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Classical sampling theory at a glance
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The WKS sampling theorem

Any function f in the Paley-Wiener space:
PW, = {f e L*(R) N C(R), Suppf C [, ﬂ]}

i.e., bandlimited to the interval [, 7], can be expressed as

fO)= 3 f T, reR

n=—0o0

The series converges in L?(RR)-sense and also absolutely y uniformly
on R.

WKS means Whittaker—Kotel’'nikov—Shannon
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» Any f € PW, can be expressed as

1 itw S e ™
f(t) F _ﬂf( ) dW_<f7\/%>L2[ﬂ,ﬂ,]7 [ER
In particular
_a efinw ”
f(n) <f’ E>L2[ 7] ’ n 6
. L 2w
» The sampling period is 7 = 7 = 1
T
» Observe that it is a Lagrange-type interpolation formula
B = G(1) . _ sinmt
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Shannon’s original statement

THEOREM 1: If a fu_nction f(t) contains no frequencies
higher than W cps, it is completely determined by giving
ils ordinates al a series of poinis spaced 1/2W seconds
apart.

27W

() )e™dw, teR
\/ /27rW

27 1
Here th mplin riodis7, = —— = —
ere the sampling period is 7 o oawe

formula reads:

and the sampling

n Sln sinm(2Wr —n)
teR
Z Gy 2W (Wt —n) ©

n=—0oo
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A hilbertian easy proof:

1. We expand f following the orthonormal basis {¢~"" /v/27 } ez
for L*[—m, 7]:

—inw —mw —mw

PRI Ziﬂf*

n=—0oo n=—0oo

2. We apply the inverse Fourier transform F~!:

—inw o0

=3 s ¢ZMAW@=ZﬂMMUM

n=—oo n=—0o0 7T<t - n)

Convergence in the L?>-norm sense

Observe that 7!

(=X ()0 =
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Some consequences and comments:

» Convergence in L>-norm implies pointwise convergence, which
is also uniform on R: the Paley-Wiener space PW, is a RKHS
(reproducing kernel Hilbert space )

71[%

1= 7 520,

» The uncondicional character of an orthonormal basis implies

[*mw]’ S HfHL2<R) ) \V/t (= R

absolute convergence

» The sequence {W
1 —
PW,

» The Parseval identity gives the conservation of the signal energy

} , is an orthonormal basis for
ne

=S WP, wepw,

n——oo
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» Average sampling: For a fixed function ¢ € L*(R) the samples
are taken from the LTI system A, i.e.,

Ay f(n)

(- =m) = (f, Ty = (fx¥)(n), n€L,

where (1) = 1(—1) is the average function
> |t includes also pointwise sampling: For any f € PW,,

f(n) = (f *sinc)(n), neZ

» Due to the drawbacks of the sine cardinal function, one
considers shift-invariant subspaces as

Vé = {f(t) = Zan o(t—n) : {a,} € EZ(Z)} c L*(R)

ne”z

In particular, PW is a shift-invariant subspace with generator

. . . . . sin 7t
the sine cardinal function, i.e., ¢(7) = sinc(r) == 1€ R
T
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Claude E. Shannon (1916-2001)

> B. S. Engineering Mathematics, University of
Michigan, 1936
Ph. D. Mathematics, MIT, 1940

> Research Mathematician, Bell Labs, 1941-1972;
MIT Faculty Member, 1956—-1978; Donner
Professor of Science 1958

> Major publication: A Mathematical Theory of
Communication, Bell System Technical Report,
1948

> Honorary Degree, Univ. of Michigan, 1961; The
National Medal of Science, 1966; The Audio
Engineering Society Gold Medal, 1985; The Kyoto
Prize, 1985

{7 TSI EL Y Y FEF)

The american mathematician, computer scientist, communication engineer, and the
founder ot the field of Information Theory, whose work has laid the foundation for
the telecommunication networks that lace the globe
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Frames in a separable Hilbert space

» The sequence {x,},~, is a frame for a separable Hilbert space H
if there exist two constants A, B > 0 (frame bounds) such that:

oo
AP < D7 [Gen) P < Bllx|*, VxeH

n=1

» The preframe operator 7 is defined by:

o0
P(Z) > {en}i2y = Y eaxn €H

n=1

It characterizes a frame:

{x. 12, is a frame for H < T is bounded and surjective

n=1
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» Two important particular cases:

e Tis also unitary <= {x,},2, is an orthonormal basis

e T is also injective (isomorphism) <= {x,},~, is a Riesz basis
» Given a frame {x,},—, there exist frames {y, },=, (dual frames)
such that:

o0

i X /\/1 Yn = Z<Xs)‘n>xlz VxeH

n=1

» In case of bases, the dual frame is unique:

e For orthonormal bases {y,}no; = {xu}oe,
e For Riesz bases {y,},2, is its dual Riesz basis of {x,},2,

» For overcomplete frames, there exist infinite dual frames {y, },>,
satisfying the above equalities
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Summarizing the key points in the WKS theorem proof:

(a) H is a Hilbert space where we are sampling. The samples of
any f € H, can be expressed as frame coefficients
f(n) = (x,x,), in aframe expansion

x:Z xxn Yn = Zf in K,

where {x,} and {y,} dual frames for an auxiliary Hilbert space K

(b) There exists an isomorphism 7 : K — H relating both
spaces,i.e., Tx=f

(c) By means of this isomorphism 7T, the frame expansion in C in
the first item yields a sampling expansion in H:

=> f)T0n) inH

The isomorphism 7T should respect the structure in H
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The above argument, borrowed from the hilbertian proof of the WSK
sampling theorem, has been profusely used in my research and, as
a consequence...

RSME Sprin

@ @ Springer
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Average sampling in shift-invariant subspace in L*(RY)

« Consider a classical shift-invariant subspaces in L*(R%) with a
stable set of generators ® = {1, 2,..., 0N}

N
sz{Zch( ) pn(t s A{en(a )}andeﬁz(Zd),nzl,...7N}

In other words, the sequence {, (1 — @)} 0., 1- IS a Riesz
basis for V2
o For any f € V3 we consider average samples

{{(f,Ym(- — @) Yaepze, m=1,2,....M,

W, are the average functions (not necessarily in V2), m=1,2,...,.M
Pis a d x d matrix with integer entries and det P > 0
The set A := PZ%is a full rank lattice in RY
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. . ) 3 1 )
For instance, in Z2, the lattice A = PZ? where P = (1 1> with

det P = 2, is depicted as the black points:

e P[0,1)” is the fundamental
parallelepided of A

o Z2NP0, 1)’ ={(0,0)",(2,1)"}
. /A= (A, 1) +4)
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e Then, under appropriate hypotheses (similar to those in the
second part of this talk) there exist M (> N det P) sampling functions
S,, € V3 such that, for each f € V3:

f(t) = Z Z (f,m(- —a))Sp(t—a), teR?

m=1 acP74

and the sequence {S, (¢t — a)},ecpzd. m=1.2... 1 is @ frame for 3
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Sampling in subspaces of Hilbert-Schmidt operators

Antonio Garcia Garcia Gamma Seminar 09/05/25 18/50



A mathematical motivation: Average sampling in
shift-invariant-like subspaces of Hilbert-Schmidt
operators on L*(R?)

» A Hilbert-Schmidt operator # : L7 (R?) — L*(R?) is an integral
operator

Hf(t) = /Rd Ky, (t,8)f(s)ds

where the kernel ,, € L*(R*) and ||H||,,. = 152 g
» The translation of an operator § : L*(R?) — L*(R?) by z = (x,w) in
the phase space R¢ x R¢(~ R*) is defined by

a.(S) ;== m(2)S7(z)*, zeR!xR?

where 7(z) denotes the time-frequency shift which acts on
fel*(RY) as

m(2)f(t) = 2™ f(t —x), t€R?
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» The set of translations {ca.}. g2 is a unitary representation of the
additive group R* on the Hilbert space (HS(RY), (-, "), ) of
Hilbert-Schmidt operators on L*(R¢)

» Let A be a full rank lattice in R*, i.e., A = AZ’? where A is a
2d x 2d real invertible matrix.

For S, € HS(Rd), n=1,2,...,N, we could consider the (closed)
subspace of HS(R?) given by

N
V52 = {chn(/\) ax(Sn) : {cn()‘)}/\EA € EZ(A)v n=12,... 7N}

n=1 AeA

in the case that {«,(5,)}rca.,—12. v is @ Riesz sequence for
HS(RY), i.e., a Riesz basis for V3
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» We could define, for any T € V3 its average samples at A by
<T, (,li/\(Q,”)>H§ , ANeA, m=1,2,....M

from M fixed operators 0. 0-, .. .. Oy in HS(RY), the average

operators (not necessarily in Vé)

A mathematical question

Under which hypotheses there exist M (> N) operators H,, € V§ such
that for each T € V3

