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Fernando De Terána† and Froilán M. Dopicob

December 2, 2008
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Abstract

We develop first order eigenvalue expansions of uniparametric perturbations of square
singular matrix polynomials. Although the eigenvalues of a singular matrix polynomial P (λ)
are not continuous functions of the entries of the coefficients of the polynomial, we show that
for most perturbations they are indeed continuous. Given an eigenvalue λ0 of P (λ) we prove
that, for generic perturbations M(λ) with degree less than or equal to the degree of P (λ),
the eigenvalues of P (λ) + εM(λ) admit covergent series expansions near λ0 and we describe
the first order term of these expansions in terms of M(λ0) and certain particular bases of the
left and right null spaces of P (λ0). In the important case of λ0 being a semisimple eigenvalue
of P (λ) any bases of the left and right null spaces of P (λ0) can be used, and the first order
term of the eigenvalue expansions takes a simple form. In this situation we also obtain the
limit vector of the associated eigenvector expansions.
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1 Introduction

We consider square matrix polynomials with degree `

P (λ) = A0 + λA1 + · · ·+ λ`A` ,

with Ai ∈ Cn×n and A` 6= 0. The matrix polynomial P (λ) is singular if det P (λ) is identically
zero as a polynomial in λ. Otherwise P (λ) is regular. The normal rank of P (λ)—from now
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on, denoted by nrankP (λ)—is the dimension of the largest non identically zero minor of
P (λ), and a finite eigenvalue of P (λ) is a number λ0 ∈ C such that

rankP (λ0) < nrank P (λ) .

If P (λ) is regular then the finite eigenvalues of P (λ) are the roots of the polynomial det P (λ),
but this is no longer true for singular matrix polynomials. As a consequence, the eigenvalues
of regular matrix polynomials are continuous functions of the entries of the matrix coefficients
of the polynomial, because the roots of a scalar polynomial are continuous functions of the
coefficients of the polynomial. This continuity is lost for the eigenvalues of singular matrix
polynomials. See [3] for examples in the case of polynomials of degree one.

We think that this lack of continuity in the eigenvalues is one of the main reasons why
eigenvalue perturbation theory for singular matrix polynomials—and, in particular, for sin-
gular matrix pencils—has not been addressed jointly with eigenvalue perturbation theory
for regular polynomials. In fact, the literature about perturbations of the regular polyno-
mial eigenvalue problem has increased appreciably in the past few years (see, for example
[15, 8, 1, 7] and the references therein). This has not had a counterpart for singular matrix
polynomials, and we do not know any reference dealing with perturbations of eigenvalues of
singular matrix polynomials of degree greater than one. On the other hand, the eigenval-
ues of singular matrix polynomials appear in several applications, as for instance in Linear
Systems and Control Theory (see, for example [4, 18, 17]), and, therefore, the study of their
perturbations is of interest.

We will see in this paper that we can reduce the perturbation analysis of the eigenvalues
of a singular matrix polynomial to the study of the perturbations of the roots of a scalar
polynomial as in the regular case. In order to explain this fact we will make use of the
notions of algebraic geometry underlying in the eigenvalue perturbation theory. We will
consider small perturbations of the singular n × n matrix polynomial P (λ) of the form
εM(λ), where ε is a small parameter and M(λ) is also an n×n matrix polynomial. For most
perturbations M(λ) the perturbed polynomial

P (λ, ε) = P (λ) + εM(λ) (1)

is regular, so its eigenvalues are the roots (in λ) of detP (λ, ε). We may see the polynomial
equation f(λ, ε) := det P (λ, ε) = 0 as an algebraic curve in C2. If f(λ, 0) were not identically
zero, then around each root, λ0, of f(λ, 0) there would exist a certain number of branches,
i.e., power series expansions in ε, denoted by λ(ε), satisfying λ(0) = λ0 and f(λ(ε), ε) ≡ 0 [9,
§ 12.1]. These branches are usually called Puiseux branches. However, in our case, f(λ, 0) ≡ 0
because P (λ) is singular, and we need to regularize the problem before considering Puiseux
branches. To this purpose, we will prove that there exists a natural number k such that the
polynomial f(λ, ε) can be written as

f(λ, ε) = εkf̃(λ, ε) ,

where f̃(λ, ε) is a polynomial such that f̃(λ, 0) is not identically zero for generic perturbations
M(λ). Then, the problem is regularized by considering, for ε 6= 0, the polynomial equation
f̃(λ, ε) = 0 instead of f(λ, ε) = 0. More precisely, we will show that the set of roots
of f̃(λ, ε) includes branches λ(ε) such that λ(0) are the eigenvalues of P (λ). The set of
perturbations M(λ) such that the eigenvalues of P (λ) change continuously with ε consists
of those perturbations for which f̃(λ, 0) is not identically zero for a certain value of the
exponent k. We will see that this set is generic in the set of all perturbations M(λ) with
degree less than or equal to the degree of P (λ). The precise meaning of this sentence is that
this set is the complementary of a certain proper algebraic manifold in the vector space of
matrix polynomials with degree less than or equal to the degree of P (λ).

