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Abstract

Let H(A) = Ag + LA be a square singular matrix pencil, and let 1y € C be an eventually multiple
eigenvalue of H(A). It is known that arbitrarily small perturbations of H (}) can move the eigenvalues of
H (}) anywhere in the complex plane, i.e., the eigenvalues are discontinuous functions of the entries of Ag
and Aj. Therefore, it is not possible to develop an eigenvalue perturbation theory for arbitrary perturbations
of H(A). However, if the perturbations are restricted to lie in an appropriate set then the eigenvalues change
continuously. We prove that this set of perturbations is generic, i.e., it contains almost all pencils, and present
sufficient conditions for a pencil to be in this set. In addition, for perturbations in this set, explicit first order
perturbation expansions of Ag are obtained in terms of the perturbation pencil and bases of the left and right
null spaces of H(Aq), both for simple and multiple eigenvalues. Infinite eigenvalues are also considered.
Finally, information on the eigenvectors of the generically regular perturbed pencil is presented. We obtain,
as corollaries, results for regular pencils that are also new.
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1. Introduction

Let Ag, A; € C™*" be two matrices. The matrix pencil Ag + AA| is called singular if (i)
m # n, or (i) m = n and det(Ag + AA1) = 0 for all A. Otherwise, the pencil is called regular.
The matrix pencil Ag + LA can be considered as a matrix polynomial or as a A-matrix. The rank
of a matrix polynomial is the dimension of its larger minor that is not equal to the zero polynomial
in A [9]. This definition applied on a pencil Ag + A A is frequently known as the normal rank of
the pencil, and it is denoted by nrank(Ag + AA1). A complex number X is called an eigenvalue
of the pencil Ag + AA; if

rank(Ag + AgA1) < nrank(Ag + AA}). (D

This definition was introduced in [19] and it reduces to the usual definition of eigenvalue in the
case of regular pencils and matrices. Note that the left hand side of (1) is the rank of a constant
matrix, while the right hand side is the rank of a A-matrix. According to (1), the eigenvalues
of a pencil are precisely the zeros of its invariant polynomials, or, equivalently, the zeros of
its elementary divisors [9, Chapter VI]. The eigenvalue Ag of Ag + AA; is simple if Ag + LA
has only one elementary divisor associated to Ao and this elementary divisor has degree one.
Otherwise Ag is a multiple eigenvalue of Ag + AAj. It is said that the pencil Ag + AA1 has an
infinite eigenvalue if zero is an eigenvalue of the dual pencil A; 4+ AA¢. This definition allows us
to focus on finite eigenvalues, and to obtain perturbation results for the infinite eigenvalue from
the results corresponding to the zero eigenvalue of the dual pencil.

It is well known that most singular pencils, square or rectangular, do not have eigenvalues [2,
Section 7]. However, when they exist, the eigenvalues of singular matrix pencils play a relevant
role in a number of applications, as for instance differential-algebraic equations [27], and control
theory [22]. In particular, the eigenvalues of certain singular pencils are the uncontrollable and
unobservable modes of time-invariant linear systems [4].

It was pointed out in [28] that the eigenvalues of singular pencils are discontinuous functions

of matrix entries. For instance the pencil A9 + AA| = [’0\ 8] has only one eigenvalue equal to
Lo = 0. However the perturbed pencil

-~ ~ [+ 0 6 -3 0 1]\ | A+6e €(A—3)

AOJ”\AI_[O 0}“([—10 0]4”[1 OD_[e(x—lm o |°@
satisfies det(Zo + )\;\\1) = —¢2 (A — 3)(A — 10), and, therefore it is regular and has two eigen-
values, 3 and 10, for any € # 0. Note, that if the previous example is modified by replacing
—3 and —10, by any pair of numbers —a and —b, then the eigenvalues of Ao + 1A are a

and b. So, arbitrarily small perturbations may place the eigenvalues anywhere in the complex

plane. The situation is even worse in the case of rectangular pencils. For instance, the pencil

Ao+ LA = [3 8 8] has again only one eigenvalue equal to Ao = 0, but the perturbed pencil

~ ~ A 0 O 1 2+ 3
A0+)»A1=|:O 0 O]+€|:4 —g 6i| 3)

has no eigenvalues for any nonzero € # 1/2,because in this case rank(;\\() + AOZ 1) = nrank(Xo +
A 1) = 2 for all numbers A.

The examples in the previous paragraph show that arbitrarily small perturbations may com-
pletely change or destroy the eigenvalues of a singular pencil. This means that we cannot expect
a reasonable eigenvalue perturbation theory for arbitrary perturbations of singular pencils, and
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that we need to restrict the set of allowable perturbations before developing such a theory. In this
context, square and rectangular pencils are very different from each other, because given a square
singular pencil Ag + AA; almost all small perturbations make the perturbed pencil regular and,
in addition, some of the eigenvalues of the perturbed pencil are very close to the eigenvalues of
Ap + AA1, in the case this pencil has eigenvalues. This was observed in [28]. Therefore, for a
square singular pencil that has eigenvalues, one can expect to develop an eigenvalue perturbation
theory for almost all small perturbations. The situation is the opposite for rectangular pencils,
because given any rectangular pencil almost all small perturbations produce a pencil that does
not have eigenvalues. The reason is that, generically, rectangular pencils do not have eigenvalues
[2, Corollary 7.1]. Therefore, an eigenvalue perturbation theory for a rectangular pencil that has
eigenvalues is only possible for very special perturbations that lie in a particular manifold in the
set of pencils. A consequence of the previous discussion is that the study of the variation of the
eigenvalues of a singular pencil for almost all small perturbations only makes sense for square
pencils.

The main goal of this paper is, given a complex square singular pencil H(L) = Ag + LA
that has eigenvalues, to find sufficient conditions on the pencil M (L) = By + AB; allowing the
existence of a first order eigenvalue perturbation theory for the eigenvalues of

H(Q) +eM(R), “)

in terms of the small parameter €, and to develop such a perturbation theory. These sufficient
conditions on M (A) = By + AB; will imply that the pencil (4) is regular for all € #* 0 small
enough, and they are generic, i.e., they hold for all pencils except those in an algebraic manifold
of codimension larger than zero. This implies that they hold for all pencils except those in a
subset of zero Lebesgue measure in the set of pencils. Under these generic conditions, we obtain
first order perturbation expansions for those eigenvalues of (4) whose limits as € tends to zero
are the eigenvalues of the unperturbed pencil H (A). This is done both for simple and multiple
eigenvalues. To our knowledge, this is the first time that first order perturbation expansions have
been obtained for eigenvalues of singular matrix pencils. It is worth noticing that these expansions
remain valid when H (A) is regular, and the ones we obtain in this case for multiple eigenvalues
in terms of the Weierstrass canonical form are also new.

More precisely, let Ag be a finite eigenvalue of H (1) with elementary divisors (A — X9)™!, ...,
(A — Xo)™#, or, equivalently, with Jordan blocks of dimensions mji, ..., mg in the Kroneck-
er canonical form of H (L) [9, Chapter XII]. Then, we will prove that generically there are
mi + - - -+ mg eigenvalues of H (L) + e M (i) with expansions

A(€) = ho + ce/P 4+ o(e!/P), 5)

where p = m for m; of these expansions, p = m; for m; of these expansions, ..., p = mg for
my of these expansions. In addition, we will find explicit expressions for the leading coefficients
c of the expansions (5). Notice that the generic exponents of these expansions are determined
by the degrees of the elementary divisors of 1¢ in the same way as in the regular case [13]. In
particular, if the eigenvalue X is simple then p = 1 and one can write A(¢) = Ag + c€ + 0O(e?),
because in this case A(€) is a usual power series in €, convergent in a neighborhood of € = 0. All
the series in (5) are convergent for € small enough, and are called Puiseux expansions when they
contain fractional exponents.

We will prove that the coefficients ¢ of the expansions (5) are determined by M (Ag) and certain
bases of the left and right null spaces of the matrix H()p). In the case of multiple eigenvalues
these bases have to be carefully selected and normalized in a nontrivial way. This difficulty is not
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related to the fact that H (1) is singular, and it also appears in the perturbation theory of multiple
eigenvalues of matrices and regular pencils [25,14,13,16]. However, in the most frequent case of A
being a simple eigenvalue, normalization is not needed, any bases can be used, and the perturbation
result takes a neat form: let us denote by W (resp. Z) a matrix whose rows (resp. columns) form
any basis of the left (resp. right) null space of H(\g), then the pencil WM (Ag)Z + (WA Z is
generically regular and has only one finite eigenvalue, and, if this eigenvalue is denoted by &,
there is a unique eigenvalue A(¢) of H(A) 4+ e M ()) such that

A(€) = Ao + E€ + O(e?),

as € tends to zero. It should be remarked that in the simple case the generic conditions are
precisely that WM (o) Z + { WA Z is regular and has only one finite eigenvalue. If H () is
regular then WM (Lo)Z + (W A1Z is 1 x 1, and it is regular with only one finite eigenvalue
for all perturbations M (). Therefore, in the regular case, £ = —(WM(A9)Z)/WA|Z and we
recover a well known result (see, for instance [18, Theorem VI.2.2]).

A generic perturbation theory for eigenvectors of singular pencils cannot be developed, because
eigenvectors are not defined in singular pencils, even for simple eigenvalues. The correct concept to
use in singular pencils is reducing subspace [23]. Taking into account that the perturbed pencil (4)
is generically regular, it has no reducing subspaces, and, therefore, neither a generic perturbation
theory for reducing subspaces is possible. However, when (4) is regular, its eigenvectors are
perfectly defined, and it is natural to ask how are these eigenvectors related to properties of the
unperturbed pencil H (A) when € is close to zero. We have also answered this question up to first
order in €.