M
T = z Z (T, aA(Qm)>HS ax(H,) inHS-norm

m=1 AeA

where the sequence {o(Hu) }rca;m=1.2,...m iS @ frame for the Hilbert
space V2 ?
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)GRZd

(¥, w
» The short-time Fourier transform (Gabor transform) V¢ of ¢
with window ¢, both in L2(R¢), is defined by

» The adjoint operatoris m(z)* = e ™% 1(—z) for z =

Vyo(z) = (@, m(2)Y) = /Rd (t) e 2w )t — x)dt, ze R

L2 (R4)

Vyp(z) gives time-frequency information on ¢ at z = (x,w)

A practical question

Why to sample Hilbert-Schmidt operators with precisely the average
samples?
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A practical motivation: LTV versus LTI systems

» Linear time-invariant (LTI) system

o0 o0

~

h(w) X(w)e*™™ dw

h(s) x(t — s ds /

—0o0

o) = () = [

—0o0

» Linear time-varying (LTV) system

y(t) = (Hx)(t) = / h(t,s)x(t —s)ds = / o (1, w) F(w)eX™ dy
where N
o = ]:2 l’l, i.e., ()’(l‘, W) = / h([, S) e—Zﬁiwsds

Thus, operator H is a pseudo-differential operator with symbol o
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In particular, Hilbert-Schmidt operators model LTV systems:

o = [ ke (1,5)f(s) ds

—0o0
where the integral kernel «,, € L?(R?)

Besides

i) = [ k)6 ds = [t ds

—0o0 J =00

is a LTV system where i(t,s) = r, (1,1 — s)

Concerning the average samples:
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In Orthogonal frequency-division multiplexing (OFDM) the digital
information, i.e., a sequence of numbers {c,}, A in the lattice

A = aZ® x bZ¢ (a,b > 0), is used as the coefficients of the input
signal x(1) = Z c,7(p)g(r) of atime-varying system H producing

HEA
the output y(r) = Hx(r). Then, it is considered the sequence of

numbers

d>\ - <y7 Tr()\)g >L2(Rd) - Z Cu <H7T(/’L>g7 7['()\)? >L2(Rd) ) )\ € Av
nEA

The task: to recover the original data {c,} from the received data {d,}

The matrix A = [a, ,|, where a, , — <H7r(u)g./ 7r()\)§>[42(w) is the
so-called channel matrix associated with H and the functions
(windows) g,z in L*(R¢)
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Diagonal channel samples

The diagonal channel samples of H with respect to g, g are

<H7T(>\)ga W(A)g >L2(R‘1) ’ A € A

They are also known as:

» The lower symbol of the operator H with respect g,z € L*(RY)
and lattice A used in time-frequency analysis

» The samples of the Berezin transform of H
B2 H(2) := (Hm(2)8, m(2)Z) pgay » 2 € R¥

at the lattice A used in quantum physics

» Diagonal channel samples are a particular case of
average samples
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Hilbert-Schmidt operators on L*(RY)

» For a compact operator S on L*(R?) there exist two orthonormal
sequences {x,},en and {y, }ren in L2(R?) and a bounded sequence
of positive numbers {s,(S) },cn (singular values of S) such that

S= s(S)x @y,  (SVD)

neN

with convergence of the series in the operator norm. The sequence
{5,(S)} consists of the eigenvalues of the operator |7| = (5*5)'/*
Here, x, ® v, denotes the rank-one operator

(xn ® yn) (f) = <f yn>L2 x, for S Lz(Rd)

» The class of Hilbert-Schmidt operators is HS(R?) := T2
77 is the Schatten 2-class, i.e., singular values in ZZ(N)
The space HS(R?) is a Hilbert space with the inner product

(s, T>HS = tr(ST*), S,T € HS(RY)
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Remind that the trace tr(S) = > (Se,, e,);» is a well-defined bounded
neN
linear functional on 7', and independent of the used orthonormal

basis {e, }nen in L2(RY)
» Concerning the norm of S in HS(R?) we have

ISI,s = tw(S5") = D lIS*(en)2, = D IS(en)ll?, = D 5a(S)

neN neN neN

» A Hiloert-Schmidt operator § € #S(R“) can be seen also as an
integral operator on L?(RY) defined for each f € L*(R?) by

SF(t) = / k(60 f(x)dx ae. re R
Rd

with kernel », « L*(R*'). Besides, (S.7) = (k) for
12 (R2d)
S, T € HS(RY)
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The Weyl transform

