Sampling Theory in Shift-Invariant Spaces: Generalizations

Héctor R. Fernández Morales

Supervisor: Prof. Dr. D. Antonio García García

Departamento de Matemáticas
Universidad Carlos III de Madrid

May 4, 2015
Outline

Introduction to sampling theory

Generalized sampling in $L^2(\mathbb{R}^d)$ shift-invariant subspaces with multiple stable generators

Uniform average sampling in frame generated weighted shift-invariant spaces

Sampling theory in U-invariant spaces
Introduction

Shannon’s sampling theorem.

If a function of time is limited to the band from 0 to W cycles per second, it is completely determined by giving its ordinates at a series of discrete points spaced $1/2W$ seconds apart in the manner indicated by the following result: If $f(t)$ has no frequencies over W cycles per second, then

$$f(t) = \sum_{n=-\infty}^{\infty} f\left(\frac{n}{2W}\right) \frac{\sin \pi(2Wt - n)}{\pi(2Wt - n)}$$

Whittaker-Shannon-Kotel’nikov theorem.

If \(f(t) \) is a signal (function) band-limited to \([-\sigma, \sigma]\), i.e.,

\[
f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\sigma}^{\sigma} F(w)e^{itw} \, dw, \quad t \in \mathbb{R}
\]

for some \(F \in L^2(-\sigma, \sigma) \), then it can be reconstructed from its samples values at the points \(t_k = k\pi/\sigma, \, k \in \mathbb{Z} \), via the formula

\[
f(t) = \sum_{k=-\infty}^{\infty} f(t_k) \frac{\sin \sigma(t-t_k)}{\sigma(t-t_k)}, \quad t \in \mathbb{R}
\]

with the series being absolutely and uniformly convergent on compact sets.

Drawbacks in WSK theorem

- it relies on the use of **low-pass ideal filters**.
- the **band-limited hypothesis** is in contradiction with the idea of a **finite duration signal**.
- the band-limiting operation generates Gibbs oscillations.
- the sinc function has a **very slow decay at infinity** which makes computation in the signal domain very inefficient.
- the sinc function is well-localized in the frequency domain but it is bad-localized in the time domain.
- in several dimensions it is also inefficient to assume that a multidimensional signal is band-limited to a d-dimensional interval.
Chapter 1: Motivation

Paley-Wiener space

The space of band limited functions to the interval \([-\pi, \pi]\) can be written as

\[PW_{\pi} = \left\{ \sum_{n \in \mathbb{Z}} a_n \text{sinc}(t - n) : \{a_n\} \in l^2(\mathbb{Z}) \right\} \]

Furthermore, the coefficients \(\{a_n\}_{n \in \mathbb{Z}}\) of \(f \in PW_{\pi}\) are precisely the samples of the function at the integers numbers \(\{f(n)\}_{n \in \mathbb{Z}}\).
Chapter 1: Motivation

Paley-Wiener space

The space of band limited functions to the interval $[-\pi, \pi]$ can be written as

$$PW_{\pi} = \left\{ \sum_{n \in \mathbb{Z}} a_n \text{sinc}(t - n) : \{a_n\} \in l^2(\mathbb{Z}) \right\}$$

Furthermore, the coefficients $\{a_n\}_{n \in \mathbb{Z}}$ of $f \in PW_{\pi}$ are precisely the samples of the function at the integers numbers $\{f(n)\}_{n \in \mathbb{Z}}$.

Shift-invariant space

$$V^2_{\varphi} = \left\{ \sum_{n \in \mathbb{Z}} a_n \varphi(t - n) : \{a_n\} \in l^2(\mathbb{Z}) \right\}$$
Generalized sampling in $L^2(\mathbb{R}^d)$ shift-invariant subspaces with multiple stable generators

On the separable Hilbert $L^2(\mathbb{R}^d)$ we can define the shift-invariant subspaces V^2_Φ in the following way

$$V^2_\Phi := \text{span} L^2(\mathbb{R}^d) \{ \phi_k(t - \alpha) : k = 1, 2, ..., r \text{ and } \alpha \in \mathbb{Z}^d \},$$

where the functions in $\Phi := \{ \phi_1, ..., \phi_r \}$ in $L^2(\mathbb{R}^d)$ are called a set of generators for V^2_Φ.

Assuming that the sequence $\{ \phi_k(t - \alpha) \}_{\alpha \in \mathbb{Z}^d; k = 1, 2, ...}$ is a Riesz sequence, i.e. a Riesz basis for its span, this space can be described as

$$V^2_\Phi = \{ \sum_{\alpha \in \mathbb{Z}^d} d_k(\alpha) \phi_k(t - \alpha) : d_k \in \ell^2(\mathbb{Z}^d), k = 1, 2, ..., r \}.$$
Generalized sampling in $L^2(\mathbb{R}^d)$ shift-invariant subspaces with multiple stable generators

On the separable Hilbert $L^2(\mathbb{R}^d)$ we can define the shift-invariant subspaces V^2_Φ in the following way

$$V^2_\Phi := \text{span}_{L^2(\mathbb{R}^d)} \{ \varphi_k(t - \alpha) : k = 1, 2, \ldots, r \text{ and } \alpha \in \mathbb{Z}^d \},$$

where the functions in $\Phi := \{ \varphi_1, \ldots, \varphi_r \}$ in $L^2(\mathbb{R}^d)$ are called a set of generators for V^2_Φ.
Generalized sampling in $L^2(\mathbb{R}^d)$ shift-invariant subspaces with multiple stable generators

On the separable Hilbert $L^2(\mathbb{R}^d)$ we can define the shift-invariant subspaces V^2_Φ in the following way

$$V^2_\Phi := \text{span}_{L^2(\mathbb{R}^d)} \{ \varphi_k(t - \alpha) : k = 1, 2, \ldots, r \text{ and } \alpha \in \mathbb{Z}^d \},$$

where the functions in $\Phi := \{ \varphi_1, \ldots, \varphi_r \}$ in $L^2(\mathbb{R}^d)$ are called a set of generators for V^2_Φ. Assuming that the sequence $\{ \varphi_k(t - \alpha) \}_{\alpha \in \mathbb{Z}^d ; k = 1, 2, \ldots, r}$ is a Riesz sequence, i.e. a Riesz basis for its span, this space can be described as

$$V^2_\Phi = \left\{ \sum_{\alpha \in \mathbb{Z}^d} \sum_{k=1}^r d_k(\alpha) \varphi_k(t - \alpha) : d_k \in \ell^2(\mathbb{Z}^d), k = 1, 2 \ldots, r \right\}.$$
Generalized sampling problem
Generalized sampling problem

If we consider

- $\mathcal{L}_j f := f \ast h_j, \quad j = 1, 2, \ldots s$ are **convolutions systems** (linear time-invariant systems) defined on V_φ^2.
Generalized sampling problem

If we consider

- \(L_j f := f \ast h_j, \ j = 1, 2, \ldots s \) are **convolutions systems** (linear time-invariant systems) defined on \(V_2^\varphi \).
- The samples \(\{ L_j f(M\alpha) \}_{\alpha \in \mathbb{Z}^d; j = 1, 2, \ldots s} \) are taken at a lattice

\[\Lambda_M := \{ M\alpha : \alpha \in \mathbb{Z}^d \} \subset \mathbb{Z}^d. \]

where \(M \) is a nonsingular matrix with integer entries.
Generalized sampling problem

If we consider

- $\mathcal{L}_j f := f \ast h_j$, $j = 1, 2, \ldots, s$ are convolutions systems (linear time-invariant systems) defined on V^2_{φ}.
- The samples $\{\mathcal{L}_j f(M\alpha)\}_{\alpha \in \mathbb{Z}^d; j=1,2,\ldots,s}$ are taken at a lattice

$$\Lambda_M := \{M\alpha : \alpha \in \mathbb{Z}^d\} \subset \mathbb{Z}^d.$$ where M is a nonsingular matrix with integer entries.

The generalized sampling problem is to obtain sampling formulas in V^2_{φ} having the form

$$f = \sum_{j=1}^{s} \sum_{\alpha \in \mathbb{Z}^d} (\mathcal{L}_j f)(M\alpha) S_j(\cdot - M\alpha) \quad \text{in } L^2(\mathbb{R}^d),$$

where the reconstruction sequence of functions $\{S_j(\cdot - M\alpha)\}_{\alpha \in \mathbb{Z}^d; j=1,2,\ldots,s}$ is a frame for V^2_{φ}.
Definition

A sequence \(\{f_k\}_{k \in \mathbb{Z}} \) is a **frame** for a separable Hilbert space \(\mathcal{H} \) if there exist constants \(A, B > 0 \) (frame bounds) such that

\[
A \|f\|^2 \leq \sum_{k \in \mathbb{Z}} |\langle f, f_k \rangle|^2 \leq B \|f\|^2 \quad \text{for all } f \in \mathcal{H}
\]
Definition

A sequence \(\{f_k\}_{k \in \mathbb{Z}} \) is a **frame** for a separable Hilbert space \(\mathcal{H} \) if there exist constants \(A, B > 0 \) (frame bounds) such that

\[
A \|f\|^2 \leq \sum_{k \in \mathbb{Z}} |\langle f, f_k \rangle|^2 \leq B \|f\|^2 \quad \text{for all } f \in \mathcal{H}
\]

Definition

Two frames sequences \(\{f_k\}_{k \in \mathbb{Z}} \) and \(\{g_k\}_{k \in \mathbb{Z}} \) which satisfy

\[
f = \sum_{k \in \mathbb{Z}} \langle f, g_k \rangle f_k = \sum_{k \in \mathbb{Z}} \langle f, f_k \rangle g_k, \quad \text{for all } f \in \mathcal{H}.
\]

are said to be a pair of **dual frames**.
Our general technique

- Consider an isomorphism $\mathcal{T}_\Phi : L^2 \to V^2_\Phi$ such that

 $$Samp(f)_k = \langle F, g_k \rangle_{L^2}, \quad f = \mathcal{T}_\Phi F$$

- Characterize $\{g_k\}$ as a frame for L^2

- Find a dual frame $\{h_k\}$

 $$F = \sum_k \langle F, g_k \rangle_{L^2} h_k$$

- Apply \mathcal{T}_Φ to get the sampling formula

 $$f = \sum_k Samp(f)_k \mathcal{T}_\Phi h_k$$
Sketch of the procedure

(i) Consider the isomorphism $T_\Phi: L^2([0,1)_d) \rightarrow V^2 \Phi \{ e^{-2\pi i \alpha^\top w}e^k \} \mapsto \{ \phi_k(t-\alpha) \}$

Verify the shifting property for $F \in L^2([0,1)_d)$ and $\alpha \in \mathbb{Z}^d$

$T_\Phi [F(\cdot)e^{-2\pi i \alpha^\top \cdot}] (t) = T_\Phi F(t-\alpha), t \in \mathbb{R}^d$.