Perturbation theory of eigenvalues of singular pencils has been studied in a few previous
works. Sun [19,20] considersn x n square singular pencils Ag + A A that are strictly equivalent to
diagonal pencils and such that nrank (Ag + L A1) = n — 1, and develops finite perturbation bounds
of Gerschgorin, Hoffman—Wielandt, and Bauer—Fike type in a probabilistic sense, i.e., assuming
that the perturbation pencils satisfy a certain random distribution. So, the perturbation pencils
can be considered generic. Compared with the results in [19,20], the perturbation expansions we
present in this work do not assume any special structure on the unperturbed pencil, and are not of
a probabilistic nature, but they are only valid up to first order.

Demmel and Kagstrom [3] study very specific non-generic perturbations of square and rectan-
gular singular pencils, and present bounds for the variation of eigenvalues and reducing subspaces.
These particular perturbations are very useful to bound the errors in the algorithms computing the
generalized Schur form (GUPTRI) of singular pencils [21,5,6]. Finally, Stewart [17] considers
only rectangular pencils and certain specific non-generic perturbations that may appear in practice.

A common feature in [3,17,19,20] is that the original problem is reduced to an eigenvalue
perturbation problem of a regular pencil by using the fact that perturbations with specific properties
are considered. We will also follow this approach, using the Smith canonical form of matrix
polynomials [9,10] to transform the original perturbation problem for the singular pencil into a
regular perturbation problem, and, then, applying the perturbation theory for regular problems
presented in [13]. In addition, considerable algebraic work will be performed to present the
perturbation expansions in terms of intrinsic spectral magnitudes of singular pencils, i.e., null
spaces associated with eigenvalues, reducing subspaces, and the Kronecker canonical form.

The paper is organized as follows: we review in Section 2 basic properties of matrix pencils, and
identify the bases of the null spaces of H (1¢) which contain the information to derive the Puiseux
expansions (5). In Section 3, we present sufficient generic conditions for the existence of a first
order eigenvalue perturbation theory of square singular pencils, and we show how to transform
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this perturbation problem into a regular one. In Section 4, we establish a connection between the
local Smith form and the Kronecker form of pencils. Section 5 presents the announced eigenvalue
expansions: Theorem 2 for multiple finite eigenvalues, Corollary 1 for the infinite eigenvalue,
and Theorem 3 for the normalization-free result for simple eigenvalues. Finally, in section 6 we
study the eigenvectors of the perturbed pencil.

2. Preliminaries

In this section we briefly review the Kronecker canonical form of a pencil, the Smith canonical
form of matrix polynomials, reducing subspaces of singular pencils, and analyze the structure
of null spaces associated with eigenvalues of singular pencils. Simultaneously, some notation
is established. Although all the concepts we define are valid for rectangular pencils, we restrict
ourselves to square pencils. Unless otherwise specified, we use the general convention of taking
row vectors when we refer to left null spaces of matrices. In addition, we denote by A (i1, iz, . . ., ik)
the k x k principal submatrix of A containing the rows and columns indexed by iy, i2, ..., if.
Given any scalar function f (1), we denote by f (1) = 0 that f(A) is not identically zero, i.e., that
there exists at least one number w such that f(u) # 0.

2.1. The Kronecker canonical form

Let Ag, Ay € C"",and H(A) = Ap + LA be a matrix pencil with normal rank r. Let Ao be a
finite eigenvalue of H (A). Then, there exist two nonsingular n x n matrices P and Q [9, Chapter
XII] such that

PH(M)Q = Ku(A) = diagd — Jig, M — T, 1 — 1Joo)
@ diag(Le, (M), ..., L, (W), Ly (1), ..., L} (M), (6)

where Jj, € C**¢ is a direct sum of g Jordan blocks associated with A¢. Analogously to the
regular case, the dimension a is said to be the algebraic multiplicity of A as an eigenvalue of
H (}), and g its geometric multiplicity. By a k x k Jordan block associated with 1o we understand
a k x k matrix of the form

M 1

Jk(ho) =
1
AO
The matrix 7 in (6) is adirect sum of Jordan blocks associated with the remaining finite eigenvalues
of H(A), and J is a direct sum of Jordan blocks
0 1

1
0

associated with the infinite eigenvalue. It is worth noticing that the matrices P and Q appearing
in (6) are not unique, and the way in which they are not unique is much more complicated than
in regular pencils. This is related to the definition of reducing subspaces (see Section 2.3).
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The p x p matrix pencil diag(Al — Jj, AT — f, I — AJwo) is regular, and the blocks L, (1)
and L;i (1), with respective dimensions &; x (&; + 1) and (n; + 1) x n;, are called, respectively,
right and left singular blocks. Both are given by

A —1
L ()\) _ A -1 c Cax(a-{-l)
o = . . ’

A -1

where o is said to be the minimal index of L,. More specifically, ¢; are the column minimal
indices, and n; are the row minimal indices. The sums

e=¢é1+--+ea, n=m+-+na (7
of the minimal indices satisfy

E+n=r—op.
Another equation to bear in mind is

r=n-—d.

The right-hand side K g () of (6) is known as the Kronecker canonical form (hereafter, KCF)
of H (1), and is unique up to permutation of its diagonal blocks. If H(}) is regular, then Ky (X)) =
diag(Al — Jy,, AL — .1 - AJso) with no rectangular, singular blocks. This canonical form for
regular pencils is the so-called Weierstrass canonical form [18, Section VI.1.2].

2.2. The Smith canonical form

Given an arbitrary n x n complex matrix pencil H (1) with normal rank r, there exist two
matrix polynomials U (%) and V (X) with dimensions n x n and nonzero constant determinants,
such that

UMR)HM)V(A) =diag(h1(A), ..., h-(1),0,...,0), ®)

where /; (1) are nonzero monic polynomials satisfying h; (A)|hi41(1), 1.e., h; (A) divides h;1(A),
fori =1,...,r — 1[9, Chapter VI,10, Chapter S1]. These polynomials are called the invariant
polynomials of H(A), and the diagonal matrix in the right hand side of (8) is called the Smith
canonical form of H(A). This form is unique. If each

hi() = 0= AV - (=A%, fori=1,...,r )

is decomposed in powers of different irreducible factors, then those factors among (A — A)"!, .. .,
(A=A, ..., (A =AD", ..., (A= Ag)" with v;; > O are called the elementary divisors of
H (). Obviously the roots of the elementary divisors are the finite eigenvalues of H (1) according
to (1). It is well known that for each elementary divisor (A — A ;)" of H () there exists a Jordan
block of dimension v;; associated with the finite eigenvalue A; in the KCF of H (1), and vice
versa.

The matrices U (A) and V(X) in (8) are not unique. For instance, the last d columns (resp.
rows) of V (A) (resp. U (X)) can be multiplied on the right (resp. left) by a matrix polynomial with
nonzero constant determinant and the right hand side of (8) remains the same. Other types of
non-uniqueness are also possible.
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2.3. Reducing subspaces

Let us consider the pencil Ag + AA;| = [é 8] given in KCF, and having only one simple

eigenvalue equal to Ao = 0. At first glance, it is tempting to say that [1, 0] is the right eigenvector
associated with Ao = 0. But note that

K v

for every pair of numbers «,  such that o« # 0. This example shows that eigenvectors cannot be
defined in singular pencils, and that very different pairs of matrices P and Q may lead to the
KCF (6). Of course, the difficulties appearing in this example are related with the fact that the null
space associated with the zero eigenvalue has dimension two although this eigenvalue is simple.

The correct concept to use in singular pencils is reducing subspace. It was introduced in [23].
A subspace 2 C C" is areducing subspace of the n x n pencil H(A) = Ag + AA if dim(Ao% +
A1 Z) = dim(Z) — #(Lg,;blocks in the KCF of Ag + AA1), where # stands for “number of”. In
terms of the KCF (6) every reducing subspace is spanned by all the columns of Q corresponding to
the blocks L¢, (1), ..., Lg, (1) plus the columns of Q corresponding to some blocks of the regular
partdiag(Al — Jy,, Al — JI— AJso) of (6). These columns corresponding to the regular part are
not necessarily present. It should be noticed that the columns of Q corresponding to the left singular
blocks L;{j (1) are never in a reducing subspace of Ag + AA;. The minimal reducing subspace,
A, is the one spanned only by the columns of Q corresponding to the blocks Lg, (1), ..., Lg, (1).
2 is the only reducing subspace that is a subset of any other reducing subspace. We will also use
the row minimal reducing subspace' of Ay + AA1. This subspace is spanned by the rows of P
corresponding to the blocks LZ} ), ..., LZ , (1) 1n (6) and will be denoted by Z7.

Reducing subspaces play in singular pencils a role analogous to deflating subspaces in regular
pencils. In addition, reducing subspaces can be determined from the GUPTRI form of a pencil
[4]. This canonical form can be stably computed [21,5,6], while this is not possible for the KCF.
This is one of the reasons why reducing subspaces are very important from an applied point of
view [4].