Once the existence of expansions around the eigenvalues of P (λ) is established through
the condition f̃(λ, 0) 6≡ 0, we will study the first order terms in these expansions. We will
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consider first the most important case of a semisimple eigenvalue λ0 of P (λ) with geometric
multiplicity g. This case is covered in Theorem 3, which is the main result in this paper.
There, we will see that, generically, there are g eigenvalues of P (λ)+ εM(λ) with expansions

λ(ε) = λ0 + c ε + o(ε) , (2)

where the leading coefficients c ∈ C in (2) are the eigenvalues of a certain regular matrix
pencil that can be easily constructed through M(λ0) and arbitrary bases of the left and right
nullspaces of the matrix P (λ0). If P (λ) is a regular matrix polynomial and λ0 is simple, then
Theorem 3 reduces to the well-known formula c = −(vM(λ0)u)/(vP ′(λ0)u), where v and
u are, respectively, left and right eigenvectors of P (λ) associated with λ0 [15, p. 345]. We
defer to the last section, i.e., Section 6, the study of the first order terms of the perturbation
expansions of arbitrary defective eigenvalues. The reason is that these terms are obtained
by means of the eigenvalues of certain matrix pencils that are very difficult to construct in
practice. Therefore the applicability of these results is limited, although they are interesting
from a theoretical point view.

Eigenvectors are not defined in singular polynomials, even for simple eigenvalues. In the
case of polynomials with degree one, it is known that the concept of reducing subspace is the
correct one to be used [16]. A counterpart idea for singular polynomials of higher degree has
not been established. As a consequence, a generic perturbation theory for eigenvectors of
singular matrix polynomials cannot be developed. However, by taking into account that the
perturbed polynomial (1) is generically regular, its eigenvectors, v(ε), are perfectly defined,
and it is natural to ask how are these eigenvectors related to properties of the unperturbed
polynomial P (λ) when ε is close to zero. We answer this question in Section 5 by determining
v(0).

Our work is the natural generalization of the results in reference [3] to singular matrix
polynomials of degree greater than one. Although the techniques used in [3] are closely
related to the ones that we will use in this work, there is also a fundamental difference: the
Kronecker Canonical Form of matrix pencils [5] plays a relevant role in [3], while this is not the
case in this work because an analogous canonical form is not defined in matrix polynomials.
In addition, the present work is based on results contained in the reference by Langer and
Najman [11], where the authors determined the first order term of the eigenvalue expansions
for uniparametric perturbations of regular analytic matrix functions. It can be said briefly
that, after regularizing the problem as described above, our work consists in applying the
techniques introduced in [11], and in developing some algebraic concepts that allow us to
express the first order terms in a compact way in the case of semisimple eigenvalues. Our
expression of the first order terms is influenced by the work of Lancaster, Markus, and Zhou
[10] on semisimple eigenvalues of regular analytic matrix functions.

Finally, we stress again that although eigenvalue perturbation theory of singular pencils
has been studied before in [3], and in a few previous works by Sun [13, 14], Demmel and
K̊agström [2], and Stewart [12], we do not know any reference about perturbation theory of
eigenvalues of singular matrix polynomials of arbitrary degree.

The paper is organized as follows. In Section 2 we introduce the basic definitions and
notation. The existence of eigenvalue expansions is studied in Section 3. The generic first
order terms of the expansions of semisimple eigenvalues are derived in Section 4. The limits
when ε tends to zero of the eigenvectors of the perturbed regular polynomial P (λ) + εM(λ)
are considered in Section 5. Results for arbitrary eigenvalues are discussed in Section 6.

2 Definitions and notation

In this section we introduce the basic tools and definitions used in the paper. Given an
n×n matrix polynomial P (λ) there exist two n×n matrix polynomials U(λ) and V (λ) with
nonzero constant determinant such that

U(λ)P (λ)V (λ) =
[

U1(λ)
U2(λ)

]
P (λ) [V1(λ)V2(λ)] ≡

[
DS(λ) 0

0 0d×d

]
, (3)
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where DS(λ) = diag(h1(λ), . . . , hr(λ)), and the dimensions of U1(λ) and V1(λ) are chosen
accordingly. The diagonal entries of DS(λ) , hi(λ), i = 1, . . . , r, are nonzero monic polyno-
mials satisfying hi(λ)|hi+1(λ), i.e., hi(λ) divides hi+1(λ), for i = 1, . . . , r − 1 [5, Ch. VI] [6,
Ch. S1]. These polynomials are called the invariant polynomials of P (λ), and the diagonal
matrix in the right hand side of (3) is called the Smith canonical form of P (λ). This form is
unique. Notice that the normal rank of P (λ) is the number, r, of invariant polynomials. If
each

hi(λ) = (λ− λ1)νi1 · · · · · (λ− λq)νiq , for i = 1, . . . , r, (4)

is decomposed in powers of different irreducible factors, then those factors among (λ −
λ1)ν11 , . . . , (λ−λq)ν1q , . . . , (λ−λ1)νr1 , . . . , (λ−λq)νrq with νij > 0 are called the elementary
divisors of P (λ). The roots of the invariant polynomials of P (λ) are the finite eigenvalues of
P (λ), so each elementary divisor is associated with a finite eigenvalue (its root). Based on
the elementary divisors we introduce the following definitions.

Definition 1 Let λ0 be a finite eigenvalue of the matrix polynomial P (λ). Then the number
of elementary divisors of P (λ) associated with λ0 is the geometric multiplicity of λ0, and
the sum of the degrees of these elementary divisors is the algebraic multiplicity of λ0. The
eigenvalue λ0 is semisimple if all the elementary divisors associated with λ0 are linear.

It is easy to see that the geometric multiplicity of λ0 is equal to the difference nrank P (λ)−
rankP (λ0).