(ii) Deduce the expression for the samples $(L_j f)(M_\alpha) = \langle F, g_j(\cdot)e^{-2\pi i \alpha^\top M^\top \cdot} \rangle_{L^2([0,1)_d)}$, where $F = T^{-1}_\Phi f \in L^2([0,1)_d)$.

(iii) Characterize the sequence $\{ g_j(x)e^{-2\pi i \alpha^\top M^\top x} \}_{\alpha \in \mathbb{Z}^d; j = 1, 2, \ldots, s}$ as a frame in $L^2([0,1)_d)$.
Sketch of the procedure

(i) Consider the isomorphism

\[T_{\Phi} : \quad L^2_r[0, 1)^d \quad \rightarrow \quad V^2_{\Phi} \]

\[\{ e^{-2\pi i \alpha^\top w} e_k \} \quad \mapsto \quad \{ \varphi_k(t - \alpha) \} \]

Verify the shifting property for \(F \in L^2_r[0, 1)^d \) and \(\alpha \in \mathbb{Z}^d \)

\[T_{\Phi} [F(\cdot)e^{-2\pi i \alpha^\top \cdot}](t) = T_{\Phi} F(t - \alpha), \quad t \in \mathbb{R}^d. \]
Sketch of the procedure

(i) Consider the isomorphism

$$
\mathcal{T}_\Phi : \ L^2_r[0, 1)^d \quad \longrightarrow \quad V^2_{\Phi} \\
\{ e^{-2\pi i \alpha^\top w} e_k \} \quad \longmapsto \quad \{ \varphi_k(t - \alpha) \}
$$

Verify the **shifting property** for $F \in L^2_r[0, 1)^d$ and $\alpha \in \mathbb{Z}^d$

$$
\mathcal{T}_\Phi [F(\cdot) e^{-2\pi i \alpha^\top \cdot}] (t) = \mathcal{T}_\Phi F(t - \alpha), \quad t \in \mathbb{R}^d.
$$

(ii) Deduce the expression for the samples

$$
(L_j f)(M\alpha) = \langle F, \overline{g_j(\cdot) e^{-2\pi i \alpha^\top M^\top}} \rangle_{L^2_r[0,1)^d},
$$

where $F = \mathcal{T}_\Phi^{-1} f \in L^2_r[0, 1)^d$.
Sketch of the procedure

(i) Consider the isomorphism

$$\mathcal{T}_\Phi : \quad L^2_r[0, 1)^d \rightarrow V^2_{\Phi}$$
$$\{ e^{-2\pi i \alpha^T w} e_k \} \mapsto \{ \varphi_k(t - \alpha) \}$$

Verify the shifting property for $F \in L^2_r[0, 1)^d$ and $\alpha \in \mathbb{Z}^d$

$$\mathcal{T}_\Phi [F(\cdot)e^{-2\pi i \alpha^T \cdot}](t) = \mathcal{T}_\Phi F(t - \alpha), \quad t \in \mathbb{R}^d.$$

(ii) Deduce the expression for the samples

$$\left(L_j f \right)(M\alpha) = \langle F, \overline{g_j(\cdot)e^{-2\pi i \alpha^T M^T \cdot}} \rangle_{L^2_r[0,1)^d},$$

where $F = \mathcal{T}_\Phi^{-1} f \in L^2_r[0, 1)^d$.

(iii) Characterize the sequence

$$\{ g_j(x)e^{-2\pi i \alpha^T M^T x} \}_{\alpha \in \mathbb{Z}^d; j=1,2,\ldots,s}$$

as a frame in $L^2_r[0, 1)^d$.
Find a dual frame of the form
\[\{ (\det M) a_j(x) e^{-2\pi i \alpha^T M^T x} \}_{\alpha \in \mathbb{Z}^d; j=1,2,\ldots,s}, \]
wich implies

\[F(x) = (\det M) \sum_{j=1}^{s} \sum_{\alpha \in \mathbb{Z}^d} \langle F, g_j(\cdot e^{-2\pi i \alpha^T M^T \cdot}) \rangle a_j(x) e^{-2\pi i \alpha^T M^T x} \]
in \(L^2_r[0, 1)^d \).
(iv) Find a dual frame of the form
\[\{ (\det M)a_j(x)e^{-2\pi i\alpha^T M^T x} \}_{\alpha \in \mathbb{Z}^d; j=1,2,\ldots,s} \]
wich implies
\[
F(x) = (\det M) \sum_{j=1}^{s} \sum_{\alpha \in \mathbb{Z}^d} \langle F, g_j(\cdot)e^{-2\pi i\alpha^T M^T \cdot} \rangle a_j(x)e^{-2\pi i\alpha^T M^T x}
\]
in \(L^2_\mathbb{R}[0,1]^d \).

(v) Applying the isomorphism \(\mathcal{T}_\Phi \) to the expansion we get the desired

\[
f = (\det M) \sum_{j=1}^{s} \sum_{\alpha \in \mathbb{Z}^d} (L_j f)(M\alpha) S_{j,a}(\cdot - M\alpha)
\]
in \(L^2(\mathbb{R}^d) \),

where \(S_{j,a} := \mathcal{T}_\Phi a_j \) for \(j = 1,2,\ldots,s \).
Find a **dual frame** of the form
\[\{ (\det M) a_j(x) e^{-2\pi i \alpha^T M^T x} \} \quad \alpha \in \mathbb{Z}^d; j=1,2,\ldots,s, \] which implies

\[F(x) = (\det M) \sum_{j=1}^{s} \sum_{\alpha \in \mathbb{Z}^d} \langle F, g_j(\cdot)e^{-2\pi i \alpha^T M^T \cdot} \rangle a_j(x) e^{-2\pi i \alpha^T M^T x} \]

in \(L^2_r[0,1]^d \).

Applying the isomorphism \(\mathcal{T}_\Phi \) to the expansion we get the desired

\[f = (\det M) \sum_{j=1}^{s} \sum_{\alpha \in \mathbb{Z}^d} (L_j f)(M\alpha) S_j,a(\cdot - M\alpha) \quad \text{in} \quad L^2(\mathbb{R}^d), \]

where \(S_j,a := \mathcal{T}_\Phi a_j \) for \(j = 1, 2, \ldots, s \).

As \(V_\Phi^2 \) is a RKHS, we have

\[f(t) = (\det M) \sum_{j=1}^{s} \sum_{\alpha \in \mathbb{Z}^d} (L_j f)(M\alpha) S_j,a(t - M\alpha) \quad t \in \mathbb{R}^d. \]
Details of the procedure

Lemma

Let \(\mathcal{L} \) be a convolution system. Then, for each \(f \in V_\Phi^2 \) we have

\[
(\mathcal{L}f)(t) = \langle F, (Z\mathcal{L}\Phi)(t, \cdot) \rangle_{L^2[0,1]^d}, \quad t \in \mathbb{R}^d,
\]

where \(F = \mathcal{T}_\Phi^{-1}f. \)
Details of the procedure

Lemma

Let \(\mathcal{L} \) be a convolution system. Then, for each \(f \in \mathcal{V}_\Phi^2 \) we have

\[
(\mathcal{L} f)(t) = \langle F, (ZL\Phi)(t, \cdot) \rangle_{L^2[0,1]^d}, \quad t \in \mathbb{R}^d,
\]

where \(F = T^{-1}_\Phi f \).

Here \(Z\psi \) denotes the Zak transform of \(\psi \), i.e.,

\[
(Z\psi)(t, w) := \sum_{\alpha \in \mathbb{Z}^d} \psi(t + \alpha)e^{-2\pi i \alpha^\top w}.
\]
Details of the procedure

Lemma

Let \(\mathcal{L} \) be a convolution system. Then, for each \(f \in V_\Phi^2 \) we have
\[
(\mathcal{L}f)(t) = \langle F, (Z\mathcal{L}\Phi)(t, \cdot) \rangle_{L^2[0,1)^d}, \quad t \in \mathbb{R}^d,
\]
where \(F = T^{-1}_\Phi f \).

Here \(Z\psi \) denotes the Zak transform of \(\psi \), i.e.,
\[
(Z\psi)(t, w) := \sum_{\alpha \in \mathbb{Z}^d} \psi(t + \alpha)e^{-2\pi i \alpha^\top w}.
\]

The expression for the samples

\[
(\mathcal{L}_j f)(M\alpha) = \langle F, Z\mathcal{L}_j \Phi(0, \cdot) e^{-2\pi i \alpha^\top M^\top} \rangle_{L^2[0,1)^d},
\]
Denote
\[
g_j(x) := Z\mathcal{L}_j \Phi(0, x), \quad j = 1, 2, \ldots, s;
\]
The sequence \(\{ g_j(x) e^{-2\pi i \alpha^T M^T x} \} \) \(\alpha \in \mathbb{Z}^d; j=1,2,\ldots,s \) in \(L_r^2 [0, 1)^d \)
The sequence \(\{g_j(x)e^{-2\pi i \alpha^\top M^\top x}\}_{\alpha \in \mathbb{Z}^d; j=1,2,\ldots,s} \) in \(L^2_r[0,1)^d \)

The set
\[
\#\{\mathbb{Z}^d \cap \{M^\top x : x \in [0,1)^d\}\} = \det M
\]
from now on the elements in this set will be denoted
\[
\{i_1 = 0, i_2, \ldots, i_{\det M}\} \subset \mathbb{Z}^d.
\]
The sequence \(\{ g_j(x) e^{-2\pi i \alpha^T M^T x} \}_{\alpha \in \mathbb{Z}^d; j=1,2,\ldots,s} \) in \(L^2_r[0, 1)^d \)

The set
\[
\# \{ \mathbb{Z}^d \cap \{ M^T x : x \in [0, 1)^d \} \} = \det M
\]
from now on the elements in this set will be denoted
\[
\{ i_1 = 0, i_2, \ldots, i_{\det M} \} \subset \mathbb{Z}^d.
\]