2.4. Null spaces associated with eigenvalues

Given a finite eigenvalue A of the n x n singular pencil H(A) = Ag + L A1, the left (or row)
and right null spaces of the matrix H (Ag) will be essential in the eigenvalue perturbation theory
of singular pencils, as they are in regular pencils. Let us denote these subspaces, respectively, by
N7 (H (Ao)) and A" (H (Ag)), where the subscript T in the left null space stands for the fact that its
elements are row vectors. We will need to consider also the intersections of these subspaces with
the minimal reducing subspaces, i.e., /"7 (H ( o)) N Z7 and N (H (1)) N Z. To this purpose,
let us group the columns of the matrix Q in (6) into blocks corresponding to the blocks of K g (A)
as follows:

Q = 1[04 Q1 Qcol Qey| -+ - 1Qey 1Oy | -+ - 1Qny] (10)
and the rows of P as
1 We do not term this reducing subspace as left to avoid confusion with Ref. [3-5], where Z" and AgZ + A1 Z are

called, respectively, right and left reducing subspaces of Ay + LA | whenever they satisfy dim(Ag% + A %) = dim(Z) —
#(Lg; blocks in the KCF of Ag + AA1).
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PT =(PL|PTIPLIPY |- |PLIPY|- - |PL1. (11)

Thus, for instance, Pg; H(A) Qg; = Lg; (A1) and Py, H(A) Qy); = L;j (X). From these partitions, let
us define the vector polynomials

T =[1 x - AMP,, Yi(M) = Qy - i=1,...,d. (12)
)»;"f
These vector polynomials satisfy some properties that are summarized in Lemma 1. The

definition of minimal bases appears in [8, Section 2]. It will be used just to prove the second item
in Lemma 2, and those readers not interested in technical details may skip this concept.

Lemma 1. Let {1 (A), ..., mg(AN)}and {Yr1(X), ..., ¥a(A)} be, respectively, the row and column
vector polynomials defined in (12). Then

1. If the number w is not an eigenvalue of the square singular pencil H()), then {m1 (W), ...,
wa(w)} and {1 (), ..., Ya(w)} are, respectively, bases of the left and right null spaces
of the matrix H (w). In addition, these null spaces are, respectively, subsets of At and A.

2. If the number A is an eigenvalue of the square singular pencil H (), then {m;( o), ...,
wqa(ro)} and {1 (o), ..., Ya(ro)} are, respectively, bases of V't (H (X)) N AT and
N (H(A)) N AR.

3. A1), ..., tgM)}and {1 (A), ..., Ya(X)} are, respectively, minimal bases of the left and
right null spaces (over the field of rational functions in A) of the matrix polynomial H (}).

Proof. The first two items follow trivially from (6). For the third one: it is easy to prove that the
considered sets are bases. The fact that they are minimal is a simple consequence of the theory of
singular pencils, see [7, Lemma 2.4]. [

The subspaces considered in Lemma 1 admit many other bases. Lemma 2 shows some more
that will appear in the next sections.

Lemma 2. Let H(X) be an n x n singular pencil with Smith normal form given by (8), and set
d=n—r. Then

1. If the number | is not an eigenvalue of H()\), then the last d rows of U(u) and the last
d columns of V () are, respectively, bases of the left and right null spaces of the matrix
H ().

2. If the number X is an eigenvalue of H(}), then the last d rows of U(Ao) and the last d
columns of 'V (Ag) are, respectively, bases of N1t (H( o)) N R and N (H(1p)) N AR.

3. The last d rows of U (L) and the last d columns of V (1) are, respectively, bases of the left
and right null spaces (over the field of rational functions in \) of the matrix polynomial
H(\).

Proof. The matrix polynomials U (1) and V(1) have nonzero constant determinant, therefore
for any number p the rows and columns of the constant matrices U (1) and V (u) are linearly
independent. The first item follows directly from combining this fact with (8). The third item is
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trivial. To prove the second item, we need to work a little bit more. We only prove the statement
for the last d columns of V (A¢), the one for the rows of U ()) is similar. By item 3 and Lemma
1, the last d columns of V(A) are linear combinations of {yr1 (), ..., ¥4(X)} with polynomial
coefficients, because {1 (1), ..., ¥4(1)} is a minimal basis of the right null space of H (1) [8,
p. 495]. If these linear combinations are evaluated at > = 1o, we get that the last d columns of
V (Xo) are linear combinations of {yr{(Ag), ..., ¥4(Xo)}. As both sets are linearly independent,
they span the same subspace of C". [

Note that for any eigenvalue Ao of H (%), it follows from (6) or (8) that
dim A7 (H (A)) = dim A" (H (ko)) =d + g, (13)

where g is the geometric multiplicity of X, i.e., the number of Jordan blocks associated with
Ao in the KCF of H(A). At present, we have only determined bases of A 7 (H (Ao)) N #Z7 and
N (H(Ag)) N #. Now we complete these bases to get bases of the whole subspaces A7 (H (Ag))
and A" (H (Ap)). Itis essential to remark that any bases of "7 (H (o)) N X7 and N"(H (Ao)) N X
can be used in the perturbation expansions that we present, but that for multiple eigenvalues very
particular vectors have to be added to get the bases of A" (H (19)) and A"(H (Ag)) that we need.
These vectors are related with the KCF (6), and are described in the rest of this section.

Let us specify more the spectral structure associated with the finite eigenvalue ¢ in the KCF
(6) of the singular pencil H (1). Let the matrix Jj, be of the form

Do = diag(J} 00), -, J1 (o), -, ) (ho)s -, Jnd (ho)), (14)

s Y

where, foreachi =1, ..., g, the matrices J,f[_ (Ao), k=1, ..., r; are Jordan blocks of dimension
n; x n; associated with Ag. We assume the Jordan blocks J,]fl_ (Ao) to be ordered so that

ny<ny <---<ng. (15)

The dimensions n; are usually called the partial multiplicities for Ao, and we will refer to the
partition (14) as the spectral structure of Ao in H (X).

Let a be the algebraic multiplicity of Ao and let Py, (resp. Qy,) be the matrix appearing in
(11) (resp. (10)), i.e., the matrix whose rows (resp. columns) are the first a rows of the matrix P
(resp. the first a columns of the matrix Q) in (6), and partition

Py, = : . Qi = Xl xp e x| X;‘;’

ny ng

_

q
Yn,

(16)

conformally with (14). We denote by xf the first column of X fﬁi, and by y{‘ the last row of Y,’fi.

With this choice, each xf is an element of /"(H (Ag)) but not an element of #, and each yl{‘ is
an element of 4 "7 (H (1)) but not an element of Z7. Now, for eachi =1, ..., g we build up
matrices
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Yi
Li=| |, R= [xil xir,-]
ri
Yi
and
L;
Wi=|: |, Zi=[RiRq]. (17
Lq
In this setting, the two quantities
q q
a=Yrm, =Y,
i=1 i=1
are, respectively, the algebraic and geometric multiplicities of Ag. Finally, foreach j =1, ..., q,
we define
q
fi=3r for =0, (18)

i=j
so W; € C/*" and Z; € ©/i In particular, f; = g.

If H (1) is regular, the matrices W1 and Z; contain, respectively, bases of left and right eigenvec-
tors associated with X, i.e., bases of the left and right null spaces of H (1¢). When H (1) is singular,
we need to add to Wy and Z1, respectively, bases of A7 (H ( o)) N Z7 and A" (H (Ag)) N X to
get the bases of A7 (H (Ap)) and A" (H (Ag)) we need.

3. Existence of expansions

This section is devoted to characterize generic perturbations, M (A) = By + ABj, for which
all the eigenvalues of the perturbed pencil (4) are power series of € (eventually with rational
exponents), and such that by taking the limits of these series as € tends to zero all the eigenvalues,
finite or infinite, of the square singular pencil H (L) = Ao + LA are obtained, together with some
numbers (or infinities) that are fully determined by M (1) and are not eigenvalues of H()). In the
process, we will show how to transform the original perturbation problem for the singular pencil
H (1) into a regular perturbation problem.

The Smith canonical form (8) will be fundamental in this section. For the sake of simplicity
let us partition (8) into blocks as

UG HGY V() = [5;83] HOIVI(R) Va0)] = [DSOO‘) odoxd] ,

where Dg()) = diag(hi(A), ..., h (X)), and the dimensions of U;(A) and V|(A) are chosen
accordingly. We will see that the generic conditions on the perturbations are related to the

block partitioned matrix (19). The next lemma expresses in several equivalent ways these
conditions.

19)

Lemma 3. Let H(X) = Aog + AA1 be an n x n singular pencil with Smith canonical form given
by (19), and M(\) = By + AB;1 be another n x n pencil. Then the following statements are
equivalent
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1. det(Ua(A) M (1) Vo(A)) # 0.
2. There exists a number |, that is not an eigenvalue of H()), and such that

det(Us M(u) V2) # 0,

for any pair of matrices Us € C" and V5, € C"™? whose, respectively, rows and columns
are bases of /'t (H(w)) and V" (H(w)).
3. There exists a number |, that is not an eigenvalue of A1 + LA, and such that

det(Ua (B + Bo) V2) # 0,

for any pair of matrices Us € C™" and V5, € C"™? whose, respectively, rows and columns
are bases of N'1 (A1 + uwAp) and N (A1 + nAp).

Proof. Note that p(A) = det(Uz(X) M (1) V2(1)) is a polynomial in X, therefore it is not the zero
polynomial if and only if p(u) # O for some . Note also that p(u) # 0 for some p if and only if
p(w) # 0 for some u that is not an eigenvalue of H (A). Thus, the first statement is equivalent to
the existence of w that is not an eigenvalue of H (1), and such that det(Ua () M () Va(w)) # 0,
and the equivalence with the second statement follows from Lemma 2, because 172 = Vo(u)S
and U, = T U (u) with § and T nonsingular matrices. The equivalence between the second and
third statements follows from the facts that u can be taken different from zero, the null spaces
of Ag + nA1 and (1/u)Ag + Aq are equal, and Uz (Bo + uBy) \72 is nonsingular if and only if
172 ((1/w) Bo + By) \72 is nonsingular. [J

Let us note that once the pencil H (1) and the partition (19) are fixed, det(U>(A) M (1) Vo (L)) =
0 is a generic condition on the set of perturbation pencils By + A B1, because it does not hold only
on the algebraic manifold defined by equating to zero all the coefficients of the polynomial p(X) =
det(Ua(A) M (L) V2(A)). These coefficient are multivariate polynomials in the entries of By and
Bj. Notice also that the third item in Lemma 3 means that the condition holds simultaneously for
the dual pencils.

