Whittaker-Shannon-Kotel'nikov theorem Generalized sampling in shift-invariant subspaces Generalized sampling in *U*-invariant subspaces Time-jitter error study

Sampling theory in *U*-invariant spaces

Héctor R. Fernández Morales

Supervisor: Prof. Dr. D. Antonio García García

Departamento de Matemáticas Universidad Carlos III de Madrid

XXIII CEDYA / XIII CMA, Castellón, España

September 9, 2013

Héctor R. Fernández Morales

Outline

- Whittaker-Shannon-Kotel'nikov theorem
- Generalized sampling in shift-invariant subspaces
- 3 Generalized sampling in U-invariant subspaces
- 4 Time-jitter error study

Claude Elwood Shannon 1916-2001

Shannon's sampling theorem.

If a function of time is limited to the band from 0 to W cycles per second, it is completely determined by giving its ordinates at a series of discrete points spaced 1/2W seconds apart in the manner indicated by the following result: If f(t) has no frequencies over W cycles per second, then

$$f(t) = \sum_{n=-\infty}^{\infty} f\left(\frac{n}{2W}\right) \frac{\sin \pi (2Wt - n)}{\pi (2Wt - n)}.$$

A mathematical theory of comunication, *Bell System Tech. J., 27*(1948), 379-423.

Edmund T. Whittaker 1873-1956

Vladimir A. Kotelnikov 1908-2005

Whittaker-Shannon-Kotel'nikov theorem.

If f(t) is a signal (function) band-limited to $[-\sigma, \sigma]$, i.e.,

$$f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\sigma}^{\sigma} F(w) e^{itw} dw,$$

for some $F \in L^2(-\sigma, \sigma)$, then it can be reconstructed from its samples values at the points $t_k = k\pi/\sigma$, $k \in \mathbb{Z}$, via the formula

$$f(t) = \sum_{k=-\infty}^{\infty} f(t_k) \frac{\sin \, \sigma(t-t_k)}{\sigma(t-t_k)}.$$

with the series being absolutely and uniformly convergent on compact sets

Whittaker-Shannon-Kotel'nikov theorem

Generalized sampling in shift-invariant subspaces Generalized sampling in *U*-invariant subspaces Time-jitter error study

Augustin L. Cauchy 1789-1857

Siméon D. Poisson 1781-1840

Emile Borel 1871-1956

Jacques Hadamard 1865-1963

Charles de la Vallée Poussin 1866-1962

John M. Whittaker 1905-1984

Drawbacks in WSK

- it relies on the use of low-pass ideal filters.
- the band-limited hypothesis is in contradiction with the idea of a finite duration signal.
- the band-limiting operation generates Gibbs oscillations.
- the sinc function has a very slow decay at infinity which makes computation in the signal domain very inefficient.
- the sinc function is well-localized in the frequency domain but it is bad-localized in the time domain.
- in several dimensions it is also inefficient to assume that a multidimensional signal is band-limited to a d-dimensional interval

Generalized sampling problem in shift-invariant subspaces of $L^2(\mathbb{R})$.

Assume that $\varphi \in L^2(\mathbb{R})$; if the sequence $\{\varphi(t-n)\}_{n\in\mathbb{Z}}$ is a Riesz sequence for $L^2(\mathbb{R})$, then we can define the shift-invariant space V_{φ}^2

$$V_{\varphi}^2 = \Big\{ \sum_{n \in \mathbb{Z}} \alpha_n \, \varphi(t-n) \, : \, \{\alpha_n\}_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z}) \Big\}$$

Generalized sampling problem in shift-invariant subspaces of $L^2(\mathbb{R})$.

Assume that $\varphi \in L^2(\mathbb{R})$; if the sequence $\{\varphi(t-n)\}_{n\in\mathbb{Z}}$ is a Riesz sequence for $L^2(\mathbb{R})$, then we can define the shift-invariant space V_{φ}^2

$$V_{\varphi}^2 = \Big\{ \sum_{n \in \mathbb{Z}} \alpha_n \ \varphi(t-n) \ : \ \{\alpha_n\}_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z}) \Big\}$$

A sequence $\{x_n\}_{n\in\mathbb{Z}}$ in a separable Hilbert space \mathcal{H} is called a **Riesz sequence** if there exists constants $0 < c \le C < \infty$ such that

$$c\Big(\sum_{n\in\mathbb{Z}}|a_n|^2\Big)\leq \Big\|\sum_{n\in\mathbb{Z}}a_nx_n\Big\|^2\leq C\Big(\sum_{n\in\mathbb{Z}}|a_n|^2\Big)$$

for all $\{a_n\}_{n\in\mathbb{Z}}\in\ell^2(\mathbb{Z})$.