We will say that P (λ) has an infinite eigenvalue if the dual polynomial P ](λ) = λ`P (1/λ)
has a zero eigenvalue, and the elementary divisors of P (λ) associated with the infinite eigen-
value are the elementary divisors of P ](λ) associated with zero. In this paper, we will focus
on finite eigenvalues, although similar results can be obtained for the infinite eigenvalue by
considering the dual polynomials. The reader is invited to read [3, Section 5.3] to see how
this can be accomplished in matrix pencils.

Let g be the geometric multiplicity of the finite eigenvalue λ0 of P (λ), and 0 < m1 ≤
m2 ≤ · · · ≤ mg be the degrees of the elementary divisors associated with λ0. Then, after
an elementary permutation, the Smith canonical form in the right hand side of (3) can be
written as

diag((λ− λ0)m1 q1(λ), . . . , (λ− λ0)mg qg(λ), qg+1(λ), . . . , qr(λ), 0 . . . , 0) ,

where qi(λ0) 6= 0 , for i = 1, . . . , r. Then we can premultiply in (3) by the diagonal matrix
diag(1/q1(λ), . . . , 1/qr(λ), 1, . . . , 1), which is invertible at λ0, to achieve

W (λ)P (λ)V (λ) = ∆(λ), (5)

where W (λ) = diag(1/q1(λ), . . . , 1/qr(λ), 1, . . . , 1)U(λ) and with

∆(λ) =




(λ− λ0)m1

. . .

(λ− λ0)mg

I
0d×d




, d = n− nrankP (λ). (6)

The matrix ∆(λ) is the local Smith form of P (λ) at λ0 and it is unique up to permutation of
the diagonal entries. Notice that if P (λ) is regular then no zeros appear on the main diagonal
of ∆(λ). In the important case of λ0 being semisimple, the local Smith form simplifies to

∆(λ) =




(λ− λ0)Ig

I
0d×d


 , d = n− nrankP (λ). (7)
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2.1 Vector subspaces associated with singular polynomials

We denote by C(λ) the field of rational functions with complex coefficients and by Cn(λ) the
vector space over C(λ) of n-tuples of rational functions. For brevity, the elements of Cn(λ)
are sometimes row vectors and sometimes column vectors. The meaning will be always clear
from the context. A matrix polynomial P (λ) can be considered as a matrix with entries in
C(λ), and the following definitions make sense.

Definition 2 Let P (λ) be a square n × n matrix polynomial. The vector subspaces of
C1×n(λ) and Cn×1(λ)

NT (P ) =
{
y(λ) ∈ C1×n(λ) : y(λ)P (λ) ≡ 0

}
and

N (P ) =
{
x(λ) ∈ Cn×1(λ) : P (λ)x(λ) ≡ 0

}

are, respectively, called the left null space of P (λ) and the right null space of P (λ).

The subscript T in the left null space stands for the fact that its elements are row vectors.
From now on, we will follow, as in [6], the convention of using row vectors for left null spaces
and column vectors for right null spaces. These subspaces contain nonzero elements if and
only if P (λ) is singular. Note that, since P (λ) is square, NT (P ) and N (P ) have the same
dimension.

Given a fixed number µ ∈ C, the left and right null spaces of the matrix P (µ) ∈ Cn×n

will be of interest, specially if µ is an eigenvalue of P (λ). These left and right null spaces
are denoted, respectively, by NT (P (µ)) (⊂ Cn) and N (P (µ)) (⊂ Cn).

A vector subspace of Cn(λ)—in particular NT (P ) and N (P )— has always a basis con-
sisting of vector polynomials, i.e., vectors whose entries are polynomials in λ. We will refer
to these bases as polynomial bases. Note that if v(λ) ∈ N (P ) (resp. u(λ) ∈ NT (P )),
µ ∈ C is a fixed number, and v(µ) (resp. u(µ)) is defined, then v(µ) ∈ N (P (µ)) (resp.
u(µ) ∈ NT (P (µ))). Lemma 1 below shows that if we consider a polynomial basis of N (P )
(resp. of NT (P )) then the vector subspace of Cn spanned by the vectors of the polynomial
basis evaluated at µ ∈ C is the same for any basis, provided the vectors of the basis evaluated
at µ are linearly independent.

Lemma 1 a) Let {v1(λ), . . . , vd(λ)} and {ṽ1(λ), . . . , ṽd(λ)} be two polynomial bases of
N (P ) and µ ∈ C be a fixed number. If the sets {v1(µ), . . . , vd(µ)} and {ṽ1(µ), . . . , ṽd(µ)}
are linearly independent, then Span {v1(µ), . . . , vd(µ)} = Span {ṽ1(µ), . . . , ṽd(µ)}.

b) Let {u1(λ), . . . , ud(λ)} and {ũ1(λ), . . . , ũd(λ)} be two polynomial bases of NT (P ) and
µ ∈ C be a fixed number. If the sets {u1(µ), . . . , ud(µ)} and {ũ1(µ), . . . , ũd(µ)} are
linearly independent, then Span {u1(µ), . . . , ud(µ)} = Span {ũ1(µ), . . . , ũd(µ)}.

