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Abstract

The K-orthogonal group of an n-by-n matrix K is defined as the set of nonsingular n-by-n matrices
A satisfying ATKA = K , where the superscript T denotes transposition. These form a group under matrix
multiplication. It is well-known that if K is skew-symmetric and nonsingular the determinant of every element
of the K-Orthogonal group is +1, i.e., the determinant of any symplectic matrix is +1. We present necessary
and sufficient conditions on a real or complex matrix K so that all elements of the K-Orthogonal group have
determinant +1. These necessary and sufficient conditions can be simply stated in terms of the symmetric
and skew-symmetric parts of K, denoted by Ks and Kw respectively, as follows: the determinant of every
element in the K-Orthogonal group is +1 if and only if the matrix pencil Kw − λKs is regular and the matrix
(Kw − λ0Ks)

−1Kw has no Jordan blocks associated to the zero eigenvalue with odd dimension, where λ0
is any number such that det(Kw − λ0Ks) /= 0.
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1. Introduction

Every n-by-n matrix K with entries in a field F has an associated bilinear form 〈x, y〉 = xTKy,
where x and y are n-by-1 column vectors with entries in F, and the superscript T means trans-
position. A nonsingular matrix A satisfying ATKA = K represents an isometry of this bilinear
form and is said to be orthogonal with respect to K or K-Orthogonal. It is easily seen that for
any K the set of K-Orthogonal matrices is a group, which we call the K-Orthogonal group. If
the determinant of some K-Orthogonal matrix is d , the K-Orthogonal group is said to admit
determinant d. We will assume that F = R or C, i.e. we consider only matrices with real or
complex entries.

A classical result on K-Orthogonal groups is

Theorem 1.1. If K is nonsingular and skew-symmetric then the K-Orthogonal group only admits
determinant +1, i.e. every K-Orthogonal matrix has determinant +1.

Matrices orthogonal with respect to a nonsingular and skew-symmetric matrix K are usually
called symplectic, and they constitute one of the most important matrix groups [2]. In fact, the
classical Theorem 1.1 has received attention very recently and several proofs of it may be found
in [1,6]. For every real (complex) nonsingular and skew-symmetric matrix K there exists a real

(complex) nonsingular matrix S such that STKS = Jp, where Jp =
(

0 −Ip
Ip 0

)
with Ip the p-by-

p identity matrix. For real matrices, this follows from [4, Corollary 2.5.14, p. 107] by performing
perfect shuffle permutations of rows and columns, and, for complex matrices, from [4, Problem
26, p. 217]. This property implies that to prove Theorem 1.1, one only needs to consider the case
K = Jp.

Theorem 1.1 raises an interesting and natural question, namely, what are necessary and suf-
ficient conditions on an n-by-n matrix K such that if ATKA = K then det A = +1? To answer
this question is the purpose of this paper. An essential ingredient in this task is the canonical
form for matrix congruence [5], or more precisely the canonical form under congruence of the
matrix pair (or pencil) of the unique skew-symmetric and symmetric parts of K , i.e., (Kw, Ks)

(or Kw − λKs), where Kw ≡ (K − KT)/2 and Ks ≡ (K + KT)/2 [9]. The main result we prove
in terms of properties of canonical forms under congruence appears in Theorem 4.9. Due to the
fact that the canonical form for matrix congruence is rather complicated, necessary and sufficient
conditions for the determinant of every element of the K-Orthogonal group to be +1 are also
written in terms of more basic matrix properties. This is also presented in the main Theorem
4.9. These conditions are extremely simple in the case of nonsingular K; see Corollary 4.11. We
will see that if n is even then for almost all n-by-n matrices K , every K-Orthogonal matrix has
determinant +1. This is a mildly surprising fact by taking into account that the usual orthogonal
group (K = I ) has elements with determinant +1 and −1.

Subsequent to the completion of this paper, we found that the problem we deal with has been
recently considered in [7]. This reference treats the problem in the context of abstract bilinear
spaces and group theory for arbitrary fields of characteristic not 2. Here, we follow a fully different
approach by using only matrix analytic tools to yield simple and checkable necessary and sufficient
conditions in terms of basic matrix canonical forms. We think that these conditions are more useful
for the Matrix Analysis Community than the abstract conditions in [7].

The paper is organized as follows: in Section 2 several basic tools are introduced. Section 3 is
devoted to an exhaustive description of the canonical forms under congruence of real and complex
matrices. The final Section 4 has two parts: a set of technical lemmas are proved in Subsection 4.1;
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based on these lemmas the main Theorem 4.9 is proved in Subsection 4.2, and the two interesting
Corollaries 4.10 and 4.11 are presented. They provide, respectively, an abstract answer to our
problem and a simple characterization of nonsingular matrices with orthogonal groups admitting
only determinant one.