Theorem 1 below maps the original singular perturbation problem for the eigenvalues of (4) into
aregular perturbation problem for the roots of a certain polynomial. Some interesting conclusions
are obtained from combining this fact with classical results of Algebraic Function Theory (see,
for instance [11, Chapter 12]).

Theorem 1. Let H()\) be an n x n singular pencil with Smith canonical form given by (19), and
M (A) be another n x n pencil such that det(Ux (L) M(X) V(X)) %= 0. Then

1. There exists a constant b > 0 such that the pencil H(\) + e M () is regular whenever
0<le|l <b.

2. For 0 < |e| < bthefinite eigenvalues of H(A) 4+ € M ()) are the roots of a polynomial, pe (L),
in . whose coefficients are polynomials in €. In addition, when € = 0,

po(A) = det(Ds (1)) det(Uz(2) M(R) V2(R)). (20)

3. Let € be such that 0 < |€| < b. Then the n eigenvalues,> {r1(€), ..., tn(€)}, of H(X) +
€M (L) can be expanded as (fractional) power series in €. Some of these series may have

2 1t is well known that any n x n regular pencil has exactly n eigenvalues, if finite and infinite eigenvalues are counted
[18, Chapter VI].
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terms with negative exponents and tend to 0o as € tends to zero. The rest of the series
converge in a neighborhood of € = 0.

4. If the finite eigenvalues of H (L) are {i11, ..., Uk}, where common elements are repeated
according to their algebraic multiplicity, then there exists a subset {A; (€), ..., X; (€)} of
{ri(e), ..., Ay(€)} such that

limA; (e)=pn;, j=1,...,k
e—0 7/

5. If the pencil H (L) has an infinite eigenvalue with algebraic multiplicity p, then there exist
Ay (e)s.. ., Al (€)} such that

lim A, () =00, j=1,...,p.
e—~0

Proof. Let us partition U (1) M (1) V(1) conformally with (19) as

oo v 22]
This means that By (A) = Uz(A) M (L) Vo(X). Thus

Dgs(A) +€B11(A) €Ba(M)
€By1(X) €Bn(A) |’

where C is the nonzero constant C = 1/ det(U (1) V()1)). Then

Dg(%) + €B11(A) Blz(k)]
€Br1(X) By (M) |

det(H(L) + eM(L)) = C det [

det(H(\) +eM()) = C €4 det [

Let us define the polynomial in A

pe() = det [DS“G)B;igll(“ gzm ,
whose coefficients are polynomials in €, and write

det(H (L) +eM (1)) = C € pe(). (21)
It is obvious that when € = 0

po(A) = det(Dg(2)) det(Bn(2)). (22)

We know thatdet(Dg(A)) £ 0, and, therefore, det(B>2 (X)) = Oimplies that H (L) + e M (A) isreg-
ular in a punctured disk O < |€| < b. This is obvious by continuity: if det(Dg(r)) det(Baa(w)) #
0 for some fixed number w, then pe (1) # O for € small enough, since pe(w) is continuous as a
function of €. In addition, whenever O < |€| < b, Eq. (21) implies that z is a finite eigenvalue of
H(\) + eM () if and only if p(z) = 0. So, the first and second items in Theorem 1 are proved.

Notice that we have reduced the original perturbation eigenvalue problem to the study of the
variation of the roots of p.(A) as € tends to zero. But since the coefficients are polynomials in €,
this is a classical problem solved by Algebraic Function Theory, see for instance [11, Sections
12.1-12.3]. In particular the third item is a consequence of this theory (for infinite eigenvalues
similar arguments can be applied to zero eigenvalues of dual pencils). We just comment that if
the degree of p.(A) in A is 61 and the degree of det(Dg(A)) det(Ba2(X)) is §2 < 81, then §; — &>
roots of p.(A) tend to infinity when € tends to zero. The fourth item is again a consequence of
Algebraic Function Theory and (22), since those roots that remain finite have as limits the roots
of det(Dg())) det(B2(X)), and the roots of det(Dg())) are precisely the finite eigenvalues of
H().
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The last item can be proved by applying the previous results to the zero eigenvalue of the dual
pencil of H(A) + e M (A), and taking into account that A; (¢) is an eigenvalue of H(A) + e M ())
if and only if 1/A;(¢) is an eigenvalue of the dual pencil. [

Theorem 1 gives a sufficient condition for the simultaneous existence of perturbation expan-
sions for all the eigenvalues of H (1) + € M (A). Some of these expansions have as limits the roots
of det(U(A) M(A) Vo(X)) that are fully determined by the perturbation M (A), the rest of the
expansions have as limits the eigenvalues of H(A). The condition det(U;(A) M(X) V2(X)) £ 0
can be relaxed if we are only interested in the existence of some of these expansions. In addition,
Theorem 1 is a very simple result that does not say which are these expansions, or which are
their leading exponents and coefficients. We will get this information in Section 5, at the cost
of imposing more specific assumptions. The main point of Theorem 1 and its proof is that,
generically, first order perturbation theory of eigenvalues of square singular pencils is just a usual
perturbation problem for the roots of a polynomial whose coefficients are polynomials in the
perturbation parameter.

Example 1. Let us apply the results of this section to the first example (2) in the Introduction.
Note that in this case H (L) = [3 8],

M(A):[flo _()3]+A[(]) (1)} (23)

and U (A) and V (X) are the 2 x 2 identity matrix. Therefore, U> (1) M (1) Va(A) = Ois the (2, 2)-
entry of the perturbation, and Theorem 1 cannot be applied. If the perturbation M (A) is modified
by setting M»>(X) = 22 + Adyy # 0, then the reader can check that the limits as € tends to zero
of the roots of det(H (L) + e M (1)) = 0 are precisely the roots of pg(A) = A(c22 + Ad22), that is
(20) for this example. So, for € small enough there is always a root close to zero. Other interesting
observations that can be easily checked are: (i) if d»p = 0 then one of the roots tends to infinity;
(i1) if cp» = 0 both roots approach to zero as & c € 172 4 0(e'/?). In this last case the perturbation

makes the simple eigenvalue A = 0 of the pencil [3 8] to behave as a double eigenvalue from

the point of view of perturbations. The theory that we will develop does not cover this kind of

6

nongeneric situations. Finally, note that the perturbation M (1) = [x 3 3] does not satisfy the

assumption of Theorem 1, however det (H () + e M (L)) = —e? A(A — 3) and A9 = O is a simple
eigenvalue for any value of €. Therefore, the generic assumption det(Uz(A) M (X) V2(1)) #£ 0 in
Theorem 1 is sufficient but not necessary for the existence of expansions.

4. From Kronecker to local Smith form

The results in Section 3 show that the Smith canonical form plays a relevant role in the generic
perturbation theory of eigenvalues of square singular pencils. However, the Smith normal form
does not reveal all the spectral features of singular pencils, this is only done by the KCF. In fact,
it is easy to devise examples of pencils with the same Smith canonical form, but different KCFs.
The purpose of this section is to relate the matrices transforming a pencil into its KCF with the
matrices transforming the same pencil into a simplified version of its Smith canonical form. This
simplified version is called local Smith form [10, p. 331], and reveals the normal rank of the pencil,
and the elementary divisors corresponding to only one eigenvalue )¢ of the pencil.
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Let H(A) be a square matrix pencil with Smith canonical form given by (8), and Ao one of
its finite eigenvalues with spectral structure given by (14). Then U (1) and/or V(1) (only one is
necessary) can be multiplied by inverses of diagonal matrix polynomials whose diagonal entries
satisfy g;(Lg) # O, to obtain two n X n matrices #(A) and 2()), whose entries are rational
functions with nonzero denominators at Ao, det(Z(1)) = 1/p(X), det(2(1)) = 1/q (1), where
p(A) and g (X) are polynomials satisfying p(Ag) # 0 and g (Ao) # 0, and such that

PMHMN)2(\) = AN (24)
with
D)
AA) = 1 , d=n—nrank(H (1)), 25)
Oaxa
where D(}) is the g x g matrix

r Tq
D) = diag((h — 20)" ..., v = A)" .., (v = A0)", ..., (A — Ao)™).

The matrix A4(}) is the local Smith form of H(A) at Ly and is unique up to permutation of the
diagonal entries. Notice that if H(A) is regular, no zeros appear on the main diagonal of 4(1).

The matrices (1) and 2()) in (24) are not unique. In this subsection, we relate the Kronecker
and the local Smith forms by showing that one can transform the constant matrices P and Q in
the KCF (6) to obtain specific rational matrices (1) and 2(}) satisfying (24). The procedure
will be the following:

(1) Transform H (A) into its KCF Ky (1) by means of P and Q as in (6).

(i) Transform Ky (X) into 4(X) by means of rational matrices 21(X) and 2;(A), such that
det(Z1(1)) = 1/p(L), det(21 (1)) = 1/g (L), where p(A) and g (X) are polynomials satis-
fying p(o) # 0 and g(%9) # 0:

P1AKr(M)21(0) = A).

(iii) Set 2(A) = 21 (M) P and 2(1) = Q2,(A).

These matrices evaluated at Ag, i.e., Z(Ag) and 2(Lg), are related to the matrices Wi and Z;
defined in (17).

