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Abstract

We establish necessary and sufficient conditions, in the language of bidiagonal decompositions, for a
matrix V to be an eigenvector matrix of a totally positive matrix. Namely, this is the case if and only if V and
V −T are lowerly totally positive.

These conditions translate into easy positivity requirements on the parameters in the bidiagonal decom-
positions of V and V −T . Using these decompositions we give elementary proofs of the oscillating properties
of V. In particular, the fact that the jth column of V has j − 1 changes of sign.

Our new results include the fact that the Q matrix in a QR decomposition of a totally positive matrix
belongs to the above class (and thus has the same oscillating properties).
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1. Introduction

The matrices with all minors positive are called totally positive (TP). We consider the class
of matrices that are eigenvector matrices of TP matrices. We denote this class as ETP. The
TP matrices are diagonalizable and their eigenvalues are positive and distinct. For convenience
we assume that the columns of each ETP matrix are permuted so that the j th column is an
eigenvector corresponding to the j th largest eigenvalue. Furthermore, since we are concerned
with eigenvector matrices, all matrices in this paper are assumed to be n × n square
matrices.

The utilization of bidiagonal decompositions as means of studying the properties of TP and
related matrices has been particularly prominent in recent works [3,4,6,8,9]. Here we take the
same approach with the ETP matrices. We establish a classification of the ETP matrices in the
language of bidiagonal decompositions. In particular, we prove that a matrix V is ETP if and
only if the multipliers needed to eliminate the lower triangular parts of V and V −T in the process
of Neville elimination are positive (see Sections 2 and 3 for the formal definitions of these
notions).

Using bidiagonal decompositions we give new elementary proofs of the oscillating properties
of ETP matrices. In particular, the fact that the j th column of any ETP matrix has exactly j − 1
changes of sign.

The above characterization of ETP matrices shows that any orthogonal matrix Q in the QR
decomposition of a TP matrix is an eigenvector matrix of some symmetric TP matrix. In particular,
the j th column of Q has exactly j − 1 changes of sign.

The paper is organized as follows. In Section 2 we survey the bidiagonal decompositions of
TP matrices. We characterize the ETP matrices in terms of their bidiagonal decompositions in
Section 3. We give elementary proofs of the oscillating properties of TP and ETP matrices in
Sections 4 and 5. Finally, we include two technical proofs in an Appendix.

Notes on notation:

• The matrices with all minors nonnegative are called totally nonnegative (TN). The TN
matrices some of whose power is TP are called oscillatory [5]. Since we are primarily
concerned with the oscillating properties of the eigenvectors of TP matrices, we call the
ETP matrices “oscillating systems of vectors” in the title in order to avoid possible confusion
with the notion of oscillatory matrices.

• We use conventional notation for submatrices: A(i1, i2, . . . , ip|j1, j2, . . . , jq) is the subm-
atrix of A consisting of rows i1, i2, . . . , ip and columns j1, j2, . . . , jq .

2. Background

The idea of using bidiagonal decompositions in the study of TP matrices has been very suc-
cessful recently. These decompositions are based on a simple idea of eliminating a matrix using
only adjacent rows and columns, which can be traced back to Whitney [12]. We review the main
facts here and refer the reader to [3,4,8,9] for details.

The bidiagonal decomposition of a matrix A is obtained by eliminating it (in a process called
Neville elimination) using adjacent rows and columns. Each (row) elimination step is equivalent
to factoring out (on the left) a matrix
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Ei(x) ≡

⎡
⎢⎢⎢⎢⎢⎢⎣

1
. . .

x1
. . .

1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

which differs from the identity only in the (i, i − 1) entry.
The lower triangular part of a matrix (call it A) is eliminated one subdiagonal at a time, starting

with the (n, 1) entry. Once the matrix is reduced to an upper triangular form, the same process is
applied by columns resulting in the decomposition:

A =
⎛
⎝n−1∏

i=1

n∏
j=n−i+1

Ej(bj,i+j−n)

⎞
⎠ D

⎛
⎝i=n−1∏

1

j=n∏
n−i+1

ET
j (bi+j−n,j )

⎞
⎠ , (1)

where D = diag(b11, b22, . . . , bnn). In the notation of (1) and throughout this paper,
∏i=n−1

1
indicates that the product is taken for i from n − 1 down to 1. Although somewhat nonstandard,
this notation allows us to preserve the symmetry in (1).