Generalized sampling problem in shift-invariant subspaces of $L^2(\mathbb{R})$.

Assume that $\varphi \in L^2(\mathbb{R})$; if the sequence $\{\varphi(t-n)\}_{n\in\mathbb{Z}}$ is a Riesz sequence for $L^2(\mathbb{R})$, then we can define the shift-invariant space V_{φ}^2

$$V_{\varphi}^{2} = \left\{ \sum_{n \in \mathbb{Z}} \alpha_{n} \, \varphi(t - n) \, : \, \{\alpha_{n}\}_{n \in \mathbb{Z}} \in \ell^{2}(\mathbb{Z}) \right\}$$

A **Riesz basis** in a separable Hilbert space \mathcal{H} is the image of an orthonormal basis by means of a bounded invertible operator

Whittaker-Shannon-Kotel'nikov theorem Generalized sampling in shift-invariant subspaces Generalized sampling in *U*-invariant subspaces Time-jitter error study

If we consider

• $\mathcal{L}_j f := f * \mathbf{h}_j, \ j = 1, 2, \dots s$ are convolutions systems (linear time-invariant systems) defined on V_{ω}^2 .

If we consider

- $\mathcal{L}_j f := f * h_j$, j = 1, 2, ... s are convolutions systems (linear time-invariant systems) defined on V_{α}^2 .
- The sequence of samples $\{(\mathcal{L}_j f)(rm)\}_{m \in \mathbb{Z}; j=1,2,...,s}$ where $r \in \mathbb{N}$, is available for any f in V_{φ}^2 .

If we consider

- $\mathcal{L}_j f := f * h_j, \ j = 1, 2, \dots s$ are convolutions systems (linear time-invariant systems) defined on V_{φ}^2 .
- The sequence of samples $\{(\mathcal{L}_j f)(rm)\}_{m \in \mathbb{Z}; j=1,2,...,s}$ where $r \in \mathbb{N}$, is available for any f in V^2_{φ} .

The generalized sampling problem is to obtain sampling formulas in V^2_{ω} having the form

$$f(t) = \sum_{j=1}^{s} \sum_{m \in \mathbb{Z}} (\mathcal{L}_{j} f)(rm) \, S_{j}(t - rm) \,, \quad t \in \mathbb{R} \,,$$

where the reconstruction sequence of functions $\{S_j(\cdot-rm)\}_{m\in\mathbb{Z};\,j=1,2,\ldots,s}$ is a frame for V_φ^2 .

If we consider

- $\mathcal{L}_j f := f * h_j$, j = 1, 2, ... s are convolutions systems (linear time-invariant systems) defined on V_{α}^2 .
- The sequence of samples $\{(\mathcal{L}_j f)(rm)\}_{m \in \mathbb{Z}; j=1,2,...,s}$ where $r \in \mathbb{N}$, is available for any f in V_{φ}^2 .

A sequence $\{f_k\}_{k=1}^{\infty}$ is a **frame** for a separable Hilbert space \mathcal{H} if there exist constants A, B > 0 (frame bounds) such that

$$|A||f||^2 \le \sum_{k=1}^{\infty} |\langle f, f_k \rangle|^2 \le |B||f||^2 \quad \text{ for all } f \in \mathcal{H}$$

Whittaker-Shannon-Kotel'nikov theorem Generalized sampling in shift-invariant subspaces Generalized sampling in *U*-invariant subspaces Time-jitter error study

Generalize this problem in the following sense:

Let U be an **unitary operator** in a separable Hilbert space \mathcal{H} ; for a fixed $\mathbf{a} \in \mathcal{H}$, consider the closed subspace given by

Generalize this problem in the following sense:

Let U be an **unitary operator** in a separable Hilbert space \mathcal{H} ; for a fixed $\mathbf{a} \in \mathcal{H}$, consider the closed subspace given by

$$A_a := \overline{\operatorname{span}} \{ U^n a, \ n \in \mathbb{Z} \}.$$

Generalize this problem in the following sense:

Let *U* be an **unitary operator** in a separable Hilbert space \mathcal{H} ; for a fixed $\mathbf{a} \in \mathcal{H}$, consider the closed subspace given by

$$\mathcal{A}_a := \overline{\operatorname{span}} \{ U^n a, \ n \in \mathbb{Z} \}.$$

