

(
L2(G)

)
whose transfer matrix is B̂. Note that B is the synthesis operator of

the frame
{
Tt bm

}
t∈G;m=1,2,...,M

, since it can be written as

B(x) = B ∗ x =

M∑
m=1

∑
t∈G

xm(t)Ttbm , x ∈ `2
M

(G) .
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As a consequence, from BA = I`2
N

(G) and Eq. (7), we obtain that the (discrete) frames{
Tt bm

}
t∈G;m=1,2,...,M

and
{
Tt a

∗
m

}
t∈G;m=1,2,...,M

for ∈ `2
N

(G) form a dual pair.

Hence we have x =
∑M

m=1

∑
t∈G

〈
x, Tt a

∗
m

〉
`2
N

(G)
Tt bm for each x ∈ `2

N
(G). Applying

the operator TU,Φ and the shifting property (4) we get a reconstruction formula for any
u ∈ VΦ from its samples

{
Lmu(t)

}
t∈G;m=1,2,...,M

in (7) as

u =

M∑
m=1

∑
t∈G
Lmu(t) TU,Φ

(
Tt bm

)
=

M∑
m=1

∑
t∈G
Lmu(t)U(t)TU,Φbm

=

M∑
m=1

∑
t∈G
Lmu(t)U(t)Sm in H ,

(8)

where the reconstruction functions Sm = TU,Φbm, m = 1, 2, . . . ,M , belong to VΦ.
Moreover, the sequence {U(t)Sm}t∈G;m=1,2,...,M is a (discrete) frame for VΦ.

Notice that the above convolution sampling procedure is stable in VΦ if and only
if the mapping TU,Φ is an isomorphism between the Hilbert spaces `2

N
(G) and VΦ, or

equivalently, the sequence
{
U(t)ϕn

}
t∈G;n=1,2,...,N

is a Riesz basis for VΦ. Furthermore,

under the hypothesis Â ∈ MM×N (L∞(Ĝ)), the existence of a sampling formula like
those in Eq. (8) for VΦ is equivalent to condition δA > 0 in Eq. (6) (see Ref. [14]).

The above study fails whenever the group Ĝ is not compact or, equivalently, the
group G is not discrete. In this case, under the hypothesis Â ∈MM×N (L2(Ĝ)∩L∞(Ĝ))

condition (6) cannot occur since det[Â(ξ)∗Â(ξ)] should be a positive function in L2(Ĝ)
bounded away from zero in Ĝ non compact!

In next section we will study continuous stable sampling in the range space of the
analysis operator associated with a continuous frame {ψ(w)}w∈Ω for a Hilbert space H
with respect to (Ω, µ). This range space is a reproducing kernel Hilbert space (RKHS)
included in L2(Ω, µ) (see, for instance, Ref. [9]).

4 Continuous frames and sampling: a case study

Assume that {ψ(w)}w∈Ω is a continuous frame for a Hilbert space H with respect to
(Ω, µ) such that the mapping w 7→ ψ(w) is weakly continuous. Its analysis operator
T ∗ψ : H → L2(Ω, µ) is a bounded and boundedly invertible operator on its range denoted

as Hψ := Range T ∗ψ. This is a closed subspace of L2(Ω, µ) described as the functions F
such that

H −→ Hψ
f 7−→ Ff : Ff (w) = 〈f, ψ(w)〉H , w ∈ Ω .

Besides Hψ is a RKHS (of continuous functions in Ω) whose reproducing kernel is given
by

kψ(u, v) = 〈ψ(v), S−1
ψ ψ(u)〉H , u, v ∈ Ω ,

9



where S−1
ψ denotes the inverse of the frame operator Sψ associated to {ψ(w)}w∈Ω. That

is, for any Ff ∈ Hψ we have

Ff (u) =

∫
Ω
Ff (v) kψ(u, v) dµ(v) = 〈Ff , kψ(·, u)〉L2(Ω,µ) , u ∈ Ω .

The aim in this section is to obtain a sort of continuous stable sampling theory in case
the continuous frame has a unitary structure.

4.1 Continuous frames with a unitary structure

Let t ∈ G 7→ U(t) ∈ U(H) be a unitary representation of a LCA group (G,+) on a
separable Hilbert space H. Assume that for a fixed a ∈ H the family {U(t)a}t∈G is a
continuous frame for the Hilbert space Ha := spanH

{
U(t)a

}
t∈G with respect to (G,µ)

where µ denotes the Haar measure associated to G. In order to avoid some technical
problems we will assume that G is a σ-compact group; thus its Haar measure will be
σ-finite. For the details see, for instance, Refs. [8, 11].