2. Preliminaries

In this section we present four auxiliary results frequently used throughout the paper. The set
of n-by-n matrices with entries in F is denoted by Mn(F), where F = R or C. For simplicity of
exposition, let us define:

�n ≡ {K ∈ Mn(F)|ATKA = K implies det (A) = +1}. (2.1)

In the first place, let us recall that two matrices (complex or real) K and X are congruent1 if there
exists a nonsingular matrix S such that STXS = K . We will often denote K is congruent to X by
K ∼= X. The first important remark is that �n membership is invariant under congruence.

Proposition 2.1. Let K and X be two congruent matrices in Mn(F). Then K ∈ �n if and only if
X ∈ �n. Furthermore, let STXS = K with S nonsingular, then A is an element of the
K-Orthogonal group if and only if SAS−1 is an element of the X-Orthogonal group.

Proof. ATKA = K is equivalent to (SAS−1)TX(SAS−1) = X, from which the result follows
trivially. �

Proposition 2.1 suggests the main strategy in this paper: to find a matrix STKS, where S is
nonsingular, with the simplest possible form, and solve the problem for this matrix. The second
relevant remark is the following proposition.

Proposition 2.2. Let K ∈ Mn(F) and Kw and Ks be, respectively, the skew-symmetric and sym-
metric parts of K, i.e., Kw ≡ (K − KT)/2 and Ks ≡ (K + KT)/2. Then the K-Orthogonal
group is equal to the intersection of the Kw-Orthogonal and Ks-Orthogonal groups.

Proof. The uniqueness of the skew-symmetric and symmetric parts implies that ATKA = K if
and only if ATKwA = Kw and ATKsA = Ks . �

Proposition 2.2 and Theorem 1.1 imply the following extension of the classical Theorem 1.1.

Theorem 2.3. Let K ∈ Mn(F) with det (K − KT) /= 0. Then K ∈ �n.

Direct sums of matrices [4, Section 0.9.2] will play a relevant role in this paper. We will use
very often, without explicitly mentioning, the following two properties that relate congruence and
direct sums: A ⊕ B ∼= B ⊕ A by simple permutation matrices; and A ∼= B ⇒ A ⊕ C ∼= B ⊕ C

by the identity direct summed with the same congruence matrix as for A and B. The following
result shows why direct sums are important in this work.

1 In [4, Definition 4.5.4, p. 220], two types of congruences are considered: ∗congruence and T congruence. In this work,
we only deal with T congruence even in the case of complex matrices.
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Proposition 2.4. Let K ∈ Mn(F). If K is congruent to a direct sum with an odd-dimensional
direct summand then K /∈ �n. In particular if n is an odd number then K /∈ �n.

Proof. Let us assume that K ∼= Y1 ⊕ Y2, with Y1 ∈ Mn1(F) and Y2 ∈ Mn2(F), and that n1 is
odd. Then (−In1) ⊕ In2 is in the orthogonal group of Y1 ⊕ Y2, and det((−In1) ⊕ In2) = −1.

Proposition 2.1 implies that K /∈ �n. �

If n is even the set of matrices K with det (K − KT) = 0 forms an algebraic manifold of
codimension 1 in the set Mn(F). Therefore, Theorem 2.3 implies that the set of matrices K /∈ �n

has zero Lebesgue measure, i.e., matrices whose K-Orthogonal groups contain elements with
determinants different from +1 are extremely rare from a probabilistic point of view.

3. Canonical forms under congruence

As suggested by Proposition 2.1, we look for the simplest matrix that is congruent with a given
matrix K , i.e., the canonical form for matrix congruence of K . This problem was solved for real
matrices in [5, Theorem II], by observing that every real matrix K can be expressed as Kw − ρKs

where Kw and Ks are, respectively, the skew-symmetric and symmetric parts of K , and ρ = −1.
Then [9, Theorem 2(c)] is applied to the skew-symmetric/symmetric pencil Kw − ρKs to get a
canonical form under matrix congruence for this pencil, and finally ρ = −1 is set2. The same
approach is valid for complex matrices by applying [9, Theorem 1(c)]. So, it can be proven that
any real matrix is congruent to a unique direct sum of canonical matrix blocks of eight different
types, and that any complex matrix is congruent to a unique direct sum of canonical matrix blocks
of six different types. To make this paper self-contained, let us describe these blocks in detail.

3.1. The canonical form block types for real matrices

We hereby abandon the original notation of [9,5], in place of a simpler form. The notation we
shall use is:

Notation Notation of [9, 5]
�1 ≡ ∞′

4

�2 ≡ ∞′
5

�3 ≡ α′
3

�4 ≡ β ′
4

�5 ≡ β ′
5

�6 ≡ m′
3

�7 ≡ 0′
3

�8 ≡ 0′
4

For easy reference, the block types can be specified by the following constituent blocks. Unless
otherwise indicated, an entry is 0.