In case that the sequence $\{U^na\}_{n\in\mathbb{Z}}$ is a Riesz sequence in \mathcal{H} we have

$$\mathcal{A}_{a} = \left\{ \sum_{n \in \mathbb{Z}} \alpha_{n} U^{n} a : \{\alpha_{n}\}_{n \in \mathbb{Z}} \in \ell^{2}(\mathbb{Z}) \right\}.$$

Generalize this problem in the following sense:

Let *U* be an **unitary operator** in a separable Hilbert space \mathcal{H} ; for a fixed $\mathbf{a} \in \mathcal{H}$, consider the closed subspace given by

$$\mathcal{A}_a := \overline{\operatorname{span}} \{ U^n a, \ n \in \mathbb{Z} \}.$$

In case that the sequence $\{U^na\}_{n\in\mathbb{Z}}$ is a Riesz sequence in \mathcal{H} we have

$$\mathcal{A}_{a} = \left\{ \sum_{n \in \mathbb{Z}} \alpha_{n} U^{n} a : \{\alpha_{n}\}_{n \in \mathbb{Z}} \in \ell^{2}(\mathbb{Z}) \right\}.$$

Examples: Translation and Modulation operator on $L^2(\mathbb{R})$

$$(T_a f)(t) = f(t - a) \qquad (M_a f)(t) = f(t)e^{iat}$$

The sequence $\{U^n a\}_{n \in \mathbb{Z}}$

• The auto-covariance function admits the integral representation

$$R_a(k) := \langle U^k a, a \rangle_{\mathcal{H}} = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{ik\theta} d\mu_a(\theta), \qquad k \in \mathbb{Z},$$

The sequence $\{U^na\}_{n\in\mathbb{Z}}$

The auto-covariance function admits the integral representation

$$R_a(k) := \langle U^k a, a \rangle_{\mathcal{H}} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \mathrm{e}^{\mathrm{i}k\theta} d\mu_a(\theta), \qquad k \in \mathbb{Z}$$

• The positive Borel spectral measure μ_a can be decomposed as $d\mu_a(\theta) = \phi_a(\theta)d\theta + d\mu_a^s(\theta)$.

The sequence $\{U^na\}_{n\in\mathbb{Z}}$

The auto-covariance function admits the integral representation

$$R_a(k) := \langle U^k a, a \rangle_{\mathcal{H}} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \mathrm{e}^{\mathrm{i}k\theta} d\mu_a(\theta) \,, \qquad k \in \mathbb{Z} \,,$$

- The positive Borel spectral measure μ_a can be decomposed as $d\mu_a(\theta) = \phi_a(\theta)d\theta + d\mu_a^s(\theta)$.
- The sequence $\{U^na\}_{n\in\mathbb{Z}}$ is a Riesz basis for \mathcal{A}_a if and only if the singular part $\mu_a^s\equiv 0$ and

$$0 < \operatornamewithlimits{ess\,inf}_{\theta \in (-\pi,\pi)} \phi_{\mathbf{a}}(\theta) \leq \operatornamewithlimits{ess\,sup}_{\theta \in (-\pi,\pi)} \phi_{\mathbf{a}}(\theta) < \infty \,.$$

Given the sequence $\left\{ U^{rk}b_{j}\right\} _{k\in\mathbb{Z};\,j=1,2,\ldots,s}$ with $b_{j}\in\mathcal{H}\,,j=1,2,\ldots,s,$ a challenging problem is:

Given the sequence $\left\{ {\it U^{rk}b_j} \right\}_{k \in \mathbb{Z}; j=1,2,\ldots,s}$ with $b_j \in \mathcal{H}, j=1,2,\ldots,s$, a challenging problem is:

• Characterize the sequence $\{U^{rk}b_j\}_{k\in\mathbb{Z};j=1,2,...,s}$ as a **frame** (Riesz basis) in \mathcal{A}_a .

Given the sequence $\left\{ {\color{blue} U^{rk}b_j} \right\}_{k \in \mathbb{Z}; j=1,2,\ldots,s}$ with $b_j \in \mathcal{H}, j=1,2,\ldots,s$, a challenging problem is:

- Characterize the sequence $\{U^{rk}b_j\}_{k\in\mathbb{Z};j=1,2,...,s}$ as a **frame** (Riesz basis) in \mathcal{A}_a .
- Look for those **dual frames** having the same form $\left\{U^{rk}c_j\right\}_{k\in\mathbb{Z};\,j=1,2,\ldots,s}$ for some $c_j\in\mathcal{A}_a$, so that, for any $x\in\mathcal{A}_a$ the **expansion**

$$x = \sum_{j=1}^{s} \sum_{k \in \mathbb{Z}} \langle x, U^{rk} b_j \rangle U^{rk} c_j$$
 in \mathcal{H}

holds.

