Q-Math Seminar 26/10/2021

Sampling (reconstructing) Hilbert-Schmidt operators: Why and how to do it?

Antonio García García

Universidad Carlos III de Madrid Departamento de Matemáticas

Outline

- A mathematical motivation
- ► A practical motivation
- The Weyl and Kohn-Nirenberg transforms for Hilbert-Schmidt operators
- \blacktriangleright Λ -shift-invariant subspaces: An expression for the samples
- ► The sampling result
- Some consequences, comments and a final example

Antonio García García Q-Math Seminar 26/10/21 2 / 41

A mathematical motivation

Antonio García García Q-Math Seminar 26/10/21 3 / 41

Average sampling in shift-invariant subspaces in $L^2(\mathbb{R}^d)$

▶ In a classical shift-invariant subspaces in $L^2(\mathbb{R}^d)$ with a stable generator set $\Phi = \{\varphi_1, \varphi_2, \dots, \varphi_N\}$

$$V_{\Phi}^{2} = \left\{ \sum_{n=1}^{N} \sum_{\alpha \in \mathbb{Z}^{d}} c_{n}(\alpha) \, \varphi_{n}(t - \alpha) : \left\{ c_{n}(\alpha) \right\}_{\alpha \in \mathbb{Z}^{d}} \in \ell^{2}(\mathbb{Z}^{d}) \,, \, n = 1, 2, \dots, N \right\}$$

For $f \in V_{\Phi}^2$ we consider **average samples** $\{\langle f, \psi_m(\cdot - \alpha) \rangle\}_{\alpha \in \mathbb{Z}^d}$ $\psi_m, m = 1, 2, \dots, M$, are the *average functions* (not necessarily in V_{Φ}^2)

▶ Under appropriate hypotheses there exist $M(\ge N)$ sampling functions $S_m \in V_\Phi^2$ such that, for each $f \in V_\Phi^2$:

$$f(t) = \sum_{m=1}^{M} \sum_{\alpha \in \mathbb{Z}^d} \langle f, \psi_m(\cdot - \alpha) \rangle S_m(t - \alpha), \quad t \in \mathbb{R}^d$$

and the sequence $\{S_m(t-\alpha)\}_{\alpha\in\mathbb{Z}^d: m=1,2,...,M}$ is a frame for V_{Φ}^2

Average sampling in shift-invariant-like subspaces of Hilbert-Schmidt operators on $L^2(\mathbb{R}^d)$

▶ The translation of an operator $S: L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$ by $z = (x, \omega)$ in the phase space $\mathbb{R}^d \times \widehat{\mathbb{R}}^d (\simeq \mathbb{R}^{2d})$ is defined by

$$\alpha_z(S) := \pi(z) S \pi(z)^*, \quad z \in \mathbb{R}^d \times \widehat{\mathbb{R}}^d$$

where $\pi(z)$ denotes the *time-frequency shift* which acts on $f \in L^2(\mathbb{R}^d)$ as

$$\pi(z)f(t) = e^{2\pi i\omega \cdot t}f(t-x), \quad t \in \mathbb{R}^d$$

▶ The set of translations $\{\alpha_z\}_{z\in\mathbb{R}^d\times\widehat{\mathbb{R}}^d}$ is a *unitary representation* of the additive group $\mathbb{R}^d\times\widehat{\mathbb{R}}^d$ on the Hilbert space $(\mathcal{HS}(\mathbb{R}^d),\langle\cdot,\cdot\rangle_{\mathcal{HS}})$ of Hilbert-Schmidt operators on $L^2(\mathbb{R}^d)$

Antonio García García Q-Math Seminar 26/10/21 5 / 41

▶ Let Λ be a *full rank lattice* in \mathbb{R}^{2d} , i.e., $\Lambda = A\mathbb{Z}^{2d}$ where A is a $2d \times 2d$ real invertible matrix.

For $S_n \in \mathcal{HS}(\mathbb{R}^d)$, n = 1, 2, ..., N, we could consider the subspace

$$V_{\mathbf{S}}^2 = \left\{ \sum_{n=1}^N \sum_{\lambda \in \Lambda} c_n(\lambda) \, \alpha_{\lambda}(\mathbf{S}_n) : \{ c_n(\lambda) \}_{\lambda \in \Lambda} \in \ell^2(\Lambda), \, n = 1, 2, \dots, N \right\}$$

▶ We define for any $T \in V_{\mathbf{S}}^2$, its *average samples* at Λ by

$$\langle T, \alpha_{\lambda}(Q_m) \rangle_{\mathcal{U}_{S}}, \quad \lambda \in \Lambda, \ m = 1, 2, \dots, M$$

from M fixed operators Q_1, Q_2, \dots, Q_M in $\mathcal{HS}(\mathbb{R}^d)$, the *average operators* (not necessarily in V_S^2)

Antonio García García Q-Math Seminar 26/10/21 6 / 41

Under which hypotheses there exist $M(\geq N)$ sampling operators $H_m \in V_{\mathbf{S}}^2$ such that for each $T \in V_{\mathbf{S}}^2$

$$T = \sum_{m=1}^{M} \sum_{\lambda \in \Lambda} \left\langle T, \alpha_{\lambda}(Q_m) \right\rangle_{\mathcal{HS}} \alpha_{\lambda}(H_m) \quad \text{in \mathcal{HS}-norm}$$

where the sequence $\{\alpha_{\lambda}(H_m)\}_{\lambda\in\Lambda;\,m=1,2,\ldots,M}$ is a *frame* for the Hilbert space $V_{\bf S}^2$?

