

On generalized sampling in U-invariant spaces

Héctor R. Fernández Morales

Supervisor: Prof. Dr. D. Antonio García García

Departamento de Matemáticas Universidad Carlos III de Madrid

May 17, 2013

Héctor R. Fernández Morales

Outline

Outline

Motivation

2 Regular case

Outline

- Motivation
- Regular case
- 3 Irregular case

Generalized sampling problem in shift-invariant subspaces of $L^2(\mathbb{R})$.

Assume that $\varphi \in L^2(\mathbb{R})$; if the sequence $\{\varphi(t-n)\}_{n\in\mathbb{Z}}$ is a Riesz sequence for $L^2(\mathbb{R})$, then we can define the shift-invariant space V_{φ}^2

$$V_{\varphi}^2 = \left\{ \sum_{n \in \mathbb{Z}} \alpha_n \, \varphi(t-n) \, : \, \{\alpha_n\}_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z}) \right\}$$

Generalized sampling problem in shift-invariant subspaces of $L^2(\mathbb{R})$.

Assume that $\varphi \in L^2(\mathbb{R})$; if the sequence $\{\varphi(t-n)\}_{n\in\mathbb{Z}}$ is a Riesz sequence for $L^2(\mathbb{R})$, then we can define the shift-invariant space V_{φ}^2

$$V_{\varphi}^2 = \Big\{ \sum_{n \in \mathbb{Z}} \alpha_n \, \varphi(t-n) \, : \, \{\alpha_n\}_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z}) \Big\}$$

A sequence $\{x_n\}_{n\in\mathbb{Z}}$ in a separable Hilbert space \mathcal{H} is called a **Riesz sequence** if there exists constants $0 < c \le C < \infty$ such that

$$c\Big(\sum_{n\in\mathbb{Z}}|a_n|^2\Big)\leq \Big\|\sum_{n\in\mathbb{Z}}a_nx_n\Big\|^2\leq C\Big(\sum_{n\in\mathbb{Z}}|a_n|^2\Big)$$

for all $\{a_n\}_{n\in\mathbb{Z}}\in\ell^2(\mathbb{Z})$.

Generalized sampling problem in shift-invariant subspaces of $L^2(\mathbb{R})$.

Assume that $\varphi \in L^2(\mathbb{R})$; if the sequence $\{\varphi(t-n)\}_{n\in\mathbb{Z}}$ is a Riesz sequence for $L^2(\mathbb{R})$, then we can define the shift-invariant space V_{φ}^2

$$V_{\varphi}^{2} = \left\{ \sum_{n \in \mathbb{Z}} \alpha_{n} \, \varphi(t - n) \, : \, \{\alpha_{n}\}_{n \in \mathbb{Z}} \in \ell^{2}(\mathbb{Z}) \right\}$$

A **Riesz basis** in a separable Hilbert space $\mathcal H$ is the image of an orthonormal basis by means of a bounded invertible operator

Motivation Regular case Irregular case

If we consider

• $\mathcal{L}_j f := f * \mathbf{h}_j, \ j = 1, 2, \dots s$ are convolutions systems (linear time-invariant systems) defined on V^2_{ω} .

If we consider

- $\mathcal{L}_j f := f * h_j, \ j = 1, 2, \dots s$ are convolutions systems (linear time-invariant systems) defined on V_{ω}^2 .
- The sequence of samples $\{(\mathcal{L}_j f)(rm)\}_{m \in \mathbb{Z}; j=1,2,...,s}$ where $r \in \mathbb{N}$, is available for any f in V^2_{ω} .

If we consider

- $\mathcal{L}_j f := f * h_j, \ j = 1, 2, \dots s$ are convolutions systems (linear time-invariant systems) defined on V_{ω}^2 .
- The sequence of samples $\{(\mathcal{L}_j f)(rm)\}_{m \in \mathbb{Z}; j=1,2,...,s}$ where $r \in \mathbb{N}$, is available for any f in V^2_{φ} .

The generalized sampling problem is to obtain sampling formulas in V^2_{ω} having the form

$$f(t) = \sum_{j=1}^s \sum_{m \in \mathbb{Z}} ig(\mathcal{L}_j f ig) (\mathit{rm}) \, \mathcal{S}_j (t - \mathit{rm}) \,, \quad t \in \mathbb{R} \,,$$

where the reconstruction sequence of functions $\{S_j(\cdot-rm)\}_{m\in\mathbb{Z};j=1,2,\ldots,s}$ is a frame for V_φ^2 .

If we consider

- L_j f := f * h_j, j = 1,2,...s are convolutions systems (linear time-invariant systems) defined on V_ω².
- The sequence of samples $\{(\mathcal{L}_j f)(rm)\}_{m \in \mathbb{Z}; j=1,2,...,s}$ where $r \in \mathbb{N}$, is available for any f in V_{φ}^2 .