Remark

In the shift-invariant case, U is defined as the shift operator $U: f(u) \mapsto f(u-1)$ in $L^2(\mathbb{R})$ and we have

$$\langle f, U^{rk}b\rangle_{\mathcal{H}} = \int_{-\infty}^{\infty} f(u)\overline{b(u-rk)}du = (f*h)(rk), \quad u \in \mathbb{R},$$

where
$$h(u) := \overline{b(-u)}$$
.

For every $j = 1, 2, \dots s$ we have the following representation

$$\langle U^k a, U^{nr} b_j \rangle = rac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(k-rn)\theta} \phi_{a,b_j}(e^{i\theta}) d\theta.$$

For every $j = 1, 2, \dots s$ we have the following representation

$$\langle \textit{U}^{\textit{k}}\textit{a}, \textit{U}^{\textit{nr}}\textit{b}_{\textit{j}}
angle = rac{1}{2\pi} \int_{-\pi}^{\pi} e^{\textit{i}(\textit{k}-\textit{rn})\theta} \phi_{\textit{a},\textit{b}_{\textit{j}}}(e^{\textit{i}\theta}) d\theta.$$

Consider the $s \times 1$ matrices of functions defined on the torus $\mathbb{T} := \{e^{i\theta} : \theta \in [-\pi, \pi)\}$

$$\Phi_{oldsymbol{a},b}(oldsymbol{e}^{i heta}) := egin{pmatrix} \phi_{oldsymbol{a},b_1}(oldsymbol{e}^{i heta})\ \phi_{oldsymbol{a},b_2}(oldsymbol{e}^{i heta})\ dots\ \phi_{oldsymbol{a},b_s}(oldsymbol{e}^{i heta}) \end{pmatrix},$$

For every j = 1, 2, ... s we have the following representation

$$\langle \textit{U}^{\textit{k}}\textit{a}, \textit{U}^{\textit{nr}}\textit{b}_{\textit{j}}
angle = rac{1}{2\pi} \int_{-\pi}^{\pi} e^{\textit{i}(\textit{k}-\textit{rn})\theta} \phi_{\textit{a},\textit{b}_{\textit{j}}}(e^{\textit{i}\theta}) d\theta.$$

Consider the $s \times 1$ matrices of functions defined on the torus $\mathbb{T} := \{e^{i\theta} : \theta \in [-\pi, \pi)\}$

$$\Phi_{oldsymbol{a},b}(oldsymbol{e}^{i heta}) := egin{pmatrix} \phi_{oldsymbol{a},b_1}(oldsymbol{e}^{i heta})\ \phi_{oldsymbol{a},b_2}(oldsymbol{e}^{i heta})\ dots\ \phi_{oldsymbol{a},b_s}(oldsymbol{e}^{i heta}) \end{pmatrix},$$

and

$$\Psi_{a,b}^I(e^{i\theta}):=(D_rS^{-I}\Phi_{a,b})(e^{i\theta})\,,\quad I=0,1,\ldots,r-1.$$

Where D_r , $S: L^2(\mathbb{T}) \to L^2(\mathbb{T})$ denote the *decimation operator* and the *(left) shift operator* respectively

$$\sum_{k\in\mathbb{Z}} a_k e^{ik\theta} \overset{D_r}{\longmapsto} \sum_{k\in\mathbb{Z}} a_{rk} e^{ik\theta} \qquad \qquad \sum_{k\in\mathbb{Z}} a_k e^{ik\theta} \overset{S}{\longmapsto} \sum_{k\in\mathbb{Z}} a_{k+1} e^{ik\theta} \,.$$

Where $D_r, S: L^2(\mathbb{T}) \to L^2(\mathbb{T})$ denote the *decimation operator* and the *(left) shift operator* respectively

$$\sum_{k\in\mathbb{Z}} a_k e^{ik\theta} \overset{D_r}{\longmapsto} \sum_{k\in\mathbb{Z}} a_{rk} e^{ik\theta} \qquad \qquad \sum_{k\in\mathbb{Z}} a_k e^{ik\theta} \overset{S}{\longmapsto} \sum_{k\in\mathbb{Z}} a_{k+1} e^{ik\theta} \,.$$

