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Sampling in a shift-invariant
space
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LStatement of the problem

Oversampling

r<s
wohg — {&(51)},.

L) = LFE+1G-1) (1<j<s).
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L Previous results

Hypotheses

¢, Lp compactly supported.

gi(w) =Y Lipn)e ™ eL®(0,1), j=12,...,s

nez

gi(w) silw+1) - gilw+5h)
G(w) := e ; :
gs(w) gs(w—l—%) gS(w‘F%)

SX 7T Trigonometric polynomials
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L Previous results

An equivalent problem

Find an 7 X s matrix A(w) whose entries are trigonometric
polynomials and such that

N[ w € [0,1].

® A.G. Garcia and G. Pérez-Villal6n. Dual frames in L?(0, 1)
connected with generalized sampling in shift-invariant spaces.
Appl. Comput. Harmon. Anal., 20(3):422—433, 2006.

® A.G. Garcia, M. A. Herndandez-Medina and G. Pérez-Villalon.
Oversampling and reconstruction functions with compact
support. |. Comp. Appl. Math., 227:245-253, 2009.
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L our approach
Towards a matrix pencil We preserve the rank
Same rank
G(w)~ (2)~G(2)~G(z)~AT —ABT
o=
G(w) = G(e™2mw) =G(z)O, ! supp(Le) C [0,N]
I1<N<Zr

G(z) = G(z) diag[(W1z)""1]; G(z) = G(2) diag[z'7];
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Remark

G(A) = M(1) 9)
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The main result

Existence of solution
Theorem
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L our approach

Using the GUPTRI form of a

4 . Advantages
matrix pencil &

® The needed information about M, — AN> can be retrieved.

® We do not need to compute the KCF of the matrix pencil.

® The GUPTRI (General UPper TRIangular) form can be stably
computed. (J. Demmel and B. Kagstrom, 1993; P. Van Dooren,
1979 and 1981).
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L Computation and optimality in the case s = r +1
B i ty

Looking for a solution

We use the matrix pencil

%
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I—Computation and optimality in the case s = 7+ 1

Looking for a solution

AL?
]
ALl

ALK

AL].V
BLY

;BLV’1

We should solve several
tied linear systems

What is the minimum v
which allows us to solve
these tied systems at once?
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I—Computation and optimality in the case s = 7+ 1

An equivalent system

— /&
A -B

A ]

Gr(v)
(v + 1 column blocks)

j=12,...,r
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Looking for a solution

Theorem
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I—Computation and optimality in the case s = 7+ 1

Optimality problem

* We have found a matrix algebraic polynomial with N — 1 terms
as solution of the problem.

® The number of terms of the solution is intimately related to the
support of the reconstruction functions.

® What is the minimum number of nonzero terms that a solution
could have? We consider two options:
¢ We have some null coefficients.
® The process can be finished for v < N — 2.
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I—Computatior\ and optimality in the case s = 7+ 1

The identity matrix

We consider Laurent polynomials By

— B Lp+v 0
.A - B LPZH/_ 1 I]
A 'f p+v
-B 1 f.
A sl Y s
L’ 7
A j p

0<—p<v
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I—Computation and optimality in the case s = 7+ 1

Hypotheses that A verifies
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Hypotheses that 3 verifies

oo OO O e]0 0
oo f
OO ° 00 0
OO e ( 010 0]
B = :
0| e 0 0 00 0]
0]0 0 0 010 0]
01]0 0 0 010 0]
N-—-1 r—N-+1
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N-1
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I—Computation and optimality in the case s = 7+ 1

Conclusions Optimality

e If v < N — 2, there exists no solution.

e If v = N — 2, there exists a unique solution.

e If v > N — 2, there exist several solutions.

* Moreover, if there exists any solution, it has at least N — 1

nonzero consecutive terms.
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I—Computatior\ and optimality in the case s = 7+ 1

A toy model involving the

1 i Th t
quadratic B-spline e generator

N3(t) = X[01) * X[01) * X[01)
t2 3 1
@(t) = N3(t) = > X[01) (t) + (‘ 5 T3t t2>X[1,2)(f) + 5(3 — )X (1) .-

Lf=f ; suppLeC[0,3] (N=3)
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I—Computatior\ and optimality in the case s = 7+ 1

A toy model involving the

quadratic B-spline

g(z) =
&(z) =
g(z) =
ga(z) = 57

The functions g;(z)
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A toy model involving the
quadratic B-spline

1.4 1.5
>Z 5Z 0 0
3.4 1.5 8.3
50Z°  5p% 0 =z
ol _ 2 .4 9.2 37.3
G(z) = | 5z 0 Hz¢ 552

2 37,2 9.3
0 252 504 504
1 33 8 2
= 552 752 0]

The matrix G(z)
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I—Computatior\ and optimality in the case s = 7+ 1

A toy model involving the

quadratic B-spline

Glz)i= @(z) diag [1,z7!,272,273]

1.4
EZ
33,4
502
2.4
gz
0

1
50

Nl du e o o©

0
8
25
37
50
9
50
0

The matrix G(z)
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I—Computatior\ and optimality in the case s = 7+ 1

A toy model involving the

g q The matrix pencil
quadratic B-spline P

A=z
-1 -1
00 0 O = F oo
o 0o o0 £ =2 F 00
AT—=ABT =10 0 2 ¥£|-A| 2 0 00
37 9
0 2 & 5 0 0 00
1 33 8
&= B £ 0 0 0 00
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I—Computatior\ and optimality in the case s = 7+ 1

A toy model involving the

qua dratic B sp11'ne Solving the linear systems

A —-B E{) =(0], j=1234
0o A j r
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I—Computation and optimality in the case s = 7+ 1

A toy model involving the

qua dratic B-spIine The left-inverse matrix

123034939 125425 28925 825 g
27456 36 2

18
—3949115 4025 —925 25 0
E( ) T 27456 36 18 2
MT = n
227683 =925 50 0 0
13728 72 El
—19483 25
4576 £l 0 0 0
—18911 472775 —472775 16547125 —286974425
9152 9152 1144 10296 82368
607 —15175 15175 —531125 9211225
9152 9152 1144 10296 82368
A
—35 875 —875 30625 —531125
4576 4576 572 5148 41184
9 =225 225 —875 15175

4576 4576 572 572 4576
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I—Computatior\ and optimality in the case s = 7+ 1

A toy model involving the Finally, the compact
e e supported reconstruction
quadratic B-spline functions

S1(t):= B2 o (t) — e o (t+1) + TP ot +2) — 5 o(t +3)
— S ¢t —4) + q%o(t—3) — g9t —2) + Er et —1)

Sy(t) == —1BBo(t) + Wp(t+1) — Bt +2) + Po(t +3)
+ 3R et —4) — G o(t—3) + Fo(t—2) — Fm ot —1)
S3(t) == BB q(t) — Bo(t+1) + Lo(t+2)
o

— BBt - 4) + B0t -3)— Bo(t—2)+ Bo(t—1)
Su(t) == —op(t) + Ro(t+1)
- 1615612791625 (t— ) — Rt —3)+ TR o(t—2) - Lo(t—1)
S5(t) := 50¢(t)
— B ot —4) + B2 0(t - 3) - PR et —2) + PRt —1)
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