Proof. We will only prove a) because b) is similar. Since {v1(λ), . . . , vd(λ)} spans the same
vector space over C(λ) as {ṽ1(λ), . . . , ṽd(λ)} we have that

[
ṽ1(λ) . . . ṽd(λ)

]
=

[
v1(λ) . . . vd(λ)

]
A(λ) (8)

for some d× d matrix A(λ) with entries in C(λ).
First we will prove that A(µ) is well defined. Assume, on the contrary, that some entries

of A(λ) have denominators vanishing at µ. Without loss of generality, we may assume
that some of these entries are in the first column, a1(λ), of A(λ). Let α(λ) be the monic
polynomial with least degree such that α(λ)a1(λ) is a vector polynomial. Note that α(µ) = 0
and α(µ)a1(µ) 6= 0 because otherwise α(λ)/(λ−µ) would be a polynomial with lower degree
such that (α(λ)/(λ− µ))a1(λ) is a vector polynomial. Then, since

ṽ1(λ) =
[

v1(λ) . . . vd(λ)
]
a1(λ),

we have
α(λ)ṽ1(λ) =

[
v1(λ) . . . vd(λ)

]
(α(λ)a1(λ))
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and, evaluating at µ we get

α(µ)ṽ1(µ) =
[

v1(µ) . . . vd(µ)
]
(α(µ)a1(µ)) . (9)

Since ṽ1(λ) is a vector polynomial, we have that α(µ)ṽ1(µ) = 0, and identity (9) is in
contradiction with the fact that {v1(µ), . . . , vd(µ)} is a linearly independent set. Then A(µ)
is well defined.

Now, evaluating (8) at µ we have
[

ṽ1(µ) . . . ṽd(µ)
]

=
[

v1(µ) . . . vd(µ)
]
A(µ) ,

and, since {v1(µ), . . . , vd(µ)} and {ṽ1(µ), . . . , ṽd(µ)} are linearly independent sets, the matrix
A(µ) is invertible, and both sets of vectors span the same subspace of Cn. ¤

Lemma 1 is a particular case of implication 2a) ⇒ 4a) of the Main Theorem in [4], where
the modulo α(λ) = λ− µ is considered. We have included the proof for completeness.

If µ is not an eigenvalue of the singular matrix polynomial P (λ) then the subspaces
considered in Lemma 1 are the corresponding null spaces, i.e., Span {v1(µ), . . . , vd(µ)} =
N (P (µ)) and Span {u1(µ), . . . , ud(µ)} = NT (P (µ)). This is not true if µ is an eigenvalue
of P (λ), and in this case Span {v1(µ), . . . , vd(µ)} and Span {u1(µ), . . . , ud(µ)} are proper
subspaces of N (P (µ)) and NT (P (µ)), respectively. Anyway, Lemma 1 allows us to establish
the following definition.

Definition 3 Let P (λ) be an n× n singular matrix polynomial and λ0 be an eigenvalue of
P (λ). Let {v1(λ), . . . , vd(λ)} (resp. {u1(λ), . . . , ud(λ)}) be a polynomial basis of N (P ) (resp.
NT (P )) such that {v1(λ0), . . . , vd(λ0)} (resp. {u1(λ0), . . . , ud(λ0)}) is linearly independent.
The vector subspace Span {v1(λ0), . . . , vd(λ0)} ⊂ Cn (resp. Span {u1(λ0), . . . , ud(λ0)}) will
be called the right singular space of P (λ) at λ0 (resp. left singular space of P (λ) at λ0).

Let us relate the singular spaces of P (λ) with the matrices U(λ) and V (λ) transforming
P (λ) into its Smith canonical form as in (3). Since both U(λ) and V (λ) are nonsingular, it
is immediate to see that the last d rows of U(λ) and the last d columns of V (λ) are bases
of, respectively, NT (P ) and N (P ). Lemma 2 below uses this fact to obtain bases of the left
and right singular spaces of P (λ) at λ0. From these bases we will get bases of the complete
spaces NT (P (λ0)) and N (P (λ0)) by adding some vectors from U(λ0) and V (λ0).

Lemma 2 Let P (λ) be an n× n singular matrix polynomial with local Smith form ∆(λ) at

the eigenvalue λ0 given by (6). Let W (λ) =




w1(λ)
...

wn(λ)


 and V (λ) =

[
v1(λ) . . . vn(λ)

]

be the matrices transforming P (λ) into ∆(λ), where wi(λ) denotes a row vector and vi(λ) a
column vector for i = 1, . . . , n. Then the following statements hold.

a) The sets of vectors {wn−d+1(λ0), . . . , wn(λ0)} and {vn−d+1(λ0), . . . , vn(λ0)} are bases
of, respectively, the left and the right singular spaces of P (λ) at λ0.

b) The sets of vectors {w1(λ0), . . . , wg(λ0), wn−d+1(λ0), . . . , wn(λ0)} and
{v1(λ0), . . . , vg(λ0), vn−d+1(λ0), . . . , vn(λ0)} are bases of, respectively, NT (P (λ0)) and
N (P (λ0)).

Proof. We will only prove the result for the left basis, because the arguments for the right
one are similar. The last d rows of U(λ) in (3) constitute a polynomial basis of NT (P ) and,
since U(λ0) is nonsingular, Lemma 1 implies that the last d rows of U(λ0) are a basis of the
left singular space of P (λ) at λ0. Recall that

W (λ0) = diag(1/q1(λ0), . . . , 1/qr(λ0), 1, . . . , 1)U(λ0),

so the last d rows of W (λ0) are equal to the last d rows of U(λ0), and therefore they also
form a basis of the left singular space of P (λ) at λ0.

The claim b) follows from the definition of the local Smith form at λ0 in (6) and the fact
that W (λ0) and V (λ0) are nonsingular. ¤
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2.2 A particular relationship for semisimple eigenvalues

In Section 4 we will make use of the specific result for semisimple eigenvalues presented in
Lemma 3.