Finally, defining the $s \times r$ matrix of functions on the torus \mathbb{T}

$$\boldsymbol{\Psi_{a,b}}(\boldsymbol{e}^{i\theta}) := \left(\Psi^0_{a,b}(\boldsymbol{e}^{i\theta}) \; \Psi^1_{a,b}(\boldsymbol{e}^{i\theta}) \; \dots \Psi^{r-1}_{a,b}(\boldsymbol{e}^{i\theta}) \right),$$

Where $D_r, S: L^2(\mathbb{T}) \to L^2(\mathbb{T})$ denote the *decimation operator* and the *(left) shift operator* respectively

$$\sum_{k\in\mathbb{Z}} a_k e^{ik\theta} \overset{D_r}{\longmapsto} \sum_{k\in\mathbb{Z}} a_{rk} e^{ik\theta} \qquad \qquad \sum_{k\in\mathbb{Z}} a_k e^{ik\theta} \overset{S}{\longmapsto} \sum_{k\in\mathbb{Z}} a_{k+1} e^{ik\theta} \,.$$

Finally, defining the $s \times r$ matrix of functions on the torus \mathbb{T}

$$\boldsymbol{\Psi_{a,b}}(\boldsymbol{e}^{i\theta}) := \left(\Psi^0_{a,b}(\boldsymbol{e}^{i\theta}) \; \Psi^1_{a,b}(\boldsymbol{e}^{i\theta}) \; \dots \Psi^{r-1}_{a,b}(\boldsymbol{e}^{i\theta}) \right),$$

and its related constants,

$$\begin{split} & A_{\pmb{\Psi}} := \underset{\zeta \in \mathbb{T}}{\text{ess inf}} \ \lambda_{\min} \big[\pmb{\Psi}_{\pmb{a}, \pmb{b}}^*(\zeta) \pmb{\Psi}_{\pmb{a}, \pmb{b}}(\zeta) \big]; \\ & B_{\pmb{\Psi}} := \underset{\zeta \in \mathbb{T}}{\text{ess sup}} \ \lambda_{\max} \big[\pmb{\Psi}_{\pmb{a}, \pmb{b}}^*(\zeta) \pmb{\Psi}_{\pmb{a}, \pmb{b}}(\zeta) \big] \end{split}$$

Theorem.

Let b_j be in A_a for j = 1, 2, ..., s and let $\Psi_{a,b}$ be the associated matrix. Then, the following results hold:

- i) The sequence $\{U^{rk}b_j\}_{k\in\mathbb{Z};j=1,2,...s}$ is a **complete system** in \mathcal{A}_a if and only if the rank of the matrix $\Psi_{a,b}(\zeta)$ is r a.e. ζ in \mathbb{T} .
- ii) The sequence $\{U^{rk}b_j\}_{k\in\mathbb{Z};j=1,2,...s}$ is a **Bessel sequence** for \mathcal{A}_a if and only if the constant $B_{\Psi}<\infty$.
- iii) The sequence $\left\{ \begin{array}{l} \pmb{U}^{rk} \pmb{b}_j \right\}_{k \in \mathbb{Z}; j=1,2,...s}$ is a **frame** for \mathcal{A}_a if and only if constants A_{Ψ} and B_{Ψ} satisfy $0 < A_{\Psi} \leq B_{\Psi} < \infty$. In this case, A_{Ψ} and B_{Ψ} are the optimal frame bounds for $\left\{ \begin{array}{l} \pmb{U}^{rk} \pmb{b}_j \right\}_{k \in \mathbb{Z}; j=1,2,...s}$.
- iv) The sequence $\{U^{rk}b_j\}_{k\in\mathbb{Z}; j=1,2,...s}$ is a **Riesz basis** for A_a if and only if it is a frame and s=r.

The frame expansion

Taking into account the $r \times s$ matrix $\Gamma_{\mathbb{U}}$ of functions on \mathbb{T}

$$\textbf{\Gamma}_{\mathbb{U}}(e^{\mathrm{i}\theta}) := \textbf{\Psi}^{\dagger}_{\textbf{a},\textbf{b}}(e^{\mathrm{i}\theta}) + \mathbb{U}(e^{\mathrm{i}\theta})\big[\mathbb{I}_{\textbf{s}} - \textbf{\Psi}_{\textbf{a},\textbf{b}}(e^{\mathrm{i}\theta})\textbf{\Psi}^{\dagger}_{\textbf{a},\textbf{b}}(e^{\mathrm{i}\theta})\big],$$