According to a result of Gasca and Peña [8, Theorem 4.3], A is TP if and only if (1) exists, it
is unique, and bij > 0, i, j = 1, 2, . . . , n.

If we group the factors in the parentheses of (1) into factors L and U then (1) becomes A =
LDU – the LDU decomposition of A (which could also be obtained from Gaussian elimination
with no pivoting).

The factors L and U in the LDU decomposition of a TP matrix inherit the total positiv-
ity properties with respect to their nontrivial minors [6]. This leads us to the following
definition.

Definition 1 (LTP matrix). A matrix is called lowerly totally positive (denoted as LTP) if it
is nonsingular, its LDU decomposition exists, and all nontrivial minors of the L factor in that
decomposition are positive (i.e., all minors of the form det(L(i1, i2, . . . , ip|j1, j2, . . . , jp)) such
that i1 � j1, i2 � j2, . . . , ip � jp).

In other words, a nonsingular matrix A = LDU is LTP if and only if all multipliers bij for
i > j in the decomposition (1) of L are positive. The D factor can have any (nonzero) entries on
the diagonal.

This definition differs from the one used by Cryer [2] and Gasca and Peña [7] in that we
do not impose any positivity restrictions on the D factor of the LDU decomposition (other
than to be nonsingular). The intuition is that the LTP structure of a matrix is unaffected by
right diagonal scaling, just like the ETP structure of a matrix is unaffected by such diagonal
scaling.

For the LDU decomposition A = LDU of a TP matrix A, we have that L and UT are LTP and
D has a positive diagonal [6].
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3. DLTP matrices

Definition 2. We call a matrix V doubly lowerly totally positive (denoted as DLTP) if V and V −T

are LTP.

In this section we prove that a matrix V is ETP if and only if it is DLTP.
The fact that any ETP matrix is LTP stems from the following result.

Theorem 1 [1]. Any TP matrix A with eigenvalues λ1 > λ2 > · · · > λn > 0 is similar to the
bidiagonal matrix

B =

⎡
⎢⎢⎢⎢⎢⎣

λ1 λ1 − λ2
λ2 λ1 − λ3

. . .
. . .

λn−1 λ1 − λn

λn

⎤
⎥⎥⎥⎥⎥⎦

via a similarity transformation matrix S that is TN and LTP.

The eigenvector matrix of A is thus LTP as a product of S, which is LTP, and an eigenvector
matrix of B, which is upper triangular.

The result of Carnicer and Peña [1] differs slightly from the claim of Theorem 1: the authors
prove that S is TN under the weaker assumption that A is oscillatory. A careful examination of
their construction reveals that when A is TP, S is also LTP. We thus attribute Theorem 1 to them
and defer its elaborate, but straightforward proof to the Appendix.

The following lemma establishes that for a DLTP matrix, the D factors in the LDU decompo-
sitions of A and A−T have the same sign patterns. This property is critical in the proof of Theorem
2 below.

Lemma 1. Let A be DLTP and let A = LDU and A−T = L̄D̄Ū be the LDU decompositions of
A and A−T , respectively. Then DiiD̄ii > 0 for i = 1, 2, . . . , n.

Proof. We haveD−1U−T = LT A−T = (LT L̄) · (D̄Ū) = L′D′U ′D̄Ū , whereL′D′U ′ is the LDU
decomposition of the TP matrix LT L̄. Therefore

(D−1U−T D) · D−1 · I = L′ · (D′D̄) · (D̄−1U ′D̄Ū). (2)

Since both sides of (2) are LDU decompositions of the same matrix, the corresponding factors
must be equal. In particular, D−1 = D′D̄ and the result follows. �

Theorem 2. A matrix V is DLTP if and only if it is ETP.

Proof. If V is the eigenvector matrix of a TP matrix (say) A, then V is LTP according to Theorem
1. On the other side V −T , as an eigenvector matrix of the TP matrix AT , is also LTP. Thus V is
DLTP.