2 The same result is obtained if the dual pencil Ks − ρKw is considered.
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Constituent blocks:

Name Dimensions

L+
k =

⎛⎜⎜⎜⎜⎜⎝
1

1
. . .

. . . 1

1

⎞⎟⎟⎟⎟⎟⎠ (k + 1) × k

L−
k =

⎛⎜⎜⎝
1 −1

. . .
. . .

1 −1

⎞⎟⎟⎠ k × (k + 1)

�k =
⎛⎜⎝ 1

q
1

⎞⎟⎠ k × k

�k =

⎛⎜⎜⎜⎝
0

0 1

q q
0 1

⎞⎟⎟⎟⎠ k × k

Z2 =
(

0 1

−1 0

)
2 × 2

R =
(

1 p

−p 1

)
2 × 2

S =
(

0 1

1 0

)
2 × 2

T ± =
(

b a ± 1

a ± 1 −b

)
2 × 2

U±
k =

⎛⎜⎜⎜⎝
T ±

T ± S

q q
T ± S

⎞⎟⎟⎟⎠ 2k × 2k

where p, a, b ∈ R and p > 0, b /= 0, and a /= 0.
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The canonical form blocks are:

Name Dimensions

�1 = ±
[(

0 �q

−�q 0

)
+ �2q

]
2q × 2q

�2 =
(

0 �2q+1 + �2q+1
−�2q+1 + �2q+1 0

)
(4q + 2) × (4q + 2)

�3 =
(

0 (α + 1)�q + �q

(−α + 1)�q − �q 0

)
2q × 2q

�4 = ±

⎛⎜⎜⎝
R

R Z2
q q

R Z2

⎞⎟⎟⎠ 2q × 2q

�5 =
(

0 U+
q

−U−
q 0

)
4q × 4q

�6 =
(

0 L+
q

L−
q 0

)
(2q + 1) × (2q + 1)

�7 = ±
⎡⎣�2q+1 +

⎛⎝0 0 0
0 0 �q

0 −�q 0

⎞⎠⎤⎦ (2q + 1) × (2q + 1)

�8 =
(

0 �2q + �2q

�2q − �2q 0

)
4q × 4q

where q is any nonnegative integer and α /= 0 a real number.
Now, we can state Theorem II in [5].

Theorem 3.1. Every real square matrix K is congruent to a direct sum of matrix blocks of types
�1, �2, . . . ,�8. The parameters and dimensions of the blocks appearing in this direct sum are
uniquely determined by K, i.e., this direct sum is unique up to permutations of the diagonal
blocks.

The direct sum appearing in Theorem 3.1 will be called the canonical form under congruence
of K .

3.2. Skew-symmetric parts of canonical form block types of real matrices

We have seen in Theorem 2.3 that for a matrix K with nonsingular skew-symmetric part there
can be no K-Orthogonal matrix with determinant −1. A natural question for the canonical form
block types is thus which ones have nonsingular skew-symmetric part. We therefore consider the
following:
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Block Singularity

�1 − �T
1 = ±2

(
0 �q

−�q 0

)
Nonsingular

�2 − �T
2 = 2

(
0 �2q+1

−�2q+1 0

)
Nonsingular

�3 − �T
3 = 2

(
0 α�q + �q

−α�q − �q 0

)
Nonsingular

�4 − �T
4 = ±

⎛⎜⎜⎜⎝
R − RT

R − RT 2Z2

q q
R − RT 2Z2

⎞⎟⎟⎟⎠ Nonsingular

�5 − �T
5 =

(
0 U+

q + U−
q

−U−
q − U+

q 0

)
Nonsingular

�6 − �T
6 = 2

⎛⎜⎝0 0 0

0 0 Iq

0 −Iq 0

⎞⎟⎠ Singular

�7 − �T
7 = ±2

⎛⎜⎝0 0 0

0 0 �q

0 −�q 0

⎞⎟⎠ Singular

�8 − �T
8 = 2

(
0 �2q

−�2q 0

)
Singular

The (non)singularity of each block follows directly from the definition of the constituent blocks.

3.3. The canonical form block types for complex matrices

The canonical form under complex congruence is simpler than the real one. It has only six types
of blocks, namely, �1 without the ± sign, �2, �3 with α /= 0 a complex number, �6, �7 without
the ± sign, and �8. The singular or nonsingular property of the corresponding skew-symmetric
blocks is the same as for real matrices.

4. K-Orthogonal groups admitting only determinant one

The results in Section 2 can be easily combined with the canonical form under congruence to
prove the simple but interesting Theorem 4.1.



E.S. Coakley et al. / Linear Algebra and its Applications 428 (2008) 796–813 803

Theorem 4.1. Let K ∈ Mn(F).

1. If K ∈ �n then the canonical form of K under congruence has no �6 or �7 direct summands.
2. If the canonical form of K under congruence has no �6, �7 or �8 direct summands then

K ∈ �n.

