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Abstract

We present a new O(n3) algorithm for computing all eigenvalues of certain sign regular matrices to
high relative accuracy in floating point arithmetic. The accuracy and cost are unaffected by the conventional
eigenvalue condition numbers.

A matrix is called sign regular when the signs of its nonzero minors depend only of the order of the
minors. The sign regular matrices we consider are the ones which are nonsingular and whose kth order
nonzero minors are of sign (−1)k(k−1)/2 for all k. This class of matrices can also be characterized as
“nonsingular totally nonnegative matrices with columns in reverse order”.

We exploit a characterization of these particular sign regular matrices as products of nonnegative bidiag-
onals and the reverse identity. We arrange the computations in such a way that no subtractive cancellation is
encountered, thus guaranteeing high relative forward accuracy.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

An n × n matrix all of whose nonzero kth order minors have the same sign ρk ∈ {−1, +1}, k =
1, 2, . . . , n, is called sign regular. All eigenvalues of a sign regular matrix are real. Our primary
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concern in this paper is the accurate computation of the eigenvalues of one particular class of
nonsingular sign regular matrices, namely those with ρk = (−1)k(k−1)/2, k = 1, 2, . . . , n.

We call this class TNJ . The choice of notation stems from the fact that the TNJ matrices can
be characterized as nonsingular totally nonnegative (TN) matrices with the columns in reverse
order (see Section 2).

The TNJ matrices can be very ill conditioned; in fact, they are as ill conditioned as TN
matrices (since reversing the order of the columns does not change the conventional two-norm
condition number κ(A) ≡ ‖A‖2 · ‖A−1‖2). In particular, the class of TNJ matrices includes
includes notorious examples such as (column-reversed) TN Vandermonde, Cauchy, and Pascal
matrices. Large condition numbers have dire implications for numerical computations: the conven-
tional eigenvalue algorithms deliver only high absolute accuracy and, in particular, the computed
eigenvalues λ̂i satisfy a bound of the form

|λi − λ̂i | � O(ε)
‖A‖
|y∗x| , (1)

where ε is the machine precision and x and y are the left and right normalized eigenvectors
corresponding to λi , respectively.

The expression (1) implies that only the largest eigenvalues of an ill conditioned TNJ matrix
may be well conditioned with respect to unstructured normwise perturbations in the matrix and
thus be computed accurately by the conventional algorithms [2,9]. The problem is with the tiny
eigenvalues—they are very ill conditioned with respect to such unstructured perturbations and
are most often lost to roundoff. This is unfortunate, since all eigenvalues of the TNJ matrices,
including the tiniest ones, are very accurately determined by the data, are very well conditioned
with respect to structure-preserving perturbations, and thus deserve to be computed accurately
(see Section 2).

Our main contribution in this paper is a new accurate algorithm for computing all eigenvalues
of TNJ matrices. It costs O(n3)—about the same as the conventional algorithms—but computes
all eigenvalues with guaranteed high relative accuracy. Namely, every computed eigenvalue λ̂i

will have a correct sign and leading digits, and will satisfy the bound

|λi − λ̂i | � O(ε)|λi |.
The constant hidden in the big-O notation is a modestly growing function of n.

We believe that this is the first example of an O(n3) algorithm to accurately compute all
eigenvalues of a nonsymmetric matrix with both positive and negative eigenvalues without using
extra precision.

The caveat in our algorithm is that we require that the TNJ structure be explicitly revealed.
Namely, a TNJ matrix must be represented by the n2 independent, nonnegative entries of its
bidiagonal decomposition

A = L(1)L(2) · · · L(n−1)DU(n−1)U(n−2) · · · U(1) · J, (2)

where D is diagonal, L(k) and U(k) are lower and upper unit bidiagonal matrices, respectively,
and J ≡ [δi,n+1−j ]ni,j=1 is the reverse identity.

We review the bidiagonal decomposition (2) in Section 2. It is inherited by the bidiagonal
decompositions of the TN matrices and has the desirable property that its n2 nontrivial entries
parameterize the set of TNJ matrices, reveal the TNJ structure of A, and determine the eigenvalues
of A to high relative accuracy.

For the column reversed versions of classical TN matrices, including Vandermonde, generalized
Vandermonde, Bernstein Vandermonde, Cauchy–Vandermonde, Cauchy, Hilbert, Pascal, etc., as
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well as their products, Schur complements, etc., it is known how to compute the decomposition
(2) accurately in O(n3) time, as discussed in Section 2.