A sequence $\{f_k\}_{k=1}^{\infty}$ is a **frame** for a separable Hilbert space \mathcal{H} if there exist constants A, B > 0 (frame bounds) such that

$$A||f||^2 \le \sum_{k=1}^{\infty} |\langle f, f_k \rangle|^2 \le B||f||^2$$
 for all $f \in \mathcal{H}$

Generalize this problem in the following sense:

Let U be an **unitary operator** in a separable Hilbert space \mathcal{H} ; for a fixed $\mathbf{a} \in \mathcal{H}$, consider the closed subspace given by

Generalize this problem in the following sense:

Let *U* be an **unitary operator** in a separable Hilbert space \mathcal{H} ; for a fixed $\mathbf{a} \in \mathcal{H}$, consider the closed subspace given by

$$\mathcal{A}_a := \overline{\operatorname{span}} \big\{ U^n a, \ n \in \mathbb{Z} \big\}.$$

Generalize this problem in the following sense:

Let *U* be an **unitary operator** in a separable Hilbert space \mathcal{H} ; for a fixed $\mathbf{a} \in \mathcal{H}$, consider the closed subspace given by

$$A_a := \overline{\operatorname{span}} \{ U^n a, \ n \in \mathbb{Z} \}.$$

In case that the sequence $\{U^na\}_{n\in\mathbb{Z}}$ is a Riesz sequence in \mathcal{H} we have

$$\mathcal{A}_{a} = \left\{ \sum_{n \in \mathbb{Z}} \alpha_{n} U^{n} a : \{\alpha_{n}\}_{n \in \mathbb{Z}} \in \ell^{2}(\mathbb{Z}) \right\}.$$

The sequence $\{U^n a\}_{n \in \mathbb{Z}}$

• The auto-covariance function admits the integral representation

$$R_a(k) := \langle \mathit{U}^k a, a
angle_{\mathcal{H}} = rac{1}{2\pi} \int_{-\pi}^{\pi} \mathrm{e}^{\mathrm{i}k\theta} d\mu_a(\theta) \,, \qquad k \in \mathbb{Z} \,,$$

The sequence $\{U^n a\}_{n \in \mathbb{Z}}$

The auto-covariance function admits the integral representation

$$R_a(k) := \langle U^k a, a
angle_{\mathcal{H}} = rac{1}{2\pi} \int_{-\pi}^{\pi} \mathrm{e}^{\mathrm{i}k\theta} d\mu_a(\theta) \,, \qquad k \in \mathbb{Z} \,,$$

• The positive Borel spectral measure μ_a can be decomposed as $d\mu_a(\theta) = \phi_a(\theta)d\theta + d\mu_a^s(\theta)$.

The sequence $\{U^n a\}_{n \in \mathbb{Z}}$

The auto-covariance function admits the integral representation

$$R_a(k) := \langle U^k a, a
angle_{\mathcal{H}} = rac{1}{2\pi} \int_{-\pi}^{\pi} \mathrm{e}^{\mathrm{i}k\theta} d\mu_a(\theta) \,, \qquad k \in \mathbb{Z} \,,$$

- The positive Borel spectral measure μ_a can be decomposed as $d\mu_a(\theta) = \phi_a(\theta)d\theta + d\mu_a^s(\theta)$.
- The sequence $\{U^n a\}_{n \in \mathbb{Z}}$ is a Riesz basis for \mathcal{A}_a if and only if the singular part $\mu_a^s \equiv 0$ and

$$0 < \operatornamewithlimits{ess\,inf}_{\theta \in (-\pi,\pi)} \phi_{a}(\theta) \leq \operatornamewithlimits{ess\,sup}_{\theta \in (-\pi,\pi)} \phi_{a}(\theta) < \infty \,.$$

Given the sequence $\left\{ {\it U^{rk}b_j} \right\}_{k \in \mathbb{Z}; j=1,2,\ldots,s}$ with $b_j \in \mathcal{H}, j=1,2,\ldots,s$, a challenging problem is:

Given the sequence $\left\{ \begin{array}{ll} \pmb{U}^{rk} \pmb{b}_j \right\}_{k \in \mathbb{Z}; j=1,2,\ldots,s}$ with $\pmb{b}_j \in \mathcal{H}, j=1,2,\ldots,s$, a challenging problem is:

• Characterize the sequence $\{U^{rk}b_j\}_{k\in\mathbb{Z};j=1,2,...,s}$ as a **frame** (Riesz basis) in \mathcal{A}_a .

Given the sequence $\left\{ \begin{array}{ll} \pmb{U}^{rk} \pmb{b}_j \right\}_{k \in \mathbb{Z}; j=1,2,\ldots,s}$ with $\pmb{b}_j \in \mathcal{H}, j=1,2,\ldots,s$, a challenging problem is:

- Characterize the sequence $\{U^{rk}b_j\}_{k\in\mathbb{Z};j=1,2,...,s}$ as a **frame** (Riesz basis) in \mathcal{A}_a .
- Look for those **dual frames** having the same form $\left\{U^{rk}c_j\right\}_{k\in\mathbb{Z};\,j=1,2,\ldots,s}$ for some $c_j\in\mathcal{A}_a$, so that, for any $x\in\mathcal{A}_a$ the **expansion**

$$x = \sum_{i=1}^{s} \sum_{k \in \mathbb{Z}} \langle x, U^{rk} b_j \rangle U^{rk} c_j$$
 in \mathcal{H}

holds.

Remark

In the shift-invariant case, U is defined as the shift operator $U: f(u) \mapsto f(u-1)$ in $L^2(\mathbb{R})$ and we have

$$\langle f, U^{rk}b \rangle_{\mathcal{H}} = \int_{-\infty}^{\infty} f(u)\overline{b(u-rk)}du = (f*h)(rk)\,, \quad u \in \mathbb{R}\,,$$

where $h(u) := \overline{b(-u)}$.

