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Sampling in an RKBS: The case of L” shift-invariant spaces

Preliminaries

A measurable function f : R — C belongs to
LP(R), where 1 < p < oo, whenever the function
f(t) =) .7 |f(t—n)| is an element of L”[0, 1].
In this case, we define |f], := IIflan[o,u. En-

An average sampling formula in V,;
For any f € V!, consider the sequence of sam-
ples {(C f)(n)},cz, where the convolution sys-
tem C satisfies:

Consider a Banach space B of functions f : Q — C such that for
each f € B3, its norm | f||; vanishes if and only if, as a function,
f(r)=0forall r€Q.

Consider a Hilbert space H of
functions f: Q — C.

H is a reproducing kernel

Hilbert space (RKHS) if for
each t € Q the evaluation
functional at ¢, &(f) := f(¢)
for f € H, is continuous on H.

A reproducing kernel Banach space on Q is a reflexive Banach
space 5 of functigns on Q) (RKBS) for which B* is isometric to

a Banach space B of functions on Q2 and the point evaluation
functionals are continuous on both 5 and B.

The identification B of B* is not unique [5]. Denote the chosen
identification as B* and define the bilinear form on B x B*

The Riesz representation the-
orem gives a unique function
k:Q x Q) — C such that

o lk(-, 1) : teQlc H, and

(w,v")z:=v"(w), ueB, v"eB".

Suppose that B is an RKBS on Q. Then there exists a unique
function k : 2 x Q) — C such that the following statements hold:

(a) For every t € Q, k(-,t) € B* and f(¢) = (f, k(-, 1))z forall f e

e f() = (fk(, D)y, teQ, B.
feH. (b) For every r € Q, k(z,-) € Band f*(#) = (k(z,"), f*)z forall f* €
The function k is called the re- B*.

producing kernel of H.

(c) spanik(t,):t€ Q} =B and span{k(-,t):t€Q}=85".

(d) Forall ¢,s € Q, k(t,5) = (k(t,-), k(-,5)) -

This unique function k is the reproducing kernel for the RKBS

BB. See [5, Th. 2].

Semi-inner products

A semi-inner-product on a Banach space B
is a function [-,] : B x B — C, such that [6],
for all x;, x»,,x3€ Band a € C:

1. [x7 + X2, X3] = [X7, X3] + [ X2, X3].

axy, Xl =alx;, xp] and [x1, ax,] =alxq, x,].

2
3.[x1,x1]>0 for all x1 # 0.
4

1, X112 < [, x1] [0, o).

Every normed vector space I3 has a semi-inner-

We assume that for all x,y € B with x # 0,
limgs;—o (X + tyllz -l xl3) exists and the limit
is uniform on S(B) x S(B) where S(B) := {x €
B : | x|z = 1}. This guarantee the uniqueness
of the semi-inner-product.

If we also assume that B is uniformly convex,
i.e., it is reflexive and strictly convex, then a
Riesz representation theorem holds [2]: For
each f € B* there exists a unique x € B such
that f(y) = [y,x]lg for all y € B. Moreover,

1f 1l = llxll.

dowed with this norm, the space (LP(R),|-1,)
becomes a Banach space (see [3]).

Given a function ¢ in L2(R), for 1 < p < co we
consider the L” shift-invariant space

V) = Spat e (@t =}, < L'(®).

If in addition the sequence {¢(t —n)} _, is an
/P -Riesz basis for V(f ,i.e., there exist constants
0 < A < B such that

Allallp<| ) anpt=n)| @ <Blalle 1)

nezZ

forall ae ¢P(Z), then V(,’f can be expressed as

Ve ={ Y anp(t-n):la) e P @)} c P R).
ne’z

Since V(f is a closed subspace of L”(R), it is a
uniformly Fréchet differentiable and uniformly
convex Banach space [6].
Assume that the functions in V,, are continu-
ous on R.
Thus, the shift-invariant space Vqﬁg becomes a
RKBS, and the convergence in the L7 sense im-
plies pointwise convergence which is uniform
on R since Holder’s inequality shows that

|F(O] < lallprllie(t— m}pezlles < A7 KN fll gy »

for fe V, and teR.
Following [3], there exists a dual function @™ to

@ (regardless p) such that

k(t,s):=) @(s—me*(t—n),

nez

is the reproducing kernel for V(f . All the spaces
Vq’f , 1 < p < oo have the same reproducing ker-
nel k although they are not isomorphic.

(@) (Cf)(® := [f *h](2), t € R, with h € LT[RY)
and g satistying 1/p+1/g =1; or

(b) (Cf)(¥) := f(t+ a) for some fixed a € R.

Note that {(Cf)(n)},ez € ¢P(Z) since the in-
equalities | {h * f(n)}neZ”p < |hizIfl, (see [3,
p.220]) in the first case, and |a * bl <
lall¢» || b, in the second one.

Let A be the Wiener algebra of the functions of
the form f(x) = ¥ ,c7 a,e”?""* with a € ¢}(2).
The space A, normed by || || 4 := ||all; and with
pointwise multiplication becomes a commuta-
tive Banach algebra. If f € A and f(x) # 0 for
every x € R, the function 1/ f is also in A by
Wiener’s lemma.

Assume that G(x) := Y,z (C) (n)e ?"'"* does
not vanish for any x € [0,1]. Then there ex-
ists a function S € L®(R) N V,, such that, for
any f € V', the following sampling formula

holds:

f=> CHWSt-n), teR. (2

nez

The convergence of the series is in the L”-
sense and uniform on R.