The frame expansion

Taking into account the $r \times s$ matrix $\Gamma_{\mathbb{U}}$ of functions on \mathbb{T}

$$\textbf{\Gamma}_{\mathbb{U}}(e^{\mathrm{i}\theta}) := \textbf{\Psi}^{\dagger}_{\textbf{a},\textbf{b}}(e^{\mathrm{i}\theta}) + \mathbb{U}(e^{\mathrm{i}\theta})\big[\mathbb{I}_{\textbf{s}} - \textbf{\Psi}_{\textbf{a},\textbf{b}}(e^{\mathrm{i}\theta})\textbf{\Psi}^{\dagger}_{\textbf{a},\textbf{b}}(e^{\mathrm{i}\theta})\big],$$

where $\mathbb{U}(e^{i\theta})$ is any $r \times s$ matrix with entries in $L^{\infty}(\mathbb{T})$, and $\Psi_{\mathbf{a},\mathbf{b}}^{\dagger}$ denotes the Moore-Penrose left-inverse of $\Psi_{\mathbf{a},\mathbf{b}}$,

$$\boldsymbol{\Psi}_{\boldsymbol{\mathsf{a}},\boldsymbol{\mathsf{b}}}^{\dagger}(e^{\mathrm{i}\theta}) := [\boldsymbol{\Psi}_{\boldsymbol{\mathsf{a}},\boldsymbol{\mathsf{b}}}^{*}(e^{\mathrm{i}\theta})\boldsymbol{\Psi}_{\boldsymbol{\mathsf{a}},\boldsymbol{\mathsf{b}}}(e^{\mathrm{i}\theta})]^{-1}\boldsymbol{\Psi}_{\boldsymbol{\mathsf{a}},\boldsymbol{\mathsf{b}}}^{*}(e^{\mathrm{i}\theta}).$$

The frame expansion

Taking into account the $r \times s$ matrix $\Gamma_{\mathbb{U}}$ of functions on \mathbb{T}

$$\pmb{\Gamma}_{\mathbb{U}}(e^{\mathrm{i}\theta}) := \pmb{\Psi}_{\pmb{\mathsf{a}},\pmb{\mathsf{b}}}^{\dagger}(e^{\mathrm{i}\theta}) + \mathbb{U}(e^{\mathrm{i}\theta})\big[\mathbb{I}_{\pmb{s}} - \pmb{\Psi}_{\pmb{\mathsf{a}},\pmb{\mathsf{b}}}(e^{\mathrm{i}\theta})\pmb{\Psi}_{\pmb{\mathsf{a}},\pmb{\mathsf{b}}}^{\dagger}(e^{\mathrm{i}\theta})\big],$$

where $\mathbb{U}(e^{i\theta})$ is any $r \times s$ matrix with entries in $L^{\infty}(\mathbb{T})$, and $\Psi_{\mathbf{a},\mathbf{b}}^{\dagger}$ denotes the Moore-Penrose left-inverse of $\Psi_{\mathbf{a},\mathbf{b}}$,

$$\boldsymbol{\Psi}_{\boldsymbol{\mathsf{a}},\boldsymbol{\mathsf{b}}}^{\dagger}(e^{\mathrm{i}\theta}) := [\boldsymbol{\Psi}_{\boldsymbol{\mathsf{a}},\boldsymbol{\mathsf{b}}}^{*}(e^{\mathrm{i}\theta})\boldsymbol{\Psi}_{\boldsymbol{\mathsf{a}},\boldsymbol{\mathsf{b}}}(e^{\mathrm{i}\theta})]^{-1}\boldsymbol{\Psi}_{\boldsymbol{\mathsf{a}},\boldsymbol{\mathsf{b}}}^{*}(e^{\mathrm{i}\theta}).$$

We can find $c_j \in \mathcal{A}_a$ such that the sequences $\{U^{kr}c_j\}_{k \in \mathbb{Z}; j=1,2,...,s}$ and $\{U^{kr}b_j\}_{k \in \mathbb{Z}; j=1,2,...s}$ are a pair of **dual frames** for \mathcal{A}_a . Hence, for any $x \in \mathcal{A}_a$ we obtain the following recovery formula

$$x = \sum_{i=1}^{s} \sum_{k \in \mathbb{Z}} \langle x, U^{kr} b_j \rangle U^{kr} c_j$$
 in \mathcal{H} .

Whittaker-Shannon-Kotel'nikov theorem Generalized sampling in shift-invariant subspaces Generalized sampling in *U*-invariant subspaces Time-jitter error study

Time-jitter error study

We are going to deal with the following problems:

Time-jitter error study

We are going to deal with the following problems:

• Study the perturbed sequence $\left\{U^{rk+\epsilon_{kj}}b_{j}\right\}_{k\in\mathbb{Z}:j=1,2,\ldots,s}$.