Let us begin by specifying the A-dependent transformations to be used in stage (ii).
Lemma 4. Let Ao be a complex number. Then

(a) For each positive integer k we have
Pr(A — Ao) (A — Jr (X)) Qk (A — Xp) = diag((A — )»o)k, 1,..., 1),

where the matrices

R U W 1 0o ... 0
: . . A 0 ... -1
Py =| - eC o= . : : e C
1 A1 g

are matrix polynomials with nonzero constant determinants equal to £1, i.e., nonsingular
forall ).
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(b) For each \; #+ Ay and each positive integer k there exist two k x k matrices 2 (A) and
0}, (A), such that one of them is a polynomial matrix with nonzero constant determinant,

and the other has rational entries whose denominators are (. — 1;)¥ or 1, and determinant
+1/(n — 1)K, and

BLO) Ol = k(i) QL (1) = Ii.
(c) For each positive integer k we have

(I = 2Tk (0) Q1 (1) = I,

where the matrix

| N N L
1 A ... Ak2
Q]?o()\.) — c Cka
A

has nonzero constant determinant equal to 1.
(d) For each positive integer o we have

0 1
Loe(MCoy1(2) := By = e Coxth,
0 1
where the matrix
1
A —1
Cony=|*¥ -+ -1 c Clethx(+D)
A=A -]

has nonzero constant determinant equal to £1.

Proof. Items (a), (c) and (d) can be easily checked. To prove (b), notice that a transforma-
tion analogous to the one described in (a) transforms each block (A Iy — Jx(X;)) into diag((A —
Ai)k, 1,..., 1), for A; # Ag. Multiplying on the right by diag((» — ki)_k, 1,...,1) leads to I.
Notice that det(diag((A — A) 7%, 1,..., 1) = —A)*. O

We may now specify the mentioned matrices 2(19) and 2(X1¢). This involves the minimal
reducing subspaces defined in Section 2.3, and the left and right null spaces, i.e., 47 (H (Xg))
and A"(H (Ag)), associated with a finite eigenvalue 1g. These null subspaces were studied in
Section 2.4.

Lemma 5. Let H(A) be an n x n singular pencil with KCF given by (6), with minimal reducing
subspace R, and row minimal reducing subspace Rt . Let Ly be a finite eigenvalue of H ()) with
spectral structure (14). Let W1 and Z1 be the matrices defined in (17), denote by Wy € cdxn
a matrix whose rows form any basis of V7 (H(Ly)) N A, and by Z4 € C" *d 4 matrix whose
columns form any basis of /" (H (Ag)) N R. Let A()\) be the local Smith form of H (L) at Lo defined
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in (25). Then, there exist two matrices 2 () and 2(A), whose entries are rational functions with
nonzero denominators at Ly, det(Z(1)) = 1/p(A), det(2(X)) = 1/q(A), where p(L) and g(A)
are polynomials satisfying p(Ao) # 0 and q(Ao) # 0, and such that

PAVHM)2(A) = A(N)
and

Wi
Pho)=| * |. 200)=[Z1 = Za], (26)
Wa

where the rows and columns denoted with x are not specified.

Proof. First, we collect in two block diagonal matrices P (A) and @ (1) all transformations ﬁ,ﬁ A)
and ’Q\};(k), as in Lemma 4(b), corresponding to Jordan blocks associated with finite eigenvalues
Ai # Ao. We also build up a block diagonal matrix Qo (A) of dimension dx X dno (axo 1S the
algebraic multiplicity of the infinite eigenvalue) which includes all matrices Q7°(A) from Lemma
4(c) corresponding to Jordan blocks associated with the infinite eigenvalue.

We now set

Po(1) = diag(Pu, (A = 20), .., Pay(h = 20), POV, Ly Ie, C 1 (M), ..., CF L (M),
with ¢ given by (7), and

20(3) = diag(Qu; (A — 20). ... Qn, (A — 20), Q(A), Qoo (),
C8|+l()")v ceey Cé‘d-‘rl()")v Iﬂ)1

where 7 is given by (7), the diagonal blocks Py, (-) and Q,, (-) are as defined in Lemma 4(a), and
Cejt1, C;J,H are as in Lemma 4(d). Then

ni ng
Po(MKg (W) 20(A) = diag((A — A9)", 1, ..., 1, ..., (A —Ap)", 1,..., 1,1,
Be.....Bey By .....B)),
and each diag((A — Ag)", 1,..., 1) is repeated r; times along the diagonal. So there are g =

>°7_, ri of these blocks.

A final permutation of the rows and columns of this matrix leads to the Smith local form at
Xo. This permutation moves each first row and each first column corresponding to a diagonal
block diag((A — Xp)"™, 1, ..., 1)), to the first g rows and columns of A(A). On the other hand,
the last d null rows (resp. the last d null columns) of 4(A) come from the first row (resp. the first
column) of each one of the d singular blocks B,Tj (resp. Bg,;) above. If we denote by I1; and II,
the corresponding left and right permutation matrices, then we define

P10 = Po(h),  21(0) = 201,
and
POy =P1(WP, 20 = 02(M).

The matrices @(Ao) and :@(Ao) are as the ones described in (26) for a specific choice of Wy
and Zy. To see this, we need only to keep track of the rows of P (resp., of the columns of Q)
after multiplying on the left by 21(1o) (resp., on the right by 2;(Ap)). First, notice that, for
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each k =ny, ..., n4, the permutation matrix Py (0) includes a transposition of rows, whereas
multiplication on the right by Q4 (0) keeps the first column fixed. Therefore, using the notation
in the paragraph after Eq. (16), multiplication on the left by Zy(1o) moves each row vector yij
to the first row in its corresponding block, while multiplying by 2¢(1o) on the right leaves the
column vectors xij unchanged. The final multiplication by I1; and II, leads the vectors yij (resp.,

xij ) to the first g rows of &(Ao) (resp., to the first g columns of ?2()\0)). Therefore, we obtain
that

P(ro) = [VZ‘} 2n0) = [21 | #].

As to the last d rows of g’(ko), take the rows of P corresponding to some block P, appearing
in (11). Multiplication on the left by 2(A), restricted to these rows, gives the product

i (Ao)
T k
ChaaGo Py =| |,

*

according to (12) (the entries denoted with * have no significance in our argument). The final
permutation II; moves the rows 1 (Xg), ..., T4(1p) to the last d rows in 2(1p). A similar argu-
ment with the columns of Q gives the corresponding result for 2(Ap). We have thus obtained
that

Wi

*

Pog) = | TR0 | D) =[Z1 * YiGo) - Ya(ho)]

74 (Ao)

with the polynomial vectors 77; (A) and v; (1) as defined in (12). These matrices are of the type
appearing in (26) by Lemma 1. Finally, to obtain any basis W5 of A 7 (H (X¢)) N Z7, and any
basis Zy of A (H (Ao)) N X, we multiply by block diagonal matrices

P() = diag(ly—a, E) 21(0) P, 2(0) = Q 2,(1) diag(I,—q. F).

where E and F are constant d x d nonsingular matrices. [J

5. Puiseux expansions for eigenvalues of perturbed pencils

Given a finite eigenvalue A¢ of an arbitrary square pencil H (1), regular or singular, we now
turn to our central problem, namely that of obtaining, under certain generic conditions on the
perturbation pencils M (L), first order perturbation expansions in terms of the parameter ¢ for
those eigenvalues of the perturbed pencil (4) whose limit is Ao as € tends to zero. The leading
coefficients of these first order perturbation expansions will be shown to be the finite eigenvalues
of certain auxiliary regular matrix pencils constructed by using M (Ao) and bases of the left and
right null spaces of H(X(). For simple eigenvalues we will see that any of these bases can be
used, but for multiple eigenvalues very specific bases, normalized in a nontrivial way, have to
be used to construct the auxiliary pencils. In Section 5.1 we define these auxiliary pencils and
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prove some of their basic properties. In Section 5.2 we present the perturbation expansions for
finite eigenvalues. The expansions for the infinite eigenvalues, obtained from the expansions of
the zero eigenvalue of the dual pencil, are presented in Section 5.3. Finally, the expansions for
simple eigenvalues are studied in Section 5.4.

5.1. The auxiliary pencils

Let us recall some matrices previously introduced. Given a finite eigenvalue Ag of the square
pencil H (A) with Kronecker form (6) and spectral structure (14) for 19, we consider the matrices
Wiand Z;,i =1, ..., q,defined in (17). Let us denote by W € C4*" g matrix whose rows form
any basis of A "7 (H (Ao)) N %7, and by Z4 € C"*? 3 matrix whose columns form any basis of
N(H (X)) N R, where Z7 and Z are the minimal reducing subspaces of H (1) (see Section 2.3),
and A7 (H (Ap)) and A (H (Ao)) are the left and right null spaces of H(1p). We denote by &
the (g +d) x (g + d) matrix

&) = [VVVV;] MGo) [Z1 Za]. @7

Remember that the rows of [%’]] are a basis of A/ "7 (H (1)), and the columns of [Z]; Zy4] are a

basis of A" (H (Ao)). We now recall the dimensions f; defined in (18) and, foreach j =1, ..., ¢,
define

W<
Pj=di(g—fi+1,....8.8+ 1 ....g4+d) = [Wﬂ Mo [Zj  Za) (28)
as the (f; +d) x (f; + d) lower right principal submatrix of @. Finally, we define
Pgy1=P1(g+1,....8+d) = WaM(ho)Zy. (29)

Notice that each @; is nested as a lower right principal submatrix of @;_1. Note also that if
H (1) is regular, then @; is just

D =W; M(h)Z;. (30)

These notations are illustrated with the following example.