Procedure

For every $j = 1, 2, \dots s$ we have the following representation

$$\langle \textit{U}^{k}\textit{a},\textit{U}^{\textit{nr}}\textit{b}_{j}
angle = rac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(k-m)\theta} \phi_{\textit{a},\textit{b}_{j}}(e^{i\theta}) d\theta.$$

Procedure

For every $j = 1, 2, \dots s$ we have the following representation

$$\langle U^k a, U^{nr} b_j \rangle = rac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(k-rn)\theta} \phi_{a,b_j}(e^{i\theta}) d\theta.$$

Consider the $s \times 1$ matrices of functions defined on the torus $\mathbb{T} := \{e^{i\theta} : \theta \in [-\pi, \pi)\}$

$$\Phi_{a,b}(oldsymbol{e}^{i heta}) := egin{pmatrix} \phi_{a,b_1}(oldsymbol{e}^{i heta}) \ \phi_{a,b_2}(oldsymbol{e}^{i heta}) \ dots \ \phi_{a,b_s}(oldsymbol{e}^{i heta}) \end{pmatrix},$$

Procedure

For every $j = 1, 2, \dots s$ we have the following representation

$$\langle U^k a, U^{nr} b_j \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(k-rn)\theta} \phi_{a,b_j}(e^{i\theta}) d\theta.$$

Consider the $s \times 1$ matrices of functions defined on the torus $\mathbb{T} := \{e^{i\theta} : \theta \in [-\pi, \pi)\}$

$$\Phi_{a,b}(oldsymbol{e}^{i heta}) := egin{pmatrix} \phi_{a,b_1}(oldsymbol{e}^{i heta}) \ \phi_{a,b_2}(oldsymbol{e}^{i heta}) \ dots \ \phi_{a,b_s}(oldsymbol{e}^{i heta}) \end{pmatrix},$$

and

$$\Psi_{a,b}^{l}(e^{i\theta}) := (D_{r}S^{-l}\Phi_{a,b})(e^{i\theta}), \quad l = 0, 1, \dots, r-1.$$

$$\sum_{k\in\mathbb{Z}}a_ke^{ik\theta}\stackrel{D_r}{\longmapsto}\sum_{k\in\mathbb{Z}}a_{rk}e^{ik\theta}$$

$$\sum_{k\in\mathbb{Z}}a_ke^{ik\theta}\stackrel{D_r}{\longmapsto}\sum_{k\in\mathbb{Z}}a_{rk}e^{ik\theta}$$

and $S: L^2(\mathbb{T}) \to L^2(\mathbb{T})$ denotes the (left) shift operator

$$\sum_{k\in\mathbb{Z}}a_ke^{ik\theta}\stackrel{\mathcal{S}}{\longmapsto}\sum_{k\in\mathbb{Z}}a_{k+1}e^{ik\theta}.$$

$$\sum_{k\in\mathbb{Z}}a_ke^{ik\theta}\stackrel{D_r}{\longmapsto}\sum_{k\in\mathbb{Z}}a_{rk}e^{ik\theta}$$

and $S: L^2(\mathbb{T}) \to L^2(\mathbb{T})$ denotes the (left) shift operator

$$\sum_{k\in\mathbb{Z}}a_ke^{ik\theta}\stackrel{\mathcal{S}}{\longmapsto}\sum_{k\in\mathbb{Z}}a_{k+1}e^{ik\theta}.$$

Finally, defining the $s \times r$ matrix of functions on the torus \mathbb{T}

$$\boldsymbol{\Psi_{a,b}}(\boldsymbol{e}^{i\theta}) := \left(\Psi^0_{a,b}(\boldsymbol{e}^{i\theta}) \; \Psi^1_{a,b}(\boldsymbol{e}^{i\theta}) \; \dots \Psi^{r-1}_{a,b}(\boldsymbol{e}^{i\theta}) \right),$$

$$\sum_{k\in\mathbb{Z}}a_ke^{ik\theta}\stackrel{D_r}{\longmapsto}\sum_{k\in\mathbb{Z}}a_{rk}e^{ik\theta}$$

and $S: L^2(\mathbb{T}) \to L^2(\mathbb{T})$ denotes the (left) shift operator

$$\sum_{k\in\mathbb{Z}} a_k e^{ik\theta} \stackrel{S}{\longmapsto} \sum_{k\in\mathbb{Z}} a_{k+1} e^{ik\theta} \,.$$

Finally, defining the $s \times r$ matrix of functions on the torus \mathbb{T}

$$\boldsymbol{\Psi_{a,b}}(\boldsymbol{e}^{i\theta}) := \left(\Psi^0_{a,b}(\boldsymbol{e}^{i\theta}) \ \Psi^1_{a,b}(\boldsymbol{e}^{i\theta}) \ \dots \Psi^{r-1}_{a,b}(\boldsymbol{e}^{i\theta}) \right),$$

and its related constants,

$$\begin{split} & A_{\pmb{\Psi}} := \underset{\zeta \in \mathbb{T}}{\text{ess inf}} \ \lambda_{\min} \big[\pmb{\Psi_{a,b}}^*(\zeta) \pmb{\Psi_{a,b}}(\zeta) \big]; \\ & B_{\pmb{\Psi}} := \underset{\zeta \in \mathbb{T}}{\text{ess sup}} \ \lambda_{\max} \big[\pmb{\Psi_{a,b}}^*(\zeta) \pmb{\Psi_{a,b}}(\zeta) \big] \end{split}$$

Theorem.