Consider the \(s \times r(\det M) \) matrix of functions
\[
G(x) := \begin{bmatrix}
g_1^T(x) & g_1^T(x + M^{-T} i_2) & \cdots & g_1^T(x + M^{-T} i_{\det M}) \\
g_2^T(x) & g_2^T(x + M^{-T} i_2) & \cdots & g_2^T(x + M^{-T} i_{\det M}) \\
\vdots & \vdots & \ddots & \vdots \\
g_s^T(x) & g_s^T(x + M^{-T} i_2) & \cdots & g_s^T(x + M^{-T} i_{\det M})
\end{bmatrix},
\]
The sequence \(\{g_j(x)e^{-2\pi i\alpha^T M^T x}\}_{\alpha \in \mathbb{Z}^d; j=1,2,...,s} \) in \(L^2_r[0, 1)^d \)

The set
\[
\# \{ \mathbb{Z}^d \cap \{ M^T x : x \in [0, 1)^d \} \} = \det M
\]
from now on the elements in this set will be denoted
\[
\{ i_1 = 0, i_2, \ldots, i_{\det M} \} \subset \mathbb{Z}^d .
\]

Consider the \(s \times r(\det M) \) matrix of functions
\[
G(x) := \begin{bmatrix}
g_1^T(x) & g_1^T(x + M^{-T} i_2) & \cdots & g_1^T(x + M^{-T} i_{\det M}) \\
g_2^T(x) & g_2^T(x + M^{-T} i_2) & \cdots & g_2^T(x + M^{-T} i_{\det M}) \\
\vdots & \vdots & \ddots & \vdots \\
g_s^T(x) & g_s^T(x + M^{-T} i_2) & \cdots & g_s^T(x + M^{-T} i_{\det M})
\end{bmatrix},
\]
and its related constants
\[
A_G := \text{ess inf}_{x \in [0, 1)^d} \lambda_{\min}[G^*(x)G(x)], \quad B_G := \text{ess sup}_{x \in [0, 1)^d} \lambda_{\max}[G^*(x)G(x)]
\]
Lemma

Let \(g_j \) be in \(L_r^2(0, 1)^d \) for \(j = 1, 2, \ldots, s \) and let \(G(x) \) be its associated matrix. Then,

(a) The sequence \(\{ g_j(x) e^{-2\pi i \alpha^T M^T x} \}_{\alpha \in \mathbb{Z}^d; j=1,2,\ldots,s} \) is a complete system for \(L_r^2(0, 1)^d \) if and only if the rank of the matrix \(G(x) \) is \(r(\det M) \) a.e. in \([0, 1)^d\).

(b) The sequence \(\{ g_j(x) e^{-2\pi i \alpha^T M^T x} \}_{\alpha \in \mathbb{Z}^d; j=1,2,\ldots,s} \) is a Bessel sequence for \(L_r^2(0, 1)^d \) if and only if \(g_j \in L_r^\infty(0, 1)^d \) (or equivalently \(B_{G} < \infty \)). In this case, the optimal Bessel bound is \(B_{G}/(\det M) \).

(c) The sequence \(\{ g_j(x) e^{-2\pi i \alpha^T M^T x} \}_{\alpha \in \mathbb{Z}^d; j=1,2,\ldots,s} \) is a frame for \(L_r^2(0, 1)^d \) if and only if \(0 < A_G \leq B_G < \infty \). In this case, the optimal frame bounds are \(A_G/(\det M) \) and \(B_G/(\det M) \).

(d) The sequence \(\{ g_j(x) e^{-2\pi i \alpha^T M^T x} \}_{\alpha \in \mathbb{Z}^d; j=1,2,\ldots,s} \) is a Riesz basis for \(L_r^2(0, 1)^d \) if and only if it is a frame and \(s = r(\det M) \).
The sampling result

Theorem

Assume that the functions g_j belong to $L^\infty_r[0, 1)^d$ for each $j = 1, 2, \ldots, s$. The following statements are equivalents:

(a) $A_G > 0$.

(b) There exists an $r \times s$ matrix $a(x) := \begin{bmatrix} a_1(x), \ldots, a_s(x) \end{bmatrix}$ with columns $a_j \in L^\infty_r[0, 1)^d$, and satisfying

$$\begin{bmatrix} a_1(x), \ldots, a_s(x) \end{bmatrix}G(x) = \begin{bmatrix} I_r, 0 \end{bmatrix}(\det M^{-1})r \times r \quad a.e. \text{ in } [0, 1)^d.$$

(c) There exists a frame for V^2_Φ having the form

$$\{S_{j, a}(\cdot - M\alpha)\}_{\alpha \in \mathbb{Z}^d; j=1,2,\ldots,s}$$

such that for any $f \in V^2_\Phi$

$$f = (\det M) \sum_{j=1}^{s} \sum_{\alpha \in \mathbb{Z}^d} (\mathcal{L}_j f)(M\alpha) S_{j, a}(\cdot - M\alpha) \quad \text{in } L^2(\mathbb{R}^d).$$

(d) There exists a frame $\{S_{j, \alpha}(\cdot)\}_{\alpha \in \mathbb{Z}^d; j=1,2,\ldots,s}$ for V^2_Φ such that

$$f = (\det M) \sum_{j=1}^{s} \sum_{\alpha \in \mathbb{Z}^d} (\mathcal{L}_j f)(M\alpha) S_{j, \alpha} \quad \text{in } L^2(\mathbb{R}^d).$$
Remark

Having in mind the Moore-Penrose pseudo inverse

$$G^\dagger(x) := [G^*(x)G(x)]^{-1}G^*(x).$$

All matrices $a(x)$ with entries in $L^\infty[0, 1)^d$, and satisfying (b) in the previous theorem correspond to the first r rows of the matrices of the form

$$A = G^\dagger(x) + U(x)[I_s - G(x)G^\dagger(x)],$$

where $U(x)$ is any $r(\det M) \times s$ matrix with entries in $L^\infty[0, 1)^d$.

Reconstruction functions with prescribed properties

Theorem ▶ If the generators φ_k and the functions $L_j \varphi_k$ have compact support, then the reconstruction functions S_j, a have compact support if and only if $\text{rank} \ G(z) = r(\det M)$ for all $z \in (C \{0\})^d$.

▶ If the generators φ_k and the functions $L_j \varphi_k$ have exponential decay, then the reconstruction functions S_j, a have exponential decay if and only if $\text{rank} \ G(z) = r(\det M)$ for all $z \in T^d$.

$g_j(k)(z) := \sum_{\mu \in Z^d} L_j \varphi_k(\mu) z - \mu, g^{\top}_j(z) := (g_j, 1(z), g_j, 2(z), \ldots, g_j, r(z)),$

$G(z) := \begin{bmatrix} g^{\top}_j(z) e^{2\pi i m^{\top} 1 i l, \ldots, g^{\top}_j(z) e^{2\pi i m^{\top} d i l} \end{bmatrix}_{j=1, 2, \ldots, s; k=1, 2, \ldots, r}.$

Note also that for the values $x = (x_1, \ldots, x_d) \in [0, 1)^d$ and $z = (e^{2\pi i x_1}, \ldots, e^{2\pi i x_d}) \in T^d$ we have $G(x) = G(z)$.
Reconstruction functions with prescribed properties

Theorem

- If the generators φ_k and the functions $L_j \varphi_k$ have **compact support**, then the reconstruction functions $S_{j,a}$ have compact support if and only if
 \[
 \text{rank } G(z) = r(\det M) \quad \text{for all } z \in (\mathbb{C} \setminus \{0\})^d.
 \]

- If the generators φ_k and the functions $L_j \varphi_k$ have **exponential decay**, then the reconstruction functions $S_{j,a}$ have exponential decay if and only if
 \[
 \text{rank } G(z) = r(\det M) \quad \text{for all } z \in \mathbb{T}^d.
 \]

\[
g_{j,k}(z) := \sum_{\mu \in \mathbb{Z}^d} L_j \varphi_k(\mu) z^{-\mu}, \quad g_j^\top(z) := (g_{j,1}(z), g_{j,2}(z), \ldots, g_{j,r}(z)),
\]
\[
G(z) := \begin{bmatrix} g_j^\top(z_1 e^{2\pi i m_1^\top l_1}, \ldots, z_d e^{2\pi i m_d^\top l_d}) \end{bmatrix}_{j=1,2,\ldots,s} \quad k=1,2,\ldots, r; \quad l=1,2,\ldots, \det M
\]

Note also that for the values $x = (x_1, \ldots, x_d) \in [0, 1)^d$ and $z = (e^{2\pi i x_1}, \ldots, e^{2\pi i x_d}) \in \mathbb{T}^d$ we have $G(x) = G(z)$.
L^2-approximation properties
Consider the scaled version $\Gamma_a^h := \sigma_1/h \Gamma_a \sigma_h$, where for $h > 0$ we are using the notation $\sigma_h f(t) := f(ht)$, $t \in \mathbb{R}^d$, of the sampling operator Γ_a

$$\Gamma_a f(t) := \sum_{j=1}^{s} \sum_{\alpha \in \mathbb{Z}^d} (L_j f)(M\alpha) S_{j,a}(t - M\alpha), \quad t \in \mathbb{R}^d,$$
L^2-approximation properties

Consider the scaled version $\Gamma_a^h := \sigma_1/h \Gamma_a \sigma_h$, where for $h > 0$ we are using the notation $\sigma_h f(t) := f(ht)$, $t \in \mathbb{R}^d$, of the sampling operator Γ_a

$$\Gamma_a f(t) := \sum_{j=1}^{s} \sum_{\alpha \in \mathbb{Z}^d} (\mathcal{L}_j f)(M\alpha) S_{j,a}(t - M\alpha), \quad t \in \mathbb{R}^d,$$

Theorem

Under the following conditions:

- The set of generators $\Phi = \{\varphi_k\}_{k=1}^r$ satisfies the **Strang-Fix conditions of order** ℓ
- The **decay condition** $\varphi_k(t) = O([1 + |t|]^{-d-\ell-\epsilon})$ for some $\epsilon > 0$,
- The impulse responses satisfy $\sum_{\alpha \in \mathbb{Z}^d} |h_j(t - \alpha)| \in L^2[0, 1)^d$
Consider the scaled version $\Gamma^h_a := \sigma_{1/h} \Gamma_a \sigma_h$, where for $h > 0$ we are using the notation $\sigma_h f(t) := f(ht)$, $t \in \mathbb{R}^d$, of the sampling operator Γ_a

$$\Gamma_a f(t) := \sum_{j=1}^{s} \sum_{\alpha \in \mathbb{Z}^d} (\mathcal{L}_j f)(M\alpha) S_{j,a}(t - M\alpha), \quad t \in \mathbb{R}^d,$$