Conversely, if V is DLTP, we follow idea of Gantmacher and Krein [5, Theorem 19, p. 272].
Let � = diag(λ1, λ2, . . . , λn), where the λi are such that λ1 > λ2 > · · · > λn > 0, but other-

wise arbitrary. We will prove that some (high enough) power of A = V �V −1 is TP.
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Let F = Am = V �mV −1. From the Cauchy–Binet identity we have for any minor of F :

det(F (i1, . . . , ip|k1, . . . , kp)) =
∑

1�α1<···<αp�n

λm
α1

· · · λm
αp

× det(V (i1, . . . , ip|α1, . . . , αp)) · det(V −1(α1, . . . , αp|k1, . . . , kp)), (3)

where 1 � i1 < · · · < ip � n and 1 � k1 < · · · < kp � n. For large enough m, the sign of this
minor is dominated by its leading term,

λm
1 · · · λm

p · det(V (i1, . . . , ip|1, . . . , p)) · det(V −T (k1, . . . , kp|1, . . . , p)), (4)

which is positive (since V and V −T are LTP and the D factors in the LDU decompositions of V

and V −T have the same sign pattern on the diagonal—see Lemma 1). �

The following theorem describes the properties of the upper triangular factor of a DLTP matrix.

Theorem 3. If A = LDU is DLTP and D has a positive diagonal, then U−T is LTP.

Proof. With the notation as in Lemma 1, D−1U−T = L′D′U ′D̄Ū . By comparing the lower
triangular factors we get D−1U−T D = L′ is LTP. Since D has positive diagonal, the result
follows. �

Note: A matrix A = LDU such that L and U−T are LTP and D has a positive diagonal is
called a γ -matrix [7]. The γ -matrix property is necessary, but not sufficient to characterize the
eigenvector matrices or the Q factors of TP matrices. In addition, the γ -matrix property requires
the eigenvector matrices and the Q factors to be appropriately scaled.

Corollary 1. An orthogonal matrix Q is LTP if and only if it is a Q factor in a QR decomposition
of a TP matrix. In this case Q is DLTP.

Proof. If A = QR and R is upper triangular, then A and Q share the L factor in their respective
LDU decompositions. Therefore, if A is TP, then Q is LTP. Conversely, if Q = LDU is orthogonal
and LTP, then Q is the Q factor in the QR decomposition of any TP matrix LD̄Ū , where D̄ is
diagonal with positive entries on the diagonal and Ū is unit upper triangular and upperly totally
positive (i.e., ŪT is LTP).

Since Q is orthogonal, Q−T = Q. Thus Q is DLTP. �

In particular, Q has the same oscillating properties as the eigenvector matrices of TP matrices
and the number of sign changes in the j th column of Q is exactly j − 1 (see Section 5).

Theorem 2 implies the following about the structure of orthogonal LTP matrices.

Corollary 2. Every LTP orthogonal matrix Q is an eigenvector matrix of some symmetric
TP matrix. Therefore, if we choose the first nonzero entry in each eigenvector to be positive,
the orthogonal eigenvector matrices Q of the symmetric TP matrices are parameterized by
the n(n − 1)/2 positive multipliers bij > 0, i > j, in the bidiagonal decomposition
of Q.
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We finish this section with a characterization of those matrices A (not necessarily TP or with
positive entries) that have real eigenvalues and DLTP eigenvector matrices. As explained in
Section 5 this property implies that the eigenvectors have oscillating properties.

Corollary 3. Let A be a real matrix with real distinct eigenvalues ordered as |λ1| > |λ2| > · · · >

|λn| > 0, and V be any eigenvector matrix of A corresponding to this ordering. Then V is DLTP
if and only if there exists a positive integer m0 such that A2m is TP for m � m0.

Proof. We follow the arguments in (3) and (4) with A2m. �

4. Variation-diminishing properties of TP matrices

The bidiagonal decompositions of nonsingular TN matrices can be used to obtain easy proofs of
certain well known (see, e.g., [5]) variation-diminishing properties for these matrices. In particular,
a multiplication by a nonsingular TN matrix does not increase the number of sign changes in a
vector. This result is mentioned without proof in [3, Section 4.4], and we are unaware of a proof
(using bidiagonal decompositions) anywhere else. For completeness, we include one here.

First, we recall the definition of number of sign changes in a vector.

Definition 3 (Number of sign changes [5, p. 86]). Let u1, u2, . . . , un be a sequence of numbers.
If some of the numbers are zero, then we can assign them arbitrary signs. The number of sign
changes of the above sequence is then the number of instances for i = 1, 2, . . . , n − 1 where ui

and ui+1 have different signs. Depending on our choice of signs of the zero components we can
have a different number of sign changes. We define S−

u and S+
u to be the minimum and maximum

number of sign changes among all possible choices of signs of the zero components.
If S−

u = S+
u , we say that the (exact) number of sign changes of the vector u is Su = S−

u = S+
u .