The Weyl transform is a unitary operator

L*(R*) > f s Ly € HS(RY)

where L, : L7 (R?) — (k) is the Hilbert-Schmidt operator defined
in weak sense by

(Lro, ) ={f,W(p,¢)) , ¢veLl* (R

12 (Rd) LZ(RZd)

here

' t t .
W, d)(x,w) = / Y(x+ 5) o(x — 5) e g (x,w) € R¥M,
R4

is the cross-Wigner distribution of the functions 1, ¢ € L*(RY)
For each S, 7 € HS(R?) with Weyl symbols ay, a, in L*(R*?) we have

<Sv T>HS - <aS7aT>L2(R2d)
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The Kohn-Nirenberg transform

The Kohn-Nirenberg transform is a unitary operator

L*(R*) 5 0 — K, € HS(RY)

where &, : L*(R?) — L7(R") is the Hilbert-Schmidt operator defined
in weak sense by

(Kot,¥) , = (o:R(,9)) .+ &¢ LR

12 (Rd) 2(R2d)

here

R(¥, ¢)(x,w) = (x) p(w) e 2™ | (x,w) € R¥,

is the Rihaczek distribution of the functions 1, ¢ € L*(R?)
For each S, T € HS(R?) with Kohn-Nirenberg symbols o, o, in
L*(R*) we have

($,T) s = (0, O-T>L2(R2d)
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» There is a transition between Weyl and Kohn-Nirenberg calculus:
oy = Uas, where Uay(€,u) = ™€ ay(€,u), (¢,u) € R

» The Weyl and Kohn-Nirenberg transforms in #S(R?) respect both
the translations in the sense:

A key property for both transforms

For f € L*(R*) and z € R* we have:

L(T.f) = a(LS)

where £ denotes the Weyl or the Kohn-Nirenberg transform

» As a consequence:
Properties of V§ in HS(RY) +— Properties of V__ (or V7) in L*(R*)
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A-shift-invariant subspaces in #S(R?)

LetS = {S1,5,,...,Sv} be a fixed subset of #S(R?) and let A be a
lattice in R?. We are searching for a necessary and sufficient
condition such that {«,\(S,)}xen.n—1,... v IS @ Riesz sequence for
HS(RY), i.e., a Riesz basis for the closed subspace

V§ = spanﬂs{a,\(Sn)})\eA;n:u’m’N C HS(RY)

In this case, S = {S1,S>,...,Sy} is a set of stable generators for the
A-shift-invariant subspace Vi which can be described by

VS_{ZZC” : {en(A )},\QAEKZ(A),nzl,Z,...,N}

n=1 AeA
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Theorem

Let A be a lattice and S, < B,n=1,2,...,N. Then,
{ax(Sn) }rer;n=12,...n IS @ Riesz sequence for HS(RY) if and only if
there exist two constants 0 < m < M such that

ml, < GY(z) <MI, forany zcR*,

where G (z) denotes the N x N matrix-valued function

Gl )= 3 FwS) e+ ) FwS)z+ A1)
A°eA°

, zeR¥

and Fy(S) = (Fw(S1), Fw(S2), - - -, Fiw(Sw)) |

where:
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> S ¢ Bis the Banach space of continuous operators on L*(R¢)
with Weyl symbol a, in the Feichtinger’s algebra Sy(R*). In
essence, B3 consists of trace class operators on L*(RY) with a
norm-continuous inclusion ¢ : B < T
Recall that ) € Sy(R*) iff V,,,1» € L' (R*) where
©o(x) = 2%/%¢~™ is the normalized d-dimensional gaussian
function

> A°is the adjoint lattice of the lattice A. Its associated matrix is
A~ TQ,incase A = AZ*, where

o 1
Q= ¢
-I; O
> Fw(S) denotes the Fourier-Wigner transform of an operator S

defined as the function

Fw($)(z) = e ™ tr[n(—2)S], z= (x,w) € R¥
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» Inourcase, 7y (S,) = Fla, ) forn=1,2,...,N, where F;
denotes the symplectic Fourier transform of a, defined by

Fi(a,)(2) = / a, () e 2o a7 | e R
R2d

o(z.7) = w- ¥ —w' - xis the standard symplectic form in R*

Observe that 7, f(x, w) = Ff(w, —x), (x,w) € R*, where F
denotes the classical 2d-dimensional Fourier transform