Example 2. Consider the pencil

=1 0 O 0 0 0
0 ai-1 -1 0 0 0
0 0 A-10 0 0
HO) =1 0 0 A -1 0|
0 0 o 0 0 &
0 0 0o 0 0 -l

which is already in Kronecker form. It has only one finite eigenvalue Ag = 1 with algebraic
multiplicity 3, and one left and one right singular block with row and column minimal indices
equal to 1. According to our notation in (14) and in Section 2.1, we have

ri=1, nm=1, rn=1, n=2 d=1, eg=n=1.
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If we take the perturbation pencil

2 1 -1 1 1 2 0 2 3 1 2 0
o 1 -2 3 1 4 1 1 -1 3 2 1
3 2 1 —1 2 1 1 0 o 2 3 1
MM=13 0 2 s 1 ol|T* 4 1 2 6 1 -2
0 3 1 1 1 2 0 0 0 1 2 -2
5 1 0 0 -2 =2 -5 -1 2 1 -3 0
then the matrix @; is
1 0
1 0 O 8 (1) 2 3 5
o;=(0 0 1 M(1)7—1=426,
[0 1 1 1 0 3 1
0
where Lemma 1 has been used to construct the matrices Wy and Z 4. In addition,
2 6
by = |:3 1:| and @3 =1.
Associated with the matrices @;, j =1, ..., g, we define
E;j :diag(lrjaO(fj+1+d)><(fj+1+d))a j=1,...,qg. 31D
Notice that E;isa (f; + d) x (f; + d) matrix. The pencils needed in the perturbation expansions
below are @; + ¢ Ej, j =1, ..., q. Some properties of these pencils are presented in the simple
Lemma 6.

Lemma 6. Let ®jand E;, j =1, ..., q, be the matrices defined, respectively, in (28) and (31),
and @y 11 be the matrix defined in (29). If the matrix @1 is nonsingular then

1. The pencil ®; + ¢ E; is regular and has exactly r; finite eigenvalues.

2. The finite eigenvalues of ®; + ¢ E; are minus the eigenvalues of the Schur complement of
¢j+1 in (Dj.

3. If, inaddition, ®@; is nonsingular then the r ; finite eigenvalues of ®; + ¢ Ej are all different
from zero.

Proof. Let us express

Ci1 Cp2
D = .
/ [C21 ‘p,/+1i|

Thus
Cu+¢l,;, Cn2
;L rE; = J
itk [ Ca1 Djt1
and
Iy; 0 Ci — Cnp®7), Ca+2l, Cn
b+ CE; it — j+1 Ty .
( J é‘ ,/) [_@/J’]_l C2] I:| [ 0 (pj+1
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The pencil in the right-hand side of the previous equation is strictly equivalent to (®; + ¢ E ;) and

the first two items follow easily. If @; is nonsingular, then C1; — Cy2 (P;il C> is nonsingular
and all the finite eigenvalues must be different from zero. [l

5.2. First order expansions for finite eigenvalues

We are now in the position of proving Theorem 2, the main result in this paper. The proof of this
theorem has two parts: the first one uses the local Smith form to transform the original eigenvalue
perturbation problem of a pencil that may be singular into a regular perturbation problem. The
second part applies to this regular perturbation problem the techniques developed in [13] to obtain
the first order perturbation expansions for eigenvalues. This second part is not presented here, since
it is long and amounts to repeating the arguments in [13, pp. 798-801] in a different situation.?
After the proof of Theorem 2, we discuss the genericity conditions imposed on the perturbations
and compare these conditions with that in Theorem 1. Note that if the pencil H ()) is regular then
the matrix @, does not exist, and conditions on this matrix are not needed. Note also that the
results in Lemma 6 on the pencil @; + ¢ E; are implicitly referred to in the statement of Theorem 2.

Theorem 2. Let H(A) be an arbitrary n x n matrix pencil (singular or not) with Kronecker
form (6), and M (X)) another pencil with the same dimension. Let Ay be a finite eigenvalue of
H (™) with spectral structure given by (14) and (15). Let ®; and E;, j=1,...,q, be the
matrices defined in (28) and (31), and D, be the matrix defined in (29). If det @; 1 # 0 for
some j €{1,2,...,q}, let &, ...,&, be the rj finite eigenvalues of the pencil ®; + {E;, and

& SI/"j, s =1,...,nj, be the n; determinations of the n jth root. Then, in a neighborhood of
€ =0, the pencil H(A) +eM (M) has rjn; eigenvalues satisfying
MS(€) = ho + (& M oy, r =12, rj s=1.2... .n;. (32)

where €'/"i is the principal determination® of the n jth root of €. Moreover, the pencil H(\) +
€M (1) is regular in the same neighborhood for € # 0. If, in addition, det @; + 0, then all &, in
(32) are nonzero, and (32) are all the expansions near Ay with leading exponent 1/n .

Proof. The proof is based on the local Smith form in Lemma 5. We restrict ourselves to the
case A9 = 0. If A9 # 0, we just make a shift 4 = A — A¢ in the local Smith form: Z(A — Ao +
rM)HO — ):9 + X0)2(A — Lo + Xo) = AL — Ao + Ag), define () := g(g + XQ), QLM) =
2(p+r0), H(w) := H(pu+2o),and 4(w) := A(p+2ro), and, finally, consider 2 () H () 2(1) =
A(w). Note that 2(0) = 2(Ao) and 2(0) = 2()p), and that these matrices are given by (26).
Assuming that Ao = 0, we consider the transformation to the local Smith form at Ay = 0,

PA)HA) +eMA)20) = AA) + €ePOA)MAM)2(N) = Z(k) + G, €), (33)
where
R D) €Gn)  €G2(d) €G3
A0 = 0 and G(h, €)= | €Ga1(h) I+€Gn(h) €Gxuh)
Odxa €G31(A) €G3() €G33(A)

3 The arguments in [13] are based on the Newton Polygon. The reader can find information on the Newton Polygon in
[13] and the references therein, and also in the general Refs. [1,11]. Also, see the survey [15].
4 In fact, it is easy to see that any determination of the root can be used.



568 F. De Teran et al. / Linear Algebra and its Applications 429 (2008) 548-576
are partitioned conformally, and [G;; ()\)]3 = PA)MA)2()L). Therefore, if H(L) +eM (L)

. . o hLj=1""
is regular, its finite eigenvalues are the roots of

f(A,e) =det(H(A) +eM()) = S(A)edf(k, €),
where
F, ) = det(AR) + G (n, €))

and

- €G11 () €G12(A) Giz(M)
G, e)=|eGau(A) I4+€Gn) G
€G3 (V) €G3(A) G33(A)

In addition, the function §(X) is given by §(1) = p(A)q(r) where, det(Z(1)) = 1/p(X) and
det(2(A2)) = 1/g(A). So §(A) is a polynomial such that §(0) # O and that does not depend on
the perturbation M (A). These facts imply that for € # 0, the pencil H(X) + e M (}) is regular if
and only if f (A, €) # 0, and that, in this case, the eiggnvalues of H(A) + eM (X)) whose limit
is Ao :~O as € tends to zero are those zeros, A(€), of f (A, €) whose limit is 0. Obviously (see
(21)), f (A, €) is a rational function in A, where the coefficients of the numerator are polynomi-
als in €, and the denominator is precisely §(1). So, f (A, €) can be also seen as a polynomial
in € whose coefficients are rational functions in A. Let us study more carefully the function
fx, e).
In the first place, note that according to Lemma 5 and the definitions (27) and (29),

& = |:G11(0) G13(0)

G31(0) G33(0)] and  @q11 = G33(0). (34)

In the second place, we rename the dimensions of the Jordan blocks associated with
A =0

(ni,....n1,....ng,...,ng} ={my, ... ,mg}.
S ——’ ——

r rq

‘We now make use of Lhe Lemma in [13, p. 799], on determinants of the type det(D + G) with D
diagonal, to expand f (A, €) as

Fo o) =det G )+ Y A™1 - a™r det G(L, &) ({v1. ..., v}, (35)
where for any matrix C, C({vy, ..., v,}) denotes the matrix obtained by removing from C the
rows and columns with indices vy, ..., v.. The sumrunsoverallr € {1, ..., glandallvy, ..., v,
such that 1 < v; < --- < v, < g. Finally, note that

det G(n, €) = €4 (det @1 + Qo(%, €)), (36)
for Qo (A, €) rational with Q¢ (0, 0) = 0, and

det 5()"5 6)({])1’ LR Vr}/) = Eg_r(det @1({1)1, RN} Vr}/) + Q\)l,‘..,v,« ()‘" E))’ (37)

with @y, ., rational and Q,, ..., (0,0) = 0. From now on, it suffices to repeat thg arguments
in [13, pp. 799-800]. The only remark to be made is that Eqs. (35)—(37) show that f (A, €) £ 0,
since det @1 =det @1 ({1, ..., J_riY) # 0 is the coefficient of efi+1x/1M+47nj in the

i=1

two variable Taylor expansion of f (A, €) (fj+1 was defined in (18)). [
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Obviously, the assumption det @41 # 0 in Theorem 2 is a generic condition on the set of
perturbations M (L) = B + ABj, because if H (1) is fixed then det @; is a multivariate poly-
nomial in the entries of By and B;. However, we should stress that the assumption det @1 # 0
is different from the assumption det(Uz(A) M (1) V2(X)) % 0 in Theorem 1. The reason is that
Theorem 2 deals with only one eigenvalue of the unperturbed pencil H (1), while Theorem 1
deals simultaneously with all the eigenvalues of H (1). In addition, Theorem 1 only establishes
the existence of expansions, while expansions with specific first order terms are developed in
Theorem 2. Note also that although the algebraic multiplicity of Ag in H(A) isriny + - - - + ryng,
the conditiondet @1 # 0inTheorem 2 only guarantees the existence of r jn ; expansions with the
leading exponents and coefficients in (32). To finish this discussion, we point out thatdet @, 1 # 0
implies det(Uz(A) M (L) V2(A)) = 0. This follows easily from (29) and Lemma 2. Therefore
det @441 # 0 for only one eigenvalue guarantees the existence of expansions for all eigenvalues,
although not necessarily of type (32).

Theorem 2 is illustrated with the following example.

Example 3. We continue with Example 2. The fact that det @3 # 0 guarantees the existence of
two expansions with leading exponent 1/2 and limit 1 as € tends to zero. To obtain the leading
coefficients of these expansions, we must solve

24+¢ 6]
det|: 3 1:|_O.