Proof. The first item is a consequence of Proposition 2.4 and the fact that �6 and �7 are the
only odd-dimensional block types in the canonical form of K under congruence. The second item
follows from Proposition 2.1, Theorem 2.3 and the fact that the skew-symmetric parts of block
types �i , i = 1, . . . , 5, are nonsingular. �

Theorem 4.1 makes clear that the block type �8 deserves special attention in finding necessary
and sufficient conditions for K ∈ �n. In fact, we will show in Theorem 4.9 that �8 does not play
any role in determining if K ∈ �n or not, but several technical Lemmas have to be established
before proving this.

A simple Corollary of Theorem 4.1 solves the problem for n = 2.

Corollary 4.2. Let K ∈ M2(F). K ∈ �2 if and only if det(K − KT) /= 0.

Proof. Simply notice that a 2 × 2 matrix cannot have �8 blocks in its canonical form, so K ∈ �n

if and only if the canonical form of K under congruence has no �6 or �7 direct summands. �

The reader should notice that Corollary 4.2 may also be easily proved by elementary methods
without any reference to the canonical form under congruence.

4.1. Technical lemmas

The Lemmas in this section remain valid both for complex and real matrices. It will be necessary
to pay attention to the specific dimensions of the blocks of �8 type appearing in this subsection.
For this purpose, we will denote a �8 block of dimension 4q × 4q by

�8(4q) ≡
(

0 �2q + �2q

�2q − �2q 0

)
.

The following congruence will be frequently used.

Lemma 4.3

�8(4) ∼=
(

0 I2
I2 Z2

)
.

Proof. Interchange the rows 2 and 3 and interchange the columns 2 and 3 of �8(4). �

Next, we will see that�8(4) ∈ �4, because
(

0 I2
I2 Z2

)
∈ �4, despite the singular skew-symmetric

part of �8(4). In fact, we prove a more general result.

Lemma 4.4. Let S ∈ Mp(F) be a nonsingular and skew-symmetric matrix. Then(
0 Ip

Ip S

)
∈ �2p.
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Proof. Let us consider the symmetric and skew-symmetric parts of
(

0 Ip
Ip S

)
. These are, respec-

tively,
(

0 Ip
Ip 0

)
and

(
0 0
0 S

)
. According to Proposition 2.2, AT

(
0 Ip
Ip S

)
A =

(
0 Ip
Ip S

)
if and

only if AT
(

0 Ip
Ip 0

)
A =

(
0 Ip
Ip 0

)
and AT

(
0 0
0 S

)
A =

(
0 0
0 S

)
. Let us partition A as

(
0 Ip
Ip S

)
,

so (
0 0
0 S

)
=
(

A11 A12
A21 A22

)T (0 0
0 S

)(
A11 A12
A21 A22

)

=
(

AT
21SA21 AT

21SA22

AT
22SA21 AT

22SA22

)
.

Hence, AT
22SA22 = S, so det A22 = 1 by Theorem 1.1, and AT

21(SA22) = 0, so A21 = 0, since
SA22 is nonsingular. Therefore

A =
(

A11 A12
0 A22

)
and det A = det (A11) det (A22) = det (A11). (4.1)

Likewise AT
(

0 Ip
Ip 0

)
A =

(
0 Ip
Ip 0

)
combined with equation (4.1) yields:(

0 Ip

Ip 0

)
=
(

0 AT
11A22

AT
22A11 ∗

)
.

Thus 1 = det Ip = det (AT
11A22) = det (A11) det (A22). Combining again with equation (4.1), we

have det A = +1, and the Lemma is proved. �

Our next result extends Lemma 4.4.

Lemma 4.5. Let

K =
⎛⎝ 0 0 Ip

0 Y S12

Ip −ST
12 S22

⎞⎠ ,

where Y ∈ Mq(F). Let us express Y as a sum of its symmetric and skew-symmetric parts as Y =
H + S11, where H = HT and S11 = −ST

11, and let assume that S =
(

S11 S12

−ST
12 S22

)
is nonsingular

and skew-symmetric, then

Y ∈ �q implies K ∈ �2p+q .

Proof. Let A be a K-Orthogonal matrix. By Proposition 2.2, A is K-Orthogonal if and only if A is
Ks-Orthogonal and Kw-Orthogonal. Notice that the skew symmetric part of K is Kw = 0p ⊕ S,

and let us partition A =
(

A11 A21
A12 A22

)
according to this direct sum. Then 0p ⊕ S = AT(0p ⊕ S)A

implies

AT
22SA22 = S and det A22 = 1, (4.2)

AT
21SA22 = 0 and A21 = 0, (4.3)
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since S and SA22 are nonsingular, and S is skew-symmetric. Consequently,

A =
(

A11 A12
0 A22

)
. (4.4)