Lemma 3 Let W (λ) and V (λ) be as in the statement of Lemma 2 and assume, in addition,
that the eigenvalue λ0 of P (λ) is semisimple. Then



w1(λ0)
...

wg(λ0)
wn−d+1(λ0)

...
wn(λ0)




P ′(λ0)
[

v1(λ0) . . . vg(λ0) vn−d+1(λ0) . . . vn(λ0)
]

=
[

Ig

0d×d

]
.

Proof. Taking derivatives in the identity W (λ)P (λ)V (λ) = ∆(λ), where ∆(λ) is given by
(7), we achieve

W ′(λ)P (λ)V (λ) + W (λ)P ′(λ)V (λ) + W (λ)P (λ)V ′(λ) = ∆′(λ) . (10)

By using Lemma 2 b) we obtain wi(λ0)P (λ0) = 0 and P (λ0)vi(λ0) = 0 for i = 1, . . . , g, n−
d + 1, . . . , n, and from (7) that

∆′(λ0) =
[

Ig

0

]
.

Now the result follows from evaluating at λ0 the equation (10). ¤
Let us illustrate the definitions introduced in this section with an example.

Example 1 Let P (λ) be the following 3× 3 singular matrix polynomial of degree two:

P (λ) =




λ2 λ 0
λ 1 0
0 1 λ2


 .

This polynomial has normal rank equal to 2 and the simple finite eigenvalue λ0 = 0 with
geometric multiplicity 1.

Polynomial bases of the left and the right null spaces NT (P ) and N (P ) are given, respec-
tively, by y(λ) =

[
1 −λ 0

]
and x(λ) =

[
λ −λ2 1

]T
.

Since y(0) and x(0) are nonzero vectors, the left singular space of P (λ) at 0 is spanned
by y(0) =

[
1 0 0

]
and the right singular space of P (λ) at 0 is spanned by x(0) =[

0 0 1
]T . We can complete these bases to bases of the whole null spaces of P (0) as

follows:

NT (P (0)) = span
{[

0 −1 1
]
,
[

1 0 0
]}

and N (P (0)) = span







−1
0
0


 ,




0
0
1






 .

The local Smith form of P (λ) at λ0 = 0 is

∆(λ) =




λ
1

0




and we have W (λ)P (λ)V (λ) = ∆(λ), with

W (λ) =




0 −1 1
0 1 0
1 −λ 0


 , V (λ) =



−1 0 λ
λ 1 −λ2

0 0 1


 .

Notice that the previous bases of NT (P (0)) and N (P (0)) are given by, respectively, {w1(0), w3(0)}
and {v1(0), v3(0)}.
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3 Existence of eigenvalue expansions

This section is devoted to one of the central problems of the present paper, i.e., to study
the existence of perturbation expansions near the eigenvalues of a singular n × n matrix
polynomial P (λ). Our approach is similar to the one followed in [3, Section 3] for matrix
pencils, and the reader is referred to [3] for some details that are omitted here.

Given a singular n × n matrix polynomial P (λ) we will obtain sufficient conditions on
the perturbation polynomial M(λ) that guarantee that all the eigenvalues of P (λ) + εM(λ)
can be expanded as (fractional) power series in ε, and that when these series are evaluated
at ε = 0 all the eigenvalues (finite and infinite) of P (λ) are obtained, together with some
other numbers or infinities that are not eigenvalues of P (λ) and are fully determined by the
perturbation M(λ). This result will be presented in Theorem 1, which is the generalization
of Theorem 1 in [3] to square singular matrix polynomials. Before, we need to establish the
technical Lemma 4 that proves that the sufficient condition for the existence of expansions
holds simultaneously in a matrix polynomial and its dual. This implies that the existence of
expansions of finite and infinite eigenvalues are simultaneously guaranteed.

Lemma 4 Let P (λ) be an n × n matrix polynomial of degree ` with Smith canonical form
given by (3), P ](λ) be its dual polynomial, and M(λ) be another n × n matrix polynomial.
Let us consider the Smith canonical form of P ](λ),

Ũ(λ)P ](λ)Ṽ (λ) =

[
Ũ1(λ)
Ũ2(λ)

]
P ](λ) [Ṽ1(λ) Ṽ2(λ)] ≡

[
D̃S(λ) 0

0 0d×d

]
, (11)

partitioned in blocks with dimensions as those in (3). Then det(U2(λ)M(λ)V2(λ)) 6≡ 0 if and
only if det(Ũ2(λ)M ](λ)Ṽ2(λ)) 6≡ 0.

Proof. Note first that the definition of dual polynomial implies thatN (P (µ)) = N (P ](1/µ))
and NT (P (µ)) = NT (P ](1/µ)), for any number 0 6= µ ∈ C. Recall also that λ0 is an
eigenvalue of P (λ) if and only if 1/λ0 is an eigenvalue of P ](λ).