Let b_j be in A_a for $j=1,2,\ldots,s$ and let $\Psi_{a,b}$ be the associated matrix. Then, the following results hold:

- i) The sequence $\{U^{rk}b_j\}_{k\in\mathbb{Z}; j=1,2,...s}$ is a **complete system** in \mathcal{A}_a if and only if the rank of the matrix $\Psi_{a,b}(\zeta)$ is r a.e. ζ in \mathbb{T} .
- ii) The sequence $\{U^{rk}b_j\}_{k\in\mathbb{Z};j=1,2,...s}$ is a **Bessel sequence** for \mathcal{A}_a if and only if the constant $B_{\Psi}<\infty$.
- iii) The sequence $\left\{ \begin{array}{l} U^{rk}b_{j} \right\}_{k \in \mathbb{Z}; j=1,2,\ldots s}$ is a **frame** for \mathcal{A}_{a} if and only if constants A_{Ψ} and B_{Ψ} satisfy $0 < A_{\Psi} \leq B_{\Psi} < \infty$. In this case, A_{Ψ} and B_{Ψ} are the optimal frame bounds for $\left\{ U^{rk}b_{j} \right\}_{k \in \mathbb{Z}; j=1,2,\ldots s}$.
- iv) The sequence $\{U^{rk}b_j\}_{k\in\mathbb{Z};j=1,2,...s}$ is a **Riesz basis** for A_a if and only if it is a frame and s=r.

The frame expansion

Taking into account the $r \times s$ matrix $\Gamma_{\mathbb{U}}$ of functions on \mathbb{T}

$$\pmb{\Gamma}_{\mathbb{U}}(e^{\mathrm{i}\theta}) := \pmb{\Psi}_{\pmb{\mathsf{a}},\pmb{\mathsf{b}}}^{\dagger}(e^{\mathrm{i}\theta}) + \mathbb{U}(e^{\mathrm{i}\theta})\big[\mathbb{I}_{\pmb{s}} - \pmb{\Psi}_{\pmb{\mathsf{a}},\pmb{\mathsf{b}}}(e^{\mathrm{i}\theta})\pmb{\Psi}_{\pmb{\mathsf{a}},\pmb{\mathsf{b}}}^{\dagger}(e^{\mathrm{i}\theta})\big],$$

The frame expansion

Taking into account the $r \times s$ matrix $\Gamma_{\mathbb{U}}$ of functions on \mathbb{T}

$$\pmb{\Gamma}_{\mathbb{U}}(e^{\mathrm{i}\theta}) := \pmb{\Psi}_{\pmb{\mathsf{a}},\pmb{\mathsf{b}}}^{\dagger}(e^{\mathrm{i}\theta}) + \mathbb{U}(e^{\mathrm{i}\theta})\big[\mathbb{I}_{\pmb{s}} - \pmb{\Psi}_{\pmb{\mathsf{a}},\pmb{\mathsf{b}}}(e^{\mathrm{i}\theta})\pmb{\Psi}_{\pmb{\mathsf{a}},\pmb{\mathsf{b}}}^{\dagger}(e^{\mathrm{i}\theta})\big],$$

where $\mathbb{U}(\mathrm{e}^{\mathrm{i}\theta})$ is any $r \times s$ matrix with entries in $L^\infty(\mathbb{T})$, and $\Psi_{\mathbf{a},\mathbf{b}}^\dagger$ denotes the Moore-Penrose left-inverse of $\Psi_{\mathbf{a},\mathbf{b}}$,

$$\boldsymbol{\Psi}_{\boldsymbol{\mathsf{a}},\boldsymbol{\mathsf{b}}}^{\dagger}(e^{\mathrm{i}\theta}) := [\boldsymbol{\Psi}_{\boldsymbol{\mathsf{a}},\boldsymbol{\mathsf{b}}}^{*}(e^{\mathrm{i}\theta})\boldsymbol{\Psi}_{\boldsymbol{\mathsf{a}},\boldsymbol{\mathsf{b}}}(e^{\mathrm{i}\theta})]^{-1}\boldsymbol{\Psi}_{\boldsymbol{\mathsf{a}},\boldsymbol{\mathsf{b}}}^{*}(e^{\mathrm{i}\theta}).$$

The frame expansion

Taking into account the $r \times s$ matrix $\Gamma_{\mathbb{U}}$ of functions on \mathbb{T}

$$\pmb{\Gamma}_{\mathbb{U}}(e^{\mathrm{i}\theta}) := \pmb{\Psi}_{\pmb{\mathsf{a}},\pmb{\mathsf{b}}}^{\dagger}(e^{\mathrm{i}\theta}) + \mathbb{U}(e^{\mathrm{i}\theta})\big[\mathbb{I}_{\pmb{s}} - \pmb{\Psi}_{\pmb{\mathsf{a}},\pmb{\mathsf{b}}}(e^{\mathrm{i}\theta})\pmb{\Psi}_{\pmb{\mathsf{a}},\pmb{\mathsf{b}}}^{\dagger}(e^{\mathrm{i}\theta})\big],$$

where $\mathbb{U}(\mathrm{e}^{\mathrm{i}\theta})$ is any $r \times s$ matrix with entries in $L^\infty(\mathbb{T})$, and $\Psi_{\mathbf{a},\mathbf{b}}^\dagger$ denotes the Moore-Penrose left-inverse of $\Psi_{\mathbf{a},\mathbf{b}}$,

$$\mathbf{\Psi}_{\mathbf{a},\mathbf{b}}^{\dagger}(e^{i\theta}) := [\mathbf{\Psi}_{\mathbf{a},\mathbf{b}}^{*}(e^{i\theta})\mathbf{\Psi}_{\mathbf{a},\mathbf{b}}(e^{i\theta})]^{-1}\mathbf{\Psi}_{\mathbf{a},\mathbf{b}}^{*}(e^{i\theta}).$$