Theorem

Under the following conditions:

- The set of generators $\Phi = \{\varphi_k\}_{k=1}^r$ satisfies the **Strang-Fix conditions of order** ℓ
- The **decay condition** $\varphi_k(t) = O\left([1 + |t|]^{-d-\ell-\epsilon}\right)$ for some $\epsilon > 0$,
- The impulse responses satisfy $\sum_{\alpha \in \mathbb{Z}^d} |h_j(t - \alpha)| \in L^2[0, 1)^d$

we get

$$\|f - \Gamma^h_a f\|_2 \leq C \|f\|_{L^2,\ell} h^\ell$$

for all $f \in W^{\ell}_2(\mathbb{R}^d)$, where the constant C does not depend on h and f.
Irregular sampling in V_Φ^2: time-jitter error
Irregular sampling in V^2_Φ: time-jitter error

- An error sequence $\varepsilon := \{\varepsilon_j, \alpha\}_{\alpha \in \mathbb{Z}^d; j = 1, 2, \ldots, s}$ in \mathbb{R}^d
Irregular sampling in V^2_Φ: time-jitter error

- An error sequence $\varepsilon := \{\varepsilon_j, \alpha\}_{\alpha \in \mathbb{Z}^d; j=1,2,...,s}$ in \mathbb{R}^d
- The sequence of perturbed samples $\{(L_j f)(M\alpha + \varepsilon_j, \alpha)\}_{\alpha \in \mathbb{Z}^d; j=1,2,...,s}$
Irregular sampling in V^2_Φ: time-jitter error

- An error sequence $\varepsilon := \{\varepsilon_j, \alpha\}_{\alpha \in \mathbb{Z}^d; j=1,2,...,s}$ in \mathbb{R}^d
- The sequence of perturbed samples $\{(L_j f)(M\alpha + \varepsilon_j, \alpha)\}_{\alpha \in \mathbb{Z}^d; j=1,2,...,s}$

$$(L_j f)(M\alpha + \varepsilon_j, \alpha) = \langle F, (T_{L_j \Phi})(\varepsilon_j, \alpha, \cdot) e^{-2\pi i \alpha^\top M^\top \cdot} \rangle_{L^2_t[0,1)^d}, \quad \alpha \in \mathbb{Z}^d.$$
Irregular sampling in V^2_Φ: time-jitter error

- An error sequence $\varepsilon := \{\varepsilon_j, \alpha\}_{\alpha \in \mathbb{Z}^d; j=1,2,...,s}$ in \mathbb{R}^d
- The sequence of perturbed samples
 $\{(L_j f)(M\alpha + \varepsilon_j, \alpha)\}_{\alpha \in \mathbb{Z}^d; j=1,2,...,s}$

$$(L_j f)(M\alpha + \varepsilon_j, \alpha) = \langle F, (ZL_j \Phi)(\varepsilon_j, \alpha, \cdot) e^{-2\pi i \alpha^\top M^\top} \rangle_{L^2[0,1]^d}, \quad \alpha \in \mathbb{Z}^d.$$

Leads us to study the sequence

$$\{(ZL_j \Phi)(\varepsilon_j, \alpha, \cdot) e^{-2\pi i \alpha^\top M^\top} \}_{\alpha \in \mathbb{Z}^d; j=1,2,...,s}$$
Irregular sampling in V^2_Φ: time-jitter error

- An error sequence $\varepsilon := \{\varepsilon_j, \alpha\}_{\alpha \in \mathbb{Z}^d; j = 1,2,\ldots,s}$ in \mathbb{R}^d
- The sequence of perturbed samples $\{(L_j f)(M \alpha + \varepsilon_j, \alpha)\}_{\alpha \in \mathbb{Z}^d; j = 1,2,\ldots,s}$

$$(L_j f)(M \alpha + \varepsilon_j, \alpha) = \langle F, (\mathbf{ZL}_j \Phi)(\varepsilon_j, \alpha, \cdot) e^{-2\pi i \alpha^\top M^\top \cdot} \rangle_{L^2[0,1)^d}, \quad \alpha \in \mathbb{Z}^d.$$ Leads us to study the sequence

$$\{(\mathbf{ZL}_j \Phi)(\varepsilon_j, \alpha, \cdot) e^{-2\pi i \alpha^\top M^\top \cdot}\}_{\alpha \in \mathbb{Z}^d; j = 1,2,\ldots,s}$$
as a perturbation of the previous frame

$$\{(\mathbf{ZL}_j \Phi)(0, \cdot) e^{-2\pi i \alpha^\top M^\top \cdot}\}_{\alpha \in \mathbb{Z}^d; j = 1,2,\ldots,s}$$
Theorem

For sufficiently small errors there exists a frame\[\{ S_{j,\alpha}^\varepsilon \}_{\alpha \in \mathbb{Z}^d; j=1,2,...,s} \] for V_ϕ^2 such that, for any $f \in V_\phi^2$

\[f(t) = \sum_{j=1}^{s} \sum_{\alpha \in \mathbb{Z}^d} (\mathcal{L}_j f)(M\alpha + \varepsilon_{j,\alpha}) S_{j,\alpha}^\varepsilon(t), \quad t \in \mathbb{R}^d, \]
Theorem

For sufficiently small errors there exists a frame \(\{ S_{j,\alpha}^\varepsilon \}_{\alpha \in \mathbb{Z}^d; j=1,2,...,s} \) for \(V_\Phi^2 \) such that, for any \(f \in V_\Phi^2 \)

\[
f(t) = \sum_{j=1}^{s} \sum_{\alpha \in \mathbb{Z}^d} (\mathcal{L}_j f)(M\alpha + \varepsilon_{j,\alpha}) S_{j,\alpha}^\varepsilon(t), \quad t \in \mathbb{R}^d,
\]

Remark

Notice that the frame \(\{ S_{j,\alpha}^\varepsilon \}_{\alpha \in \mathbb{Z}^d; j=1,2,...,s} \), depends on the error sequence.

We implemented a **frame algorithm** in the \(\ell^2(\mathbb{Z}^d) \) setting which approximates the sequence \(\{ a_{k\alpha} \}_{\alpha \in \mathbb{Z}^d; k=1,...,r} \in \ell^2(\mathbb{Z}^d) \) defining \(f \in V_\Phi^2 \) by a sequence \(\{ a_{k\alpha}^{(n)} \}_{\alpha \in \mathbb{Z}^d; k=1,...,r} \in \ell^2(\mathbb{Z}^d) \) in such a way that

\[
f_n(t) = \sum_{k=1}^{r} \sum_{\alpha \in \mathbb{Z}^d} a_{k\alpha}^{(n)} \varphi_k(t - \alpha) \rightarrow f(t) = \sum_{k=1}^{r} \sum_{\alpha \in \mathbb{Z}^d} a_{k\alpha} \varphi_k(t - \alpha)
\]
Chapter 2: Motivation
Chapter 2: Motivation

Shift-invariant space

\[V^2_\phi := \left\{ \sum_{j=1}^{r} \sum_{\alpha \in \mathbb{Z}^d} d_j(\alpha) \varphi_j(t - \alpha) : d_j \in \ell^2(\mathbb{Z}^d), k = 1, 2 \ldots, r \right\} \]
Chapter 2: Motivation

Shift-invariant space

\[V_\Phi^2 := \left\{ \sum_{j=1}^{r} \sum_{\alpha \in \mathbb{Z}^d} d_j(\alpha) \varphi_j(t - \alpha) : d_j \in \ell^2(\mathbb{Z}^d), k = 1, 2 \ldots, r \right\} \]

Weighted shift-invariant spaces

\[V^p_\nu(\Phi) := \left\{ \sum_{j=1}^{r} \sum_{\alpha \in \mathbb{Z}^d} a_j(\alpha) \phi_j(t - \alpha) : a_j \in \ell^p_\nu(\mathbb{Z}^d), j = 1, 2, \ldots, r \right\} \]
Chapter 2: Motivation

Shift-invariant space

\[
V_{\Phi}^2 := \left\{ \sum_{j=1}^{r} \sum_{\alpha \in \mathbb{Z}^d} d_j(\alpha) \varphi_j(t - \alpha) : d_j \in \ell^2(\mathbb{Z}^d), k = 1, 2 \ldots, r \right\}
\]

Weighted shift-invariant spaces

\[
V_{\nu}^p(\Phi) := \left\{ \sum_{j=1}^{r} \sum_{\alpha \in \mathbb{Z}^d} a_j(\alpha) \phi_j(t - \alpha) : a_j \in \ell^p_{\nu}(\mathbb{Z}^d), j = 1, 2, \ldots, r \right\}
\]

Weight functions \(\nu \) control the decay or growth of the signals \(f \in V_{\nu}^p(\Phi) \).
Uniform average sampling in frame generated weighted shift-invariant spaces
Uniform average sampling in frame generated weighted shift-invariant spaces

- \(f \) belongs to \(L^p_\nu(\mathbb{R}^d) \) if \(\nu f \) belongs to \(L^p(\mathbb{R}^d) \)
- \(\| f \|_{L^p_\nu(\mathbb{R}^d)} = \| \nu f \|_{L^p(\mathbb{R}^d)} \)
- weight function \(\nu \) satisfies
 \[
 0 < \nu(x + y) \leq \nu(x)\nu(y), \quad \text{for all } x, y \in \mathbb{R}^d.
 \]
Uniform average sampling in frame generated weighted shift-invariant spaces

- f belongs to $L^p_{\nu}(\mathbb{R}^d)$ if νf belongs to $L^p(\mathbb{R}^d)$
- $\|f\|_{L^p_{\nu}(\mathbb{R}^d)} = \|\nu f\|_{L^p(\mathbb{R}^d)}$
- Weight function ν satisfies

 $$0 < \nu(x + y) \leq \nu(x)\nu(y), \quad \text{for all } x, y \in \mathbb{R}^d.$$

Some typical examples

- Subexponential weight $\nu(x) = e^{\alpha|x|^{\beta}}$ with $\alpha \geq 0$, $\beta \in [0, 1]$
- Sobolev weight $\nu(x) = (1 + |x|)^{\alpha}$, with $\alpha \geq 0$.