The ideas in deriving our accurate TNJ eigenvalue algorithm are:

1. Since subtractive cancellation is the source of loss of high relative accuracy in the conventional
eigenvalue algorithms, our goal is to avoid it. This idea has already been used successfully in
other accurate algorithms [1,3,4,6,8,15,16,19]. It is based on the observation that multiplica-
tions, divisions, and sums of same-sign quantities preserve the high relative accuracy, whereas
expressions involving subtractions may not;

2. We use similarity transformations to reduce the TNJ matrix A to a nonnegative anti-bidiagonal
matrix

C =

⎡
⎢⎢⎢⎢⎣

b1 a1
· a2

· ·
bn−1 an−1
an

⎤
⎥⎥⎥⎥⎦ .

The matrix C has the same eigenvalues as a symmetric anti-bidiagonal matrix

G =

⎡
⎢⎢⎢⎢⎣

b′
1 a′

1· a′
2· ·

b′
1 a′

2
a′

1

⎤
⎥⎥⎥⎥⎦ .

The matrices C and G may not be similar (see Section 3.2), but they have the same eigenval-
ues. The transformation from A to G is performed implicitly by transforming the bidiagonal
decomposition (2) of A instead of A itself and involve no subtractions (see Section 4);

3. Finally, we compute the eigenvalues λi of G to high relative accuracy as follows. We know from
theory that sign(λi) = (−1)i−1 (see Section 2), thus we need to only compute the magnitudes
|λi |. Since G is symmetric, it suffices to compute its singular values σi = |λi |. The matrices
G and GJ have the same singular values, and GJ is bidiagonal. The singular values of the
latter can then be easily computed to high relative accuracy (see, e.g., [5]).

This paper is organized as follows. In Section 2, we review some properties of TNJ matrices
and their (bidiagonal) decompositions. In Section 3, we describe how to reduce a TNJ matrix to
an anti-bidiagonal using similarity transformations. We describe how to do so in a subtraction-
free fashion in Section 4. We present our main algorithm in Section 5 and present numerical
experiments in Section 6. The conclusions and open problems are in Section 7.

2. Properties of TNJ matrices

In this section, we recall some properties of TNJ matrices and their decompositions [10].3

The eigenvalues λi of the TNJ matrices are always real whether the latter are symmetric or
not. If we order the eigenvalue by magnitude

|λ1| � |λ2| � · · · � |λn| > 0,

then sign(λi) = (−1)i−1 [10, Theorem 13, p. 269].

3 Please note than the sign regular matrices are called “sign-definite” in [10].
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The TNJ and TN matrices are closely related. From the Cauchy–Binet identity we im-
mediately conclude that if A is TNJ , then AJ is nonsingular TN and vice versa (recall that
J ≡ [δi,n+1−j ]ni,j=1 is the reverse identity). Since multiplication on the right by the reverse identity

is equivalent to reversing the order of the columns, the TNJ matrices are “nonsingular TN matrices
with columns in reverse order”. The choice of reversing the columns of a TN matrix to obtain a
TNJ matrix is unimportant—since A is TNJ whenever JAJ is, we may as well have reversed
the rows of a TN matrix to obtain a TNJ one.

By using a representation of the nonsingular TN matrices as products of nonnegative bidiag-
onals [12] one obtains the following structure theorem for TNJ matrices.

Theorem 1. A nonsingular n × n matrix A is TNJ if and only if it can be uniquely factored as

A = L(1) · · · L(n−1) · D · U(n−1) · · · U(1) · J, (3)

where D = diag(d1, d2, . . . , dn), and L(k) and U(k) are lower and upper unit bidiagonal matrices
with offdiagonal elements l

(k)
i and u

(k)
i , respectively, such that

1. di > 0 for all i;
2. l

(k)
i = u

(k)
i = 0 for i < n − k;

3. l
(k)
i � 0, u

(k)
i � 0 for i � n − k;

4. l
(k)
i = 0 implies l

(k−s)
i+s = 0 for s = 1, . . . , k − 1; and u

(k)
i = 0 implies u

(k−s)
i+s = 0 for s =

1, . . . , k − 1.

The bidiagonal decomposition (3) is the ultimate unique representation of a TNJ matrix in
this paper and we denote it by BDJ (A). The trick in our algorithm, as we will see, is that by
transforming BDJ (A) instead of A, we end up performing no subtractions.