- ▶ The adjoint operator is $\pi(z)^* = e^{-2\pi i x \cdot \omega} \pi(-z)$ for $z = (x, \omega) \in \mathbb{R}^{2d}$
- ► The *short-time Fourier transform* (Gabor transform) $V_{\psi}\varphi$ of φ with window ψ , both in $L^2(\mathbb{R}^d)$, is defined by

$$V_{\psi}\varphi(z) = \langle \varphi, \pi(z)\psi \rangle_{L^{2}(\mathbb{R}^{d})}, \quad z \in \mathbb{R}^{2d}$$

Antonio García García Q-Math Seminar 26/10/21 7 / 41

A practical motivation

LTV versus LTI systems

► Linear time-invariant system

$$y(t) = (Hx)(t) = \int_{-\infty}^{\infty} h(s) x(t-s) ds = \int_{-\infty}^{\infty} \widehat{h}(w) \widehat{x}(w) e^{2\pi i w t} dw$$

► Linear time-varying system

$$y(t) = (Hx)(t) = \int_{-\infty}^{\infty} h(t, s) x(t - s) ds = \int_{-\infty}^{\infty} \sigma(t, w) \widehat{x}(w) e^{2\pi i w t} dw$$

where

$$\sigma = \mathcal{F}_2 h$$
, i.e., $\sigma(t, w) = \int_{-\infty}^{\infty} h(t, s) e^{-2\pi i w s} ds$

Thus, H is a pseudo-differential operator with symbol σ In particular, Hilbert-Schmidt operators model LTV systems:

$$Hf(t) = \int_{-\infty}^{\infty} \kappa(t, s) f(s) ds = \int_{-\infty}^{\infty} \kappa(t, t - s) f(t - s) ds$$

Antonio García García Q-Math Seminar 26/10/21 9 / 41

In Orthogonal frequency-division multiplexing (OFDM) the digital information, i.e., a sequence of numbers $\{c_{\lambda}\}$, λ in the lattice $\Lambda = a\mathbb{Z}^d \times b\mathbb{Z}^d$ (a,b>0), is used as the coefficients of the input signal $x(t) = \sum_{\mu \in \Lambda} c_{\mu} \pi(\mu) g(t)$ of a time-varying system H producing the output y(t) = Hx(t). Then, it is considered the sequence of numbers

$$d_{\lambda} = \left\langle y, \pi(\lambda) \widetilde{g} \right\rangle_{L^{2}(\mathbb{R}^{d})} = \sum_{\mu \in \Lambda} c_{\mu} \left\langle H \pi(\mu) g, \pi(\lambda) \widetilde{g} \right\rangle_{L^{2}(\mathbb{R}^{d})}, \quad \lambda \in \Lambda,$$

The task is to recover the original data $\{c_{\lambda}\}$ from the received data $\{d_{\lambda}\}$

The matrix $A = [a_{\lambda,\mu}]$, where $a_{\lambda,\mu} = \langle H\pi(\mu)g, \pi(\lambda)\widetilde{g} \rangle_{L^2(\mathbb{R}^d)}$ is the so-called *channel matrix* associated with H and the functions (windows) g, \widetilde{g} in $L^2(\mathbb{R}^d)$

Antonio García García Q-Math Seminar 26/10/21 10 / 41

The diagonal channel samples of H with respect to g, \widetilde{g} are

$$\langle H\pi(\lambda)g, \pi(\lambda)\widetilde{g} \rangle_{L^2(\mathbb{R}^d)}, \quad \lambda \in \Lambda$$

They are also known as:

- ► The *lower symbol of the operator H* with respect $g, \widetilde{g} \in L^2(\mathbb{R}^d)$ and lattice Λ used in *time-frequency analysis*
- ▶ The samples of the *Berezin transform* of *H*

$$\mathcal{B}^{g,\widetilde{g}} H(z) := \left\langle H\pi(z)g, \pi(z)\widetilde{g} \right\rangle_{L^2(\mathbb{R}^d)}, \quad z \in \mathbb{R}^{2d}$$

at the lattice Λ used in *quantum physics*

 Diagonal channel samples are a particular case of average samples

The Weyl and Kohn-Nirenberg transforms

A brief on Hilbert-Schmidt operators

▶ For a compact operator S on $L^2(\mathbb{R}^d)$ there exist two orthonormal sequences $\{x_n\}_{n\in\mathbb{N}}$ and $\{y_n\}_{n\in\mathbb{N}}$ in $L^2(\mathbb{R}^d)$ and a bounded sequence of positive numbers $\{s_n(S)\}_{n\in\mathbb{N}}$ (singular values of S) such that

$$S = \sum_{n \in \mathbb{N}} s_n(S) \, x_n \otimes y_n$$

with convergence of the series in the operator norm (SVD) Here, $x_n \otimes y_n$ denotes the rank-one operator

$$(x_n \otimes y_n)(f) = \langle f, y_n \rangle_{L^2} x_n \text{ for } f \in L^2(\mathbb{R}^d)$$

▶ The class of *Hilbert-Schmidt operators* is $\mathcal{HS}(\mathbb{R}^d) := \mathcal{T}^2$ \mathcal{T}^2 is the Schatten-2 class, i.e., singular values in $\ell^2(\mathbb{N})$ The space $\mathcal{HS}(\mathbb{R}^d)$ is a Hilbert space with the inner product

$$\langle S, T \rangle_{\mathcal{HS}} = \operatorname{tr}(ST^*), \quad S, T \in \mathcal{HS}(\mathbb{R}^d)$$

Antonio García García Q-Math Seminar 26/10/21 13 / 41

Remind that the trace $\operatorname{tr}(S) = \sum_{n \in \mathbb{N}} \langle Se_n, e_n \rangle_{L^2}$ is a well-defined bounded

linear functional on \mathcal{T}^1 , and independent of the used orthonormal basis $\{e_n\}_{n\in\mathbb{N}}$ in $L^2(\mathbb{R}^d)$

ightharpoonup For the norm of $S\in\mathcal{HS}(\mathbb{R}^d)$ we have

$$||S||_{\mathcal{HS}}^2 = \operatorname{tr}(SS^*) = \sum_{n \in \mathbb{N}} ||S^*(e_n)||_{L^2}^2 = \sum_{n \in \mathbb{N}} ||S(e_n)||_{L^2}^2 = \sum_{n \in \mathbb{N}} s_n^2(S)$$