Wiener amalgam spaces of measurable functions

For $1 \leq p < \infty$

\[
W(L^p_\nu) := \left\{ f : \|f\|^p_{W(L^p_\nu)} := \sum_{\alpha \in \mathbb{Z}^d} \text{ess sup}_{x \in [0,1]^d} \{ |f(x + \alpha)|^p \nu(\alpha)^p \} < \infty \right\}
\]

and for $p = \infty$

\[
W(L^\infty_\nu) := \left\{ f : \|f\|_{W(L^\infty_\nu)} := \sup_{\alpha \in \mathbb{Z}^d} \text{ess sup}_{x \in [0,1]^d} \{ |f(x + \alpha)| \nu(\alpha) \} < \infty \right\}
\]
Wiener amalgam spaces of measurable functions

For $1 \leq p < \infty$

$$W(L^p_\nu) := \left\{ f : \|f\|^p_{W(L^p_\nu)} := \sum_{\alpha \in \mathbb{Z}^d} \text{ess sup}_{x \in [0,1]^d} \{ |f(x + \alpha)|^p \nu(\alpha)^p \} < \infty \right\}$$

and for $p = \infty$

$$W(L^\infty_\nu) := \left\{ f : \|f\|_{W(L^\infty_\nu)} := \sup_{\alpha \in \mathbb{Z}^d} \{ \text{ess sup}_{x \in [0,1]^d} \{ |f(x + \alpha)| \nu(\alpha) \} \} < \infty \right\}$$

Definition

A collection $\{ \phi_j(\cdot - \alpha) \}_{\alpha \in \mathbb{Z}^d; j=1,2,\ldots,r}$ is said to be a p-frame for $V^p_\nu(\Phi)$ if there exists a positive constant C (depending on Φ, p and ν) such that for every $f \in V^p_\nu(\Phi)$

$$C^{-1}\|f\|_{L^p_\nu} \leq \sum_{j=1}^r \left\| \left\{ \int_{\mathbb{R}^d} f(x) \phi_j(x - \alpha) \, dx \right\}_{\alpha \in \mathbb{Z}^d} \right\|_{\ell^p_\nu} \leq C\|f\|_{L^p_\nu}.$$
Weighted multiply generated shift-invariant space

Given a set of functions $\Phi := \{\phi_j\}_{j=1}^r$, the weighted multiply generated shift-invariant space $V_p^\nu(\Phi)$ is formally defined as

$$V_p^\nu(\Phi) := \left\{ \sum_{j=1}^r \sum_{\alpha \in \mathbb{Z}^d} a_j(\alpha) \phi_j(t - \alpha) : \{a_j(\alpha)\}_{\alpha \in \mathbb{Z}^d} \in \ell_p^\nu(\mathbb{Z}^d) \right\}.$$
Given a set of functions $\Phi := \{\phi_j\}_{j=1}^r$, the weighted multiply generated shift-invariant space $V^p_\nu(\Phi)$ is formally defined as

$$V^p_\nu(\Phi) := \left\{ \sum_{j=1}^r \sum_{\alpha \in \mathbb{Z}^d} a_j(\alpha) \phi_j(t - \alpha) : \{a_j(\alpha)\}_{\alpha \in \mathbb{Z}^d} \in \ell^p_\nu(\mathbb{Z}^d) \right\}.$$

- p-frame condition and $\Phi = \{\phi_j\}_{j=1}^r \subset W(L^1_\nu)$ assure the closedness of $V^p_\nu(\Phi)$ as a subspace of L^p_ν.

Weighted multiply generated shift-invariant space
Theorem

There exist functions $S_{l,d}$ such that for any $f \in V^p_\nu(\Phi)$, $1 \leq p \leq \infty$, the sampling formula

$$f = \sum_{l=1}^{s} \sum_{\alpha \in \mathbb{Z}^d} (\mathcal{L}_lf)(M\alpha) S_{l,d}(\cdot - M\alpha),$$

holds in the L^p_ν-sense. The convergence is also uniform on \mathbb{R}^d.
Theorem

There exist functions $S_{l,d}$ such that for any $f \in V_{p}(\Phi)$, $1 \leq p \leq \infty$, the sampling formula

$$f = \sum_{l=1}^{s} \sum_{\alpha \in \mathbb{Z}^d} (\mathcal{L}_l f)(M\alpha) S_{l,d}(\cdot - M\alpha),$$

holds in the L_{p}^{ν}-sense. The convergence is also uniform on \mathbb{R}^d.

- The s systems \mathcal{L}_l are obtained by convolution with functions $h_l \in W(L_{1}^{\nu})$.

Theorem

There exist functions $S_{l,d}$ such that for any $f \in V^p_\nu(\Phi)$, $1 \leq p \leq \infty$, the sampling formula

$$f = \sum_{l=1}^{s} \sum_{\alpha \in \mathbb{Z}^d} (\mathcal{L}_l f)(M\alpha) S_{l,d}(\cdot - M\alpha),$$

holds in the L^p_ν-sense. The convergence is also uniform on \mathbb{R}^d.

- The s systems \mathcal{L}_l are obtained by convolution with functions $h_l \in W(L^1_\nu)$.
- The weight function must satisfy the GRS-condition:

$$\lim_{n \to \infty} \nu(n\alpha)^{1/n} = 1$$
Theorem

There exist functions $S_{l,d}$ such that for any $f \in V^p_\nu(\Phi)$, $1 \leq p \leq \infty$, the sampling formula

$$f = \sum_{l=1}^{s} \sum_{\alpha \in \mathbb{Z}^d} (\mathcal{L}_l f)(M\alpha) S_{l,d}(\cdot - M\alpha),$$

holds in the L^p_ν-sense. The convergence is also uniform on \mathbb{R}^d.

- The s systems \mathcal{L}_l are obtained by convolution with functions $h_l \in W(L^1_\nu)$.
- The weight function must satisfy the GRS-condition:

$$\lim_{n \to \infty} \nu(n\alpha)^{1/n} = 1$$

Wiener’s lemma

If $f \in \mathcal{A}_\nu$ and $f(x) \neq 0$ for every $x \in \mathbb{R}^d$, the function $1/f$ is also in \mathcal{A}_ν, where \mathcal{A}_ν denotes the weighted Wiener algebra of the functions

$$f(x) = \sum_{\alpha \in \mathbb{Z}^d} a(\alpha) e^{2\pi i \alpha^T x}, \quad \{a(\alpha)\}_{\alpha \in \mathbb{Z}^d} \in \ell^1_\nu(\mathbb{Z}^d)$$
Chapter 3: Motivation
Chapter 3: Motivation

Shift-invariant space

\[V_\varphi^2 = \left\{ \sum_{n \in \mathbb{Z}} a_n \varphi(t - n) : \{a_n\} \in \ell^2(\mathbb{Z}) \right\}. \]
Shift-invariant space

$$V_{\varphi}^2 = \left\{ \sum_{n \in \mathbb{Z}} a_n \varphi(t - n) : \{a_n\} \in \ell^2(\mathbb{Z}) \right\}.$$

Shift-invariant space

$$V_{\varphi}^2 = \left\{ \sum_{n \in \mathbb{Z}} a_n T^n \varphi(t) : \{a_n\} \in \ell^2(\mathbb{Z}) \right\}.$$

where $T : f(t) \mapsto f(t - 1)$ in $L^2(\mathbb{R})$ is the shift operator.
Chapter 3: Motivation

Shift-invariant space

\[V^2_\varphi = \left\{ \sum_{n \in \mathbb{Z}} a_n \varphi(t - n) : \{a_n\} \in \ell^2(\mathbb{Z}) \right\}. \]

Shift-invariant space

\[V^2_\varphi = \left\{ \sum_{n \in \mathbb{Z}} a_n T^n \varphi(t) : \{a_n\} \in \ell^2(\mathbb{Z}) \right\}. \]

where \(T : f(t) \mapsto f(t - 1) \) in \(L^2(\mathbb{R}) \) is the shift operator.

\(U \)-invariant space

\[\mathcal{A}_a = \left\{ \sum_{n \in \mathbb{Z}} \alpha_n U^n a : \{\alpha_n\}_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z}) \right\}. \]

where \(U \) is a unitary operator and \(a \) is a fixed vector on a separable Hilbert space \(\mathcal{H} \).
Generalizing the samples

The samples in the shift-invariant case were obtained by means of convolution systems

\[L_j f := f \ast h_j \]

The \(U \)-samples

For a fixed \(b \in H \) and a sampling period \(r \in \mathbb{N} \) the \(U \)-samples are given by

\[L_b x(r_k) := \langle x, U r_k b \rangle_{H}, k \in \mathbb{Z}. \]

In the shift-invariant case, \(U \) is defined as the shift operator \(f(u) \mapsto f(u-1) \) in \(L^2(\mathbb{R}^d) \) and we have

\[\langle f, U r_k b \rangle_{H} = \int_{\mathbb{R}} f(u) b(u-rk) \, du = (f \ast h)(rk), \quad u \in \mathbb{R}, \]

where \(h(u) := b(-u) \).
Generalizing the samples

The samples in the shift-invariant case were obtained by means of convolution systems $\mathcal{L}_j f := f * h_j$
Generalizing the samples

The samples in the shift-invariant case were obtained by means of convolution systems $\mathcal{L}_j f := f \ast h_j$

The U-samples

For a fixed $b \in \mathcal{H}$ and a sampling period $r \in \mathbb{N}$ the U-samples are given by

$$\mathcal{L}_b x (rk) := \langle x, U^{rk} b \rangle_{\mathcal{H}}, \quad k \in \mathbb{Z}.$$
Generalizing the samples

The samples in the shift-invariant case were obtained by means of convolution systems \(\mathcal{L}_j f := f \ast h_j \)

The \(U \)-samples

For a fixed \(b \in \mathcal{H} \) and a sampling period \(r \in \mathbb{N} \) the \(U \)-samples are given by

\[
\mathcal{L}_b x(rk) := \langle x, U^{rk} b \rangle \mathcal{H}, \quad k \in \mathbb{Z}.
\]

In the shift-invariant case, \(U \) is defined as the shift operator \(f(u) \mapsto f(u - 1) \) in \(L^2(\mathbb{R}) \) and we have

\[
\langle f, U^{rk} b \rangle \mathcal{H} = \int_{-\infty}^{\infty} f(u) b(u - rk) du = (f \ast h)(rk), \quad u \in \mathbb{R},
\]

where \(h(u) := b(-u) \).
Sampling theory in U-invariant spaces

Let U be an unitary operator in a separable Hilbert space H; for a fixed $a \in H$, consider the closed subspace given by $A_a = \text{span}\{U^n a | n \in \mathbb{Z}\}$.