The idea of using bidiagonal decompositions with TNJ matrices comes from the theory of TN
matrices [12] according to which any nonsingular TN matrix P can be written as

P = L(1) · · · L(n−1) · D · U(n−1) · · · U(1). (4)

The bidiagonal decompositions of TN matrices have proven extremely useful in designing
accurate algorithms for those matrices: virtually all linear algebra with TN matrices can be
performed accurately [15,16] starting with the decomposition (4). We follow the notation of this
earlier work [15,16] and denote the decomposition (4) by BD(P ) (the bidiagonal decompositions
of TN matrices are thus denoted by BD and those of TNJ matrices by BDJ ).

Following [15, Section 4], it is convenient to store the n2 nontrivial entries of the bidiagonal
decomposition (3) as an n × n array B = BDJ (A) where

bij =

⎧⎪⎨
⎪⎩

di, i = j,

l
(n−i+j)

i−1 , i > j,

u
(n−j+i)

j−1 , i < j.

The bidiagonal decomposition BDJ (A) of a TNJ matrix A and the bidiagonal decomposition
BD(AJ ) of the TN matrix AJ is thus represented by the same n × n array B since the non-
trivial entries in their corresponding bidiagonal decompositions (3) and (4), respectively, are the
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same. This should cause no confusion since we use the notation BDJ to denote the bidiagonal
decomposition of TNJ matrices and BD to denote the bidiagonal decomposition of TN matrices.

There are other representations of TN (and thus of TNJ ) matrices as products of bidiagonals.
They are theoretically [12] and numerically [16] analogous, so the particular choice in Theorem
1 does not result in any loss of generality.

The reader may wonder why we choose to represent the TNJ matrices by the entries of their
bidiagonal decompositions instead of their entries. The reasons are several. The matrix entries
are a poor choice to represent a TNJ matrix, since small relative perturbations in the entries can
lead to enormous relative perturbations in the eigenvalues. For example, an ε > 0 perturbation in
the (1,2) entry from 1 + ε to 1 + 2ε of the following 2 × 2 TNJ matrix:

[
1 1 + ε

1 1

]

perturbs the smaller eigenvalue from about −ε/2 to about −ε. Unsurprisingly, the factorization
(2) of this matrix is also poorly determined in its diagonal (second) factor

[
1 1 + ε

1 1

]
=

[
1 0
1

1+ε
1

] [
1 + ε 0

0 ε
1+ε

] [
1 1

1+ε

0 1

] [
0 1
1 0

]
.

Therefore, in order to use our new eigenvalue algorithm, it is critical to first obtain BDJ (A) accu-
rately. There are necessary and sufficient conditions for being able to compute accurate BD(A)

(and thus BDJ (A)), as well as determinantal formulas for the entries of BDJ (A) in [15, Section
3]. In particular, for several structured TNJ matrices resulting from reordering the columns of a
TN matrix, such as Vandermonde, Cauchy–Vandermonde, generalized Vandermonde, Bernstein–
Vandermonde, and Pascal matrices, accurate formulas for their bidiagonal decompositions BDJ

are readily available [7,15–17]. We used these formulas to produce our numerical experiments
for TNJ Vandermonde matrices in Section 6.

In contrast, the n2 nontrivial entries of the bidiagonal decomposition BDJ of a TNJ matrix
immediately reveal its TNJ structure (Theorem 1). Additionally, every eigenvalue is determined
very accurately by the entries of BDJ which we formulate in the following proposition.

Proposition 1. If A is TNJ then small δ (0 < δ � 1) componentwise relative perturbations in
BDJ (A) can cause at most 2n2δ/(1 − 2n2δ) relative perturbations in any eigenvalue.