The two square roots of its solution £ = 16 provide the leading coefficients of the expansions
with leading exponent 1/2:

M(e) = 1+ 4€'/2 4 o(e!/?),

M) =1-— 4el/2 4 o(el/?y,

In a similar way det @, # 0 guarantees the existence of one expansion with leading exponent
1 and limit 1 as € tends to zero. The leading coefficient of the expansion is the root of

24¢ 3 5
det| 4 2 6| =0,
0 3 1

SO
A3(e) =1+ € +o(e).

For the purpose of comparison, we have computed the eigenvalues of the pencil H (A) + e M (L),
for e = 107*, 1075, 1078, solving the polynomial equation det(H (1) + €M (1)) = 0 in the
variable precision arithmetic of MATLAB 7.0 with 64 decimal digits of precision, and rounding
the results to ten digits. The three roots closest to 1 are

e=10"* € =109 e=10"%
A 1.053399042 1.004079394 1.000400768
A 0.9657365454 0.9960738628 0.9996007623
A3 1.000099915 1.000001000 1.000000010

The reader can check that the results coincide with the ones predicted by the perturbation
theory, up to the corresponding order.



570 F. De Teran et al. / Linear Algebra and its Applications 429 (2008) 548-576
5.3. The infinite eigenvalue

Although infinite eigenvalues have been excluded from our previous analysis, they can be
easily included by considering the zero eigenvalue of the dual pencil

HYO) + eM?(L) := A; + Ao + (B + ABy).

From the KCF several properties can be easily checked: if /(€) # 0 is an eigenvalue of H () +
eM4()), then A(¢) = u(e)~! is an eigenvalue of the original pencil H (1) 4+ ¢ M (%). Conversely,
each finite eigenvalue A(€) of H(X) + e M () is (€)™ for some eigenvalue p(€) of HY() +
eM?(}), and the spectral data (eigenvectors, number of Jordan blocks, partial multiplicities, etc)
are the same in both cases. The minimal reducing subspaces of a pencil and its dual are equal.
Given a KCF (6) of H()), the rows of P and the columns of Q corresponding to the “infinite”
Jordan blocks are the rows and columns associated with the Jordan blocks of the zero eigenvalue
in the KCF of the dual pencil.

If the zero eigenvalue po = 0 of H()) has spectral structure (14) in H4()), then we can
define the matrices (b?o, j=1,...,q + 1, for the infinite eigenvalue of H()) as the matrices
@ corresponding to the zero eigenvalue in H (). In addition, we can use the matrices P and Q
of the KCF of H (1) to construct these matrices.

Therefore, to obtain the Puiseux expansions of the eigenvalues A(€) coming from infinity we
just apply Theorem 2 above to the eigenvalues p(e) of HY()) + eM4()) with n(0) =0, and
compute the leading term of z(¢)~!. This leads to the following result.

Corollary 1. Let H(A) be an n x n matrix pencil with Kronecker form (6), and M (\) another
pencil with the same dimension. Let o = 0 be an eigenvalue of H? (1) with spectral structure
given by (14) and (15). Let <15‘]>-° and Ej, j =1, ...,q, be the matrices defined in (28) and (31),

and @;ﬂrl be the matrix defined in (29), for the zero eigenvalue of the dual pencil HY()). If

det @ﬁ_l #+ 0 forsome j € {1,2,...,q}, let&, ..., Er/. be the r; finite eigenvalues of the pencil
¢?° +¢Ej, and (Er);/nj, s=1,...,nj, be the nj determinations of the n jth root. Then, in a

neighborhood of € = 0, the pencil H()) + e M () has rjn; eigenvalues satisfying

M) = (€)y M e M oe My, r =120y s = 12,0, (38)

where €'/ is the principal determination of the njth root of €. If, in addition, deup‘j?o #+ 0, then
all & in (38) are nonzero, and (38) are all the expansions with leading exponent —1/n ;.

5.4. Expansions for simple eigenvalues

The expansions in Theorem 2 and Corollary 1 depend on the matrices ®; defined in (28), and
these matrices are constructed by using very specific vectors of the null spaces of H (}), easily
obtained from the matrices P and Q transforming H (A) into its KCF (6). However the matrices
P and Q (or the blocks that we need) are very difficult to compute in the presence of multiple
defective eigenvalues. This is not the case for simple eigenvalues, because then we can use any
bases of the left and right null spaces of H (1g) to construct the corresponding matrices. This is
shown in this section.
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Theorem 3. Let H(\) = Ag + LA beanarbitraryn x n matrix pencil (singular ornot), M (1) =
Bo + LBy be another pencil with the same dimension, and Ao be a finite simple eigenvalue of
H ()A). Denote by W a matrix whose rows form any basis of the left null space of H (Lo) and by
Z a matrix whose columns form any basis of the right null space of H(Ao). Then

1. The pencil WM (Lo)Z + ¢t WA Z is generically regular and has only one finite eigenvalue,
i.e., this holds for all pencils M (L) except those in an algebraic manifold of positive codi-
mension.

2. If the pencil WM (Ao)Z 4 ¢ W A1 Z is regular and has only one finite eigenvalue equal to &,
then there is a unique eigenvalue of H(L) + € M (L) such that

A(€) = ho + &€ + O(e?),
as € tends to zero.

3. In addition, if H(A) is regularthen WM (ML) Z + ¢t WA Z is 1 x 1, and it is regular with only
one finite eigenvalue for all perturbations M (1). Therefore ¢ = —(WM(Lo)Z)/ WA Z.

Proof. The spectral properties, in particular the eigenvalues, of WM (L0)Z + (WA Z are the
same for any pair of bases W and Z of the left and right null spaces of H (Ag), because changing
bases simply transforms the pencil into a strictly equivalent pencil. Therefore, we can choose a pair
of specific bases to prove the theorem. To this purpose, let Z and Z7 be, respectively, the minimal
reducing and the row minimal reducing subspaces of H()), and let A" (H (Ap)) and A 7 (H (Ap))
be the right and left null spaces of the matrix H (Ap). Let us denote by Wy € C4*" a matrix whose
rows form any basis of A 7 (H (Ag)) N #7,and by Z4 € C" *d 3 matrix whose columns form any
basis of A"(H (19)) N Z. Now, consider the KCF (6) of H(A) and the partitions (11) and (10) of P
and Q, and notice that P, and Q,, have, respectively, only one row and only one column because
Ag is simple. From the KCF and Lemma 1, it is easy to see that the rows of [Py, W] form a
basis of A7 (H (Ap)), and the columns of [Q), Zz] form a basis of ./"(H (Ap)). In addition,
notice that the spectral structure (14) is simply ¢ = 1, n; = 1, and r; = 1, and that, in this case,
the matrices @1, ..., @441 defined in (28) and (29) are just two, more precisely

P
= [WA;:I M@O0) [Qry Zz] and @y = WyM(ho)Zy.

If the pencil is regular, then @7 is 1 x 1 and &, does not exist.
Letus choose W =[Py, Wgl,and Z =[Q), Z4]. Again from (6) and Lemma 1,

1 0
WA Z = . 39
1 [0 ded] (39)
Note that this matrix is E7, according to (31). So,

WMOG)Z + (WA Z = I:PAOM()\O)Q)L()"‘C PAOM(AO)Z%}. (40)

WaM (Ao) Q). WaM (ho)Zg
Laplace expansion across the first column yields
det(WM(h0)Z + WAL Z) = (Poy M (20) Oy + ¢) det(Wy M (Mo)Zy) + D,

where b is a constant independent of ¢. This equation shows that WM (Lo)Z + ¢ W A Z is regular
and has only one finite eigenvalue if and only if det(W,M (Lo)Z%) # 0. Clearly, this condition
is generic because det(W,M (Ao)Z#) is a multivariate polynomial in the entries of By and Bj.
This proves the first item of the theorem. In the regular case WA Z = 1, therefore the pencil is
1 x 1, regular, and has one finite eigenvalue for any M (1).
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To prove the second item simply notice that the condition det @, = det(W4M (Mo)Z4) + 0
allows us to apply Theorem 2, and that (40) is @1 + ¢ E1. The only point to discuss is that here we
have O(e2) while in (32) we have o(e). This is a simple consequence of Algebraic Function
Theory: note that, by using Lemma 2, det ¢, = det(W»M (Ag)Z4) # 0impliesdet(Ua(ro) M (Ap)
Va(Xo)) # 0, so det(Uz (L) M(A) Va(X)) = 0in (20). Hence A is a simple root of (20), and A(¢)
is analytic in € and unique in a neighborhood of € = 0.

Finally, item 3 is a simple consequence of previous comments. [

Theorem 3 allows us to get the first order eigenvalue perturbation expansion, and to check its
existence, by using arbitrary bases of left and right null spaces of the matrix H (1¢). To compute
these bases is a basic linear algebra task. If particular bases are chosen, an explicit expression
for £ can be obtained. This is done in Corollary 2. However, the reader should notice that this
expression requires to know the subspaces A "7 (H (Lo)) N A7 and A" (H (Lo)) N X, something
that is only possible with additional work.

Corollary 2. Let H(L) = Ay + AA1 be an arbitrary n X n matrix pencil (singular or not),
M (L) = By + ABj be another pencil with the same dimension, and Ao be a finite simple eigenvalue
of H(A). Let # and Rt be, respectively, the minimal reducing and the row minimal reducing
subspaces of H (L), and let V' (H (Ao)) and N 1(H (Xy)) be the right and left null spaces of the
matrix H(\g). Denote by Wy € C4*" g matrix whose rows form any basis of /"1 (H (,9)) N AT,
and by Zy € C"™? 4 matrix whose columns form any basis of A" (H(Ao)) N R, and construct
from these matrices the matrices

W= vl‘j) :| whose rows form a basis of V"1 (H (Ag)), and
%

(i) Z =1z Z_aj/g] whose columns form a basis of NV (H (Mg)).