▶ A Hilbert-Schmidt operator $S \in \mathcal{HS}(\mathbb{R}^d)$ can be seen also as a compact operator on $L^2(\mathbb{R}^d)$ defined for each $f \in L^2(\mathbb{R}^d)$ by

$$Sf(t) = \int_{\mathbb{R}^d} \kappa_S(t,x) f(x) dx$$
 a.e. $t \in \mathbb{R}^d$

with kernel $\kappa_s \in L^2(\mathbb{R}^{2d})$. Besides, $\langle S, T \rangle_{\mathcal{HS}} = \langle \kappa_s, \kappa_T \rangle_{L^2(\mathbb{R}^{2d})}$ for $S, T \in \mathcal{HS}(\mathbb{R}^d)$

Antonio García García Q-Math Seminar 26/10/21 14 / 41

The Weyl transform

The Weyl transform $L^2(\mathbb{R}^{2d}) \ni f \longmapsto L_f \in \mathcal{HS}(\mathbb{R}^d)$ is a unitary operator where $L_f: L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$ is the Hilbert-Schmidt operator defined in weak sense by

$$\langle L_f \phi, \psi \rangle_{L^2(\mathbb{R}^d)} = \langle f, W(\psi, \phi) \rangle_{L^2(\mathbb{R}^{2d})}, \quad \phi, \psi \in L^2(\mathbb{R}^d)$$

here

$$W(\psi,\phi)(x,\omega) = \int_{\mathbb{R}^d} \psi\left(x + \frac{t}{2}\right) \overline{\phi\left(x - \frac{t}{2}\right)} e^{-2\pi i \,\omega \cdot t} dt, \quad (x,\omega) \in \mathbb{R}^{2d},$$

is the *cross-Wigner distribution* of the functions $\psi, \phi \in L^2(\mathbb{R}^d)$ For each $S, T \in \mathcal{HS}(\mathbb{R}^d)$ with Weyl symbols a_s , a_T in $L^2(\mathbb{R}^{2d})$ we have

$$\langle S, T \rangle_{\mathcal{HS}} = \langle a_{\scriptscriptstyle S}, a_{\scriptscriptstyle T} \rangle_{L^2(\mathbb{R}^{2d})}$$

Antonio García García Q-Math Seminar 26/10/21 15 / 41

The Kohn-Nirenberg transform

The *Kohn-Nirenberg transform* $L^2(\mathbb{R}^{2d}) \ni \sigma \longmapsto K_{\sigma} \in \mathcal{HS}(\mathbb{R}^d)$ is a **unitary operator** where $K_{\sigma}: L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$ is the Hilbert-Schmidt operator defined in weak sense by

$$\langle K_{\sigma}\phi,\psi\rangle_{L^{2}(\mathbb{R}^{d})} = \langle \sigma,R(\psi,\phi)\rangle_{L^{2}(\mathbb{R}^{2d})}, \quad \phi,\psi\in L^{2}(\mathbb{R}^{d})$$

here

$$R(\psi,\phi)(x,\omega) = \psi(x) \overline{\widehat{\phi}(\omega)} e^{-2\pi i x \cdot \omega}, \quad (x,\omega) \in \mathbb{R}^{2d},$$

is the *Rihaczek distribution* of the functions $\psi, \phi \in L^2(\mathbb{R}^d)$ For each $S, T \in \mathcal{HS}(\mathbb{R}^d)$ with Kohn-Nirenberg symbols σ_s , σ_T in $L^2(\mathbb{R}^{2d})$ we have

$$\langle S, T \rangle_{\mathcal{HS}} = \langle \sigma_{S}, \sigma_{T} \rangle_{L^{2}(\mathbb{R}^{2d})}$$

Antonio García García Q-Math Seminar 26/10/21 16 / 41

A crucial property for both transforms

▶ There is a transition between Weyl and Kohn-Nirenberg calculus:

$$\sigma_s = Ua_s$$
, where $\widehat{Ua_s}(\xi, u) = e^{\pi i u \cdot \xi} \, \widehat{a_s}(\xi, u)$, $(\xi, u) \in \mathbb{R}^{2d}$

▶ The Weyl and Kohn-Nirenberg transforms in $\mathcal{HS}(\mathbb{R}^d)$ respect both the translations in the sense:

For $f \in L^2(\mathbb{R}^d \times \widehat{\mathbb{R}}^d)$ and $z \in \mathbb{R}^d \times \widehat{\mathbb{R}}^d$ we have:

$$\mathcal{L}(T_z f) = \alpha_z(\mathcal{L} f)$$

where \mathcal{L} denotes the Weyl or the Kohn-Nirenberg transform

▶ In addition to the unitary character we obtain that Properties of V_S^2 in $\mathcal{HS}(\mathbb{R}^d) \longleftrightarrow$ Properties of $V_{\sigma_S}^2$ (or $V_{a_S}^2$) in $L^2(\mathbb{R}^{2d})$

