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Statement of the problem

Sampling in a shift-invariant
space

f ∈ V2
ϕ :=

{
∑
n∈Z

anϕ(t− n) : {an} ∈ ℓ
2(Z)

}
⊂ L2(R) .

Riesz basis

{Lf (n)}n∈Z f (t) = ∑
n∈Z

Lf (n)SL(t− n)

Lf := f ∗ h
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Statement of the problem

Oversampling

{
Lf (n)

}
n∈Z

{
Lf
( r

s
n
)}

n∈Z

r < s

Ljf (t) := Lf
(
t+ r

s(j− 1)
)

(1 ≤ j ≤ s) .

f (t) =
s

∑
j=1

∑
n∈Z

Ljf (rn)Sj(t− rn)
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Previous results

Hypotheses

ϕ,Lϕ compactly supported.

gj(ω) := ∑
n∈Z

Ljφ(n)e
−2πinω ∈ L∞(0, 1) , j = 1, 2, . . . , s

G(ω) :=



g1(ω) g1(ω + 1

s ) · · · g1(ω + r−1
s )

...
...

. . .
...

gs(ω) gs(ω + 1
s ) · · · gs(ω + r−1

s )




s× r Trigonometric polynomials
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Previous results

An equivalent problem

Find an r× smatrix A(ω) whose entries are trigonometric
polynomials and such that

A(ω)G(ω) = Ir , ω ∈ [0, 1] .

1 A. G. García and G. Pérez-Villalón. Dual frames in L2(0, 1)
connected with generalized sampling in shift-invariant spaces.
Appl. Comput. Harmon. Anal., 20(3):422–433, 2006.

2 A. G. García, M. A. Hernández-Medina and G. Pérez-Villalón.
Oversampling and reconstruction functions with compact
support. J. Comp. Appl. Math., 227:245–253, 2009.
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Previous results

Reason

A[1,:](ω) =:
(
a1(ω), a2(ω), . . . , as(ω)

)

Sj(t) = r ∑
n∈Z

âj(n)ϕ(t− n) , (t ∈ R) ,

âj(n) =
∫ 1

0
aj(ω)e−2πinωdω , (1 ≤ j ≤ s).
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Previous results

Existence of A(ω)

There exists a solution

m

rankG(ω) = r ∀ω ∈ R
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Our approach

Towards a matrix pencil We preserve the rank

Same rank

G(ω) G(z) G(z) Ĝ(z) G̃(z) A⊤ − λB⊤

G(ω) = G(e−2πiω)

G(z) = G(z)diag[(Wj−1z)r−1]j

Ĝ(z) = G(z)Ω−1
r

G̃(z) = Ĝ(z)diag[z1−j]j

λ = zr

supp(Lϕ) ⊆ [0,N]
1 < N ≤ r
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Our approach

Remark

G̃(λ) =
(
M(λ) G

)

rankG = r−N+ 1 =⇒ ∃R ∈ C
s×s
∣∣ RG =

(
G ′

0

)

RG̃(λ) =



M1 − λN1 G ′

M2 − λN2 0






Compactly supported reconstruction functions in average sampling: A matrix pencil approach

Our approach

The main result Existence of solution

Theorem

rank(G(z)) = r for all z ∈ Cr {0} if and only if the following
statements hold

1 rankG = r−N+ 1.

2 The Kronecker Canonical Form (KCF) of the matrix pencil
M2 − λN2 has not right singular part and the only possible finite
eigenvalue is µ = 0.
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Our approach

Using the GUPTRI form of a
matrix pencil

Advantages

1 The needed information about M2 − λN2 can be retrieved.

2 We do not need to compute the KCF of the matrix pencil.

3 The GUPTRI (General UPper TRIangular) form can be stably
computed. (J. Demmel and B. Kågström, 1993; P. Van Dooren,
1979 and 1981).
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Computation and optimality in the case s = r+ 1

Looking for a solution We use the matrix pencil

L̃(λ)(A⊤ − λB⊤) = Ir ⇐⇒ (A− λB)L̃(λ)⊤ = Ir

[
L̃(λ)⊤

]
j
= L

0
j + L

1
j λ1 + · · ·+ L

ν
j λν =

ν

∑
k=0

L
k
j λ

k

AL
0
j +

ν

∑
k=1

(
AL

p+k
j −BLk−1

j

)
λk − BLν

j λν+1 = I
j
r ,
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Computation and optimality in the case s = r+ 1

Looking for a solution We should solve several
tied linear systems

AL
0
j = I

j
r

AL
1
j = BL0j

...
...