If det(Wyu M (Xo)Z2) + O then there is a unique eigenvalue of H(A) + e M(A) such that

L det(WM (ro)Z) )
MO =20 = a2 - da(WaM G Z € T O

as € tends to zero.

Proof. Using the matrices appearing in the proof of Theorem 3, it is obvious that

w | st S| Py _ qltn O
R R L I S R S A

Thus from (39)

w wAz 0
A Za| =

and in this case

WMG)Z + (WA Z = [wMuo)z +ewAD)  wM(h)Zy } |

WaM (Lo)z WaM(Xo)Zy
Finally,

1 0
(WMQ)Z +L{WA1Z) [—(W%M(AO)Z%)—I WaM(ho)z Id]
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_ [wMGo)z —wMO0)Zg WaM(o)Zz) ™ WaM o)z +(wA12)  wM(ho)Zy
- 0 WaM(o)Zg )"

The result follows from equating the determinant to zero and noting that

det(WM (10)Z) = (wM (r0)z — wM (10)Zs (WaM (A0)Z2) ™' WM (h0)2)
x det(WpM(r0)Zz). U

6. Approximate eigenvectors of the perturbed pencil

We have commented that eigenvectors are not defined for singular pencils, even in the case of
simple eigenvalues. Therefore, a perturbation theory for eigenvectors makes no sense. However,
for € # 0, the perturbed pencil (4) is generically regular, has simple eigenvalues, and has well
defined eigenvectors. For small €, it is natural to expect that the eigenvectors corresponding to
eigenvalues of (4) whose limits are the eigenvalues of H (A) are related to some properties of H()).
Given a finite eigenvalue A of H (1), in this section we will show that generically the eigenvectors
of (4) corresponding to eigenvalues A(€) such that A(0) = Ag satisfy three properties: (i) they can
be expanded as Puiseux series v(¢) with v(0) = 0; (ii) v(0) is in the null space of H (A); and (iii)
inside this null space, v(0) is completely determined by the perturbation M (1). In addition, we
will show how to determine v(0). Therefore, v(0) is an approximate eigenvector of (4) for small
€ # 0, but it has no special meaning in H (}) except being in .4/ (H (Ag)). Loosely speaking, it
can be said that each perturbation M (1) selects a different direction in the null space of H (Ag) as
an approximate eigenvector of A(€). For the sake of brevity, we focus on right eigenvectors. The
reader can deduce similar results for left eigenvectors. As in the case of eigenvalues, the results
when A is a simple eigenvalue of H (1) are easier and independent of any special normalization
of bases.

The reader should notice that we are in a situation different from that in the expansions (32)
for eigenvalues: in (32) the zero order term A9 was known and our task was to determine the next
term, while in the case of eigenvectors we want to determine the zero order term. In fact, the
results we present are meaningless for simple eigenvalues of regular pencils, since then the zero
order term is obvious.

In the developments of this section we will assume that the generic condition det @,41 # 0
holds. This condition can be relaxed at the cost of complicating the proof of Lemma 7, which
shows the existence of expansions for eigenvectors.

Lemma 7. Let us consider the same notation and assumptions as in Theorem 2 together with
det @541 # 0, det @; det @y +# 0, and that the r; finite eigenvalues of the pencil @; + (E;,
&1, ..., &, aredistinct. Then for each perturbed eigenvalue of the form (32) defined in a neigh-
borhood of € = 0, there exists in the same neighborhood for € #+ 0 an associated right eigenvector
of the regular pencil H()\) 4+ € M ()) which is of the form

o
U;S(e) = v;s + Zuﬁek/"f. (41)
k=1

Proof. We simply sketch the proof. Note that the assumptions det @; det @1 # 0 and that
&1, ..., &, aredistinct imply that the eigenvalues in (32) are simple for € # 0 small enough. Letus
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consider without loss of generality that Ao = 0 as in the proof of Theorem 2. We proceed as in (33),
and use the same notation. For € # 0, the eigenvalues and right eigenvectors of A(A) + G (A, €)
are the same as the eigenvalues and eigenvectors of

F(x,€) =diag(ly, I, (1/€)14) (A(3) + G (., €)
with
D()
F(),0) = !
G31(A)  Gn@) Gz

satisfying det F(1, 0) s 0by (34). Therefore, F (%, €) is an analytic matrix function that is regular
at € = 0, so the variation with the small parameter € of the eigenvalues of F'(A, €) is a regular
perturbation problem of an analytic matrix function. Taking into account that (1) and 2())
are nonsingular and analytic in a neighborhood of Aq, the eigenvalues in a neighborhood of g
of H(A) +eM (X)) and F (X, €) are the same for € # 0, in particular the expansions in (32) are
eigenvalues of F'(A, €). Lemma 2 in [12] can be applied to show that F (A, €) has correspond-
ing right eigenvectors u);s (e) of the type (41). Finally, for € # 0 the right eigenvectors (41) of
HM) 4+eM) correspohding to the eigenvalues (32) are ,@(A;S (e))w;s (). O

Now we present the main result in this section, Theorem 4, that determines the zero order terms
v;.s in the expansions (41). The reader should notice that this theorem in fact shows that v;.“ does
not depend on s, i.e., once &, is fixed in (32) the n ; eigenvectors of the eigenvalues corresponding

to the determinations of the 7 jth roots (Sr);/ "/ have the same zero order term. Note also the bi -0
symbol in Eq. (42).

Theorem 4. Let H(A) be an arbitrary n x n matrix pencil (singular or not) with Kronecker form
(6), and M (L) another pencil with the same dimension. Let Lo be a finite eigenvalue of H()\)
with spectral structure given by (14) and (15). Let Z;, j =1, ..., q, be the matrices defined in
(U7),and Z 4 € C"? g matrix whose columns form any basis of /" (H (L)) N R. Let P; and E ;,
J=1,...,q, be the matrices defined in (28) and (31), and D, be the matrix defined in (29).
Ifdet @y #0, det®; det Py # 0 forsome j € {1,2,...,q}, and the r; finite eigenvalues
of the pencil ; +CE;, §&,..., érj, are distinct and have eigenvectors ci, ..., Cris then, in
a punctured neighborhood 0 < |€| < b, the eigenvectors of the regular pencil H(A) + e M ()\)
corresponding to its r jn j eigenvalues (32) satisfy

V) =1Zj Zaler +0EV"), r=1,2,...,r, s=12,....nj. (42)

Proof. For each eigenvalue )\;X (e) in (32), we consider for € # 0 the corresponding eigenvector
v;S (¢) given by (41). For brevity, we drop the superscripts and write A ; and v; instead of A?S and
V"%, Also, we take L9 = 0 as in the proof of Theorem 2. Again the proof is based on the local
Smith form (24) in Lemma 5, which is well defined and analytic in a neighborhood of A9 = 0. To
take advantage of this local Smith form we replace v, (¢) with

wi(e) = 2(xj(€)) v (e), (43)
which satisfies
[A(%j(€)) 4+ eM (1 j(€))] wj(e) = 0, (44)

where
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M(hj(€)) = P(hj(€)) M(Lj(€)) 2(1j(€)).

Notice that one can easily recover v; = v;(0) from w(0), since v;(0) = 2(0)w; (0). We partition
M (2j(€)) as a 3 x 3 block matrix according to the three diagonal blocks of A(A) specified in
partition (25), and denote, as in the proof of Theorem 2, [Gx(A; (e))] - = =M (Aj(€)). The
vector w (€) is partitioned accordingly, and (44) can be written as

D@j(en G GukjE)  GiukjE)]\ [w)©
1 +e | Gurjle)) Gu@kjE) Gau®je) (2) © |=0. (45)
Odxa

G31(2j(€))  Gxnrj€) G3zrjle) (”‘)(g)

For € = 0 this equation reduces to w?) (0) = 0. The rows corresponding to the first row of blocks
are

D(hj(e) wi(€) + (G111 (e) wi (o)
+ Gra(j(€) w? () + G3(hj(€) w (e)) = 0. 46)

Notice that the terms of lower order in € of the entries in D(X;(¢)) are of the form ¢ €" /nj,
fori =1,...,q, with ¢ # 0 because det @; det @;; # 0. So taking into account (15), we can
divide the first r| equations in (46) by €"1/"i , take the limit e — 0, and prove that w; x(0) = O for
k < r1 (here w;j x(0) denotes the kth entry of w;(0)). Dividing by €™/1j the next rp equations in
(46) and taking limits we prove w; x(0) = 0 for k < r1 + r». This process continues by dividing
successively by en3/ni . eMi-1/nj 1o prove that w; x(0) =0fork <ry +---+7rj_1.

Finally, denote by w;(0) the vector obtained by removing from w;(0) the zero entries corre-
sponding to w§2) (0) =0and to w;x(0) =0 fork <ry +---+r;j_. If we divide by € the part
of (45) corresponding to w;, set € = 0, and take into account (34), we get

(erj + ‘I)j) w;(0) =0.
The result now follows from (26) and (43). O

6.1. The case of simple eigenvalues

We conclude by studying the case when Ag is a simple eigenvalue of H(X). The following
result completes Theorem 3.

Corollary 3. With the same notation and assumptions as in Theorem 3. If the pencil WM (Lo)Z +
¢W A Z is regular and has only one finite eigenvalue equal to & with eigenvector c, then there
is a unique eigenvalue of H(A) + e M (A) such that A(e) = Ao + & € + 0(€2), as € tends to zero,
and for € # 0 the corresponding eigenvector satisfies

v(€) = Zc + O(e).

Proof. The proof is a direct consequence of Theorem 4, (39) and (40) and an elementary change
of bases. [J
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