Let

A22 =
(

�11 �12
�21 �22

)
be further partitioned with �11 ∈ Mq(F) and �22 ∈ Mp(F). Also partition A12 = (B12B13), where
B12 is a p × q matrix and B13 is a p × p matrix. Now, let us remember that A must satisfy
ATKsA = Ks , with Ks the symmetric part of K , i.e.,⎛⎝ Ip

H

Ip

⎞⎠=
⎛⎝A11 B12 B13

0
�11 �12
�21 �22

⎞⎠T ⎛⎝ Ip

H

Ip

⎞⎠⎛⎝A11 B12 B13

0
�11 �12
�21 �22

⎞⎠

=

⎛⎜⎜⎝
0 AT

11�21 AT
11�22

�T
21A11 �T

11H�11 + �T
21B12 + BT

12�21 ∗
�T

22A11 ∗ ∗

⎞⎟⎟⎠ .

Hence,

�22 =A−T
11 , (4.5)

�21 =0, (4.6)

H =�T
11H�11, (4.7)

thus A=
⎛⎝A11 A12

0
�11 �12

0 A−T
11

⎞⎠ , (4.8)

and det A=det (A11) det (�11) det (A11)
−1 = det �11. (4.9)

Combining Eqs. (4.6) and (4.2) we therefore have

S11 = �T
11S11�11, (4.10)

which with Eq. (4.7) implies

Y = �T
11Y�11. (4.11)

From Eqs. (4.9) and (4.11) we directly obtain that Y ∈ �q implies that K ∈ �2p+q . �

Lemma 4.5 will be fundamental in subsequent developments. In particular, it allows us, together
with Lemma 4.4, to prove the following lemma. From now on, we do not indicate explicitly the
dimension in �n.

Lemma 4.6. If det (Y − Y T) /= 0 (including Y as the empty matrix), then

�8(4) ⊕ · · · ⊕ �8(4) ⊕ Y ∈ �,

for any number of �8(4) summands.

Proof. We will prove by induction on the number of �8(4) blocks appearing in �8(4) ⊕ · · · ⊕
�8(4) ⊕ Y that this matrix is congruent to a matrix with the same structure as K in Lemma
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4.5 when Y is not the empty matrix, and, otherwise, that it is congruent to a matrix as the
one in Lemma 4.4. We mainly focus on the case Y is not the empty matrix. The reader can
check that the same procedure remains valid if Y is empty simply by ignoring row or col-
umn permutations involving Y , and by erasing the block row and block column containing
Y .

Let us prove first the basic case in which there is only one �8(4) block. Notice that �8(4) ⊕
Y ∼=

(
0 I2
I2 Z2

)
⊕ Y . This is a 3-by-3 block matrix, and if we interchange block rows 2 and 3, and

block columns 2 and 3, we obtain

�8(4) ⊕ Y ∼=
⎛⎝ 0 0 I2

0 Y 0
I2 0 Z2

⎞⎠ . (4.12)

For the inductive step, let us define

Z2k = Z2 ⊕ · · · ⊕ Z2︸ ︷︷ ︸
k

.

The induction hypothesis is⎛⎝ k⊕
j=1

�8(4)

⎞⎠⊕ Y ∼=
⎛⎝ 0 0 I2k

0 Y 0
I2k 0 Z2k

⎞⎠ , (4.13)

which is true for k = 1 by (4.12). So, by Lemma 4.3⎛⎝k+1⊕
j=1

�8(4)

⎞⎠⊕ Y ∼=
(

0 I2
I2 Z2

)
⊕
⎛⎝ 0 0 I2k

0 Y 0
I2k 0 Z2k

⎞⎠ .

This is a 5-by-5 block matrix. If in this matrix we interchange block rows 2 and 3, and block
columns 2 and 3, and then block rows 3 and 4, and block columns 3 and 4, we obtain⎛⎝k+1⊕

j=1

�8(4)

⎞⎠⊕ Y ∼=
⎛⎝ 0 0 I2(k+1)

0 Y 0
I2(k+1) 0 Z2(k+1)

⎞⎠ . (4.14)

This matrix is contained in � for any nonnegative k by Lemma 4.5. In the case Y is the empty
matrix we should use Lemma 4.4. �

Before stating the last lemma of this section, we will first need to establish the following lemma
of which it makes extensive use.