In this section we consider the functions F in a closed subspace HU ⊂ L2(G) defined
as

Ha ⊂ H −→ HU ⊂ L2(G)
x 7−→ Fx : Fx(t) =

〈
x, U(t)a

〉
H , t ∈ G .

Given M elements bm ∈ Ha, m = 1, 2, . . . ,M , for each F ∈ HU (in the sequel we omit
the subscript x) we define the generalized sampling functions as

LmF (t) :=
〈
x, U(t)bm

〉
H, t ∈ G , m = 1, 2, . . . ,M . (9)

The stable sampling condition reads as: there exist two positive constants 0 < A ≤ B
such that

A‖F‖2 ≤
M∑
m=1

∫
G
|LmF (t)|2dµ(t) ≤ B‖F‖2 , for all F ∈ HU .

Equivalently, the family {U(t)bm}t∈G;m=1,2,...,M is a continuous frame for the Hilbert
space Ha with respect to (G,µ). In order to obtain a structured sampling (reconstruc-
tion) formula for any F ∈ HU we need a dual of the above continuous frame having
the same structure.

Assume that there exist M elements c1, c2, . . . , cM in Ha such that the family
{U(t)cm}t∈G;m=1,2,...,M is a dual of {U(t)bm}t∈G;m=1,2,...,M inHa with respect to (G,µ).
Then, a sampling formula in HU is easily obtained. Indeed, for each x ∈ Ha we have,
in the weak sense

x =
M∑
m=1

∫
G

〈
x, U(s)bm

〉
H U(s)cm dµ(s) .

Therefore, for F (t) = 〈x, U(t)a〉H, t ∈ G, we have

F (t) =

M∑
m=1

∫
G
LmF (s)

〈
U(s)cm, U(t)a

〉
H dµ(s)

=

M∑
m=1

∫
G
LmF (s)Sm(t− s) dµ(s) , t ∈ G ,
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where Sm(u) =
〈
cm, U(u)a

〉
H, u ∈ G, m = 1, 2, . . . ,M . Hence we have obtained the

following continuous sampling result in HU :

Theorem 1. For each F ∈ HU consider its function samples {LmF}m=1,2,...,M defined
in Eq. (9). If the continuous frame {U(t)bm}t∈G;m=1,2,...,M for Ha with respect to (G,µ)
has a dual of the form {U(t)cm}t∈G;m=1,2,...,M , then the sampling formula in HU

F (t) =

M∑
m=1

∫
G
LmF (s)Sm(t− s) dµ(s) , t ∈ G . (10)

holds, where the functions Sm(u) =
〈
cm, U(u)a

〉
H ∈ HU , m = 1, 2, . . . ,M . Moreover,

the family {Sm(· − t)}t∈G forms a continuous frame for HU with respect to (G,µ).

Notice that the above theorem is also valid in case the group G is not abelian; it is
enough to replace Sm(t− s) by Sm(s−1t) in formula (10).

In case {U(t)a}t∈G is a tight continuous frame for Ha with respect to (G,µ) with
constant A > 0, formula (10) applied to F (t) =

〈
x, U(t)a

〉
H, t ∈ G, gives the repro-

ducing formula in HU

F (t) =
1

A

∫
G
F (s) ka(s− t) dµ(s) , s ∈ G ,

where ka(t) =
〈
U(t)a, a

〉
H, t ∈ G.

Next we consider two important toy examples in H = L2(R) involving the unitary
representation [U(t)f ](s) = f(s − t) of the group (R,+) in L2(R). In the first one,
Hsinc = PWπ is the Paley-Wiener space of bandlimited functions to the interval [−π, π]
and, in the second one, Hϕ = V 2

ϕ is a principal shift-invariant subspace generated by
ϕ ∈ L2(R).