» Condition m1, < G¢(z) < M1, means:

m|x|* < (G¥ (2)x, X)en < M|x||*, vxecCV
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The isomorphism 75 (via the Kohn-Nirenberg transform)

The isomorphism 7s between ¢2(A) and Vg

Ts : £2(A) — Vi CLR¥) —  V§CHSRY

N N
(crie,oen)’ = D> N Taos, — D> cu(N) aa(Sh)

n=1 €A n=1 AeA

The isomorphism 7g is the composition of the isomorphism

Tos : (1 (A) — VZ_ which maps the standard orthonormal basis
{8\ }ren for £2(A) onto the Riesz basis {Tro, }rea;n=12,.. v fOr V5
and the Kohn-Nirenberg (Weyl) transform transform between Vgs
(V2,) and Vg

S?
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An expression for the average samples

N

The average samples of any 7= ~ > " ¢, (1) au(Sa) in V§ can be
n=1 peA

expressed as the output of a discrete convolution system in Efv (A):

N

<T7 aA(an)>HS - Zl (Clm,n *A Cn) (A) = <C, Ty a;;>f,2v(/\) ; AEA
n=
where a;, = (a;, ., a5, ....ap ), ap,(\) = an.(—)), and being

= <Sn: ap(Qm)>Hs , M€ A

am:n (ll) - <O-S/1 ’ THO-Q/H >[‘2<‘_\22([)

|
The sampling condition will depend on the M x N matrix-valued
function A(\) = [a,,.,(\)], A € A, whose entries are in ¢*(A)
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The diagonal channel samples revisited

For the diagonal channel samples of the operator T

<T7T()\)gm, 7T()\)§m> AeA, m=12,....M

)
L2(R4)

we have

Diagonal channel samples as average samples

<T7r()\)gm, 77(/\)§m>L

:<T704A(§m®gm)>Hsu A€EA

In particular, for o,y € L*(R?),

a(p @) = [1(2)p] @ [1(2)¢], z€R*
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The symplectic Fourier transform in /*(A)

» The dual group A is identified with 2%/ /A°, where A° is the
annihilator group (adjoint lattice of A)

A =X eRM ;. 2MoN =1 forall A € A}

olz,d)=w- ¥ —wx forz=(x,w)and 7 = (¥',w') in R*? is the
standard symplectic form
» The symplectic Fourier transform of ¢ € ¢!(A) is defined as

FMe) (@) =) e ™o e RM/A°,
AEA

where z denotes the image of z under the natural quotient map
RZd N RZd/Ao
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» Since F2 is a Fourier transform it extends to a unitary mapping

Symplectic Fourier transform in /2(A)

It satisfies:

> FMex, d) = FMc) FMd), for c € £1(A) and d € (*(A)

> lfc,d e P(A)and FAc) € L°(A) = Flex, d) = FMe) FMa)
As usual, the convolution x, of two sequences c, d is defined by

(c#y d)(N) = Zc(,u)d(/\—u), AeA

HEA
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Generalized stable sampling procedure in V3

> ltisamap Ssamp - Vi — £, (A) defined as

T = Zch ) EVE—ss, =A%, ¢l (A)
n=1 €A

where A = [a,,,| € M, (F*(7))
Thatis: s,(\) = (5,,(A),5,,(A),...5,,(\), A€ A, where

N
Sp(A) = Z (am,n * c,,)()\), AN€EAN, m=1,2,--- M

n=1

» Besides, the involved matrix A = [a,,,) € MMxN(EZ(A)) satisfies:

o~

0 < ay := essinf Apin[A (5)*14(5)] < B4 :=esssup )\max[A(g)*g<f)] <0
cel ceh
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» The matrix-valued function A(¢) := [7(a,,,)(¢)], a.e. € € A is the
transfer matrix of A where F* denotes the symplectic Fourier
transform in /2(A)

» A crucial fact concerning the samples:

N
Z Amn *A Cn (\) = <C T) am> L AeA
n=1 [N )
T * * * * T
where ¢ = (C] 16200 CN) and a, = (am,lvam,Zv ce 7am7N)
(T a) )y cnimer o,y IS @framefor £(A) <0< as <B4 <oo

» For the average sampling the corresponding matrix A has entries

am,n()\) - <0—S,,’T/\(TQ,,,> - <Sns (}')\(Qm»Hs > AEA,

12 (M;Q(I)

i.e., the columns of A are the sequences of average samples of the
generators S, of V3
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» Concerning its dual frames {7’ bm}AeA,m:1 , ,, With the same
structure, they are obtained from the left-inverses B € M, (L=(A))
of the matrix 4, i.e., B($)A(¢) =1, a.e. £ € A