Proof. The argument is analogous to that of Theorem 7.2 in [15], so we only sketch it here.
Let x be any nontrivial entry of BDJ (A). From the Cauchy–Binet identity, any minor of A is a
linear function of x with either nonpositive, or nonnegative coefficients. Either way, a δ relative
perturbation in x causes at most a δ relative perturbation in any ith order minor of A and in turn at
most a δ componentwise relative perturbation inA(i)—the ith compound matrix of A. SinceA(i)

is either nonpositive or nonnegative, these perturbations cause at most a δ relative perturbation in
its largest (in magnitude) eigenvalue λ1λ2 · · · λi [9]. The same argument for A(i−1) implies that
the relative perturbation in λ1λ2 · · · λi−1 also does not exceed δ, and thus the relative perturbation
in λi does not exceed 2δ/(1 − 2δ). Accumulating such perturbations in each of the n2 entries of
BDJ (A) gives us the final result. �

We refer the reader to [12] for a detailed account of the bidiagonal decompositions of TN
matrices.
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3. Reduction to a symmetric anti-bidiagonal

In this section, we constructively show that a TNJ matrix is similar to a nonnegative anti-
bidiagonal matrix.4 The anti-bidiagonal then has the same eigenvalues as a symmetric anti-
bidiagonal matrix.

In Section 4, we will show how to preserve the relative accuracy in these transformations.

3.1. Reduction to an anti-bidiagonal

The first step is to similarity reduce the TNJ matrix to an anti-bidiagonal. For this task we use
only two operations:

1. Subtracting a positive multiple of a row from the previous or next one in order to create a zero;
2. Adding a positive multiple of one column to the next or previous one.

Each of the above operations, written in matrix form, represents a multiplication by the unit
bidiagonal matrix

Ei(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
. . .
x 1

. . .
1

⎤
⎥⎥⎥⎥⎥⎥⎦

or its transpose, ET
i (x). The matrix Ei(x) differs from the identity only in the entry x in position

(i, i − 1). If x > 0 then Ei(x) is TN. We will use the identities

E−1
i (x) = Ei(−x) and J · Ei(x) · J = ET

n−i+2(x).

The matrices Ei play a major role in the theory of TN matrices (see. e.g., [12]) since every L(k)

and U(k) in (3) is a product of Ei’s and ET
i ’s, respectively.

In this section, it is more convenient to think of a TNJ matrix A as a product A = PJ of a TN
matrix P and the reverse identity J . The idea is to apply the similarity transformations in such a
way that they affect only the TN factor P , preserving its TN structure, eventually reducing it to
an upper bidiagonal.

First, we apply similarity transformations to reduce the factor P in A = PJ to upper triangular
form.

We create zeros in the lower triangular part of P by columns from the bottom up by starting
with the (n, 1) entry. Here we present the procedure to eliminate the entry in position (i, j)

(where i > j ) and assume that pi−1,j and pij are the only nonzero entries in the submatrix
P(i − 1: n, 1: j).

We subtract a multiple of row i − 1 from row i by multiplying on the left by the matrix Ei(−x)

(where x = pij /pi−1,j ). We then complete the similarity transformation on the right

PJ → Ei(−x)PJE−1
i (−x) = Ei(−x)P (JEi(x)J )J = Ei(−x) · P · ET

n−i+2(x) · J.

4 The idea was inspired by the similarity reduction of a matrix to a tridiagonal described in [13].
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The similarity transformation can thus be seen as an operation on the TN factor P only

P → Ei(−x) · P · ET
n−i+2(x). (5)

In this transformation, forming the product Ei(−x)P means creating a zero in P in position
(i, j) by subtracting of the appropriate multiple of row i − 1 from row i. Completing the similarity
by multiplying P on the right by ET

n−i+2(x) means adding a positive multiple of the (n − i + 1)st
column to the following one—the (n − i + 2)nd—which does not disturb the newly created zero
in position (i, j) nor the zeros previously created in the lower triangular part of P . The results in
[11] imply that this similarity transformation preserves the TN structure of P .

Once P is upper triangular, we similarity transform the product PJ into a product of a
nonnegative upper bidiagonal matrix and the reverse identity. We do so by introducing zeros
in P by columns from the top down starting with the last column.

Next, we describe the similarity transformation that creates a zero in P above the first super-
diagonal in position (i, j), i < j − 1, assuming that pij and pi+1,j are the only nonzero entries
in the submatrix P(1: i + 1, j : n).

We create the zero in position (i, j) in P by subtracting the appropriate multiple of the (i + 1)st
row from the ith. In other words, we form the product ET

i+1(−x) · (PJ ), where x = pij /pi+1,j .
We then complete the similarity on the right as before

PJ → ET
i+1(−x)PJE−T

i+1(−x) = ET
i+1(−x)P

(
JET

i+1(x)J
)
J

= ET
i+1(−x)PEn−i+1(x)J.