4.2 The case of Paley-Wiener spaces

Here, the family
{

sinc(· − x)
}
x∈R is a Parseval continuous frame for the Paley-Wiener

space PWπ = Hsinc ⊂ L2(R) with respect to (R, dx). Due to the reproducing prop-
erty, the Hilbert space HU coincides also with PWπ. Given M functions ϕm ∈ PWπ,
m = 1, 2, . . . ,M , the goal is to characterize the family {ϕm(· − x)}x∈R;m=1,2,...,M as a
continuous frame for PWπ, and to find its duals with the same structure, i.e., having
the form {ψm(·−x)}x∈R;m=1,2,...,M for some ψm ∈ PWπ, m = 1, 2, . . . ,M . For the first
question, by using the Parseval formula in L2(R), we have that

〈f, ϕm(· − x)〉 = 〈f̂(ξ), e−ixξϕ̂m(ξ)〉 =

∫ π

−π
f̂(ξ) ϕ̂m(ξ) eixξ dξ

=
√

2πF−1(f̂ ϕ̂m)(x),

where the Fourier transform, defined as f̂(ξ) = 1√
2π

∫
R f(t)e−iξtdt in L1(R) ∩ L2(R), is

extended to a unitary operator on L2(R) by Plancherel theorem. Hence,∫
R
|〈f, ϕm(· − x)〉|2dx = 2π‖F−1(f̂ ϕ̂m)‖2 = 2π‖f̂ ϕ̂m‖2

= 2π

∫ π

−π
|f̂(ξ) ϕ̂m(ξ)|2dξ .

11



Assume that

0 ≤ Am
2π

:= ess inf
ξ∈[−π,π]

|ϕ̂m(ξ)|2 ≤ ess sup
ξ∈[−π,π]

|ϕ̂m(ξ)|2 :=
Bm
2π

<∞ .

Then, we have

Proposition 1. The family {ϕm(·−x)}x∈R;m=1,2,...,M as a continuous frame for PWπ

with respect to (R, dx) if and only if the constants AM :=
∑M

m=1Am > 0 and BM :=∑M
m=1Bm <∞. Moreover, the bounds AM and BM are the optimal ones.

In particular, the family {ϕm(· − x)}x∈R;m=1,2,...,M is a Parseval continuous frame

for PWπ with respect to (R, dx) if and only if
∑M

m=1 |ϕ̂m(ξ)|2 = 1
2π a.e. ξ ∈ [−π, π].

Concerning the second question, we look for a dual of {ϕm(·−x)}x∈R;m=1,2,...,M having
the form {ψm(· − x)}x∈R;m=1,2,...,M . For any f, g ∈ PWπ it should satisfy

〈f, g〉 =
M∑
m=1

∫
R
〈f, ϕm(· − x)〉 〈g, ψm(· − x)〉 dx

= 2π

M∑
m=1

∫
R
F−1(f̂ ϕ̂m)(x)F−1(ĝ ψ̂m)(x) dx = 2π

M∑
m=1

〈
f̂ ϕ̂m, ĝ ψ̂m

〉
= 2π

〈
f̂ , ĝ

( M∑
m=1

ϕ̂m ψ̂m
)〉

= 〈f̂ , ĝ 〉 .

Hence we derive the following result

Proposition 2. The family {ψm(·−x)}x∈R;m=1,2,...,M is a dual of the continuous frame

{ϕm(· − x)}x∈R;m=1,2,...,M if and only if

M∑
m=1

ϕ̂m(ξ) ψ̂m(ξ) =
1

2π
a.e. ξ ∈ [−π, π].

A dual having the same form always exists; for instance the functions ψm whose Fourier

transforms are ψ̂m(ξ) =
ϕ̂m(ξ)

2π
∑M

n=1 |ϕ̂n(ξ)|2
, a.e. ξ ∈ [−π, π], and m = 1, 2, . . . ,M .

Finally, having in mind Propositions 1–2, from Theorem 1 we get the following
sampling result in PWπ

Corollary 1. Given M fixed functions ϕm ∈ L2(R), for each f ∈ PWπ consider the
sampling functions Lmf(x) := 〈f, ϕm(· − x)〉, x ∈ R, and m = 1, 2, . . . ,M . Assume
that condition

0 < ess inf
ξ∈[−π,π]

M∑
m=1

|ϕ̂mχ[−π,π](ξ)|2 ≤ ess sup
ξ∈[−π,π]

M∑
m=1

|ϕ̂mχ[−π,π](ξ)|2 <∞

holds. Then, there exist M functions ψm ∈ PWπ, m = 1, 2, . . . ,M such that for any
f ∈ PWπ we have the sampling formula

f(t) =
M∑
m=1

∫
R
Lmf(x)ψm(t− x) dx , t ∈ R .
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Proof. Note that the functions ϕm, m = 1, 2, . . . ,M , do not need to belong necessarily
to PWπ. However, we could consider the functions ϕ̃m = F−1(ϕ̂mχ[−π,π]) ∈ PWπ,
m = 1, 2, . . . ,M ; the family {ϕ̃m(· − x)}x∈R;m=1,2,...,M is a continuous frame in PWπ

and proceeding as in Proposition 2 we obtain a dual {ψm(· − x)}x∈R;m=1,2,...,M . Notice
that, for any f ∈ PWπ, we have 〈f, ϕ̃m(· − x)〉 = 〈f, ϕm(· − x)〉, x ∈ R and m =
1, 2, . . . ,M .