Antonio García García Q-Math Seminar 26/10/21 17 / 41

Λ-shift-invariant subspaces

Let $\mathbf{S} = \{S_1, S_2, \dots, S_N\}$ be a fixed subset of $\mathcal{HS}(\mathbb{R}^d)$ and let Λ be a lattice in \mathbb{R}^{2d} . We are searching for a necessary and sufficient condition such that $\{\alpha_{\lambda}(S_n)\}_{\lambda \in \Lambda; n=1,2,\dots,N}$ is a Riesz sequence for $\mathcal{HS}(\mathbb{R}^d)$, i.e., a Riesz basis for the closed subspace

$$V_{\mathbf{S}}^2 := \overline{\operatorname{span}}_{\mathcal{HS}} \{ \alpha_{\lambda}(S_n) \}_{\lambda \in \Lambda; n=1,2,\dots,N} \subset \mathcal{HS}(\mathbb{R}^d)$$

In this case, $S = \{S_1, S_2, \dots, S_N\}$ is a *set of generators* for the Λ -shift-invariant subspace V_S^2 which can be described by

$$V_{\mathbf{S}}^2 = \left\{ \sum_{n=1}^N \sum_{\lambda \in \Lambda} c_n(\lambda) \, \alpha_{\lambda}(S_n) : \{ c_n(\lambda) \}_{\lambda \in \Lambda} \in \ell^2(\Lambda), \, n = 1, 2, \dots, N \right\}$$

Antonio García García Q-Math Seminar 26/10/21 19 / 41

Theorem

Let Λ be a lattice and $S_n \in \mathcal{B}$, n = 1, 2, ..., N. Then, $\{\alpha_{\lambda}(S_n)\}_{\lambda \in \Lambda; n = 1, 2, ..., N}$ is a Riesz sequence for $\mathcal{HS}(\mathbb{R}^d)$ if and only if there exist two constants $0 < m \le M$ such that

$$m \mathbb{I}_{\scriptscriptstyle N} \leq G_{\mathbf{S}}^W(z) \leq M \mathbb{I}_{\scriptscriptstyle N} \quad \textit{for any } z \in \mathbb{R}^{2d} \, ,$$

where $G_{\mathbf{S}}^{W}(z)$ denotes the $N \times N$ matrix-valued function

$$G_{\mathbf{S}}^W(z) := \sum_{\lambda^{\circ} \in \Lambda^{\circ}} \mathcal{F}_W(\mathbf{S})(z + \lambda^{\circ}) \, \overline{\mathcal{F}_W(\mathbf{S})(z + \lambda^{\circ})}^{\top} \,, \quad z \in \mathbb{R}^{2d}$$

and
$$\mathcal{F}_W(\mathbf{S}) = \left(\mathcal{F}_W(S_1), \mathcal{F}_W(S_2), \dots, \mathcal{F}_W(S_N)\right)^{ op}$$

where:

Antonio García García Q-Math Seminar 26/10/21 20 / 41

- $S \in \mathcal{B}$ is the Banach space of continuous operators with Weyl symbol a_s in the *Feichtinger's algebra* $\mathcal{S}_0(\mathbb{R}^{2d})$. In essence, \mathcal{B} consists of trace class operators on $L^2(\mathbb{R}^d)$ with a norm-continuous inclusion $\iota: \mathcal{B} \hookrightarrow \mathcal{T}^1$ Recall that $\psi \in \mathcal{S}_0(\mathbb{R}^{2d})$ iff $V_{\varphi_0} \psi \in L^1(\mathbb{R}^{2d})$
- Λ° is the adjoint lattice of the lattice Λ . Its associated matrix is $A^{-\top}\Omega_d$ in case $\Lambda = A\mathbb{Z}^{2d}$, where

$$\Omega_d = \begin{pmatrix} O & I_d \\ -I_d & O \end{pmatrix}$$

 $ightharpoonup \mathcal{F}_W(S)$ denotes the Fourier-Wigner transform of an operator S defined as the function

$$\mathcal{F}_W(S)(z) := e^{-\pi i x \cdot \omega} \operatorname{tr}[\pi(-z)S], \quad z = (x, \omega) \in \mathbb{R}^{2d}$$

Antonio García García Q-Math Seminar 26/10/21 21 / 41

▶ In our case, $\mathcal{F}_W(S_n) = \mathcal{F}_s(a_{S_n})$ for n = 1, 2, ..., N, where \mathcal{F}_s denotes the *symplectic Fourier transform* of a_{S_n} defined by

$$\mathcal{F}_{s}(a_{s_n})(z) := \int_{\mathbb{R}^{2d}} a_{s_n}(z') e^{-2\pi i \, \sigma(z,z')} dz', \quad z \in \mathbb{R}^{2d}$$

 $\sigma(z,z') = \omega \cdot x' - \omega' \cdot x$ is the standard symplectic form in \mathbb{R}^{2d}

Antonio García García Q-Math Seminar 26/10/21 22 / 41

The isomorphism \mathcal{T}_S

$$\mathcal{T}_{\mathbf{S}}: \ell_{N}^{2}(\Lambda) \longrightarrow V_{\sigma_{\mathbf{S}}}^{2} \subset L^{2}(\mathbb{R}^{2d}) \longrightarrow V_{\mathbf{S}}^{2} \subset \mathcal{HS}(\mathbb{R}^{d})$$
$$(c_{1}, c_{2}, \dots, c_{N})^{\top} \longmapsto \sum_{n=1}^{N} \sum_{\lambda \in \Lambda} c_{n}(\lambda) T_{\lambda} \sigma_{S_{n}} \longmapsto \sum_{n=1}^{N} \sum_{\lambda \in \Lambda} c_{n}(\lambda) \alpha_{\lambda}(S_{n})$$

The isomorphism $\mathcal{T}_{\mathbf{S}}$ is the composition of the isomorphism $\mathcal{T}_{\sigma_{\mathbf{S}}}:\ell_{N}^{2}(\Lambda) \to V_{\sigma_{\mathbf{S}}}^{2}$ which maps the standard orthonormal basis $\{\delta_{\lambda}\}_{\lambda \in \Lambda}$ for $\ell_{N}^{2}(\Lambda)$ onto the Riesz basis $\{T_{\lambda}\sigma_{s_{n}}\}_{\lambda \in \Lambda;\, n=1,2,\ldots,N}$ for $V_{\sigma_{\mathbf{S}}}^{2}$, and the Kohn-Nirenberg (Weyl) transform transform between $V_{\sigma_{\mathbf{S}}}^{2}$ ($V_{a_{\mathbf{S}}}^{2}$) and $V_{\mathbf{S}}^{2}$