Lemma 4.7. For some real 4q × 2 matrix Q of rank 2,

�8(4(q + 1)) ∼=

⎛⎜⎝ 0 0 I2

0 �8(4q) Q

I2 −QT 0

⎞⎟⎠ .
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Proof. Let

W4(q+1) ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0

I2q

0 0 0 1

0 1 0 0

I2q

1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

�8(4(q + 1))=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1

0 1 1

1 1 0

q 1

0 1 q
0 1 1

1 0

1 −1

q
1 q

0 1 −1

1 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1

1 1

B2q 1 0

0 1 1

1 0

C2q

0 1

1 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the partitions are in agreement with those of W4(q+1) above, B2q and C2q are the matrices
shown of size 2q × 2q. Hence,

WT
4(q+1)�8(4(q + 1))W4(q+1) = WT

4(q+1)�8(4(q + 1))

⎛⎜⎜⎜⎜⎜⎜⎝

1 0
I2q

0 0 0 1
0 1 0 0

I2q

1 0

⎞⎟⎟⎟⎟⎟⎟⎠
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=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0 0

· · · 0 0
· · · 0 1

0(2×2q)
0 1
0 0

0(2q×2) 02q B2q

1 1
1 0
...

...

0 0
0 0
...

...

0 1

C2q 02q 0(2q×2)

1 −1
0 0

0(2×2q)
0 0 · · ·
1 1 · · ·

0 0
0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

1 0
I2q

0 0 0 1
0 1 0 0

I2q

1 0

⎞⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1
0 1 0 0

1 1
q 1

1 1
1 −1

q −1
1 −1

1 −1 0 0 0
0 0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

1 0
I2q

0 0 0 1
0 1 0 0

I2q

1 0

⎞⎟⎟⎟⎟⎟⎟⎠

(repartitioning in accordance with W4(q+1))

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
0 1

1 1 0
1 1 0

q q
1 1 0

1 0 −1
1 −1 0

q q
1 −1

1 0 −1 0 0
0 1 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
⎛⎝ 0 0 I2

0 �8(4q) Q

I2 −QT 0

⎞⎠ ,

where Q is a real 4q × 2 matrix of rank 2. Hence the congruence is explicitly shown. �

We may now proceed with the last lemma of this section. This lemma extends Lemma 4.6 by
including blocks of �8 type of dimension larger than 4.

Lemma 4.8. If for some real or complex matrix Y such that det (Y − Y T) /= 0 (including Y as
the empty matrix) and for some positive integers n1, . . . , nm

�8(4n1) ⊕ · · · ⊕ �8(4nm) ⊕ Y ∈ �,
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then

�8(4(n1 + 1)) ⊕ · · · ⊕ �8(4(nm + 1)) ⊕ �8(4) ⊕ · · · ⊕ �8(4) ⊕ Y ∈ �

for any number (including zero) of �8(4) summands.

Proof. We begin by proving that �8(4(n1 + 1)) ⊕ · · · ⊕ �8(4(nm + 1)) ⊕ Y ∈ �, i.e., the case
without �8(4) summands. By Lemma 4.7,

�8(4(n1 + 1)) ⊕ · · · ⊕ �8(4(nm + 1)) ⊕ Y

∼=
⎛⎝ 0 0 I2

0 �8(4n1) Qn1

I2 −QT
n1

0

⎞⎠⊕ · · · ⊕
⎛⎝ 0 0 I2

0 �8(4nm) Qnm

I2 −QT
nm

0

⎞⎠⊕ Y

∼=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I2 02

I2
. . .

I2

�8(4n1) Qn1

I2 −QT
n1

�8(4n2) Qn2

02 I2 −QT
n2

. . .
. . .

�8(4nm) Qnm

I2 −QT
nm

Y

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∼=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I2m

�8(4n1) Qn1

. . .
. . .

�8(4nm) Qnm

−QT
n1

I2m

. . .
−QT

nm

Y

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∼=
⎛⎝ I2m

�8(4n1) ⊕ · · · ⊕ �8(4nm) ⊕ Y �
I2m −�T

⎞⎠ ,

via permutation matrices, with partitions changed when needed, and

� =
(

Qn1 ⊕ · · · ⊕ Qnm

0

)
.

The final congruence has skew-symmetric part
(

02m
�

)
, where if we let H and S be symmetric

and skew-symmetric matrices respectively such that
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�8(4n1) ⊕ · · · ⊕ �8(4nm) ⊕ Y = H + S, (4.15)

� =
(

S �
−�T 0

)
is skew-symmetric and nonsingular. Nonsingularity can be seen by noting that each �8 block has
rank deficiency 2 for its skew-symmetric part (see Section 3.2), so the skew-symmetric part of
�8(4(n1 + 1)) ⊕ · · · ⊕ �8(4(nm + 1)) ⊕ Y has rank deficiency 2m, and 02m ⊕ � has the same
rank deficiency, as congruence does not change rank. Hence � is nonsingular. Thus employing
Lemma 4.5 proves that �8(4(n1 + 1)) ⊕ · · · ⊕ �8(4(nm + 1)) ⊕ Y ∈ �.

Now, let us define for the sake of brevity

Y� ≡ �8(4n1) ⊕ · · · ⊕ �8(4nm) ⊕ Y.

Therefore, what we have proven above is

�8(4(n1 + 1)) ⊕ · · · ⊕ �8(4(nm + 1)) ⊕ Y ∼=
⎛⎝ 0 0 I2m

0 Y� �
I2m −�T 0

⎞⎠ .