In case that the sequence $\{U^n a | n \in \mathbb{Z}\}$ is a Riesz sequence in H we have $A_a = \{\sum_{n \in \mathbb{Z}} \alpha_n U^n a : \{\alpha_n\} | n \in \mathbb{Z} \in \ell^2(\mathbb{Z})\}$.

Examples: Translation and Modulation operator on $L^2(\mathbb{R})$

$(T_a f)(t) = f(t-a)$

$(M_a f)(t) = f(t) e^{i a t}$
Sampling theory in U-invariant spaces

Let U be an unitary operator in a separable Hilbert space \mathcal{H}; for a fixed $a \in \mathcal{H}$, consider the closed subspace given by

$$\mathcal{A}_a := \overline{\text{span}}\{U^n a, \ n \in \mathbb{Z}\}.$$
Sampling theory in U-invariant spaces

Let U be an **unitary operator** in a separable Hilbert space \mathcal{H}; for a fixed $a \in \mathcal{H}$, consider the closed subspace given by

$$A_a := \overline{\text{span}} \{ U^n a, \ n \in \mathbb{Z} \}.$$

In case that the sequence $\{ U^n a \}_{n \in \mathbb{Z}}$ is a Riesz sequence in \mathcal{H} we have

$$A_a = \left\{ \sum_{n \in \mathbb{Z}} \alpha_n U^n a : \{ \alpha_n \}_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z}) \right\}.$$
Sampling theory in U-invariant spaces

Let U be an **unitary operator** in a separable Hilbert space \mathcal{H}; for a fixed $a \in \mathcal{H}$, consider the closed subspace given by

$$\mathcal{A}_a := \overline{\text{span}}\{U^n a, \ n \in \mathbb{Z}\}.$$

In case that the sequence $\{U^n a\}_{n \in \mathbb{Z}}$ is a Riesz sequence in \mathcal{H} we have

$$\mathcal{A}_a = \left\{ \sum_{n \in \mathbb{Z}} \alpha_n U^n a : \{\alpha_n\}_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z}) \right\}.$$

Examples: Translation and Modulation operator on $L^2(\mathbb{R})$

$$(T_a f)(t) = f(t - a)$$

$$(M_a f)(t) = f(t)e^{iat}$$
The sequence $\{U^na\}_{n \in \mathbb{Z}}$
The sequence \(\{ U^n a \}_{n \in \mathbb{Z}} \)

- The *auto-covariance* function admits the integral representation

\[
R_a(k) := \langle U^k a, a \rangle_{\mathcal{H}} = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{ik\theta} d\mu_a(\theta), \quad k \in \mathbb{Z}.
\]
The sequence \(\{U^n a\}_{n \in \mathbb{Z}} \)

- The *auto-covariance* function admits the integral representation

\[
R_a(k) := \langle U^k a, a \rangle_{\mathcal{H}} = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{ik\theta} d\mu_a(\theta), \quad k \in \mathbb{Z}.
\]

- The positive Borel spectral measure \(\mu_a \) can be decomposed as \(d\mu_a(\theta) = \phi_a(\theta)d\theta + d\mu^s_a(\theta) \).
The sequence $\{U^na\}_{n \in \mathbb{Z}}$

- The auto-covariance function admits the integral representation

$$R_a(k) := \langle U^ka, a \rangle_H = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{ik\theta} d\mu_a(\theta), \quad k \in \mathbb{Z}.$$

- The positive Borel spectral measure μ_a can be decomposed as $d\mu_a(\theta) = \phi_a(\theta)d\theta + d\mu^s_a(\theta)$.

Theorem

The sequence $\{U^na\}_{n \in \mathbb{Z}}$ is a Riesz basis for A_a if and only if the singular part $\mu^s_a \equiv 0$ and

$$0 < \mathrm{ess \, inf}_{\theta \in (-\pi, \pi)} \phi_a(\theta) \leq \mathrm{ess \, sup}_{\theta \in (-\pi, \pi)} \phi_a(\theta) < \infty.$$

If $\{b_k\}_{k \in \mathbb{Z}} \in \ell^2(\mathbb{Z})$ are the Fourier coefficients of the function $1/\phi_a(\theta) \in L^2(-\pi, \pi)$ then the vector $b = \sum_{k \in \mathbb{Z}} b_k U^k a \in A_a$ generates the dual Riesz basis $\{U^nb\}_{n \in \mathbb{Z}}$ with spectral measure $\phi_b(\theta) = 1/\phi_a(\theta)$.
We define the isomorphism $\mathcal{T}_{U,a}$ which maps the orthonormal basis $\{e^{2\pi inw}\}_{n \in \mathbb{Z}}$ for $L^2(0,1)$ onto the Riesz basis $\{U^n a\}_{n \in \mathbb{Z}}$ for A_a, that is,

$$\mathcal{T}_{U,a} : \quad L^2(0,1) \rightarrow A_a \quad \text{such that} \quad F = \sum_{n \in \mathbb{Z}} \alpha_n e^{2\pi inw} \mapsto x = \sum_{n \in \mathbb{Z}} \alpha_n U^n a.$$
We define the isomorphism $T_{U,a}$ which maps the orthonormal basis $\{e^{2\pi inw}\}_{n \in \mathbb{Z}}$ for $L^2(0,1)$ onto the Riesz basis $\{U^n a\}_{n \in \mathbb{Z}}$ for A_a, that is,

$$T_{U,a} : \quad L^2(0,1) \quad \longrightarrow \quad A_a$$

$$F = \sum_{n \in \mathbb{Z}} \alpha_n e^{2\pi inw} \quad \longmapsto \quad x = \sum_{n \in \mathbb{Z}} \alpha_n U^n a.$$

The following U-shift property holds: For any $F \in L^2(0,1)$ and $N \in \mathbb{Z}$, we have

$$T_{U,a} \left(F e^{2\pi iNw} \right) = U^N \left(T_{U,a} F \right).$$
An expression for the generalized samples

For \(x \in \mathcal{A}_a \) let \(F \in L^2(0, 1) \) such that \(\mathcal{T}_{U,a} F = x \);

\[
\mathcal{L}_j x(rm) = \left\langle F, g_j(w) e^{2\pi i rmw} \right\rangle_{L^2(0,1)} \quad \text{for } m \in \mathbb{Z} \text{ and } j = 1, 2, \ldots, s,
\]

where the function

\[
g_j(w) := \sum_{k \in \mathbb{Z}} \mathcal{L}_j a(k) e^{2\pi i kw}
\]

belongs to \(L^2(0, 1) \) for each \(j = 1, 2, \ldots, s \).
An expression for the generalized samples

For \(x \in \mathcal{A}_a \) let \(F \in L^2(0, 1) \) such that \(\mathcal{T}_{U,a} F = x \);

\[
\mathcal{L}_j x (rm) = \langle F, \overline{g_j(w)} e^{2\pi irmw} \rangle_{L^2(0,1)} \quad \text{for } m \in \mathbb{Z} \text{ and } j = 1, 2, \ldots, s,
\]

where the function

\[
g_j(w) := \sum_{k \in \mathbb{Z}} \mathcal{L}_j a(k) e^{2\pi i kw}
\]

belongs to \(L^2(0, 1) \) for each \(j = 1, 2, \ldots, s \).

As a consequence, the stable recovery of any \(x \in \mathcal{A}_a \) depends on whether the sequence

\[
\left\{ \overline{g_j(w)} e^{2\pi irmw} \right\}_{m \in \mathbb{Z}; j=1,2,\ldots,s}
\]

forms a frame for \(L^2(0, 1) \).
The matrix $G(w)$

The matrix $G(w)$ is defined as:

$$
G(w) := \begin{bmatrix}
 g_1(w) & g_1\left(w + \frac{1}{r}\right) & \cdots & g_1\left(w + \frac{r-1}{r}\right) \\
 g_2(w) & g_2\left(w + \frac{1}{r}\right) & \cdots & g_2\left(w + \frac{r-1}{r}\right) \\
 \vdots & \vdots & \ddots & \vdots \\
 g_s(w) & g_s\left(w + \frac{1}{r}\right) & \cdots & g_s\left(w + \frac{r-1}{r}\right)
\end{bmatrix}
$$
The matrix $G(w)$

\[
G(w) := \begin{bmatrix}
g_1(w) & g_1(w + \frac{1}{r}) & \cdots & g_1(w + \frac{r-1}{r})
g_2(w) & g_2(w + \frac{1}{r}) & \cdots & g_2(w + \frac{r-1}{r})
\vdots & \vdots & \ddots & \vdots
g_s(w) & g_s(w + \frac{1}{r}) & \cdots & g_s(w + \frac{r-1}{r})
\end{bmatrix}
\]

\[
\alpha_{G} := \operatorname{ess \ inf}_{w \in (0, 1/r)} \lambda_{\min}[G^*(w)G(w)],
\]

\[
\beta_{G} := \operatorname{ess \ sup}_{w \in (0, 1/r)} \lambda_{\max}[G^*(w)G(w)],
\]
Theorem

Assume that the function $g_j, j = 1, 2, \ldots, s$ belongs to $L^\infty(0, 1)$. The following statements are equivalent:

(a) $\alpha_G > 0$

(b) There exists a vector $[h_1(w), h_2(w), \ldots, h_s(w)]$ with entries in $L^\infty(0, 1)$ satisfying

$$[h_1(w), h_2(w), \ldots, h_s(w)] G(w) = [1, 0, \ldots, 0] \text{ a.e. in } (0, 1).$$

(c) There exist $c_j \in A_a, j = 1, 2, \ldots, s$, such that the sequence

$\{ U^{rk} c_j \}_{k \in \mathbb{Z}; j = 1,2,\ldots s}$

is a frame for A_a, and for any $x \in A_a$ we have the expansion

$$x = \sum_{j=1}^s \sum_{k \in \mathbb{Z}} L_j x(rk) U^{rk} c_j \text{ in } H,$$

(d) There exists a frame $\{ C_{j,k} \}_{k \in \mathbb{Z}; j = 1,2,\ldots s}$ for A_a such that, for each $x \in A_a$ we have the expansion

$$x = \sum_{j=1}^s \sum_{k \in \mathbb{Z}} L_j x(rk) C_{j,k} \text{ in } H,$$
Another approach

\[\langle U^k a, U^{rn} b_j \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(k-rn)\theta} \phi_{a,b_j}(e^{i\theta}) d\theta. \]

- The **left-shift operator** S defined as
 \[
 S : \quad L^2(\mathbb{T}) \quad \longrightarrow \quad L^2(\mathbb{T}) \quad \sum_{k \in \mathbb{Z}} a_k e^{ik\theta} \quad \longmapsto \quad \sum_{k \in \mathbb{Z}} a_{k+1} e^{ik\theta},
 \]
 or equivalently, by $(Sf)(e^{i\theta}) = f(e^{i\theta})e^{-i\theta}$.