Time-jitter error study

We are going to deal with the following problems:

- Study the perturbed sequence $\{U^{rk+\epsilon_{kj}}b_j\}_{k\in\mathbb{Z};j=1,2,\ldots,s}$.
- Recover $x \in \mathcal{A}_a$ from the perturbed sequence of samples $\left\{ \langle x, U^{rk+\epsilon_{kj}} b_j \rangle \right\}_{k \in \mathbb{Z}: i=1,2,...,s}$.

Time-jitter error study

We are going to deal with the following problems:

- Study the perturbed sequence $\{U^{rk+\epsilon_{kj}}b_j\}_{k\in\mathbb{Z};\,j=1,2,\ldots,s}$.
- Recover $x \in \mathcal{A}_a$ from the perturbed sequence of samples $\left\{ \langle x, U^{rk+\epsilon_{kj}} b_j \rangle \right\}_{k \in \mathbb{Z}; j=1,2,...,s}$.

In order to give sense to $U^{rk+\epsilon_{mj}}b_j$ we need to introduce a **continuous group of unitary operators** $\{U^t\}_{t\in\mathbb{R}}$, such that $U=U^1$.

Whittaker-Shannon-Kotel'nikov theorem Generalized sampling in shift-invariant subspaces Generalized sampling in *U*-invariant subspaces Time-jitter error study

A brief walk on continuous groups of unitary operators

A brief walk on continuous groups of unitary operators

 $\{U^t\}_{t\in\mathbb{R}}$ is a family of unitary operators in $\mathcal H$ satisfying:

- $U^t U^{t'} = U^{t+t'},$
- $0 U^0 = I_{\mathcal{H}} ,$
- **③** $\langle U^t x, y \rangle_{\mathcal{H}}$ is a continuous function of *t* for any $x, y \in \mathcal{H}$.

A brief walk on continuous groups of unitary operators

 $\{U^t\}_{t\in\mathbb{R}}$ is a family of unitary operators in \mathcal{H} satisfying:

- $0 U^0 = I_{\mathcal{H}},$
- **③** $\langle U^t x, y \rangle_{\mathcal{H}}$ is a continuous function of *t* for any $x, y \in \mathcal{H}$.

Classical **Stone's theorem** assures us the existence of a self-adjoint operator T (possibly unbounded) such that $U^t \equiv e^{itT}$. This self-adjoint operator T, defined on the dense domain D_T of \mathcal{H} .

A brief walk on continuous groups of unitary operators

 $\{U^t\}_{t\in\mathbb{R}}$ is a family of unitary operators in \mathcal{H} satisfying:

- $0^0 = I_{\mathcal{H}},$
- **③** $\langle U^t x, y \rangle_{\mathcal{H}}$ is a continuous function of *t* for any $x, y \in \mathcal{H}$.

Classical **Stone's theorem** assures us the existence of a self-adjoint operator T (possibly unbounded) such that $U^t \equiv e^{itT}$. This self-adjoint operator T, defined on the dense domain D_T of \mathcal{H} .

Notice that, whenever the self-adjoint operator T is bounded, $D_T = \mathcal{H}$ and e^{itT} can be defined as the usual exponential series; in any case, $U^t \equiv e^{itT}$ means that

$$\langle U^t x, y \rangle = \int_{-\infty}^{\infty} e^{iwt} d\langle E_w x, y \rangle, \quad t \in \mathbb{R},$$

where $x \in D_T$ and $y \in \mathcal{H}$.

Whittaker-Shannon-Kotel'nikov theorem Generalized sampling in shift-invariant subspaces Generalized sampling in U-invariant subspaces Time-jitter error study

Recover $x \in \mathcal{A}_a$ in a stable way from the perturbed sequence $\left\{\langle x, U^{rm+\epsilon_{mj}}b_j\rangle_{\mathcal{H}}\right\}_{k\in\mathbb{Z};\,j=1,2,\dots,s}$.

Recover $x \in \mathcal{A}_a$ in a stable way from the perturbed sequence $\left\{\langle x, U^{rm+\epsilon_{mj}}b_j\rangle_{\mathcal{H}}\right\}_{k\in\mathbb{Z}:\, j=1,2,...,s}$.