We can find $c_j \in \mathcal{A}_a$ such that the sequences $\{U^{kr}c_j\}_{k \in \mathbb{Z}; j=1,2,...,s}$ and $\{U^{kr}b_j\}_{k \in \mathbb{Z}; j=1,2,...s}$ are a pair of **dual frames** for \mathcal{A}_a . Hence, for any $x \in \mathcal{A}_a$ we obtain the following recovery formula

$$x = \sum_{i=1}^{s} \sum_{k \in \mathbb{Z}} \langle x, U^{kr} b_j \rangle U^{kr} c_j$$
 in \mathcal{H} .

Irregular case

We are going to deal with the following problems:

Irregular case

We are going to deal with the following problems:

• Study the perturbed sequence $\left\{U^{rk+\epsilon_{kj}}b_{j}\right\}_{k\in\mathbb{Z}:j=1,2,\ldots,s}$.

Irregular case

We are going to deal with the following problems:

- Study the perturbed sequence $\{U^{rk+\epsilon_{kj}}b_j\}_{k\in\mathbb{Z}: j=1,2,...,s}$.
- Recover $x \in \mathcal{A}_a$ from the perturbed sequence of samples $\left\{ \langle x, U^{rk+\epsilon_{kj}} b_j \rangle \right\}_{k \in \mathbb{Z}: i=1,2,\ldots,s}$.

We are going to deal with the following problems:

- Study the perturbed sequence $\{U^{rk+\epsilon_{kj}}b_j\}_{k\in\mathbb{Z};\,j=1,2,\ldots,s}$.
- Recover $x \in \mathcal{A}_a$ from the perturbed sequence of samples $\{\langle x, U^{rk+\epsilon_{kj}}b_j\rangle\}_{k\in\mathbb{Z};\,j=1,2,\ldots,s}$.

In order to give sense to $U^{rk+\epsilon_{mj}}b_j$ we need to introduce a **continuous group of unitary operators** $\{U^t\}_{t\in\mathbb{R}}$, such that $U=U^1$.

Motivation Regular case Irregular case

A brief walk on continuous groups of unitary operators

A brief walk on continuous groups of unitary operators

 $\{U^t\}_{t\in\mathbb{R}}$ is a family of unitary operators in $\mathcal H$ satisfying:

- $2 U^0 = I_{\mathcal{H}},$
- **③** $\langle U^t x, y \rangle_{\mathcal{H}}$ is a continuous function of *t* for any $x, y \in \mathcal{H}$.

A brief walk on continuous groups of unitary operators

 $\{U^t\}_{t\in\mathbb{R}}$ is a family of unitary operators in \mathcal{H} satisfying:

- $2 U^0 = I_{\mathcal{H}},$
- **③** $\langle U^t x, y \rangle_{\mathcal{H}}$ is a continuous function of *t* for any $x, y \in \mathcal{H}$.

Classical **Stone's theorem** assures us the existence of a self-adjoint operator T (possibly unbounded) such that $U^t \equiv e^{itT}$. This self-adjoint operator T, defined on the dense domain of \mathcal{H}

$$D_T := \left\{ x \in \mathcal{H} \text{ such that } \int_{-\infty}^{\infty} w^2 d \|E_w x\|^2 < \infty \right\},$$

admits the *spectral representation* $T = \int_{-\infty}^{\infty} w \, dE_w$ which means:

A brief walk on continuous groups of unitary operators

 $\{U^t\}_{t\in\mathbb{R}}$ is a family of unitary operators in \mathcal{H} satisfying:

- $2 U^0 = I_{\mathcal{H}},$
- **③** $\langle U^t x, y \rangle_{\mathcal{H}}$ is a continuous function of *t* for any $x, y \in \mathcal{H}$.

Classical **Stone's theorem** assures us the existence of a self-adjoint operator T (possibly unbounded) such that $U^t \equiv e^{itT}$. This self-adjoint operator T, defined on the dense domain of \mathcal{H}

$$D_T := \left\{ x \in \mathcal{H} \text{ such that } \int_{-\infty}^{\infty} w^2 d \|E_w x\|^2 < \infty \right\},$$

admits the *spectral representation* $T = \int_{-\infty}^{\infty} w \, dE_w$ which means:

$$\langle Tx, y \rangle = \int_{-\infty}^{\infty} w \, d\langle E_w x, y \rangle$$
 for any $x \in D_T$ and $y \in \mathcal{H}$,

where $\{E_w\}_{w\in\mathbb{R}}$ is the corresponding *resolution of the identity*.