Next, we establish that the simplest nontrivial TN matrix, Ei(x), x > 0, does not diminish the
maximum number of sign changes in a vector.

Lemma 2. Let u be an n-vector and w=Ei(x) · u or w=Ei(x)T · u, where x >0. Then S+
w �S+

u .

Proof. We first prove the case w = Ei(x) · u. We have wj = uj for j = 1, 2, . . . , i − 1, i +
1, . . . , n, and wi = ui + xui−1.

We assume that ui−1 /= 0, otherwise w = u and the claim is trivially true. Without loss of
generality we can also assume that ui−1 > 0, since S+−u = S+

u .
Consider first the case ui � 0. Then we have wi > 0. We assign the same signs to the entries

of u as the corresponding signs assigned to the entries of w in the computation of S+
w . (We can

always do this. We have uj = wj , j /= i. The ith entry of w, wi > 0, is counted with a positive
sign in S+

w . We thus assign the same (positive) sign to ui � 0.) With signs thus assigned u has S+
w

sign changes. Therefore S+
w � S+

u .
Alternatively, we consider the case ui < 0. We can assume that wi is counted in S+

w with a
positive sign (otherwise S+

u = S+
w ). For j = 1, 2, . . . , i − 1, i + 1, . . . , n, we assign to uj the

same sign as the one assigned to wj in the computation of S+
w . Denote by S the thus obtained

number of sign changes in u. We claim that S+
w � S � S+

u . The second inequality is obvious. To
see that the first one is true, we consider the sequences
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sign(ui−1, ui, ui+1) = (+, −, ∗) and sign(wi−1, wi, wi+1) = (+, +, ∗),

where the “∗” stands for the same sign (“+” or “−”) assigned to both ui+1 =wi+1. If sign(ui+1)=
sign(wi+1) = +, then S+

w + 2 = S. If sign(ui+1) = sign(wi+1) = −, then S+
w = S.

We are done.
The case w = Ei(x)T · u is analogous. �

By applying the above lemma repeatedly, we obtain the following corollary.

Corollary 4 (TN variation diminishing property). For any real vector u and a nonsingular TN
matrix A, S+

Au � S+
u and S−

Au � S−
u .

Proof. According to Theorem 4.2 in [8], A can be uniquely factored in the form (1) with bii >

0, i = 1, 2, . . . , n, and bij � 0, i /= j .3 Then the first assertion follows by repeatedly applying
Lemma 2.

To prove the second, let J = diag(−1, 1, −1, . . . , (−1)n). If w = Au then Ju = BJw, where
B = JA−1J is the re-signed inverse of A, which is also nonsingular and TN (see, e.g., [5,
Proposition 5◦, p. 75]).

From Lemma 2, S+
Ju = S+

BJw � S+
Jw. Since for any n-vector v, S+

v + S−
Jv = n − 1, we have

S−
u � S−

w = S−
Au. �

When A is TP a much stronger result is true: S+
Au � S−

u . To prove it, we need the following
lemma.

Lemma 3. If A is TP, then for every i, 2 � i � n, there exist TP matrices B and C, and positive
numbers x and y, such that

A = B · Ei(x) and A = C · ET
i (y).

Proof. This lemma is nearly obvious if we use a limiting argument: From Cauchy–Binet, any
minor of B = A · Ei(−x) is a linear function of x, say ax + b, where b > 0 is the value of the
same minor in A. Clearly, for small enough x all minors of B are positive. The second claim
follows analogously. �

However, in the spirit of the rest of this paper, in the Appendix we give a second, constructive
proof of Lemma 3 based on bidiagonal decompositions, by providing an explicit way to factor an
Ei(x) out of A.

Theorem 4 (TP variation diminishing property). If A is TP and u is a nonzero n-vector, then
S+

Au � S−
u .

Proof. One way to compute S−
u is to count any zero (say ui) in u with the same sign as the sign of

the first nonzero component in u following ui . The trailing zero components of u can be counted
with the same sign as the last nonzero in u.