Antonio García García Q-Math Seminar 26/10/21 23 / 41

An expression for the average samples

The average samples of any $T=\sum_{n=1}^N\sum_{\mu\in\Lambda}c_n(\mu)\,\alpha_\mu(S_n)$ in $V_{\bf S}^2$ can be

expressed as the output of a discrete convolution system in $\ell^2_{_N}(\Lambda)$:

$$\langle T, \alpha_{\lambda}(Q_m) \rangle_{\mathcal{HS}} = \sum_{n=1}^{N} (a_{m,n} *_{\Lambda} c_n)(\lambda) = \langle \mathbf{c}, T_{\lambda} \mathbf{a}_m^* \rangle_{\ell_N^2(\Lambda)}, \quad \lambda \in \Lambda$$

where $\mathbf{a}_m^*=(a_{m,1}^*,a_{m,2}^*,\dots,a_{m,N}^*)^{ op},$ $a_{m,n}^*(\lambda)=\overline{a_{m,n}(-\lambda)},$ and being

$$\begin{aligned} a_{m,n}(\mu) &= \left\langle \sigma_{S_n}, T_{\mu} \sigma_{Q_m} \right\rangle_{L^2(\mathbb{R}^{2d})} = \left\langle a_{S_n}, T_{\mu} a_{Q_m} \right\rangle_{L^2(\mathbb{R}^{2d})} \\ &= \left\langle S_n, \alpha_{\mu}(Q_m) \right\rangle_{\mathcal{U}^S}, \quad \mu \in \Lambda \end{aligned}$$

The sampling property will depend on the $M \times N$ matrix-valued function $A(\lambda) = [a_{m,n}(\lambda)], \ \lambda \in \Lambda$, whose entries are in $\ell^2(\Lambda)$

Antonio García García Q-Math Seminar 26/10/21 24 / 41

The diagonal channel samples revisited

For the diagonal channel samples of the operator T

$$\langle T\pi(\lambda)g_m, \pi(\lambda)\widetilde{g}_m \rangle_{L^2(\mathbb{R}^d)}, \quad \lambda \in \Lambda, \quad m = 1, 2, \dots, M$$

we have

$$\left\langle T\pi(\lambda)g_m,\pi(\lambda)\widetilde{g}_m\right\rangle_{L^2(\mathbb{R}^d)} = \left\langle T,\alpha_\lambda(\widetilde{g}_m\otimes g_m)\right\rangle_{\mathcal{HS}},\quad \lambda\in\Lambda$$

We have also

$$\left\langle T\pi(\lambda)g_m,\pi(\lambda)\widetilde{g}_m\right\rangle_{L^2(\mathbb{R}^d)} = \left\langle \alpha_{-\lambda}(T)g_m,\widetilde{g}_m\right\rangle_{L^2(\mathbb{R}^d)}, \quad \lambda \in \Lambda$$

For
$$\varphi, \psi \in L^2(\mathbb{R}^d)$$
, $\alpha_z(\varphi \otimes \psi) = [\pi(z)\varphi] \otimes [\pi(z)\psi]$, $z \in \mathbb{R}^{2d}$

Antonio García García Q-Math Seminar 26/10/21 25 / 41

The sampling result

Definition (Generalized stable sampling procedure in $V_{\mathbf{S}}^2$)

This is a map $\mathcal{S}_{\mathsf{samp}}: V^2_{\mathbf{S}} \to \ell^2_{_{\mathbf{M}}}(\Lambda)$ defined as

$$T = \sum_{n=1}^{N} \sum_{\lambda \in \Lambda} c_n(\lambda) \, \alpha_{\lambda}(S_n) \in V_{\mathbf{S}}^2 \longmapsto \mathbf{s}_{T} := A *_{\Lambda} \mathbf{c} \in \ell_{\underline{M}}^2(\Lambda)$$

where the matrix $A = [a_{m,n}] \in \mathcal{M}_{M \times N}(\ell^2(\Lambda))$ satisfies the conditions:

$$0<\alpha_{\!A}:=\operatornamewithlimits{ess\,inf}_{\xi\in\widehat{\Lambda}}\lambda_{\min}[\widehat{A}(\xi)^*\!\widehat{A}(\xi)]\leq\beta_{\!A}:=\operatornamewithlimits{ess\,sup}_{\xi\in\widehat{\Lambda}}\lambda_{\max}[\widehat{A}(\xi)^*\!\widehat{A}(\xi)]<\infty$$

For average sampling the corresponding matrix A has entries

$$a_{m,n}(\lambda) := \left\langle \sigma_{\mathit{S}_n}, T_{\lambda} \sigma_{\mathit{Q}_m}
ight
angle_{L^2(\mathbb{R}^{2d})} = \left\langle \mathit{S}_n, lpha_{\lambda}(\mathcal{Q}_m)
ight
angle_{\mathcal{HS}}, \quad \lambda \in \Lambda\,,$$

i.e., the columns of A are the sequences of samples of the generators of $V_{\mathbf{S}}^2$