4.3 The case of a shift-invariant subspace in L2(R)

Here, we consider Hϕ := V 2
ϕ ⊂ L2(R) the principal shift-invariant subspace of L2(R)

generated by ϕ ∈ L2(R)∩C(R). We assume that the sequence {ϕ(t−n)}n∈Z is a Riesz
sequence in L2(R), i.e., a Riesz basis for V 2

ϕ . Equivalently,

0 <
A

2π
:= ess inf

ξ∈[0,2π]
Φ(ξ) ≤ B

2π
:= ess sup

ξ∈[0,2π]
Φ(ξ) <∞ ,

where Φ(ξ) :=
∑

m∈Z |ϕ̂(ξ + 2πm)|2. Thus, the shift-invariant subspace V 2
ϕ can be

described as
V 2
ϕ =

{∑
n∈Z

cn ϕ(t− n) : {cn} ∈ `2(Z)
}
.

Moreover, the Fourier transform of any f ∈ V 2
ϕ can be characterized as f̂(ξ) = cf (ξ) ϕ̂(ξ)

where cf is the 2π-periodic function in L2[0, 2π] given by cf (ξ) =
∑

n∈Z cn e−inξ.
Our first task is to characterize the family {φ(· − x)}x∈R as a continuous frame in

V 2
ϕ with respect to (R, dx). Indeed, by using the Parseval formula in L2(R) we obtain∫

R
|〈f, φ(· − x)〉|2dx = 2π‖f̂ φ̂‖2 = 2π

∫
R
|cf (ξ)ϕ̂(ξ)cφ(ξ)ϕ̂(ξ)|2dξ

= 2π
∑
m∈Z

∫ 2π(m+1)

2πm
|cf (ξ)cφ(ξ)|2|ϕ̂(ξ)|4dξ

= 2π

∫ 2π

0
|cf (ξ)cφ(ξ)|2

∑
m∈Z
|ϕ̂(ξ + 2πm)|4dξ

= 2π

∫ 2π

0
|cf (ξ)cφ(ξ)|2Φ̃(ξ)dξ ,

where the change of variable ξ 7→ ξ + 2πm has been done, and Φ̃ is the 2π-periodic
function in L2[0, 2π] defined by Φ̃(ξ) :=

∑
m∈Z |ϕ̂(ξ + 2πm)|4. Having in mind that

2π
∑

n |cn|2 =
∫ 2π

0 |cf (ξ)|2dξ, and assuming that

0 <
Ã

2π
:= ess inf

ξ∈[0,2π]
Φ̃(ξ) ≤ B̃

2π
:= ess sup

ξ∈[0,2π]
Φ̃(ξ) <∞ , (11)

we obtain that

Proposition 3. The family {φ(· − x)}x∈R is a continuous frame in V 2
ϕ with respect

to (R, dx) if and only if 0 <
C

2π
:= ess inf

ξ∈[0,2π]
|cφ(ξ)|2 ≤ D

2π
:= ess sup

ξ∈[0,2π]
|cφ(ξ)|2 <∞. In this

case, the optimal frame bounds are CÃ
B and DB̃

A , respectively.
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In particular, we deduce

Corollary 2. The family {φ(· − x)}x∈R is a continuous frame in V 2
ϕ with respect to

(R, dx) if and only if the sequence {φ(· − n)}n∈Z is a Riesz basis for V 2
ϕ .

Proof. Notice that
∑

m∈Z |φ̂(ξ + 2πm)|2 = |cφ(ξ)|2
∑

m∈Z |ϕ̂(ξ + 2πm)|2, where φ̂(ξ) =
cφ(ξ)ϕ̂(ξ) a.e. ξ ∈ [0, 2π].