Taking into account the $L^2(0,1)$ functions

$$g_j(\mathbf{w}) := \sum_{k \in \mathbb{Z}} \langle \mathbf{a}, \mathbf{U}^k \mathbf{b}_j \rangle_{\mathcal{H}} \, \mathrm{e}^{2\pi \mathrm{i} k \mathbf{w}} \,, \, \, j = 1, 2, \ldots, s \,,$$

Recover $x \in \mathcal{A}_a$ in a stable way from the perturbed sequence $\{\langle x, U^{rm+\epsilon_{mj}}b_j\rangle_{\mathcal{H}}\}_{k\in\mathbb{Z}: i=1,2,\ldots,s}$.

Taking into account the $L^2(0,1)$ functions

$$g_j(w) := \sum_{k \in \mathbb{Z}} \langle a, U^k b_j \rangle_{\mathcal{H}} \, \mathrm{e}^{2\pi \mathrm{i} k w} \,, \ j = 1, 2, \dots, s \,,$$

we can define the $s \times r$ matrix

$$\mathbb{G}(w) := \begin{bmatrix} \mathbf{g}_{1}(w) & \mathbf{g}_{1}(w + \frac{1}{r}) & \cdots & \mathbf{g}_{1}(w + \frac{r-1}{r}) \\ \mathbf{g}_{2}(w) & \mathbf{g}_{2}(w + \frac{1}{r}) & \cdots & \mathbf{g}_{2}(w + \frac{r-1}{r}) \\ \vdots & \vdots & & \vdots \\ \mathbf{g}_{s}(w) & \mathbf{g}_{s}(w + \frac{1}{r}) & \cdots & \mathbf{g}_{s}(w + \frac{r-1}{r}) \end{bmatrix}$$

Recover $x \in \mathcal{A}_a$ in a stable way from the perturbed sequence $\{\langle x, U^{rm+\epsilon_{mj}}b_j\rangle_{\mathcal{H}}\}_{k\in\mathbb{Z}: i=1,2,\ldots,s}$.

Taking into account the $L^2(0,1)$ functions

$$g_j(w) := \sum_{k \in \mathbb{Z}} \langle a, U^k b_j \rangle_{\mathcal{H}} e^{2\pi i k w}, \ j = 1, 2, \dots, s,$$

we can define the $s \times r$ matrix

$$\mathbb{G}(w) := \begin{bmatrix} \mathbf{g}_{1}(w) & \mathbf{g}_{1}(w + \frac{1}{r}) & \cdots & \mathbf{g}_{1}(w + \frac{r-1}{r}) \\ \mathbf{g}_{2}(w) & \mathbf{g}_{2}(w + \frac{1}{r}) & \cdots & \mathbf{g}_{2}(w + \frac{r-1}{r}) \\ \vdots & \vdots & & \vdots \\ \mathbf{g}_{s}(w) & \mathbf{g}_{s}(w + \frac{1}{r}) & \cdots & \mathbf{g}_{s}(w + \frac{r-1}{r}) \end{bmatrix}$$

and its related the constants $\alpha_{\mathbb{G}}$ and $\beta_{\mathbb{G}}$ given by

$$\begin{split} \alpha_{\mathbb{G}} &:= \underset{w \in (0,1/r)}{\operatorname{ess \, inf}} \ \lambda_{\min}[\mathbb{G}^*(w)\mathbb{G}(w)], \\ \beta_{\mathbb{G}} &:= \underset{w \in (0,1/r)}{\operatorname{ess \, sup}} \ \lambda_{\max}[\mathbb{G}^*(w)\mathbb{G}(w)] \,. \end{split}$$

Theorem.

Assume that we have $0<\alpha_{\mathbb{G}}\leq\beta_{\mathbb{G}}<\infty$, then we can find a positive number γ such that, if an error sequence $\epsilon:=\{\epsilon_{\textit{mj}}\}_{\textit{m}\in\mathbb{Z};\,j=1,2,...,s}$ satisfies the inequality,

$$\|\epsilon\|_{\infty} := \max_{j=1,2,...,s} \sup_{m \in \mathbb{Z}} |\epsilon_{mj}| \leq \gamma$$

then there exists a **frame** $\{C_{m,j}^{\epsilon}\}_{m\in\mathbb{Z}:j=1,2,...,s}$ for A_a allowing the recovery of any $x\in A_a$ by means of the **sampling expansion**

$$x = \sum_{j=1}^{s} \sum_{m \in \mathbb{Z}} \langle x, U^{rm+\epsilon_{mj}} b_j \rangle_{\mathcal{H}} C_{m,j}^{\epsilon} \quad \text{in } \mathcal{H}.$$

Whittaker-Shannon-Kotel'nikov theorem Generalized sampling in shift-invariant subspaces Generalized sampling in *U*-invariant subspaces Time-jitter error study

THANKS.