- The **decimation operator** D_r, r a positive integer, defined as
 \[
 D_r : \quad L^2(\mathbb{T}) \quad \longrightarrow \quad L^2(\mathbb{T}) \quad \sum_{k \in \mathbb{Z}} a_k e^{ik\theta} \quad \longmapsto \quad \sum_{k \in \mathbb{Z}} a_{rk} e^{ik\theta},
 \]
 which can equivalently be written as
 \[
 (D_r f)(e^{i\theta}) = \frac{1}{r} \sum_{k=0}^{r-1} f(e^{i\theta + \frac{2k\pi}{r}}).
 \]
The U-systems

For any fixed $b \in \mathcal{H}$ we define the U-system \mathcal{L}_b as the linear operator between \mathcal{H} and the set $C(\mathbb{R})$ of the continuous functions on \mathbb{R} given by

$$\mathcal{L}_b : \mathcal{H} \to C(\mathbb{R})$$

$$x \mapsto \mathcal{L}_b x,$$

where $\mathcal{L}_b x(t) := \langle x, U^t b \rangle_{\mathcal{H}}, \quad t \in \mathbb{R}.$
The U-systems

For any fixed $b \in \mathcal{H}$ we define the U-system \mathcal{L}_b as the linear operator between \mathcal{H} and the set $C(\mathbb{R})$ of the continuous functions on \mathbb{R} given by

$$\mathcal{L}_b : \mathcal{H} \rightarrow C(\mathbb{R})$$

$$x \mapsto \mathcal{L}_b x,$$

where $\mathcal{L}_b x(t) := \langle x, U^t b \rangle_{\mathcal{H}}, \quad t \in \mathbb{R}.$

In this case U should coincide with U^1 on a continuous group of unitary operators $\{ U^t \}_{t \in \mathbb{R}}$.
A brief walk on continuous groups of unitary operators

Definition \(\{ U_t \} \) \(t \in \mathbb{R} \) is a family of unitary operators in \(H \) satisfying:

1. \(U_t U_{t'} = U_{t+t'} \),
2. \(U_0 = I_H \),
3. \(\langle U_t x, y \rangle_H \) is a continuous function of \(t \) for any \(x, y \in H \).

Classical Stone's theorem assures us the existence of a self-adjoint operator \(T \) (possibly unbounded) such that \(U_t \equiv e^{i t T} \). This self-adjoint operator \(T \) is defined on the dense domain \(D_T \) of \(H \).

Notice that, whenever the self-adjoint operator \(T \) is bounded, \(D_T = H \) and \(e^{i t T} \) can be defined as the usual exponential series; in any case, \(U_t \equiv e^{i t T} \) means that \(\langle U_t x, y \rangle_H = \int_{-\infty}^{\infty} e^{i w t} \langle E_w x, y \rangle_H \), \(t \in \mathbb{R} \), where \(x \in D_T \) and \(y \in H \).
A brief walk on continuous groups of unitary operators

Definition

\[
\{U^t\}_{t \in \mathbb{R}} \text{ is a family of unitary operators in } \mathcal{H} \text{ satisfying:}
\]

1. \(U^t U^{t'} = U^{t+t'} \),

2. \(U^0 = I_{\mathcal{H}} \),

3. \(\langle U^t x, y \rangle_{\mathcal{H}} \) is a continuous function of \(t \) for any \(x, y \in \mathcal{H} \).
A brief walk on continuous groups of unitary operators

Definition

\[\{ U^t \}_{t \in \mathbb{R}} \]

is a family of unitary operators in \(\mathcal{H} \) satisfying:

1. \(U^t U^{t'} = U^{t+t'} \),
2. \(U^0 = I_\mathcal{H} \),
3. \(\langle U^t x, y \rangle_\mathcal{H} \) is a continuous function of \(t \) for any \(x, y \in \mathcal{H} \).

Classical **Stone’s theorem** assures us the existence of a self-adjoint operator \(T \) (possibly unbounded) such that \(U^t \equiv e^{itT} \). This self-adjoint operator \(T \) is defined on the dense domain \(D_T \) of \(\mathcal{H} \).
Definition

\(\{ U^t \}_{t \in \mathbb{R}} \) is a family of unitary operators in \(\mathcal{H} \) satisfying:

1. \(U^t U^{t'} = U^{t+t'} \),
2. \(U^0 = I_{\mathcal{H}} \),
3. \(\langle U^t x, y \rangle_{\mathcal{H}} \) is a continuous function of \(t \) for any \(x, y \in \mathcal{H} \).

Classical **Stone's theorem** assures us the existence of a self-adjoint operator \(T \) (possibly unbounded) such that \(U^t \equiv e^{itT} \). This self-adjoint operator \(T \) is defined on the dense domain \(D_T \) of \(\mathcal{H} \).

Notice that, whenever the self-adjoint operator \(T \) is bounded, \(D_T = \mathcal{H} \) and \(e^{itT} \) can be defined as the usual exponential series; in any case, \(U^t \equiv e^{itT} \) means that

\[
\langle U^t x, y \rangle = \int_{-\infty}^{\infty} e^{iwt} d\langle E_w x, y \rangle, \quad t \in \mathbb{R},
\]

where \(x \in D_T \) and \(y \in \mathcal{H} \).
Asymmetric sampling
Asymmetric sampling

We have at our disposal the asymmetric samples

\[\{ \mathcal{L}_j x(\sigma_j + r_j m) \}_{m \in \mathbb{Z}; j=1,2,\ldots,s} \]

where \(\sigma_j \in \mathbb{R} \) and \(r_j \in \mathbb{N} \).
Asymmetric sampling

We have at our disposal the asymmetric samples

\[\{ L_j x(\sigma_j + r_j m) \}_{m \in \mathbb{Z}; j=1,2,\ldots,s} \]

where \(\sigma_j \in \mathbb{R} \) and \(r_j \in \mathbb{N}. \)

The recovery formula

\[x = \sum_{j=1}^{s} \sum_{l_j=1}^{r_j} \sum_{k \in \mathbb{Z}} L_j x(\sigma_j + r k + r_j(l_j - 1)) U^{rk} c_{j,l_j} \]

where \(r := \text{lcm}\{r_j\}_{j=1,\ldots,s} \)
Time-jitter error: irregular sampling in A_a
Time-jitter error: irregular sampling in A_a

The perturbed samples

$$\{(L_j x)(rm + \epsilon_{mj})\}$$
The perturbed samples

\[
\{(L_j x)(rm + \epsilon_{mj})\} = \left\{ \langle F, g_{m,j}(w) e^{2\pi irmw} \rangle_{L^2(0,1)} \right\} m \in \mathbb{Z}; j = 1, 2, \ldots, s
\]

where

\[
g_{m,j}(w) := \sum_{k \in \mathbb{Z}} L_j a(k + \epsilon_{mj}) e^{2\pi ikw},
\]
Time-jitter error: irregular sampling in A_a

The perturbed samples

$$\{(L_j x)(rm + \epsilon_{mj})\} = \left\{ \langle F, \overline{g_{m,j}(w)} e^{2\pi irmw} \rangle_{L^2(0,1)} \right\} m \in \mathbb{Z}; j = 1, 2, ..., s$$

where

$$g_{m,j}(w) := \sum_{k \in \mathbb{Z}} L_j a(k + \epsilon_{mj}) e^{2\pi ikw},$$

We can study

$$\left\{ \overline{g_{m,j}(w)} e^{2\pi irmw} \right\} m \in \mathbb{Z}; j = 1, 2, ..., s$$

as a perturbation of the frame

$$\left\{ \overline{g_j(w)} e^{2\pi irmw} \right\} m \in \mathbb{Z}; j = 1, 2, ..., s$$
Theorem

For sufficiently small errors $\epsilon := \{\epsilon_m\}_{m \in \mathbb{Z}}; j=1,\ldots,s$ there exists a frame $\{C_{j,m}^\epsilon\}_{m \in \mathbb{Z}; j=1,2,\ldots,s}$ for \mathcal{A}_a such that, for any $x \in \mathcal{A}_a$, the sampling expansion

$$x = \sum_{j=1}^{s} \sum_{m \in \mathbb{Z}} \mathcal{L}_j x (r m + \epsilon_m) C_{j,m}^\epsilon \quad \text{in } \mathcal{H},$$

holds.
How small should be the errors?

\[\tilde{M}_{a,b,j}(\gamma) := \sum_{n \in \mathbb{Z}} \max_{t \in [-\gamma,\gamma]} |L_{j,a}(n+t) - L_{j,a}(n)|, \]

\[\tilde{N}_{a,b,j}(\gamma) := \max_{k=0,1,\ldots,r-1} \sum_{n \in \mathbb{Z}} \max_{t \in [-\gamma,\gamma]} |L_{j,a}(rn+k+t) - L_{j,a}(rn+k)|. \]

Theorem

Given an error sequence \(\epsilon := \{\epsilon_{mj}\}_{m \in \mathbb{Z}}; j = 1,\ldots,s \), define the constant \(\gamma_j := \sup_{m \in \mathbb{Z}} |\epsilon_{mj}| \) for each \(j = 1,2,\ldots,s \). The condition

\[s \sum_{j=1}^{s} \tilde{M}_{a,b,j}(\gamma_j) \tilde{N}_{a,b,j}(\gamma_j) < \alpha \]

ensures that reconstruction is possible.