Let µ ∈ C be a number such that µ 6= 0 and µ is not an eigenvalue of P (λ). In this case
the columns of V2(µ) (resp. the rows of U2(µ)) form a basis of N (P (µ)) (resp. of NT (P (µ)))
and the columns of Ṽ2(1/µ) (resp. the rows of Ũ2(1/µ)) form a basis of N (P ](1/µ)) (resp.
of NT (P ](1/µ))). As a consequence there exist nonsingular d × d matrices T and S such
that Ṽ2(1/µ) = V2(µ)T and Ũ2(1/µ) = SU2(µ). So

det(U2(µ)M(µ) V2(µ) ) 6= 0 ⇐⇒ det( Ũ2(1/µ) M(µ) Ṽ2(1/µ) ) 6= 0

⇐⇒ det( Ũ2(1/µ) M ](1/µ) Ṽ2(1/µ) ) 6= 0,

where we have used that M(µ) = µkM ](1/µ) with k the degree of M(λ).
Finally observe that p(λ) = det( U2(λ) M(λ)V2(λ) ) and p̃(λ) = det( Ũ2(λ)M ](λ) Ṽ2(λ) )

are polynomials in λ. Therefore p(λ) is not the zero polynomial if and only if p(µ) 6= 0 for
a number µ such that µ 6= 0 and µ is not an eigenvalue of P (λ). Analogously p̃(λ) is not
the zero polynomial if and only if p̃(γ) 6= 0 for a number γ such that γ 6= 0 and γ is not an
eigenvalue of P ](λ) ¤

Theorem 1 Let P (λ) be an n × n singular matrix polynomial with degree ` whose Smith
canonical form is given by (3), and M(λ) be another n × n matrix polynomial with degree
smaller than or equal to `, and such that det( U2(λ)M(λ)V2(λ) ) 6≡ 0. Then

1. There exists a constant b > 0 such that the matrix polynomial P (λ) + εM(λ) is regular
whenever 0 < |ε| < b.

2. For 0 < |ε| < b the finite eigenvalues of P (λ) + εM(λ) are the roots of a polynomial in
λ, pε(λ), whose coefficients are polynomials in ε. In addition, when ε = 0,

p0(λ) = det( DS(λ) ) det( U2(λ) M(λ)V2(λ) ). (12)
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3. Let ε be such that 0 < |ε| < b. Then the n` eigenvalues1, {λ1(ε), . . . , λn`(ε)}, of
P (λ) + εM(λ) can be expanded as (fractional) power series in ε. Some of these series
may have terms with negative exponents and tend to ∞ as ε tends to zero. The rest of
the series converge in a neighborhood of ε = 0.

4. If the finite eigenvalues of P (λ) are {µ1, . . . , µs}, where common elements are repeated
according to their algebraic multiplicity, then there exists a subset {λi1(ε), . . . , λis(ε)}
of {λ1(ε), . . . , λn`(ε)} such that

lim
ε→0

λij (ε) = µj j = 1, . . . , s.

5. If the polynomial P (λ) has an infinite eigenvalue with algebraic multiplicity p, then
there exist {λl1(ε), . . . , λlp(ε)} such that

lim
ε→0

λlj (ε) = ∞ j = 1, . . . , p.

Proof. The proof is exactly the same as the one of Theorem 1 in [3], only by changing
matrix pencils by matrix polynomials. We include it here for the sake of completitude.

Let us partition U(λ)M(λ) V (λ) conformally with (3) as

U(λ)M(λ)V (λ) =
[

B11(λ) B12(λ)
B21(λ) B22(λ)

]
.

This means that B22(λ) = U2(λ)M(λ)V2(λ). Thus

det( P (λ) + εM(λ) ) = C det
[

DS(λ) + εB11(λ) εB12(λ)
εB21(λ) εB22(λ)

]
,

where C is the nonzero constant C = 1/ det(U(λ) V (λ)). Then

det( P (λ) + εM(λ) ) = C εd det
[

DS(λ) + εB11(λ) B12(λ)
εB21(λ) B22(λ)

]
.

Let us define the polynomial in λ

pε(λ) ≡ det
[

DS(λ) + εB11(λ) B12(λ)
εB21(λ) B22(λ)

]
,

whose coefficients are polynomials in ε, and write

det(P (λ) + εM(λ) ) = C εd pε(λ). (13)

It is obvious that when ε = 0

p0(λ) = det( DS(λ) ) det( B22(λ) ). (14)

We know that det( DS(λ) ) 6≡ 0, and, therefore, det(B22(λ) ) 6≡ 0 implies that P (λ) +
εM(λ) is regular in a punctured disk 0 < |ε| < b. This is obvious by continuity: if
det(DS(µ) ) det(B22(µ) ) 6= 0 for some fixed number µ, then pε(µ) 6= 0 for ε small enough,
since pε(µ) is continuous as a function of ε. In addition, whenever 0 < |ε| < b, equation (13)
implies that z is a finite eigenvalue of P (λ) + εM(λ) if and only if pε(z) = 0. So, the first
and second items in Theorem 1 are proved.

Notice that we have reduced the original perturbation eigenvalue problem to the study of
the variation of the roots of pε(λ) as ε tends to zero. But since the coefficients are polynomials
in ε, this is a classical problem solved by Algebraic Function Theory [9]. In particular the

1It is well known that any n× n regular matrix polynomial with degree ` has exactly n` eigenvalues, if finite
and infinite eigenvalues are counted with their multiplicities [6].
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third item is a consequence of this theory (for infinite eigenvalues similar arguments can be
applied to zero eigenvalues of dual polynomials). We just comment that if the degree of pε(λ)
in λ is δ1 and the degree of det( DS(λ) ) det( B22(λ) ) is δ2 < δ1, then δ1 − δ2 roots of pε(λ)
tend to infinity when ε tends to zero. The fourth item is again a consequence of Algebraic
Function Theory and (14), since those roots that remain finite have as limits the roots of
det(DS(λ) ) det(B22(λ) ), and the roots of det(DS(λ) ) are precisely the finite eigenvalues
of P (λ).