The similarity thus amounts to the transformation

P → ET
i+1(−x)PEn−i+1(x). (6)

While the multiplication of P on the left by ET
i+1(−x) creates the desired zero in position (i, j),

the multiplication on the right by En−i+1(x) represents the addition of a positive multiple of the
(n − i + 1)st column in P to the previous one—the (n − i)th—thus introducing an undesired
“bulge” just below the diagonal in position (n − i + 1, n − i).

This bulge is only a minor nuisance—we kill it as described in the first step above. Killing the
bulge does not disturb any of the zeros we have created and especially does not disturb the newly
created zero in position (i, j) in P .

We continue this process until P is reduced to a (nonnegative, nonsingular) upper bidiagonal
matrix.

With the thus transformed P , the matrix C ≡ PJ is nonnegative, anti-bidiagonal, TNJ matrix
which is similar to A.

3.2. Making the anti-bidiagonal symmetric

The last step is to make C symmetric. It consists of two parts. First, we make the zeros just
above the antidiagonal symmetric (this part, if necessary, is not a similarity, but regardless, it does
not change the eigenvalues of C). Then we apply a diagonal similarity transformation to the thus
changed C to make it symmetric.

Next, we show that if an entry ci,n−i in C just above the antidiagonal is zero, then setting the
corresponding entry cn−i,i on the other side of the main diagonal to zero does not change the
eigenvalues of C.
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Lemma 1. LetC be a TNJ anti-bidiagonal matrix such that ci,n−i = 0 for some i ∈ {1, 2, . . . , n −
1} and cn−i,i /= 0. Let G be obtained from C by setting cn−i,i to zero. Then C and G have the
same eigenvalues.

Proof. The proof becomes nearly obvious once we consider the tridiagonal matrices F = C2 and
H = G2. The matrices F and G only differ in positions (i + 1, i) and (n − i, n − i + 1), which
are zero in G and nonzero in F . The values of these entries have no bearing on the eigenvalues,
since both F and G are reducible (ci,n−i = gi,n−i = 0 imply fi,i+1 = fn−i+1,n−i = 0 = hi,i+1 =
hn−i+1,n−i ). Therefore, the eigenvalues of C2 and G2 are the same. We conclude the proof by
observing that the signs of the eigenvalues of C and G are the same (since both are TNJ ). �

Once the zeros above the anti-bidiagonal of C are in symmetric pairs, we make C symmetric
by replacing the elements on the antidiagonal, ci,n−i+1, by

√
ci,n−i+1cn−i+1,i for i = 1, 2, . . . , n,

and the ones just above them, ci,n−i , by
√

ci,n−icn−i,i for i = 1, 2, . . . , n − 1. This is a simple
diagonal similarity which, again, does not affect the eigenvalues of C.

4. Accurate reduction to a symmetric anti-bidiagonal

In this section, we describe how to accurately apply the transformations from the previous
section by implicitly transforming the bidiagonal decomposition BDJ without performing any
subtractions.

To this end, we need to show how to accurately perform the transformations (5) and (6):

P → Ei(−x) · P · ET
n−i+2(x) and P → ET

i+1(−x)PEn−i+1(x).

The transformation P → Ei(−x) · P is equivalent to setting an entry in BD(P ) to zero (see
[15, Section 4.1]). The transformation P → P · ET

n−i+2(x) is performed using the procedure
TNAddToNext from [16]. The similarity (5) is thus performed as

x = bij , bij = 0, B = TNAddToNext(BT, x, n − i + 2)T. (7)

For the similarity (6), the transformation P → P · En−i+1(x) is performed using Algorithm
4.2 from [15].

Finally, we show how to perform the transformation P → ET
i+1(−x) · P , where P is upper

triangular and TN.
Let BD(P ) be given as

P = DU(n−1)U(n−2) · · · U(1). (8)

We demonstrate only the first step, i.e., how to kill the (1, n) entry in P , the rest being analogous.
In other words, let P ′ be obtained from P by subtracting a multiple, x = p1n/p2n, of the second
row from the first in order to create a zero in position (1, n). We show how to compute BD(P ′)
from BD(P ) in O(n) operations without performing any subtractions (from the theory developed
in [11] we know that P ′ is also TN).