Antonio García García Q-Math Seminar 26/10/21 27 / 41

- ▶ The matrix-valued function $\widehat{A}(\xi) := \left[\mathcal{F}_s^{\Lambda}(a_{m,n})(\xi)\right]$, a.e. $\xi \in \widehat{\Lambda}$ is the **transfer matrix of** A where \mathcal{F}_s^{Λ} denotes the symplectic Fourier transform in $\ell^2(\Lambda)$
- ▶ The dual group $\widehat{\Lambda}$ is identified with $\mathbb{R}^{2d}/\Lambda^{\circ}$, where Λ° is the *annihilator group* (adjoint lattice of Λ)

$$\Lambda^{\circ} = \left\{ \lambda^{\circ} \in \mathbb{R}^{2d} \ : \ \mathrm{e}^{2\pi i \, \sigma(\lambda^{\circ},\lambda)} = 1 \ \text{ for all } \lambda \in \Lambda \right\}$$

 $\sigma(z,z')=\omega\cdot x'-\omega'\cdot x$ for $z=(x,\omega)$ and $z'=(x',\omega')$ in \mathbb{R}^{2d} is the standard symplectic form

▶ The Fourier transform of $c \in \ell^1(\Lambda)$ is the *symplectic Fourier series*

$$\mathcal{F}_s^{\Lambda}(c)(\dot{z}) := \sum_{\lambda \in \Lambda} c(\lambda) e^{2\pi i \, \sigma(\lambda, z)}, \quad \dot{z} \in \mathbb{R}^{2d}/\Lambda^{\circ},$$

where \dot{z} denotes the image of z under the natural quotient map $\mathbb{R}^{2d} \to \mathbb{R}^{2d}/\Lambda^\circ$

Antonio García García Q-Math Seminar 26/10/21 28 / 41

▶ Since \mathcal{F}_s^{Λ} is a Fourier transform it extends to a unitary mapping

$$\mathcal{F}_s^{\Lambda}: \ell^2(\Lambda) \to L^2(\widehat{\Lambda})$$

It satisfies:

- $\mathcal{F}_s^{\Lambda}(c*_{\Lambda}d) = \mathcal{F}_s^{\Lambda}(c)\,\mathcal{F}_s^{\Lambda}(d)$, for $c\in\ell^1(\Lambda)$ and $d\in\ell^2(\Lambda)$
- If $c, d \in \ell^2(\Lambda)$ and $\mathcal{F}_s^{\Lambda}(c) \in L^{\infty}(\widehat{\Lambda}) \Rightarrow \mathcal{F}_s^{\Lambda}(c *_{\Lambda} d) = \mathcal{F}_s^{\Lambda}(c) \mathcal{F}_s^{\Lambda}(d)$

As usual, the convolution $*_{\Lambda}$ of two sequences c, d is defined by

$$(c *_{\Lambda} d)(\lambda) = \sum_{\mu \in \Lambda} c(\mu) d(\lambda - \mu), \quad \lambda \in \Lambda$$

► Finally,

$$\left\{T_{\lambda}\,\mathbf{a}_{m}^{*}\right\}_{\lambda\in\Lambda;\,m=1,2,\ldots,M}$$
 is a frame for $\ell_{\scriptscriptstyle N}^{2}(\Lambda)\iff 0$

Antonio García García Q-Math Seminar 26/10/21 29 / 41

Given a sampling procedure S_{samp} in $V_{\mathbf{S}}^2$, there exist $M \geq N$ elements $H_m \in V_{\mathbf{S}}^2$, m = 1, 2, ..., M, such that the sampling formula

$$T = \sum_{m=1}^{M} \sum_{\lambda \in \Lambda} s_{T,m}(\lambda) \, \alpha_{\lambda}(H_m) \quad \text{in } \mathcal{HS}\text{-norm}$$

holds for each $T \in V_S^2$ where $\{\alpha_\lambda(H_m)\}_{\lambda \in \Lambda; m=1,2,\dots,M}$ is a frame for V_S^2 . The convergence of the series is unconditional in \mathcal{HS} -norm, and the ℓ^2 -norm of the samples $\|\mathbf{s}_T\|_{\ell_M^2}$ is an equivalent norm to $\|T\|_{\mathcal{HS}}$ in V_S^2 . Reciprocally, if a sampling formula like above holds in V_S^2 where

$$\mathbf{s}_{T}(\lambda) = \left(s_{T,1}(\lambda), s_{T,2}(\lambda), \dots, s_{T,M}(\lambda)\right)^{\top} := \left(A *_{\Lambda} \mathbf{c}\right)(\lambda), \quad \lambda \in \Lambda,$$

where $\beta_A<+\infty$, and $\{\alpha_\lambda(H_m)\}_{\lambda\in\Lambda;\,m=1,2,...,M}$ is a frame for $V_{\bf S}^2$, then $\alpha_A>0$

Antonio García García Q-Math Seminar 26/10/21 30 / 41

Scketch of the proof

For any $T = \sum_{n=1}^{N} \sum_{\mu \in \Lambda} c_n(\mu) \alpha_{\mu}(S_n)$ in V_S^2 we have:

- ► For its samples $s_{T,m}(\lambda) = \langle \mathbf{c}, T_{\lambda} \, \mathbf{a}_m^* \rangle_{\ell_N^2(\Lambda)}$, $\lambda \in \Lambda$, and the sequence $\{T_{\lambda} \, \mathbf{a}_m^*\}_{\lambda \in \Lambda; \, m=1,2,...,M}$ is a frame for $\ell_N^2(\Lambda)$
- Its dual frames $\left\{T_{\lambda} \mathbf{b}_{m}\right\}_{\lambda \in \Lambda; \, m=1,2,\ldots,M}$ are obtained from the left-inverses $\widehat{B} \in \mathcal{M}_{N \times M}(L^{\infty}(\widehat{\Lambda}))$ of the matrix \widehat{A} (for instance, $\widehat{A}(\xi)^{\dagger} = \left[\widehat{A}(\xi)^{*}\widehat{A}(\xi)\right]^{-1}\widehat{A}(\xi)^{*}$) obtaining

$$\mathbf{c} = \sum_{m=1}^{M} \sum_{\lambda \in \Lambda} \left\langle \mathbf{c}, T_{\lambda} \mathbf{a}_{m}^{*} \right\rangle_{\ell_{N}^{2}(\Lambda)} T_{\lambda} \mathbf{b}_{m} \quad \text{for each } \mathbf{c} \in \ell_{N}^{2}(\Lambda)$$