Let us assume that there are k summands �8(4) in �8(4(n1 + 1)) ⊕ · · · ⊕ �8(4(nm + 1)) ⊕
�8(4) ⊕ · · · ⊕ �8(4) ⊕ Y . Then

�8(4(n1 + 1)) ⊕ · · · ⊕ �8(4(nm + 1)) ⊕ �8(4) ⊕ · · · ⊕ �8(4) ⊕ Y

∼=
⎛⎝ k⊕

j=1

�8(4)

⎞⎠⊕ �8(4(n1 + 1)) ⊕ · · · ⊕ �8(4(nm + 1)) ⊕ Y

∼=
⎛⎝ k⊕

j=1

�8(4)

⎞⎠⊕
⎛⎝ 0 0 I2m

0 Y� �
I2m −�T 0

⎞⎠
∼=
(

0 I2k

I2k Z2k

)
⊕
⎛⎝ 0 0 I2m

0 Y� �
I2m −�T 0

⎞⎠ ,

where (4.13)–(4.14) with Y the empty matrix has been used for the last congruence. If in this
matrix we interchange block rows 2 and 3, and block columns 2 and 3, and then block rows 3 and
4, and block columns 3 and 4, we obtain

�8(4(n1 + 1)) ⊕ · · · ⊕ �8(4(nm + 1)) ⊕ �8(4) ⊕ · · · ⊕ �8(4) ⊕ Y

∼=

⎛⎜⎜⎜⎜⎝
I2k 0
0 I2m

Y� 0 �
I2k 0
0 I2m

0
−�T

Z2k 0
0 0

⎞⎟⎟⎟⎟⎠ .

According to (4.15), the skew-symmetric part of this matrix is(
02(k+m) 0

0 �̃

)
where �̃ =

⎛⎝ S 0 �
0 Z2k 0

−�T 0 0

⎞⎠ .
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�̃ is nonsingular by an argument similar to that for � in the paragraph after (4.15). Thus employ-
ing Lemma 4.5 proves that �8(4(n1 + 1)) ⊕ · · · ⊕ �8(4(nm + 1)) ⊕ �8(4) ⊕ · · · ⊕ �8(4) ⊕ Y ∈
�. �

4.2. Main results

The lemmas proved in Section 4.1 will allow us to prove Theorem 4.9, the main result in
this paper, in terms of the canonical form under congruence of K . Furthermore, we present in
Theorem 4.9 necessary and sufficient conditions on K so that the K-orthogonal group only admits
determinant +1 in terms of more basic matrix properties that can be more easily checked. To this
purpose, let us recall some very basic ideas on matrix pencils.

Let us consider the matrix pencil A − λB [3, Chapter XII], where A and B are n-by-n complex
matrices and λ is a scalar variable. The pencil A − λB is regular if the polynomial p(λ) =
det(A − λB) does not vanish identically, i.e., p(λ) is not the zero polynomial. In this case p(λ)

has at most n roots, and for the rest of complex numbers, μ, p(μ) = det(A − μB) /= 0. It is
well known, see [3, Chapter XII] or [8, Chapter VI], that if A − λB is regular there exist two
nonsingular n-by-n complex matrices P and Q such that

P(A − λB)Q =
(

J 0
0 Iq

)
− λ

(
Ip 0
0 N

)
, (4.16)

where p + q = n, J is in Jordan canonical form, and N is in Jordan canonical form with all its
eigenvalues equal to zero. J and N are unique up to permutations of their diagonal Jordan blocks.
The eigenvalues of J are called the finite eigenvalues of A − λB, and the matrix N reveals the
Jordan structure of the infinite eigenvalue of the pencil. The pair of matrices J ⊕ Iq and Ip ⊕ N

is called the Weierstrass canonical form3 of the pencil A − λB. If A and B are real matrices then
P and Q can be chosen to be real and J would be in real Jordan canonical form, although we will
not use this fact.

Now, we are in position to prove our main result. Notice that item 4 in Theorem 4.9 provides
a simple way to check if the determinant of all the elements in the K-Orthogonal group of K is
+1.

Theorem 4.9. Let K ∈ Mn(F), F = R or C, and Kw and Ks be, respectively, the skew-symmetric
and symmetric parts of K, i.e., Kw ≡ (K − KT)/2 and Ks ≡ (K + KT)/2. Then the following
statements are equivalent:

1. The determinant of every element of the K-Orthogonal group is +1.

2. The canonical form of K under congruence has no �6 or �7 direct summands.
3. The pencil Kw − λKs is regular and its Weierstrass canonical form has no Jordan blocks

associated to the eigenvalue zero with odd dimension.

4. The polynomial p(λ) = det(Kw − λKs) does not vanish identically, and upon choosing a
λ0 such that p(λ0) /= 0 the matrix (Kw − λ0Ks)

−1Kw is found to have no Jordan blocks
associated to the eigenvalue zero with odd dimension.