We are interested in finding the duals of the continuous frame {φ(· − x)}x∈R with
the same structure, i.e., having the form {ψ(· − x)}x∈R. To this end, for any f, g ∈ V 2

ϕ ,
by using Parseval’s formula in L2(R), we have∫

R
〈f, φ(· − x)〉 〈g, ψ(· − x)〉 dx = 2π

〈
f̂ φ̂, ĝ ψ̂

〉
= 2π

∫
R
cf (ξ) cg(ξ) cφ(ξ)cψ(ξ) |ϕ̂(ξ)|4dξ

= 2π

∫ 2π

0
cf (ξ) cg(ξ) cφ(ξ) cψ(ξ) Φ̃(ξ) dξ

= 2π

∫ 2π

0
cf (ξ) cg(ξ) Φ(ξ)

[
cψ(ξ) cφ(ξ)

Φ̃(ξ)

Φ(ξ)

]
dξ .

This should equal to 〈f, g〉 = 〈f̂ , ĝ 〉 =
∫ 2π

0 cf (ξ) cg(ξ) Φ(ξ) dξ, which happens if and

only if cψ(ξ) cφ(ξ)
Φ̃(ξ)

Φ(ξ)
=

1

2π
a.e. ξ ∈ [0, 2π]. Thus we have

Proposition 4. The family {ψ(· − x)}x∈R is a dual in V 2
ϕ of the continuous frame

{φ(· − x)}x∈R with respect to (R, dx) if and only if cψ(ξ) =
Φ(ξ)

2π cφ(ξ) Φ̃(ξ)
a.e. ξ ∈

[0, 2π].

Having in mind Corollary 2, at this stage a question arises concerning the function
ψ ∈ V 2

ϕ in the above proposition: When will be the sequence {ψ(· − n)}n∈Z the dual
Riesz basis of {φ(· − n)}n∈Z? To answer that, a simple calculation gives〈

φ(· − n), ψ(· −m)
〉

=
〈
e−inξ φ̂(ξ), e−imξ ψ̂(ξ)

〉
=
〈
e−inξ cφ(ξ)ϕ̂(ξ), e−imξ cψ(ξ)ϕ̂(ξ)

〉
=

1

2π

∫ 2π

0
ei(m−n)ξ Φ(ξ) dξ = δn,m

⇐⇒ Φ(ξ) = 1 a.e. ξ ∈ [0, 2π] ,

that is, if and only if the sequence { 1√
2π
ϕ(·−n)}n∈Z is an orthonormal basis for V 2

ϕ . In

this case, as a byproduct, we derive that the equality (assuming that V 2
ϕ is a RKHS)∫

R
〈f, φ(· − x)〉ψ(t− x) dx =

∑
n∈Z
〈f, φ(· − n)〉ψ(t− n) , t ∈ R ,
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holds for any f ∈ V 2
ϕ . In general, the equality above holds with different functions ψ

and ψ̃, where {ψ(· − x)}x∈R is a continuous dual of {φ(· − x)}x∈R, and {ψ̃(· − n)}n∈Z
is the dual Riesz basis of {φ(· − n)}n∈Z.

Proceeding as before, it is straightforward to derive the general case with M func-
tions φm ∈ V 2

ϕ , m = 1, 2, . . . ,M .

Proposition 5. Assume that hypothesis (11) on Φ̃ holds in V 2
ϕ . Then:

1. The family {φm(· − x)}x∈R;m=1,2,...,M is a continuous frame for V 2
ϕ with respect

to (R, dx) if and only if

0 < ess inf
ξ∈[0,2π]

M∑
m=1

|cφm(ξ)|2 ≤ ess sup
ξ∈[0,2π]

M∑
m=1

|cφm(ξ)|2 <∞ . (12)

2. The family {ψm(·−x)}x∈R;m=1,2,...,M is a dual of {φm(·−x)}x∈R;m=1,2,...,M if and
only if ( M∑

m=1

cψm(ξ) cφm(ξ)
) Φ̃(ξ)

Φ(ξ)
=

1

2π
a.e. ξ ∈ [0, 2π] .

Notice that a dual of {φm(· − x)}x∈R;m=1,2,...,M with the same form always exists; a
solution for the functions ψm, m = 1, 2, . . . ,M , is given by

cψm(ξ) =
cφm(ξ)

2π
∑M

n=1 |cφn(ξ)|2
Φ̃(ξ)

Φ(ξ)
, a.e. ξ ∈ [0, 2π] , (13)

that is, ψ̂m(ξ) = cψm(ξ) ϕ̂(ξ), m = 1, 2, . . . ,M .