► Finally, applying the isomorphism T_S

$$T = \sum_{m=1}^{M} \sum_{\lambda \in \Lambda} s_{T,m}(\lambda) \, \mathcal{T}_{\mathbf{S}}[T_{\lambda} \mathbf{b}_{m}] = \sum_{m=1}^{M} \sum_{\lambda \in \Lambda} s_{T,m}(\lambda) \, K_{T_{\lambda}(\mathcal{T}_{\sigma_{\mathcal{S}}} \mathbf{b}_{m})}$$

Antonio García García Q-Math Seminar 26/10/21 31 / 41

That is

$$T = \sum_{m=1}^{M} \sum_{\lambda \in \Lambda} s_{T,m}(\lambda) \alpha_{\lambda} [K_{h_m}] = \sum_{m=1}^{M} \sum_{\lambda \in \Lambda} s_{T,m}(\lambda) \alpha_{\lambda} (H_m)$$

where $H_m = K_{h_m}$ and $h_m = \mathcal{T}_{\sigma_S}(\mathbf{b}_m)$

We have used that

$$\mathcal{T}_{\sigma_S}(T_{\lambda}\mathbf{b}_m) = T_{\lambda}(\mathcal{T}_{\sigma_S}\mathbf{b}_m) = T_{\lambda}(h_m)$$

Observe that $\mathbf{b}_m = \left(b_{1,m}(\lambda), b_{2,m}(\lambda), \dots, b_{N,m}(\lambda)\right)^{\top}$ is the *m*-th column of B, and

$$H_m = \sum_{n=1}^{N} \sum_{\lambda \in \Lambda} b_{n,m}(\lambda) \, \alpha_{\lambda}(S_n) \,, \quad m = 1, 2, \dots, M$$

Antonio García García Q-Math Seminar 26/10/21 32 / 41

Under the above hypotheses, the average sampling formula reads

$$T = \sum_{m=1}^{M} \sum_{\lambda \in \Lambda} \left\langle T, \alpha_{\lambda}(Q_m) \right\rangle_{\mathcal{HS}} \alpha_{\lambda}(H_m) \quad \text{in \mathcal{HS}-norm}$$

Since convergence in \mathcal{HS} -norm implies convergence in operator norm, for each $f \in L^2(\mathbb{R}^d)$ we get the pointwise expansion:

$$T(f) = \sum_{m=1}^{M} \sum_{\lambda \in \Lambda} \left\langle T, \alpha_{\lambda}(Q_m) \right\rangle_{\mathcal{HS}} [\alpha_{\lambda}(H_m)](f) \quad \text{in } L^2\text{-norm}$$

Antonio García García Q-Math Seminar 26/10/21 33 / 41

Consequences, comments and a final example

Some consequences

▶ Whenever M = N the sequence $\{\alpha_{\lambda}(H_n)\}_{\lambda \in \Lambda: n=1,2,...,N}$ is a Riesz basis for $V_{\rm S}^2$, and the interpolatory property

$$\langle H_m \pi(\lambda) g_n, \pi(\lambda) \widetilde{g}_n \rangle = \delta_{m,n} \delta_{\lambda,0}$$

where $\lambda \in \Lambda$ and $m, n = 1, 2, \dots, N$, holds

▶ Assume that the sequence $\mathbf{a} = \{a(\lambda)\}_{\lambda \in \Lambda}$ satisfies

$$0 < \operatorname*{ess\ inf}_{\xi \in \widehat{\Lambda}} |\mathcal{F}_{s}^{\Lambda}(\mathbf{a})(\xi)| \leq \operatorname*{ess\ sup}_{\xi \in \widehat{\Lambda}} |\mathcal{F}_{s}^{\Lambda}(\mathbf{a})(\xi)| < \infty$$

where $a(\lambda) = \langle S\pi(\lambda)g, \pi(\lambda)\widetilde{g} \rangle_{L^2(\mathbb{R}^d)}$, $\lambda \in \Lambda$, with $g, \widetilde{g} \in L^2(\mathbb{R}^d)$. Then, there exists a unique $H \in V_s^2$ such that the sequence $\{\alpha_{\lambda}(H)\}_{\lambda\in\Lambda}$ is a Riesz basis for V_s^2 and the sampling formula

$$T = \sum_{\lambda \in \Lambda} \left\langle T\pi(\lambda)g, \pi(\lambda)\widetilde{g} \right\rangle_{L^2(\mathbb{R}^d)} \alpha_{\lambda}(H) \quad \text{in \mathcal{H}S-norm}$$

holds for each $T \in V_c^2$.