3 Additionally, bij , i /= j , must satisfy bij = 0 if bi−1,j = 0 and i > j , and bij = 0 if bi,j−1 = 0 and i < j . However,
these conditions are unimportant here.
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The main idea here is to factor appropriate Ei(x) and ET
i (y) out of A and factor them into u

to make the zero components of u nonzeros with the same signs as in the above computation of
S−

u .
The construction is straightforward.
If ui−1 = 0 but ui /= 0, we use Lemma 3 to write A = F · ET

i (y) for some y > 0, where F

is TP. If v = ET
i (y)u, then vi−1 = yui (the magnitude of y is unimportant; its only purpose is

to make vi−1 have the same sign as ui). We continue this process until we obtain a vector (call
it p) which can only have zero components at the end, say pk = · · · = pn = 0, but pk−1 /= 0.
By factoring out Ej(xj ), j = k, k + 1, . . . , n and factoring them into p we obtain a new vector
(call it q) which has no zero components and Sq = S+

q = S−
u . If A = BC where q = Cu, then

w = Au = BCu = Bq. By applying Corollary 4 we obtain S+
w � S+

q = S−
u . �

5. Oscillating properties of ETP matrices

In this section we use the bidiagonal decompositions of ETP matrices to establish their oscil-
lating properties.

Theorem 5. Let the n × n matrix A be LTP and let

u = c1a1 + c2a2 + · · · + ckak,

where c1, c2, . . . , ck are arbitrary real constants such that ck /= 0, and a1, a2, . . . , an are the
columns of A. Then

S+
u � k − 1.

Proof. We have u = Ac, where c = (c1, c2, . . . , ck, 0, . . . , 0)T . Let A = LDU be the LDU
decomposition of A, since L is LTP and unit lower triangular, from (1), we get

L =
n−1∏
i=1

n∏
j=n−i+1

Ej(bj,i+j−n). (5)

The matrices Ei(x) satisfy Ei(x)Ej (y) = Ej(y)Ei(x), unless |i − j | = 1. Thus we can re-order
the factors in (5) to obtain for A:

A =
⎛
⎝n−1∏

i=1

j=n∏
i+1

Ej(bji)

⎞
⎠ · D · U ≡ LDU. (6)

We can think of (6) as having been obtained by performing Neville elimination one column at a
time. Clearly the same multipliers would be used.

Let v = DUc. Since ck /= 0 and ci = 0 for i > k, we have

v = (v1, v2, . . . , vk, 0, 0, . . . , 0),

where vk /= 0 and vi = 0 for i > k. In turn, the condition vi = 0 for i > k implies Ei(x) · v = v

for i > k + 1. Thus

u = Ac = Lv =
⎛
⎝n−1∏

i=1

j=n∏
i+1

Ej(bji)

⎞
⎠ · v =

⎛
⎝ k∏

i=1

j=n∏
i+1

Ej(bji)

⎞
⎠ · v.
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Let

w ≡
⎛
⎝j=n∏

k+1

Ej(bjk)

⎞
⎠ · v.

We have wi = vi for i = 1, 2, . . . , k and wi = bikbi−1,k · · · bk+1,kvk /= 0 for i > k. Since bij > 0
for i > j , the entries wk, wk+1, . . . , wn have the same sign (and are nonzero). Therefore S+

w �
k − 1.

Now

u =
⎛
⎝k−1∏

i=1

j=n∏
i+1

Ej(bji)

⎞
⎠ · w

and Lemma 2 implies S+
u � S+

w = k − 1. �

For our next result we recall the notions of a converse matrix and that of a re-resigned matrix.
If A = [aij ]ni,j=1, then its converse

A# ≡ [an−i+1,n−j+1]ni,j=1

is obtained by reversing the rows and columns of A. Also, we re-sign a matrix by reversing the
signs of the entries in a checkerboard pattern:

A∗ ≡ [(−1)i+j aij ]ni,j=1.

The matrices A# and A∗ are similar to A and one can trivially verify that A−T is LTP if and only
if A∗# is LTP (using, e.g., Cauchy–Binet).

Theorem 6. Let the matrixAbe DLTP and letaj , j = 1, 2, . . . , n,be its columns. If ci, ci+1, . . . , cj ,(∑j
k=i c2

k /= 0
)

is a sequence of real numbers, then the number of sign changes of

u = ciai + ci+1ai+1 + · · · + cj aj

lies between i − 1 and j − 1, i.e.,

i − 1 � S−
u � S+

u � j − 1.