The b,, are the columns of the matrix B € M, (*(A))

» For instance, we can choose as B its Moore-Penrose

pseudo-inverse A(&) = [A(¢€)*A(¢)] ' A(¢)*

» All the suitable left-inverses B of the matrix A can be written from
the Moore-Penrose pseudo-inverse as the N x M matrices

~ o~

B(&) =A@+ CO[L, —A©AE©)T], ae ¢eA,

where C denotes any N x M matrix with entries in L (A)
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Theorem (Sampling theorem in V3)

(1) Given a sampling procedure Ssamp in V3, there exist M > N
elements H,, € V§, m=1,2,...,M, such that the sampling formula

M
T=> Y s,(NaxH,) in HS-norm
m=1 AeA

(2) The convergence of the series is unconditional in HS-norm, and
besides, s, |z = T, in V3
(3) Reciprocally, if a sampling formula like above holds in V where

8 () = (57, (A) 575 (N)s - 157, (V) | = (Axa €)(A), A €A,

where B4 < 400, and {ax(Hpu) Yren: m=12...m IS a frame for V3, then
ayg >0

Antonio Garcia Garcia Gamma Seminar 09/05/25 44/50



Scketch of the proof

Forany T = Z Z cn(p ) in V3 we have:

n=1 peA
> Forits samples s, (\) = (¢.7ya,) )\ c A, where the
2 (8)

v

., is a frame for 22 (A)

77777

sequence {T/\ am}AEA m=1,2

> By using a dual frame {7, bm}/\g\ m=12,
{T\ a;;}AeA.m:l , _ We obtain

of the above frame

c= Z > (e, Thay,) ¢ Tabn foreachce 2(A)
m=1 AeA

» Finally, applying the isomorphism 7g

M
T = Z Z S, 7-5 T)\bm} = Z Z sT,m()\) KTA(Tchbm)
m=1 A €A m=1 AeA
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> Thatis

M
2 : : T m ()(>\ Kllm E Z ST m (‘)\ IH)
m=1 AeA

m=1 €A

where H,, = K, and h,, = T5.(b,,)
We have used that

7:75(T)\bm) = T)\(7775bm) = T)\(hm)

Observe that b,, = (b1,u()),
column of B (remind that B

N
Hmzzzbn,m()\) (,Y)\(Sn), m=12...M

n=1 A€A

mN)s - by m(N) | is the m-th
I

by
A =1,). As a consequence,
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» Under the above hypotheses, the average sampling formula
reads

T = ZZ (T, \(Om)) s OA(Hy) N S-norm

m=1 \eA
» Under the same hypotheses, the case 7 = N implies that
{ax(Hn)}reA. m=12...n is @ Riesz basis for V3

> Since convergence in HS-norm implies convergence in operator
norm, for each f € L?(RY) we get the pointwise expansion:

ZZ (T.0x(Qn)),,_ [ax(H))(f) in L*-norm

m=1 A\eA
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An illustrative example

» Assume V§ with &V stable generators of the form S, = ¢, ® ¢, with
©Ons Pn € So(RY), n=1,2,...,N. In this regard,

Fw(pn® Gn)(2) = €™ Vg, 00(2), 2= (x,w) € R
» For each T € V3 we consider the diagonal channel samples

<T7T()\)gm,7'l'()\):g;m> > AEA

LZ(R‘[)
With g, Zm € So(RY), m = 1,2,..., M. In this case,
amn(N) = <(§Dn ® <)AD/n)ﬂ'()‘)gma 77(/\)§m>L2(Rd)
= ng&”()\) VEWPH(A) ? )\ € A

» Itis known that the sequences {a,,,(\)}, _, belong to ¢'(A) and,
as a consequence, the entries of A are continuous functions on the
compact A
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» Thus, the sampling conditions in the definition of generalized
stable sampling procedure reduce to

det[A(£)*A(€)] £ 0 forall¢ € A

» Under the above circumstances:

Any T = Z > " ea(M)an(en ® @a) € V§ can be recovered, in a stable
n=1 AeA
way, from its diagonal channel samples (T (A)gu, T(A\)gm) "
[2(RY)
Moreover, since

N

Z Z Cn \,9,, ’/ (/\)99/'1 = Z gé::”’p”(fl) , ME Lz(Rd)

n=1 \eA n=1

the operator T is nothing but a sum of Gabor multipliers gf¢
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