For that purpose we “push” the factor U(1) = ET
n (x1), where x1 = u

(1)
n−1, to the left of the

factorization (8):

P = DU(n−1)U(n−2) · · · U(3)U(2)U(1) (9)

= DU(n−1)U(n−2) · · · U(3)U(2)ET
n (x1)

= DU(n−1)U(n−2) · · · U(3)ET
n−1(x2)U

(2)
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= DU(n−1)U(n−2) · · · ET
n−2(x3)U

(3)
U

(2)

= · · ·
= DU(n−1)ET

3 (xn−2)U
(n−2) · · · U(3)

U
(2)

= DET
2 (xn−1)U

(n−1)
U

(n−2) · · · U(3)
U

(2)
(10)

= ET
2 (xn)DU

(n−1)
U

(n−2) · · · U(3)
U

(2)
. (11)

The matrices being transformed on each step are underlined. Each transformation step from (9)
to (10) proceeds according to the identity

ET
i−1(xk+1) ·

⎡
⎢⎢⎢⎣

1 ū1
. . .

. . .
1 ūn−1

1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 u1
. . .

. . .
1 un−1

1

⎤
⎥⎥⎥⎦ · ET

i (xk), (12)

where

xk+1 = ui−2xk

ui−1 + xk

, ūi−2 = ui−2ui−1

ui−1 + xk

, and ūi−1 = ui−1 + xk. (13)

The formulas (13) are easily verified by writing (12) as⎡
⎢⎢⎢⎢⎢⎢⎣

. . .
1 ūi−2 + xk+1 ūi−1xk+1

1 ūi−1
1

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

. . .
1 ui−2 ui−2xk

1 ui−1 + xk

1
. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The final step (11) is easy; for xn = xn−1d1/d2 we have

ET
2 (xn)D = DET

2 (xn−1).

Now xn = p1n/p2n is the multiple needed to kill the (1, n) entry of P by subtracting that
multiple of the second row from the first. Therefore, the bidiagonal decomposition BD(P ′) is

P ′ = ET
2 (−xn)P = DU

(n−1)
U

(n−2) · · · U(3)
U

(2)
. (14)

We utilize the same idea in the further reduction of the matrix P to bidiagonal form by extracting
factors ET

i from the right of the factorization (14) and pushing them through all the way on the
left.

Algorithm 1 (TNSubtractFromPrevious). Given the bidiagonal decomposition B = BD(P )

of an upper triangular TN matrix P , the following subtraction-free algorithm computes BD(P ′),
where P ′ is obtained from P by subtracting the multiple pij /pi+1,j of the (i + 1)st row from
the ith in order to create a zero in P in position (i, j), i < j − 1. We further assume that pij and
pi+1,j are the only nonzero entries in the upper right corner submatrix P(1: i + 1, j : n).

function [B, x] =TNSubtractFromPrevious (B, i, j )
x = bij

bij = 0
for k = j − 1 : −1 : i + 1

z = bik/(bi+1,k+1 + x)
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bik = bi+1,k+1z

bi+1,k+1 = bi+1,k+1 + x

x = zx

end
x = xbii/bi+1,i+1

The cost of Algorithm 1 is O(n) operations.

5. Eigenvalue algorithm

In this section, we present our main TNJ eigenvalue algorithm. It takes as input the bidiagonal
decomposition BDJ (A) of a TNJ matrix A and returns its eigenvalues to high relative accuracy.

It applies the transformations of Section 3 implicitly to BDJ (A) as described in Section 4
reducing A to a symmetric anti-bidiagonal matrix. The singular values σi = |λi | of the latter are
computed to high relative accuracy using the LAPACK [2] routine DLASQ1. The signs of the
eigenvalues we know from theory (see Section 2): sign(λi) = (−1)i−1 and do not compute them.

Algorithm 2 (TNJEigenvalues). Given the decomposition B = BDJ (A) of the TNJ matrix
A, the following algorithm computes all eigenvalues of A to high relative accuracy in O(n3) time:

function TNJEigenvalues(B)
n =size of the matrix
… first kill the lower triangular part
for j = 1 : n − 1

for i = n : −1 : j + 1

kill bij using the similarity (7)

end

end

…then kill everything above the superdiagonal
for j = n: −1: 3

for i = 1: j − 2

… kill bij using the similarity (6):

[B, x] =TNSubtractFromPrevious(B, i, j)