Resolution of the identity

is a one-parameter family of projection operators E_w in $\mathcal H$ such that

$$\bullet \quad E_{-\infty} := \lim_{w \to -\infty} E_w = O_{\mathcal{H}}, \quad E_{\infty} := \lim_{w \to \infty} E_w = I_{\mathcal{H}},$$

Resolution of the identity

is a one-parameter family of projection operators E_w in $\mathcal H$ such that

$$\bullet \quad E_{-\infty} := \lim_{w \to -\infty} E_w = O_{\mathcal{H}}, \quad E_{\infty} := \lim_{w \to \infty} E_w = I_{\mathcal{H}},$$

Recall that $||E_w x||^2$ and $\langle E_w x, y \rangle$, as functions of w, have bounded variation and define, respectively, a positive and a complex Borel measure on \mathbb{R} .

Resolution of the identity

is a one-parameter family of projection operators E_w in $\mathcal H$ such that

$$\bullet \quad E_{-\infty} := \lim_{w \to -\infty} E_w = O_{\mathcal{H}}, \quad E_{\infty} := \lim_{w \to \infty} E_w = I_{\mathcal{H}},$$

Recall that $||E_w x||^2$ and $\langle E_w x, y \rangle$, as functions of w, have bounded variation and define, respectively, a positive and a complex Borel measure on \mathbb{R} .

Notice that, whenever the self-adjoint operator T is bounded, $D_T = \mathcal{H}$ and e^{itT} can be defined as the usual exponential series; in any case, $U^t \equiv e^{itT}$ means that

$$\langle U^t x, y \rangle = \int_{-\infty}^{\infty} e^{iwt} d\langle E_w x, y \rangle, \quad t \in \mathbb{R},$$

where $x \in D_T$ and $y \in \mathcal{H}$.

The perturbed sequence $\left\{U^{rk+\epsilon_{kj}}b_j\right\}_{k\in\mathbb{Z};\,j=1,2,...,s}$.

Assuming that

The perturbed sequence $\left\{U^{rk+\epsilon_{kj}}b_j ight\}_{k\in\mathbb{Z};j=1,2,...,s}$.

Assuming that

•
$$s = r$$
 and $b_j \in D_T$, $j = 1, 2, ..., s$.

The perturbed sequence $\left\{U^{rk+\epsilon_{kj}}b_j ight\}_{k\in\mathbb{Z};\,j=1,2,...,s}$.

Assuming that

- s = r and $b_j \in D_T$, j = 1, 2, ..., s.
- The sequence $\{U^{kr}b_j\}_{k\in\mathbb{Z}; j=1,2,...,r}$ is a Riesz basis for A_a .

The perturbed sequence $\left\{U^{rk+\epsilon_{kj}}b_{j} ight\}_{k\in\mathbb{Z}:j=1,2,...,s}$.

Assuming that

- s = r and $b_j \in D_T$, j = 1, 2, ..., s.
- The sequence $\{U^{kr}b_j\}_{k\in\mathbb{Z}; j=1,2,...,r}$ is a Riesz basis for A_a .

If the following constant

$$R := \|\epsilon\|_{\ell_r^2}^2 \max_{j=1,2,...,r} \left\{ \int_{-\infty}^{\infty} w^2 d \|E_w b_j\|^2 \right\},\,$$

The perturbed sequence $\left\{U^{rk+\epsilon_{kj}}b_j ight\}_{k\in\mathbb{Z};j=1,2,...,s}$.

Assuming that

- s = r and $b_j \in D_T$, j = 1, 2, ..., s.
- The sequence $\{U^{kr}b_j\}_{k\in\mathbb{Z}; j=1,2,...,r}$ is a Riesz basis for A_a .

If the following constant

$$R := \|\epsilon\|_{\ell^2_r}^2 \max_{j=1,2,\ldots,r} \left\{ \int_{-\infty}^{\infty} w^2 d \|E_w b_j\|^2 \right\},$$

satisfies $R < A_{\Psi}$, then the sequence $\{ \underline{U}^{kr + \epsilon_{kj}} \underline{b}_j \}_{k \in \mathbb{Z}; j=1,2,...,r}$ is a **Riesz sequence** in \mathcal{H} .

Recover $x \in A_a$ in a stable way from the perturbed sequence

$$\{\langle X, U^{rm+\epsilon_{mj}}b_j\rangle_{\mathcal{H}}\}_{k\in\mathbb{Z}; j=1,2,...,s}.$$

Recover $x \in A_a$ in a stable way from the perturbed sequence

$$\left\{\langle x, U^{rm+\epsilon_{mj}}b_j\rangle_{\mathcal{H}}\right\}_{k\in\mathbb{Z}; j=1,2,...,s}.$$

Taking into account the $L^2(0,1)$ functions

$$g_j(\mathbf{w}) := \sum_{k \in \mathbb{Z}} \langle \mathbf{a}, \mathbf{U}^k \mathbf{b}_j \rangle_{\mathcal{H}} e^{2\pi \mathrm{i} k \mathbf{w}}, \ j = 1, 2, \dots, s,$$

Recover $x \in A_a$ in a stable way from the perturbed sequence $\{\langle x, \underline{U}^{rm+\epsilon_{mj}}b_j\rangle_{\mathcal{H}}\}_{k\in\mathbb{Z}: j=1,2,\ldots,s}$.