35 / 41

Some comments

▶ In case $S = \varphi \otimes \psi$ operators in V_S^2 are *Gabor multipliers*:

$$\begin{split} \sum_{\lambda \in \Lambda} c(\lambda) \, \alpha_{\lambda}(S)(\eta) &= \sum_{\lambda \in \Lambda} c(\lambda) \, \big(\pi(\lambda) \varphi \otimes \pi(\lambda) \psi \big)(\eta) \\ &= \sum_{\lambda \in \Lambda} c(\lambda) \, V_{\psi} \, \eta(\lambda) \pi(\lambda) \varphi = \mathcal{G}_{\mathbf{c}}^{\psi, \varphi}(\eta) \,, \, \eta \in L^{2}(\mathbb{R}^{d}) \end{split}$$

 $\mathcal{G}_{\mathbf{c}}^{\psi,\varphi}$ is the Gabor multiplier with windows ψ,φ and mask \mathbf{c} in $\ell^2(\Lambda)$ used in time-frequency analysis

The convolution of a function f and an operator S is formally defined by the operator-valued integral $f*S=\int_{\mathbb{R}^{2d}}f(z)\,\alpha_z(S)dz$. In particular $\mathbf{c}*_{\Lambda}S:=S*_{\Lambda}\mathbf{c}:=\sum_{\lambda\in\Lambda}c(\lambda)\,\alpha_{\lambda}(S)$. Thus,

$$V_S^2 = \ell^2(\Lambda) *_{\Lambda} S$$

Antonio García García Q-Math Seminar 26/10/21 36 / 41

Average sampling can be expressed as a convolution of two operators:

$$\begin{split} \left\langle T, \alpha_{\lambda}(Q) \right\rangle_{\mathcal{HS}} &= \operatorname{tr}[T\alpha_{\lambda}(Q)^{*}] = \operatorname{tr}[T\alpha_{\lambda}(Q^{*})] \\ &= T *_{\Lambda} \check{Q}^{*}(\lambda) = T *_{\Lambda} \widecheck{Q}(\lambda) \,, \quad \lambda \in \Lambda \end{split}$$

where $\widetilde{Q} = \check{Q}^*$. Recall that

$$S * T(z) := \operatorname{tr}[S\alpha_z(\check{T})], \quad z \in \mathbb{R}^{2d}$$

where $\check{T} = PTP$ and P denotes the *parity operator* $(P\varphi)(t) = \varphi(-t)$ for $\varphi \in L^2(\mathbb{R}^d)$.

Replacing \mathbb{R}^{2d} by a lattice $\Lambda \subset \mathbb{R}^{2d}$ we obtain the convolution of two operators S, T at the lattice Λ

Antonio García García Q-Math Seminar 26/10/21 37 / 41

An illustrative example

▶ Assume V_S^2 with N stable generators of the form $S_n = \varphi_n \otimes \widetilde{\varphi}_n$ with $\varphi_n, \widetilde{\varphi}_n \in \mathcal{S}_0(\mathbb{R}^d)$, $n = 1, 2, \ldots, N$. In this regard,

$$\mathcal{F}_W(\varphi_n \otimes \widetilde{\varphi}_n)(z) = e^{\pi i x \cdot \omega} V_{\widetilde{\varphi}_n} \varphi_n(z), \quad z = (x, \omega) \in \mathbb{R}^{2d}$$

► For each $T \in V_{\mathbf{S}}^2$ we consider the diagonal channel samples

$$\langle T\pi(\lambda)g_m, \pi(\lambda)\widetilde{g}_m \rangle_{L^2(\mathbb{R}^d)}, \quad \lambda \in \Lambda$$

with $g_m, \widetilde{g}_m \in \mathcal{S}_0(\mathbb{R}^d), \, m=1,2,\ldots,M.$ In this case,

$$\begin{aligned} a_{m,n}(\lambda) &= \left\langle \left(\varphi_n \otimes \widetilde{\varphi}_n \right) \pi(\lambda) g_m, \pi(\lambda) \widetilde{g}_m \right\rangle_{L^2(\mathbb{R}^d)} \\ &= \overline{V_{g_m} \widetilde{\varphi}_n(\lambda)} \, V_{\widetilde{g}_m} \varphi_n(\lambda) \,, \quad \lambda \in \Lambda \end{aligned}$$

▶ It is known that the sequences $\{a_{m,n}(\lambda)\}_{\lambda\in\Lambda}$ belong to $\ell^1(\Lambda)$ and, as a consequence, the entries of \widehat{A} are continuous functions on the compact $\widehat{\Lambda}$

► Thus, the sampling conditions in the definition of generalized stable sampling procedure reduce to

$$\det[\widehat{A}(\xi)^*\widehat{A}(\xi)] \neq 0 \quad \text{for all } \xi \in \widehat{\Lambda}$$

▶ Under the above circumstances:

Any
$$T=\sum_{n=1}^N \mathcal{G}_{\mathbf{c}_n}^{\widetilde{\varphi}_n,\varphi_n}\in V_{\mathbf{S}}^2$$
 can be recovered, in a stable way, from its diagonal channel samples $\left\langle T\pi(\lambda)g_m,\pi(\lambda)\widetilde{g}_m \right\rangle_{L^2(\mathbb{R}^d)}$

Antonio García García Q-Math Seminar 26/10/21 39 / 41

References

- O. Christensen. An Introduction to Frames and Riesz Bases, 2nd ed., Birkhäuser, Boston, 2016.
- 2. A.G. García. Average sampling in certain subspaces of Hilbert-Schmidt operators on $L^2(\mathbb{R}^d)$. Sampl. Theory Signal Process. Data Anal, 19:10, 2021.
- 3. A.G. García. Sampling in Λ -shift-invariant subspaces of Hilbert-Schmidt operators on $L^2(\mathbb{R}^d)$. Math. Found. of Computing, 2021.
- A.G. García, M. A. Hernández-Medina and G. Pérez-Villalón.
 Convolution systemes on discrete abelian groups as a unifying strategy in sampling theory. Results Math., 75(1): 40, 2020.

Antonio García García Q-Math Seminar 26/10/21 40 / 41

References

- K. Gröchenig and E. Pauwels. Uniqueness and reconstruction theorems for pseudodifferential operators with a bandlimited Kohn-Nirenberg symbol. Adv. Comput. Math., 40:49–63, 2014.
- 6. E. Skrettingland. Quantum harmonic analysis on lattices and Gabor multipliers. *J. Fourier Anal. Appl.*, 26:48, 2020.

Antonio García García Q-Math Seminar 26/10/21 41 / 41