In particular, the number of sign changes in aj is exactly j − 1.

Proof. Since A is LTP, Theorem 5 implies that S+
u � j − 1.

Now consider the matrix A∗#. Let its columns be ā1, . . . , ān. Since A∗# is LTP, Theorem 5
implies that the maximum number of sign changes of the vector

w = cj ān−j+1 − cj−1ān−j+2 + · · · + (−1)i−j ci ān−i+1

does not exceed n − i, i.e., S+
w � n − i. From S−

u + S+
w = n − 1 we have S−

u � i − 1. �

Theorem 6 allows us to also prove that the nodes of two successive eigenvectors alternate (see,
e.g., [5, p. 90]), which is another fundamental oscillating property of ETP matrices. Additionally,
Corollary 1 implies that the columns of the Q factor of a TP matrix also have this property.
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Appendix A

In this appendix we prove Theorem 1 and provide an alternative, constructive proof of Lemma 3.
The proofs are elaborate, but straightforward manipulations of the underlying bidiagonal decom-
positions.

Before we continue, we extend our notation from (1).
The matrices

L(i) ≡
n∏

j=n−i+1

Ej(bj,i+j−n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

bn−i+1,1 1
bn−i+2,2 1

. . .
. . .
bn,i 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.1)

and

U(i) ≡
j=n∏

n−i+1

ET
j (bi+j−n,j ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . . b1,n−i+1

1 b2,n−i+2

1
. . .
. . . bi,n

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

are n × n lower and n × n upper bidiagonal, respectively. The decomposition (1) now becomes

A = L(1) · · · L(n−1) · D · U(n−1) · · · U(1).

Proof of Theorem 1. We follow the construction of Carnicer and Peña [1].4

In the first part of the proof the authors construct unit lower triangular TN matrices R and P

such that T = (RP #)−1 · A · (RP #) is tridiagonal.
The matrix R is constructed as a product of Ei(bij ) with exactly one such factor for every

entry in the lower triangular part of A that is set to zero. The order in which the zeros are created
is the same as that of Neville elimination applied by columns, thus

R =
n−2∏
i=1

j=n∏
i+2

Ej(bji).

The matrices Ei(x) satisfy Ei(x)Ej (y) = Ej(y)Ei(x), unless |i − j | = 1, thus we can re-order
the factors of R to get

R =
n−2∏
i=1

n∏
j=n−i+1

Ej(bj,i+j−n).

Using the notation of (A.1) we have

R = L(1)L(2) · · · L(n−2),

4 Note that the authors of [1] call the TN matrices totally positive and the TP matrices strictly totally positive.
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where all nontrivial entries bij , i > j , in L(1), L(2), . . . , L(n−2) are nonzero. Similarly we write

P # = U(n−2)U(n−1) · · · U(1)

and thus

V ≡ RP # = L(1)L(2) · · · L(n−2)U(n−2)U(n−1) · · · U(1).

We are clearly missing the last factor L(n−1) in order to claim that the transformation matrix is
LTP. This factor will come from the step of bidiagonalization of T .

The construction from here on is involved but the idea is simple. The bidiagonalization of
T consists of n − 1 steps of updating V by multiplying on the right by matrices of the type
D(k) · En(1)En−1(1) · · · Ek(1) for k = 2, . . . , n, where the matrices D(k) are diagonal with pos-
itive entries. Thus the first step is

V1 =V · D(2) · En(1)En−1(1) · · · E2(1)

=RP # · D(2) · En(1)En−1(1) · · · E2(1).

Using the techniques of [10, Section 4.2], we can propagate each of the factors D(2),

En(1), En−1(1), . . . , E3(1) into the decomposition RP # changing the bidiagonal factors accord-
ingly, but not affecting their nonzero structure. The last factor, E2(1), we only propagate up to
the left of the diagonal factor, obtaining

V1 = L
(1)
1 L

(2)
1 · · · L(n−2)

1 E2(x1)D1U
(n−2)
1 U

(n−3)
1 · · · U(1)

1 .

After n − 1 such steps we have

Vn−1 = L
(1)
n−1L

(2)
n−1 · · · L(n−2)

n−1 · (E2(x1)E3(x2) · · · En(xn−1))

× Dn−1U
(n−2)
n−1 U

(n−3)
n−1 · · · U(1)

n−1.