Taking into account the $L^2(0,1)$ functions

$$g_j(w) := \sum_{k \in \mathbb{Z}} \langle a, U^k b_j \rangle_{\mathcal{H}} e^{2\pi i k w}, \ j = 1, 2, \dots, s,$$

we can define the $s \times r$ matrix

$$\mathbb{G}(w) := \begin{bmatrix} \mathbf{g}_{1}(w) & \mathbf{g}_{1}(w + \frac{1}{r}) & \cdots & \mathbf{g}_{1}(w + \frac{r-1}{r}) \\ \mathbf{g}_{2}(w) & \mathbf{g}_{2}(w + \frac{1}{r}) & \cdots & \mathbf{g}_{2}(w + \frac{r-1}{r}) \\ \vdots & \vdots & & \vdots \\ \mathbf{g}_{s}(w) & \mathbf{g}_{s}(w + \frac{1}{r}) & \cdots & \mathbf{g}_{s}(w + \frac{r-1}{r}) \end{bmatrix}$$

Recover $x \in A_a$ in a stable way from the perturbed sequence $\{\langle x, U^{rm+\epsilon_{mj}}b_j\rangle_{\mathcal{H}}\}_{k\in\mathbb{Z}:\,j=1,2,...,s}$.

Taking into account the $L^2(0,1)$ functions

$$g_j(w) := \sum_{k \in \mathbb{Z}} \langle a, U^k b_j \rangle_{\mathcal{H}} e^{2\pi i k w}, \ j = 1, 2, \dots, s,$$

we can define the $s \times r$ matrix

$$\mathbb{G}(w) := \begin{bmatrix} \mathbf{g}_{1}(w) & \mathbf{g}_{1}(w + \frac{1}{r}) & \cdots & \mathbf{g}_{1}(w + \frac{r-1}{r}) \\ \mathbf{g}_{2}(w) & \mathbf{g}_{2}(w + \frac{1}{r}) & \cdots & \mathbf{g}_{2}(w + \frac{r-1}{r}) \\ \vdots & \vdots & & \vdots \\ \mathbf{g}_{s}(w) & \mathbf{g}_{s}(w + \frac{1}{r}) & \cdots & \mathbf{g}_{s}(w + \frac{r-1}{r}) \end{bmatrix}$$

and its related the constants $\alpha_{\mathbb{G}}$ and $\beta_{\mathbb{G}}$ given by

$$\begin{split} \alpha_{\mathbb{G}} &:= \underset{w \in (0,1/r)}{\operatorname{ess inf}} \ \lambda_{\min}[\mathbb{G}^*(w)\mathbb{G}(w)], \\ \beta_{\mathbb{G}} &:= \underset{w \in (0,1/r)}{\operatorname{ess sup}} \ \lambda_{\max}[\mathbb{G}^*(w)\mathbb{G}(w)] \,. \end{split}$$

Motivation Regular case Irregular case

Assuming that we have 0 < $\alpha_{\mathbb{G}} \leq \beta_{\mathbb{G}} < \infty$.

Assuming that we have $0 < \alpha_{\mathbb{G}} \leq \beta_{\mathbb{G}} < \infty$.

We can find a positive number γ such that, if the constants

$$\gamma_j := \sup_{m \in \mathbb{Z}} |\epsilon_{mj}|$$

are smaller than γ for all j = 1, 2, ..., s,

Assuming that we have $0 < \alpha_{\mathbb{G}} \leq \beta_{\mathbb{G}} < \infty$.

We can find a positive number γ such that, if the constants

$$\gamma_j := \sup_{m \in \mathbb{Z}} |\epsilon_{mj}|$$

are smaller than γ for all $j=1,2,\ldots,s$, then there exists a **frame** $\{C_{m,j}^{\epsilon}\}_{m\in\mathbb{Z};j=1,2,\ldots,s}$ for \mathcal{A}_a allowing the recovery of any $x\in\mathcal{A}_a$ by means of the **sampling expansion**

$$x = \sum_{j=1}^s \sum_{m \in \mathbb{Z}} \langle x, U^{rm+\epsilon_{mj}} b_j
angle_{\mathcal{H}} C_{m,j}^{\epsilon} \quad ext{ in } \mathcal{H} \,.$$

Motivation Regular case Irregular case

THANKS.

• It has been proved that the sequence $\{\overline{g_j(w)}\,\mathrm{e}^{2\pi\mathrm{i} r n w}\}_{n\in\mathbb{Z};\,j=1,2,\ldots,s}$ is a frame for $L^2(0,1)$ if and only if $0<\alpha_\mathbb{G}\leq\beta_\mathbb{G}<\infty$.

- It has been proved that the sequence $\{\overline{g_j(w)} e^{2\pi i r n w}\}_{n \in \mathbb{Z}; j=1,2,...,s}$ is a frame for $L^2(0,1)$ if and only if $0 < \alpha_{\mathbb{G}} \le \beta_{\mathbb{G}} < \infty$.
- Consider the sequence $\{\overline{g_{m,j}(w)} e^{2\pi i r m w}\}_{m \in \mathbb{Z}; j=1,2,...s}$ as a perturbation of the above frame in $L^2(0,1)$, where

$$g_{m,j}(w) := \sum_{k \in \mathbb{Z}} \langle a, U^{k+\varepsilon_{mj}} b_j \rangle_{\mathcal{H}} \, \mathrm{e}^{2\pi \mathrm{i} k w} \,, \, \, j = 1, 2, \ldots, s \,.$$