The last item can be proved by applying the previous results to the zero eigenvalue of
the dual polynomial of P (λ) + εM(λ), and taking into account that λi(ε) is an eigenvalue of
P (λ) + εM(λ) if and only if 1/λi(ε) is an eigenvalue of the dual polynomial. ¤

It can be seen from the proof of Theorem 1 that if the degree of the perturbation poly-
nomial M(λ) in the statement is ˜̀ > ` then the result would be true, with the exception
that P (λ) + εM(λ) would have a number of eigenvalues equal to n˜̀. We have enunciated
the result with the restriction of M(λ) having degree smaller than or equal to the degree of
P (λ), because we think that it is the natural situation in perturbation theory of matrix poly-
nomials. Moreover, in this case, once P (λ) is fixed, det( U2(λ) M(λ)V2(λ) ) 6≡ 0 is a generic
condition on the set of perturbation polynomials M(λ) = B0 + λB1 + · · · + λ`B` of degree
at most `, because it does not hold only on the algebraic manifold defined by equating to
zero all the coefficients of the polynomial p(λ) = det( U2(λ) M(λ)V2(λ) ). These coefficient
are multivariate polynomials in the entries of B0, B1, . . . , B`.

4 Expansions for semisimple eigenvalues

In Section 3 we have obtained a global condition for the existence of expansions near all
eigenvalues of P (λ). In this section we focus on a given semisimple eigenvalue λ0 of the
singular square matrix polynomial P (λ), we obtain a specific generic condition for the exis-
tence of eigenvalue expansions near λ0, and, more important, we derive simple expressions
for the first order terms of the expansions of those eigenvalues of the perturbed polynomial
P (λ) + εM(λ) whose limit is λ0 when ε tends to zero.

Our main results will be based on the following construction. Throughout this section,
λ0 is a semisimple eigenvalue, with geometric multiplicity g, of the square singular matrix
polynomial P (λ). Let {wn−d+1, . . . , wn} and {vn−d+1, . . . , vn} be bases of, respectively, the
left and the right singular spaces of P (λ) at λ0. Then we can complete these bases to,
respectively, a basis of NT (P (λ0)) and a basis of N (P (λ0)):

{w1, . . . , wg, wn−d+1, . . . , wn} and {v1, . . . , vg, vn−d+1, . . . , vn} .

Recall that the vectors wi are row vectors, whereas vj are column vectors. Using these
vectors we build up the (g + d)× (g + d) matrices

[
W1

W2

]
=




w1

...
wg

wn−d+1

...
wn




and
[

V1 V2

]
=

[
v1 . . . vg vn−d+1 . . . vn

]
. (15)

Note that the vectors in item b) of Lemma 2 are particular cases of the bases in (15). The
following result generalizes Lemma 3.

Lemma 5 Let
[

W1

W2

]
and

[
V1 V2

]
be the matrices defined in (15). Then W1P

′(λ0)V2 =

0, W2P
′(λ0)V1 = 0, W2P

′(λ0)V2 = 0, and W1P
′(λ0)V1 is nonsingular.
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Proof. Let W (λ) and V (λ) be as in the statement of Lemma 2. Then, there exist some
matrices R11, R12, R22 and S11, S21, S22, with R11, R22, S11, S22 nonsingular, such that

[
W1

W2

]
=

[
R11 R12

0 R22

]




w1(λ0)
...

wg(λ0)
wn−d+1(λ0)

...
wn(λ0)




and

[
V1 V2

]
=

[
v1(λ0) . . . vg(λ0) vn−d+1(λ0) . . . vn(λ0)

] [
S11 0
S21 S22

]
.

Now, using Lemma 3, we have
[

W1

W2

]
P ′(λ0)

[
V1 V2

]
=

[
R11S11

0d×d

]
,

and this concludes the proof. ¤
From the matrices in (15) we define the (g + d)× (g + d) matrix,

Φ =
[

W1

W2

]
M(λ0)

[
V1 V2

]
. (16)

Associated with Φ we introduce the (g + d)× (g + d) matrix pencil

P(ζ) = Φ + ζ

[
W1

W2

]
P ′(λ0)

[
V1 V2

]
, (17)

and note that, by virtue of Lemma 5,
[

W1

W2

]
P ′(λ0)

[
V1 V2

]
=

[
W1P

′(λ0)V1 0
0 0

]
.

Let us illustrate these definitions with an example.

Example 2 Let P (λ) be the same polynomial as in Example 1 and set

M(λ) =




λ 1 1− λ2

2 + λ 5 λ2

1 2λ 4 + λ


 .

Let also W (λ) and V (λ) be as in Example 1. Then for the unique finite eigenvalue λ0 = 0
of P (λ),

Φ =
[

w1(0)
w3(0)

]
M(0)

[
v1(0) v3(0)

]
=

[
1 4
0 1

]

and

P(ζ) =
[

1 4
0 1

]
+ ζ

[
w1(0)
w3(0)

]
P ′(0)

[
v1(0) v3(0)

]
=

[
1 + ζ 4

0 1

]
.

Lemma 6 states some relevant properties of the pencil P(ζ) that are used in subsequent
developments.

Lemma 6 Let Φ be the matrix defined in (16) and P(ζ) the pencil in (17). Then the fol-
lowing statements hold.
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1) P(ζ) is regular and has exactly g finite eigenvalues if and only if the d × d matrix
W2M(λ0)V2 is nonsingular.

2) Assume that W2M(λ0)V2 is nonsingular, then the g finite eigenvalues of P(ζ) are all
different from zero if and only if Φ is nonsingular.