\(b_j \in D_T \Rightarrow L_{j,a}(t) \in C^1(\mathbb{R}) \) and condition \((L_{j,a})'(t) = O(|t|^{-1+\eta_j}) \) implies that \(\tilde{N}_{a,b,j}(\gamma_j) \) and \(\tilde{M}_{a,b,j}(\gamma_j) \) are continuous near to 0.
How small should be the errors?

\[
\tilde{M}_{a,b_j}(\gamma) := \sum_{n \in \mathbb{Z}} \max_{t \in [-\gamma,\gamma]} |\mathcal{L}_j a(n + t) - \mathcal{L}_j a(n)|,
\]

\[
\tilde{N}_{a,b_j}(\gamma) := \max_{k=0,1,\ldots,r-1} \sum_{n \in \mathbb{Z}} \max_{t \in [-\gamma,\gamma]} |\mathcal{L}_j a(rn + k + t) - \mathcal{L}_j a(rn + k)|.
\]
How small should be the errors?

\[\tilde{M}_{a,b_j}(\gamma) := \sum_{n \in \mathbb{Z}} \max_{t \in [-\gamma, \gamma]} |\mathcal{L}_j a(n + t) - \mathcal{L}_j a(n)|, \]

\[\tilde{N}_{a,b_j}(\gamma) := \max_{k=0,1,\ldots,r-1} \sum_{n \in \mathbb{Z}} \max_{t \in [-\gamma, \gamma]} |\mathcal{L}_j a(rn + k + t) - \mathcal{L}_j a(rn + k)|. \]

Theorem

Given an error sequence \(\epsilon := \{\epsilon_{mj}\}_{m \in \mathbb{Z}, j=1,\ldots,s} \), define the constant \(\gamma_j := \sup_{m \in \mathbb{Z}} |\epsilon_{mj}| \) for each \(j = 1, 2, \ldots, s \). The condition

\[\sum_{j=1}^{s} \tilde{M}_{a,b_j}(\gamma_j) \tilde{N}_{a,b_j}(\gamma_j) < \frac{\alpha G}{r} \]

ensures that **reconstruction is possible**.

\[b_j \in D_{T} \Rightarrow \mathcal{L}_j a(t) \in C^1(\mathbb{R}) \] and condition \((\mathcal{L}_j a)'(t) = O(|t|^{-(1+\eta_j)})\)

implies that \(\tilde{N}_{a,b_j}(\gamma) \) and \(\tilde{M}_{a,b_j}(\gamma) \) are continuous near to 0.
The perturbed sequence \(\{ U^{r_k+\epsilon_{kj}} b_j \}_{k \in \mathbb{Z}; j=1,2,...,r} \)

Theorem

Assume that for certain \(b_j \in D_T, j = 1, 2, \ldots, r \), the sequence \(\{ U^{r_k} b_j \}_{k \in \mathbb{Z}; j=1,2,...,r} \) is a **Riesz basis** for \(A_a \) with Riesz bounds \(0 < A_\psi \leq B_\psi < \infty \). For a sequence \(\epsilon := \{ \epsilon_{kj} \}_{k \in \mathbb{Z}; j=1,2,...,r} \) of errors, let \(R \) be the constant given by

\[
R := \| \epsilon \|^2 \max_{j=1,2,...,r} \left\{ \int_{-\infty}^{\infty} w^2 d \| E_w b_j \|^2 \right\},
\]

where \(\| \epsilon \| \) denotes the \(\ell^2 \)-norm of the sequence \(\epsilon \).

If \(R < A_\psi \), then the perturbed sequence

\[
\{ U^{r_k+\epsilon_{kj}} b_j \}_{k \in \mathbb{Z}; j=1,2,...,r}
\]

is a **Riesz sequence** in \(\mathcal{H} \) with Riesz bounds

\[
A_\psi (1 - \sqrt{R/A_\psi})^2 \quad \text{and} \quad B_\psi (1 + \sqrt{R/B_\psi})^2.
\]
The case of multiple generators

Sampling in multiple generated U-invariant subspaces can be analogously derived, $\mathcal{A}_a := \overline{\text{span}}\{U^na_l, \ n \in \mathbb{Z}; \ l = 1, 2, \ldots, L\}$.

The sequence $\{U^n a_l\}_{n \in \mathbb{Z}; l=1,2,\ldots,L}$ can be thought as an L-dimensional stationary sequence. Its covariance matrix $R_a(k)$ is the $L \times L$ matrix

$$R_a(k) = \left[\langle U^k a_m, a_n \rangle_h\right]_{m,n=1,2,\ldots,L} = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{ik\theta} d\mu_a(\theta), \quad k \in \mathbb{Z}.$$

Theorem

Let $\{U^n a_l\}_{n \in \mathbb{Z}; l=1,2,\ldots,L}$ be a sequence obtained from an unitary operator with spectral measure $d\mu_a(\theta) = \Phi_a(\theta)d\theta + d\mu^s_a(\theta)$, and let \mathcal{A}_a be the closed subspace spanned by $\{U^n a_l\}_{n \in \mathbb{Z}; l=1,2,\ldots,L}$. Then the sequence $\{U^n a_l\}_{n \in \mathbb{Z}; l=1,2,\ldots,L}$ is a Riesz basis for \mathcal{A}_a if and only if the singular part $\mu^s_a \equiv 0$ and

$$0 < \text{ess inf}_{\theta \in (-\pi,\pi)} \lambda_{\min} [\Phi_a(\theta)] \leq \text{ess sup}_{\theta \in (-\pi,\pi)} \lambda_{\max} [\Phi_a(\theta)] < \infty.$$
Summarizing:

<table>
<thead>
<tr>
<th></th>
<th>V_Φ^2</th>
<th>$V_{L^2}(\Phi)$</th>
<th>A_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reconstruction formula</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Time-jitter error</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>prescribed properties</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Other results</td>
<td>L^2-approximation properties</td>
<td>Dirac sampling case</td>
<td>Asymmetric sampling ({U^{rk+\epsilon_\ell}b_i}) ({U^na_l})</td>
</tr>
</tbody>
</table>
Future Work

- To carry out a deeper study of the weighted sampling framework
- Uniform average sampling in frame generated weighted shift-invariant spaces
- Sampling in finite U-invariant subspaces with multiple generators. We have assumed that the stationary sequence $\{U_n\}_{n \in \mathbb{Z}}$ in H has infinite different elements. It could happen that for some $a \in H$ there exists $N \in \mathbb{N}$ such that $U_N a = a$.
Future Work

- To carry out a deeper study of the weighted sampling framework
Future Work

- To carry out a deeper study of the weighted sampling framework
- **U-irregular sampling: the general case.** Consider a non-uniform sampling set of points \(\{t_n\}_{n \in \mathbb{Z}} \) in \(\mathbb{R} \), and try to recover any \(x \in A_a \) from the sequence of non-uniform samples

\[
\{ \mathcal{L}_j x(t_n) := \langle x, U^{t_n} b_j \rangle \}_{n \in \mathbb{Z}; j=1,2,...s},
\]

where \(\{b_j\}_{j=1,2,...,s} \) are \(s \) fixed vectors in \(\mathcal{H} \).
Future Work

- To carry out a deeper study of the weighed sampling framework
- **U-irregular sampling: the general case.** Consider a non-uniform sampling set of points \(\{ t_n \}_{n \in \mathbb{Z}} \) in \(\mathbb{R} \), and try to recover any \(x \in A_a \) from the sequence of non-uniform samples

\[
\{ \mathcal{L}_j x(t_n) := \langle x, U^{t_n} b_j \rangle \}_{n \in \mathbb{Z}; j=1,2,\ldots,s}
\]

where \(\{ b_j \}_{j=1,2,\ldots,s} \) are \(s \) fixed vectors in \(\mathcal{H} \).

- Sampling in **finite** \(U \)-invariant subspaces with multiple generators. We have assumed that the stationary sequence \(\{ U^n a \}_{n \in \mathbb{Z}} \) in \(\mathcal{H} \) has infinite different elements. It could happen that for some \(a \in \mathcal{H} \) there exists \(N \in \mathbb{N} \) such that \(U^N a = a \).
Future Work

- To carry out a deeper study of the weighted sampling framework.

- **U-irregular sampling: the general case.** Consider a non-uniform sampling set of points \(\{t_n\}_{n \in \mathbb{Z}} \) in \(\mathbb{R} \), and try to recover any \(x \in \mathcal{A}_a \) from the sequence of non-uniform samples

\[
\{ \mathcal{L}_j x(t_n) := \langle x, U^{t_n}b_j \rangle \}_{n \in \mathbb{Z}; j=1,2,\ldots,s},
\]

where \(\{b_j\}_{j=1,2,\ldots,s} \) are \(s \) fixed vectors in \(\mathcal{H} \).

- Sampling in **finite** \(U \)-invariant subspaces with multiple generators. We have assumed that the stationary sequence \(\{U^n a\}_{n \in \mathbb{Z}} \) in \(\mathcal{H} \) has infinite different elements. It could happen that for some \(a \in \mathcal{H} \) there exists \(N \in \mathbb{N} \) such that \(U^N a = a \).

- Looking for relevance of our work in other fields.
Future Work

- To carry out a deeper study of the weighted sampling framework
- **U-irregular sampling: the general case.** Consider a non-uniform sampling set of points \(\{ t_n \}_{n \in \mathbb{Z}} \) in \(\mathbb{R} \), and try to recover any \(x \in \mathcal{A}_a \) from the sequence of non-uniform samples

\[
\{ \mathcal{L}_j x(t_n) := \langle x, U^{t_n} b_j \rangle \}_{n \in \mathbb{Z}; j=1,2,...,s},
\]

where \(\{ b_j \}_{j=1,2,...,s} \) are \(s \) fixed vectors in \(\mathcal{H} \).

- Sampling in **finite** \(U \)-invariant subspaces with multiple generators. We have assumed that the stationary sequence \(\{ U^n a \}_{n \in \mathbb{Z}} \) in \(\mathcal{H} \) has infinite different elements. It could happen that for some \(a \in \mathcal{H} \) there exists \(N \in \mathbb{N} \) such that \(U^N a = a \).

- Looking for relevance of our work in other fields.
- ...
Héctor R. Fernández
Morales

Introduction to
sampling theory

Generalized sampling
in $L^2(\mathbb{R})$ shift-invariant subspaces with
multiple stable generators.

Uniform average
sampling in frame
generated weighted
shift-invariant spaces

Sampling theory in
U-invariant spaces

Publications

 Generalized sampling in U-invariant subspaces. Proceedings of the 10th International Conference on Sampling Theory and Applications, Eurasip Open Library, 208-211, 2013. (Ch. 4)

THANKS