The sequence of reconstruction functions
{S(-—n)},c71s a £P-Riesz basis for the Banach
space (Vy, Il - Il ).

As a consequence of the Corollary above, the
convergence of the series in (2) is also abso-
lute due to the unconditional character of an
¢P-Riesz basis expansion.

product that induces its norm [2, 4].

Let B be an s.i.p. RKBS on Q and k its reproducing kernel. Then
there exists a unique function G : 2 x () — C such that {G(¢,-) : t €
Qtc b, k(-, 1) = (G(t,-)*, t€ Q and

Aver age Sampllng 1mn BK Each function f € By, can be recovered from the L sequences of

samples {f;(z2)}®,, 1 < ¢ < L, by means of the following sam-

M M n=1’
e Write {x}nen = | {2, hnen and (¥ nen = U {5, kb nen. pling formula
m=1

m=1

f) = [f,G(t,))]g forall feBB, teQ,
f (0 = [k(t,), flg forall feB, teQ.

e For 0 < ¢ < L, consider functions K, : Q — B and define, for

S -1
_ T( AIM]
each xe Band 0 < ¢ < L, the functions f(2) = Z Sn(2) (An ) F,, z€Q, (8)

n=1

G is the s.i.p. kernel of the s.i.p. RKBS B. When G = k, we call G an
s.i.p. reproducing kernel. An s.i.p. reproducing kernel G satisfies
that G(t,s) = [G(t,+),G(s,")]B, t,s€L.
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e Consider a uniformly Fréchet differentiable and uniformly con-
vex Banach space B. Its dual 5* has these properties as well.

Jex(2) =[x, K¢ (2)]5. where F,, and S,(z) denote, respectively, |fi(z.),..., fL(z,l,;)]T

and [S(’}, 1(2),..., S} M(z)]T. The convergence of the series in (8)

is uniform in subsets of Q where the function z — ||K(2)| 5 18
bounded.

e We have L+ 1 transforms 7, : B — C* such that T,x = [, ,.
e Assume that M < L.

e For each z € OO, we have

o M An illustrative example
K(2*=) > S (@, 0sl<L, P

m,n’
n=1m=1 In theorem above, for L = M = 1 we obtain a generalization of

Kramer sampling theorem. Next, we give an example where BB :=
LP[Z, 1] for p € (1,2], with the compatible semi-inner product

e Let [+, -]z be the unique compatible semi-inner product on 5.

e Let X,; be a reflexive BK-space on N such that
where S}, (2) := [Yim,n Ke(2)18 = f1,y,.,(2).

e Suppose that there exist L sequences {zﬁ}‘,’f:]L in QQ, with ¢ €

{1,2,...,L}, such that 2—p 1/2 _ )

f,81p=gl, fgx)gx)IP=dx.

(6) ~1/2

Take X, := ¢9(Z) and consider e, (¢) := 2" and e* (&) = e~ #"'™ for
n € Z. Easy computations show that | e, |l; = lle,ll, = 1. See [5] for

—-If Z cyd, converges for every c € Xy, then d € X ;.
n=1

~If Y c¢,d, converges for every d € X, then c € X,;.
n=1
—The canonical unit vectors {0,}°’ ; form a Schauder basis for

both X; and X .

¢ ¢ n
Sm,n(Zk) — aé’mén,k, n,kEN,

where 1 = m < M, 1 < ¢ < L and the coefficients a, , are com-
plex numbers such that the matrices

Let {x}}°°, c B* be an X ;-Riesz basis for B*. This means that details. s
—_— — —_ —_ — — iz : _
1.span{x’: neN} = B*. (aﬁl a’, - aﬁM\ FOI.M—.L— 1 and K(z) = Ky(2) = K;(z) = e“"*. we obtain the fol
a. al. ... q" lowing s.i.p. RKBS
2. Y 51 cnx,, converges in B* for all c € X7}, A= ot f “MlechM  (neN) (7)
3. There exist 0 < A < B < oo such that o n By = {f(z)z [Fe*™*]  zeC, where FeL’”[—l/Z,l/Z]},
\A11 Q12 " Ap ) P

A||c||X;S Hzlcnx:; B*SB”C”X; forallce X;.  (3)
-

have full rank for n € N, i.e., rank(A,) = M for every n € N. endowed with the norm | f |, := | Fllzr(-1/2,1/2)-

* Suppose the compatibility condition: ker 7, = ,_, ker 7, which

o , , We have the following sampling formula for any f € Bg:
implies that the mapping 7, is one-to-one.

There exists a unique (dual) X,-Riesz basis {y,}5>, for I5 such that

(see [6, Th.2.15]) [Vm,XnlB = O, for m,n € N, and satistying the

e Denote by A, any regular M x M submatrix of A, f(2) =sinc®* P'P(iyp) Y f(m)sinc[(z—n)—iy(p-2)], (9)

expansions: nez
We have the following results:

¥ = i X, %5y, (for x € B) (4) where z = x+ iy € C. The convergence of the series in (9) is uni-
s R E Mo : . form on horizontal strips of C. Observe that, it p =2 or z € R,
. or every z € (), the sequence U {S) ntnen is an element of X . ; o . . .

- « « « me1 ormula (9) coincides with the cardinal series.

x* =Y [ynxlgx, (forx*eB"). (5)
n=1
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