- It has been proved that the sequence $\{\overline{g_j(w)} e^{2\pi i r n w}\}_{n \in \mathbb{Z}; j=1,2,...,s}$ is a frame for $L^2(0,1)$ if and only if $0 < \alpha_{\mathbb{G}} \le \beta_{\mathbb{G}} < \infty$.
- Consider the sequence $\{\overline{g_{m,j}(w)}e^{2\pi i r m w}\}_{m \in \mathbb{Z}; j=1,2,...s}$ as a perturbation of the above frame in $L^2(0,1)$, where

$$g_{m,j}(w) := \sum_{k \in \mathbb{Z}} \langle a, U^{k+\epsilon_{mj}} b_j \rangle_{\mathcal{H}} e^{2\pi \mathrm{i} k w} \,, \; j = 1, 2, \dots, s \,.$$

Define the functions,

$$M_{a,b_j}(\gamma) := \sum_{k \in \mathbb{Z}} \max_{t \in [-\gamma,\gamma]} |\langle a, U^{k+t}b_j \rangle - \langle a, U^kb_j \rangle|,$$

and

- It has been proved that the sequence $\{\overline{g_j(w)} e^{2\pi i r n w}\}_{n \in \mathbb{Z}; j=1,2,...,s}$ is a frame for $L^2(0,1)$ if and only if $0 < \alpha_{\mathbb{G}} \le \beta_{\mathbb{G}} < \infty$.
- Consider the sequence $\{\overline{g_{m,j}(w)}e^{2\pi i r m w}\}_{m \in \mathbb{Z}; j=1,2,...s}$ as a perturbation of the above frame in $L^2(0,1)$, where

$$g_{m,j}(w) := \sum_{k \in \mathbb{Z}} \langle a, U^{k+\epsilon_{mj}} b_j \rangle_{\mathcal{H}} e^{2\pi \mathrm{i} k w} \,, \; j = 1, 2, \dots, s \,.$$

Define the functions,

$$M_{a,b_j}(\gamma) := \sum_{k \in \mathbb{Z}} \max_{t \in [-\gamma,\gamma]} |\langle a, U^{k+t}b_j \rangle - \langle a, U^kb_j \rangle|,$$

and

$$\begin{split} & N_{a,b_j}(\gamma) := \\ & \max_{k=0,1,...,r-1} \sum_{m \in \mathbb{Z}} \max_{t \in [-\gamma,\gamma]} \left| \langle a, U^{rm+k+t} b_j \rangle - \langle a, U^{rm+k} b_j \rangle \right|. \end{split}$$

• Notice that $N_{a,b_j}(\gamma) \leq M_{a,b_j}(\gamma)$ and for r=1 the equality holds.

- Notice that $N_{a,b_i}(\gamma) \leq M_{a,b_i}(\gamma)$ and for r=1 the equality holds.
- Assuming that the continuous functions $\varphi_j(t) := \langle a, U^t b_j \rangle$, satisfy a decay condition as $\varphi_j(t) = O(|t|^{-(1+\eta_j)})$ when $|t| \to \infty$ for some $\eta_j > 0$, we deduce that the functions $N_{a,b_j}(\gamma)$ and $M_{a,b_j}(\gamma)$ are continuous near to 0.

- Notice that $N_{a,b_i}(\gamma) \leq M_{a,b_i}(\gamma)$ and for r=1 the equality holds.
- Assuming that the continuous functions $\varphi_j(t) := \langle a, U^t b_j \rangle$, satisfy a decay condition as $\varphi_j(t) = O(|t|^{-(1+\eta_j)})$ when $|t| \to \infty$ for some $\eta_j > 0$, we deduce that the functions $N_{a,b_j}(\gamma)$ and $M_{a,b_j}(\gamma)$ are continuous near to 0.
- Finally the condition involving the constants γ_j is

$$\sum_{j=1}^{s} M_{a,b_j}(\gamma_j) N_{a,b_j}(\gamma_j) < \alpha_{\mathbb{G}}/r$$

- Notice that $N_{a,b_i}(\gamma) \leq M_{a,b_i}(\gamma)$ and for r=1 the equality holds.
- Assuming that the continuous functions $\varphi_j(t) := \langle a, U^t b_j \rangle$, satisfy a decay condition as $\varphi_j(t) = O(|t|^{-(1+\eta_j)})$ when $|t| \to \infty$ for some $\eta_j > 0$, we deduce that the functions $N_{a,b_j}(\gamma)$ and $M_{a,b_j}(\gamma)$ are continuous near to 0.
- Finally the condition involving the constants γ_i is

$$\sum_{j=1}^{s} M_{a,b_j}(\gamma_j) N_{a,b_j}(\gamma_j) < \alpha_{\mathbb{G}}/r$$

Remark

The obtained sampling formula is useless from a practical point of view: it is impossible to determine the involved frame $\{C_{m,j}^{\epsilon}\}_{m\in\mathbb{Z};j=1,2,\dots,s}$. As a consequence, in order to recover $x\in\mathcal{A}_a$ from the sequence of inner products $\{\langle x,U^{rm+\epsilon_{mj}}b_j\rangle_{\mathcal{H}}\}_{m\in\mathbb{Z};j=1,2,\dots,s}$ we could implement a frame algorithm in the $\ell^2(\mathbb{Z})$ setting.