Setting L
(n−1)
n−1 = E2(x1)E3(x2) · · · En(xn−1) we obtain the decomposition

Vn−1 = L
(1)
n−1L

(2)
n−1 · · · L(n−1)

n−1 Dn−1U
(n−2)
n−1 U

(n−3)
n−1 · · · U(1)

n−1.

The similarity transformation matrix is thus TN and LTP (but not TP), since xi > 0, for i =
1, . . . , n − 1, according to [10, Section 4.2]. �

Constructive Proof of Lemma 3. Let A = UDL be the UDL decomposition of A. It suffices
to prove that we can factor L as L = L̄ · Ei(x) for some x > 0, where L̄ is again unit lower
triangular and LTP.5

We will use the reverse process of the one used in the last part of the proof of Theorem 4.3
in [10]; these transformations ((4.5)–(4.7) in [10]) produced the bidiagonal decomposition of the
product of a lower triangular matrix and a matrix Ej(x). We are now in the reverse situation –
factoring an Ej(x) out of a lower triangular LTP matrix.

We start with the bidiagonal decomposition of L

L = L(1)L(2) · · · L(n−1).

5 The UDL decomposition of A and the bidiagonal decompositions of the factors L, D, and U in that decomposition can
be easily obtained from the bidiagonal decomposition of A as follows. If the LDU decomposition of A# is A# = L̃D̃Ũ ,
then U = L̃#, D = D̃#, L = Ũ#. The bidiagonal decompositions of converse matrices are easily obtained as described
in [11, Section 5.4].
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Next, we split the (n, n − 1) entry in L(i−1) in two and factor L(i−1) accordingly. Let x1 =
1
2 (L(i−1))n,n−1. Then L(i−1) = L̄(i−1)En(x1), where L̄(i−1) equals L(i−1) with the exception of
its (n, n − 1) entry which is (L̄(i−1))n,n−1 = x1. We move the “bulge” En(x1) all the way to the
right

L=L(1)L(2) · · · L(i−1) · L(i) · L(i+1) · · · L(n−1) (A.2)

=L(1)L(2) · · · L̄(i−1) · En(x1) · L(i) · L(i+1) · · · L(n−1)

=L(1)L(2) · · · L̄(i−1) · L̄(i) · En−1(x2) · L(i+1) · · · L(n−1)

=L(1)L(2) · · · L̄(i−1) · L̄(i) · L̄(i+1) · En−2(x3) · · ·L(n−1)

= . . .

=L(1)L(2) · · · L̄(i−1) · L̄(i) · L̄(i+1) · · · Ei+1(xn−i )L
(n−1)

=L(1)L(2) · · · L̄(i−1) · L̄(i) · L̄(i+1) · · · L̄(n−1)Ei(xn−i+1)

=L̄ · Ei(xn−i+1)

(the matrices that are transformed on each step are underlined), where

L̄ ≡ L(1)L(2) · · · L̄(i−1) · L̄(i) · L̄(i+1) · · · L̄(n−1).

Each transformation step in (A.2) is performed using the relationship

En−j (xj+1)L
(i+j) = L̄(i+j)En−j−1(xj+2) (A.3)

for j = 0, 1, . . . , n − i − 1.
Let the offdiagonal entries of L(i+j) and L̄(i+j) in (A.3) be l1, . . . , ln−1 and l̄1, . . ., l̄n−1,

respectively. Then by comparing entries of both sides of (A.3) we have that L(i+j) equals L̄(i+j)

with the exception of:

l̄n−j−1 = ln−j−1 + xj+1, l̄n−j−2 = ln−j−2ln−j−1

l̄n−j−1
, xj+2 = ln−j−2xj+1

l̄n−j−1
,

(this is analogous to (4.13)–(4.16) in [10]).
The key observation here is that the nonzero patterns of L(i+j) and L̄(i+j) are the same, the

nontrivial entries of L̄(i+j) remain positive, the zeroes remain zero, and xj+2 > 0.
Therefore, at the end, L̄ is LTP and x ≡ xn−i+1 > 0.
Note that this method is particularly fit for numerical computations. Since it does not involve

subtractions, it will not suffer from roundoff-induced subtractive cancellation and loss of relative
accuracy. �
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