B =TNAddToPrevious(B, x, 1, n − i + 1)

kill the bulge bn−i+1,n−i using the similarity (7)

end

end
… B is now the BD of a bidiagonal; next, recover that bidiagonal:
for i = 1: n − 1

bi,i+1 = bi,i+1bii

end
… make the anti-bidiagonal BJ symmetric:
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for i = 1, 2, . . . , 
n/2�

replace bii and bn−i+1,n−i+1 by
√

biibn−i+1,n−i+1

replace bi,i+1 and bn−i,n−i+1 by
√

bi,i+1bn−i,n−i+1

end
Compute the singular values {σi}ni=1 of B using DLASQ1

The eigenvalues are {(−1)i−1σi}ni=1

The cost of Algorithm 2 is O(n3).
The error analysis of Algorithm 2 is identical to that of Algorithm 5.1 in [15]. The main

argument, again, is that every arithmetic operation of Algorithm 2 results in an at most ε relative
error of one entry of the bidiagonal decomposition BDJ of some intermediate TNJ matrix. Each
such error causes at most a 2ε/(1 − 2ε) perturbation in any eigenvalue (see Section 2 and [15,
Section 7]). Accumulating the perturbations throughout the algorithm results in an at most O(n3)ε

error in the final computed eigenvalues.

6. Numerical experiments

We performed a number of numerical experiments and verified the correctness and accuracy
of Algorithm 2, an implementation of which we made available online [14]. We report one of our
experiments here.

We computed the eigenvalues of the Vandermonde matrix V = [xj−1
i ]40

i,j=1 with nodes

(x1, x2, . . . , x40) = (4, 3.9, 3.8, . . . , 0.1). The matrix V a fairly ill conditioned (nonsymmetric)

0 5 10 15 20 25 30 35 40

10-20

10-10

100

1010

Eigenvalue index

|λ
i|

SREigenvalues
eig
|λmax|ε

Fig. 1. The absolute values of the eigenvalues the 40 × 40 Vandermonde matrix with nodes (4.0, 3.9, . . . , 0.1).
“O” = accurate, “+” = conventional.
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TNJ matrix (κ2(V ) = 2.4 × 1044). The entries of BDJ (V ) were computed to high relative
accuracy using the explicit formulas in [15, Section 3].

We compared the output of our Algorithm 2 with that of a conventional eigenvalue algorithm
as implemented in the MATLAB [18] command eig both in double precision arithmetic and in
80-decimal-digit arithmetic using the MATLAB command vpa. The output of Algorithm 2 agreed
with the one computed using 80-decimal-digit arithmetic to at least 14 decimal significant digits
confirming the accuracy of Algorithm 2.

Since the signs of the eigenvalues of V are not in question, in Fig. 1 we plotted the absolute
values of the eigenvalues of V computed by Algorithm 2 and those computed by eig in double
precision arithmetic.

We observe, as expected, that eig in double precision computes only the largest eigenvalues
of V accurately. The lack of symmetry in V and the effect of the angle between the left and right
eigenvectors explains the deterioration of the accuracy in the eigenvalue closest to, but larger than
|λmax|ε in absolute value.

7. Conclusions and open problems

We presented a new accurate algorithm for computing all eigenvalues of TNJ matrices. This
is the second accurate algorithm for sign regular matrices after Algorithm 5.1 from [15] for TN
matrices (the TN matrices are also sign-regular with ρk = 1 for all k). These two algorithms
handle 4 out of the 2n different classes of nonsingular sign regular matrices (the TNJ and TN
matrices, and the negatives thereof).

The eigenvector matrices can certainly be accumulated in Algorithm 2 as products of factors
each of which is highly accurate in the appropriate sense. This process, however, is prone to
massive subtractive cancellation and we guarantee no accuracy in the computed eigenvectors.

The problem of computing accurate eigenvalues of sign regular matrices with other “signatures”
{ρk} remains open. One major obstacle is that there is no known parameterization of the sign-
regular matrices with other signatures. In fact, we know of no efficient way to even generate sign
regular matrices other than TN, TNJ or their negatives. The only method we are aware of is the
limiting argument in Gantmacher and Krein [10, Chapter V, Section 5], which does not appear to
be numerically feasible.

The eigenvalue problem for singular TNJ (as well as TN) matrices is also open. The singular
TN and TNJ matrices do not possess unique bidiagonal decompositions, but it appears likely that
accurate algorithms can still be designed—this is a topic of current research.

The solutions to the TNJ singular value, QR, least squares, and linear systems problems follow
trivially from the solutions to the corresponding problems for TN matrices and can be found in
the papers [15,16].
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