Concerning the hypothesis (11), notice firstly that Φ(ξ) ≤ B
2π , a.e. ξ ∈ [0, 2π] im-

plies that Φ̃(ξ) ≤
(
B
2π

)2
, a.e. ξ ∈ [0, 2π]. The other inequality holds if, for instance,

the condition ess infξ∈[−π,π] |ϕ̂(ξ)| > 0 is satisfied. This condition is satisfied, for in-
stance, by classical B-splines Np defined by Np := χ[0,1] ∗ · · · ∗ χ[0,1] (p times) since

N̂p(ξ) = e−ipξ/2√
2π

( sin ξ/2
ξ/2

)p
and ess infξ∈[−π,π] |N̂p(ξ)| = 1√

2π

(
2
π

)p
> 0.

Finally, by using Proposition 5, from Theorem 1 we derive a continuous sampling
result for the corresponding RKHSHU obtained from V 2

ϕ . Since the family {ϕ(·−x)}x∈R
is a continuous frame for V 2

ϕ we have here that

HU =
{
F (x) =

〈
f, ϕ(· − x)

〉
, x ∈ R, : f ∈ V 2

ϕ

}
=
{
f ∗ ϕ∗ : f ∈ V 2

ϕ

}
,

where ϕ∗ denotes the involution of ϕ given by ϕ∗(u) := ϕ(−u), u ∈ R.

Corollary 3. Given M fixed functions φm ∈ V 2
ϕ , for each F (x) = 〈f, ϕ(·−x)〉, x ∈ R,

in HU consider, for m = 1, 2, . . . ,M , its sampling functions LmF (x) := 〈f, φm(· − x)〉,
x ∈ R. Assume that condition (12) for the functions φm holds. Then, there exist M
functions Sm ∈ HU , m = 1, 2, . . . ,M , such that for any f ∈ HU we have the sampling
formula

F (t) =
M∑
m=1

∫
R
LmF (x)Sm(t− x) dx , t ∈ R .
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Proof. For F ∈ HU let f be in V 2
ϕ be such that F (x) = 〈f, ϕ(·−x)〉, x ∈ R. According

to Proposition 5(2) let the family {ψm(·−x)}x∈R;m=1,2,...,M be a dual of the continuous
frame {φm(· − x)}x∈R;m=1,2,...,M in V 2

ϕ with respect to (R, dt) (such as the one given in

Eq. (13)). Thus, in the weak sense, we have f =
∑M

m=1

∫
R〈f, φm(· − t)〉ψm(· − t) dt.

Therefore,

F (x) =
M∑
m=1

∫
R
LmF (t)

〈
ψm(· − t), ϕ(· − x)

〉
dt

=
M∑
m=1

∫
R
LmF (t)Sm(x− t) dt, x ∈ R ,

where the function Sm(u) = 〈ψm, ϕ(· − u)〉, u ∈ R, belongs to HU for m = 1, 2, . . . ,M .
Moreover, the family {Sm(· − t)}t∈R is a continuous frame for HU with respect to
(R, dt).

4.3.1 Final comments

Closing the paper the following comments on future work are pertinent:

1. For each m = 1, 2, . . . ,M the sampling function LmF (x) := 〈f, φm(·−x)〉, x ∈ R,
for F ∈ HU can be expressed as a semi-discrete convolution. Indeed, for f(t) =∑

n∈Z cn ϕ(t− n) in V 2
ϕ it is straightforward to derive that

LmF (x) =
〈
f, φm(· − x)

〉
=
∑
n∈Z

cn ψm(x− n) =
(
ψm ∗′ c

)
(x) , x ∈ R ,

where c = {cn} and ψm(t) := 〈ϕ, φm(·−t)〉, t ∈ R; as usual, the symbol ∗′ denotes
the semi-discrete convolution. The underlying idea would be to define generalized
sampling functions for F ∈ HU by means of semi-discrete convolutions as above,
and searching for necessary and sufficient conditions on the involved functions
ψm, m = 1, 2, . . . ,M , in order to obtain a sampling result, as in Corollary 3, in
the light of the theory considered in Section 3.

2. Similar results can be obtained in V 2
Φ , a shift-invariant subspace in L2(Rd) with

a set of N generators Φ := {ϕ1, ϕ2, . . . , ϕN}.

3. The results in this section could be extended to shift-invariant subspaces of L2(G)
where G is a locally compact abelian group by using, for instance, the mathemat-
ical techniques in Refs. [15, 17].
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[11] H. Führ. Abstract Harmonic Analysis of Continuous Wavelet Transform. Springer,
2005.

[12] J. P. Gabardo and D. Han. Frames associated with measurable spaces. Adv. Comp.
Math., 18(3):127–147, 2003.
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