...

AL
k
j = BLk−1

j
...

...
...

AL
ν
j = BLν−1

j

BLν
j = 0





What is the minimum ν

which allows us to solve
these tied systems at once?
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Computation and optimality in the case s = r+ 1

An equivalent system

Gr(ν)
(ν + 1 column blocks)




−B
A −B

A
. . .

. . . −B
A −B

A




︸ ︷︷ ︸




L
ν
j

L
ν−1
j
...
L
1
j

L
0
j




=




0

0

...
0

I
j
r




j = 1, 2, . . . , r
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Computation and optimality in the case s = r+ 1

Looking for a solution

Theorem

Suppose that the (r+ 1)× r-singular matrix pencil A⊤ − λB⊤

satisfies the following conditions:

It has no finite eigenvalues.

rank(A⊤) = r.

rank(B⊤) = N− 1.

rank
[(

−B 0

A −B

)]
= r+N− 1.

Then, the Nr× (N− 1)(r+ 1)-matrix Gr(N− 2) has maximum rank,
i.e., (N− 1)(r+ 1).
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Computation and optimality in the case s = r+ 1

Optimality problem

We have found a matrix algebraic polynomial with N− 1 terms
as solution of the problem.

The number of terms of the solution is intimately related to the
support of the reconstruction functions.

What is the minimum number of nonzero terms that a solution
could have? We consider two options:

We have some null coefficients.
The process can be finished for ν < N− 2.
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Computation and optimality in the case s = r+ 1

We consider Laurent polynomials The identity matrix
changes its place




−B
A −B

A
. . .

. . . −B
A −B

A







L
p+ν
j

L
p+ν−1
j
...

L
p+1
j

L
p
j




=




0

I j
p+ν

...

I j
p+1

I j
p




0 ≤ −p ≤ ν
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Computation and optimality in the case s = r+ 1

Hypotheses that A verifies Sufficient condition

r
−

N
+

1
N
−

1

1 N− 1 r−N+ 1

A =

0 0 · · · 0 0 · · · 0 0 · · · •
...

... . .
. ...

... . .
. ...

... . .
. ...

0 0 · · · 0 0 · · · 0 • · · · 2

0 0 · · · 0 0 · · · • 2 · · · 2

...
... . .

. ...
... . .

. ...
... . .

. ...
0 0 · · · 0 • · · · 2 2 · · · 2

0 0 · · · • 2 · · · 2 2 · · · •
...

... . .
. ...

... . .
. ...

... . .
. ...

0 • · · · 2 2 · · · 2 • · · · 0
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Computation and optimality in the case s = r+ 1

Hypotheses that B verifies Sufficient condition

r
−

N
+

1
N
−

1

1 N− 1 r−N+ 1

B =

2 2 · · · 2 2 2 • 0 · · · 0

2 2 · · ·
...

... . .
. ...

... . .
. ...

2 2 · · · 2 • · · · 0 0 · · · 0
2 2 · · · • 0 · · · 0 0 · · · 0
...

... . .
. ...

... . .
. ...

... . .
. ...

2 • · · · 0 0 · · · 0 0 · · · 0

0 0 · · · 0 0 · · · 0 0 · · · 0
...

... . .
. ...

... . .
. ...

... . .
. ...

0 0 · · · 0 0 · · · 0 0 · · · 0
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Computation and optimality in the case s = r+ 1

Conclusions Optimality

If ν < N− 2, there exists no solution.

If ν = N− 2, there exists a unique solution.

If ν > N− 2, there exist several solutions.

Moreover, if there exists any solution, it has at least N− 1
nonzero consecutive terms.
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Computation and optimality in the case s = r+ 1

A toy model involving the
quadratic B-spline

The generator

N3(t) = χ[0,1) ∗ χ[0,1) ∗ χ[0,1)

ϕ(t) = N3(t) =
t2

2
χ[0,1)(t)+

(
−

3

2
+ 3t− t2

)
χ[1,2)(t)+

1

2
(3− t)2χ[2,3)(t) .