3 The general canonical form that covers regular and singular pencils, i.e., those with det(A − λB) ≡ 0, is called
Kronecker canonical form. This name is frequently used for the regular case, but attending to the historical discussion in
[8, p. 289] the most proper name in the regular case seems to be Weierstrass canonical form.
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Proof. (1 ⇒ 2) This was established in Theorem 4.1.

(2 ⇒ 1) According to Sections 3.2 and 3.3 the canonical form under congruence of K is of the
form (i) Y or (ii) �8(4q1) ⊕ · · · ⊕ �8(4qp) ⊕ Y , where det(Y − Y T) /= 0 and q1 � · · · � qp � 1.
In case (ii) Y may be empty. In the case (i), K ∈ �n by Proposition 2.1 and Theorem 2.3. In the
case (ii), K ∈ �n by using induction with Lemma 4.6 as the base case and Lemma 4.8 as the
inductive case.

(2 ⇔ 3) According to Theorems 1 (c) and 2 (c) in [9], the canonical form under congruence
of K has no blocks of �6 type if and only if the pencil Kw − λKs has no minimal indices. This
happens if and only if Kw − λKs is regular [3]. Again by [9], the canonical form under congruence
of K has no blocks of �7 type if and only if the pencil Kw − λKs has no elementary divisors λe

associated to the zero eigenvalue with e odd. This is equivalent to the fact that the Weierstrass
canonical form of Kw − λKs has no Jordan blocks associated to the eigenvalue zero with odd
dimension [3].

(3 ⇔ 4) Recall that by the construction of canonical forms for congruence through matrix
pencils, it is clear that (Kw − λ0Ks)

−1Kw has no Jordan blocks associated to the eigenvalue zero
with odd dimension for one value of λ0 if and only if so for every value of λ0 such that p(λ0) /= 0.
Hence it is sufficient to test a single value of λ0 to determine if K-Orthogonal matrices can
have determinant values other than +1. Let us consider a regular complex pencil A − λB with
Weierstrass canonical form given by (4.16), where J = Jn1(λ1) ⊕ · · · ⊕ Jnr (λr) (here Jk(α) is a
k-by-k Jordan block with eigenvalue α), and N = Jm1(0) ⊕ · · · ⊕ Jms (0). Then for every number
μ0 /= 0 such that det(A − μ0B) /= 0 the Jordan canonical form of

(A − μ0B)−1A

is

Jn1

(
λ1

λ1 − μ0

)
⊕ · · · ⊕ Jnr

(
λr

λr − μ0

)
⊕ Jm1(1) · · · ⊕ Jms (1). (4.17)

To prove this, simply notice that from (4.16)

(A − μ0B)−1A = Q

(
(J − μ0Ip)−1J 0

0 (Iq − μ0N)−1

)
Q−1.

By using (4.17) on the pencil Kw − λKs it is straightforward to prove that 3 ⇔ 4 with the
additional assumption λ0 /= 0: simply notice that the number and dimensions of the Jordan blocks
associated to zero is the same in the Weierstrass canonical form of Kw − λKs and in (Kw −
λ0Ks)

−1Kw. The case λ0 = 0 has to be dealt with separately: in this case (Kw − λ0Ks)
−1Kw =

K−1
w Kw = In, and the information on the Jordan blocks of the Weierstrass canonical form of

Kw − λKs is lost, but in this case Kw is nonsingular and then the pencil Kw − λKs has no zero
eigenvalues. As we are interested only in the zero eigenvalue this result remains valid both for
real and complex matrices. �

An immediate consequence of Theorem 4.9 is a very simple yet interesting corollary that is
related to results in [7].

Corollary 4.10. Let K ∈ Mn(F), F = R or C. The K-orthogonal group of K contains elements
with determinant different from +1 if and only if K is congruent to a direct sum with an odd-
dimensional direct summand.
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Proof. Proposition 2.4 proves that if K is congruent to a direct sum with an odd-dimensional
direct summand then K /∈ �n. To prove the opposite, suppose K is not congruent to a direct sum
with an odd dimensional summand. Thus the canonical form of K under congruence must not
contain �6 or �7 block types. Hence K ∈ �n. �

Our final result is another corollary of Theorem 4.9, that provides a simple solution of the
problem in the most frequent case in which K is nonsingular.

Corollary 4.11. Let K ∈ Mn(F), F = R or C, be nonsingular. The determinant of all the elements
in the K-Orthogonal group of K is +1 if and only if the matrix K−1Kw has no odd-dimensional
Jordan blocks associated to the zero eigenvalue.

Proof. It follows from item 4 in Theorem 4.9 simply by noticing that K = Kw − (−1)Ks is
nonsingular. Therefore, we can take λ0 = −1. �
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