Lf = f ; suppLϕ ⊆ [0, 3] (N = 3)

Samples: f
(4
5
n
)

(r = 4, s = 5)
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Computation and optimality in the case s = r+ 1

A toy model involving the
quadratic B-spline

The functions gj(z)

g1(z) = 1
2z + 1

2z
2

g2(z) = 8
25 + 33

50z + 1
50z

2

g3(z) = 9
50z

−1 + 37
50 + 2

25z

g4(z) = 2
25z

−2 + 37
50z

−1 + 9
50

g5(z) = 1
50z

−3 + 33
50z

−2 + 8
25z

−1
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Computation and optimality in the case s = r+ 1

A toy model involving the
quadratic B-spline

The matrix Ĝ(z)

Ĝ(z) =




1
2z

4 1
2z

5 0 0
33
50z

4 1
50z

5 0 8
25z

3

2
25z

4 0 9
50z

2 37
50z

3

0 2
25z

37
50z

2 9
50z

3

1
50

33
50z

8
25z

2 0
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Computation and optimality in the case s = r+ 1

A toy model involving the
quadratic B-spline

The matrix G̃(z)

G̃(z) =




1
2z

4 1
2z

4 0 0
33
50z

4 1
50z

4 0 8
25

2
25z

4 0 9
50

37
50

0 2
25

37
50

9
50

1
50

33
50

8
25 0




G̃(z) = Ĝ(z)diag
[
1, z−1, z−2, z−3

]
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Computation and optimality in the case s = r+ 1

A toy model involving the
quadratic B-spline

The matrix pencil

A⊤ − λB⊤ =




0 0 0 0

0 0 0 8
25

0 0 9
50

37
50

0 2
25

37
50

9
50

1
50

33
50

8
25 0




− λ




−1
2

−1
2 0 0

−33
50

−1
50 0 0

−2
25 0 0 0

0 0 0 0

0 0 0 0




λ = z4
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Computation and optimality in the case s = r+ 1

A toy model involving the
quadratic B-spline

Solving the linear systems



−B 0

A −B
0 A



(
ℓ1j

ℓ0j

)
=




0

0

I
j
4


 , j = 1, 2, 3, 4
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Computation and optimality in the case s = r+ 1

A toy model involving the
quadratic B-spline

The left-inverse matrix

L̃(λ)⊤ =




123034939
27456

−125425
36

28925
18

−825
2 50

−3949115
27456

4025
36

−925
18

25
2 0

227683
13728

−925
72

50
9 0 0

−19483
4576

25
8 0 0 0




+

+ λ ·




−18911
9152

472775
9152

−472775
1144

16547125
10296

−286974425
82368

607
9152

−15175
9152

15175
1144

−531125
10296

9211225
82368

−35
4576

875
4576

−875
572

30625
5148

−531125
41184

9
4576

−225
4576

225
572

−875
572

15175
4576
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Computation and optimality in the case s = r+ 1

A toy model involving the
quadratic B-spline

Finally, the compact
supported reconstruction

functions

S1(t):=
123034939

27456 ϕ(t)− 3949115
27456 ϕ(t+ 1) + 227683

13728 ϕ(t+ 2)− 19483
4576 ϕ(t+ 3)

− 18911
9152 ϕ(t− 4) + 607

9152 ϕ(t− 3)− 35
4576 ϕ(t− 2) + 9

4576 ϕ(t− 1)

S2(t) := − 125425
36 ϕ(t) + 4025

36 ϕ(t+ 1)− 925
72 ϕ(t+ 2) + 25

8 ϕ(t+ 3)

+ 472775
9152 ϕ(t− 4)− 15175

9152 ϕ(t− 3) + 875
4576 ϕ(t− 2)− 225

4576 ϕ(t− 1)

S3(t) :=
28925
18 ϕ(t)− 925

18 ϕ(t+ 1) + 50
9 ϕ(t+ 2)

− 472775
1144 ϕ(t− 4) + 15175

1144 ϕ(t− 3)− 875
572 ϕ(t− 2) + 225

572 ϕ(t− 1)

S4(t) := − 825
2 ϕ(t) + 25

2 ϕ(t+ 1)

− 16547125
10296 ϕ(t− 4)− 531125

10296 ϕ(t− 3) + 30625
5148 ϕ(t− 2)− 875

572 ϕ(t− 1)

S5(t) := 50ϕ(t)

− 286974425
82368 ϕ(t− 4) + 9211225

82368 ϕ(t− 3)− 531125
41184 ϕ(t− 2) + 15175

4576 ϕ(t− 1)
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