Proof. Let us express

Φ =
[

C11 C12

C21 W2M(λ0)V2

]
.

By Lemma 5 we have

P(ζ) = Φ + ζ

[
W1

W2

]
P ′(λ0)

[
V1 V2

]
=

[
C11 + ζW1P

′(λ0)V1 C12

C21 W2M(λ0)V2

]
.

Therefore,

detP(ζ) = ζg det(W1P
′(λ0)V1) det(W2M(λ0)V2) + ζg−1bg−1 + · · ·+ det Φ, (18)

where the coefficients bg−1, . . . , b1 in the previous polynomial are of no interest in this argu-
ment. Since W1P

′(λ0)V1 is nonsingular by Lemma 5, both claims follow easily. ¤
Note that the pencil P(ζ) depends on the particular matrices of bases {W1,W2} and

{V1, V2} of NT (P (λ0)) and N (P (λ0)) that are used, but the property of W2M(λ0)V2 be-
ing nonsingular is independent on the particular bases W2 and V2 of, respectively, the left
and the right singular spaces of P (λ) at λ0. The invertibility of W2M(λ0)V2 plays an
essential role in Theorem 2 below, and this result implies Theorem 3 which is the main
result in this paper. Observe also that det(W2M(λ0)V2) 6= 0 implies that the assumption
det(U2(λ) M(λ)V2(λ) ) 6≡ 0 in Theorem 1 holds.

Theorem 2 Let P (λ) be an arbitrary n×n matrix polynomial and M(λ) be another matrix
polynomial with the same dimension. Let λ0 be a finite semisimple eigenvalue of P (λ) with
geometric multiplicity g , W = [WT

1 WT
2 ]T be a matrix whose rows form a basis of NT (P (λ0)),

and V = [V1 V2] be a matrix whose columns form a basis of N (P (λ0)), where the rows of W2

(resp. the columns of V2) form a basis of the left (resp. the right) singular space of P (λ)
at λ0. Let also Φ be the matrix defined in (16) and P(ζ) be the pencil defined in (17). If
W2M(λ0)V2 is nonsingular, then the perturbed matrix polynomial P (λ) + εM(λ) is regular
and has exactly g eigenvalues in a neighborhood of ε = 0 satisfying

λj(ε) = λ0 + ζjε + o(ε) j = 1, . . . , g , (19)

where ζ1, . . . , ζg are the finite eigenvalues of the pencil P(ζ). If, in addition, Φ is nonsingular,
then ζ1, . . . , ζg are all nonzero and all the expansions near λ0 have leading exponent equal to
one. If g = 1, i.e., λ0 is simple, then W1 has only one row vector and V1 only one column
vector, and (19) simplifies to

λ(ε) = λ0 − det(WM(λ0)V )
(W1P ′(λ0)V1) · det(W2M(λ0)V2)

ε + O(ε2). (20)

Proof. The property of W2M(λ0)V2 being nonsingular is independent on the choice of bases
W2 and V2 of the left and the right singular spaces of P (λ) at λ0. In addition, the eigenvalues
of the matrix pencil P(ζ) are also independent on the bases {W1,W2} and {V1, V2}. This
means that we may consider the particular bases of NT (P (λ0)) and N (P (λ0)) given by the
rows and the columns (respectively) of the matrices W (λ) and V (λ) in the statement of
Lemma 2. Recall also the these bases verify Lemma 3.

With this choice of bases is obvious that the invertibility of W2M(λ0)V2 implies that
det(U2(λ) M(λ)V2(λ) ) 6≡ 0 in Theorem 1 holds, and that the polynomial p0(λ) in (12) has
exactly g roots equal to λ0. Therefore, Theorem 1 guarantees that P (λ) + εM(λ) is regular
in a neighborhood of ε = 0 and has exactly g eigenvalues whose expansions tend to λ0 when
ε tends to zero. Let us determine the first terms of these expansions.
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The proof is similar to the one of Theorem 2 in [3], and it is based on the local Smith
form. We restrict ourselves to the case λ0 = 0. If λ0 6= 0, we just make a shift µ = λ − λ0

in the local Smith form: W (λ − λ0 + λ0)P (λ − λ0 + λ0)V (λ − λ0 + λ0) = ∆(λ − λ0 + λ0),
define W̃ (µ) := W (µ + λ0), Ṽ (µ) := V (µ + λ0), P̃ (µ) := P (µ + λ0), and ∆̃(µ) := ∆(µ + λ0),
and, finally, consider W̃ (µ)P̃ (µ)Ṽ (µ) = ∆̃(µ). Note that W̃ (0) = W (λ0) and Ṽ (0) = V (λ0).

Assuming that λ0 = 0, we consider the transformation to the local Smith form at λ0 = 0,

W (λ)(P (λ) + εM(λ))V (λ) = ∆(λ) + εW (λ)M(λ)V (λ) ≡ ∆̂(λ) + G(λ, ε), (21)

where

∆̂(λ) =




λIg

0
0d×d


 and G(λ, ε) =




εG11(λ) εG12(λ) εG13(λ)
εG21(λ) I + εG22(λ) εG23(λ)
εG31(λ) εG32(λ) εG33(λ)




are partitioned conformally, and [Gij(λ)]3i,j=1 = W (λ)M(λ)V (λ). Therefore, if P (λ)+εM(λ)
is regular, its finite eigenvalues are the roots of

f(λ, ε) = det(P (λ) + εM(λ)) = δ(λ)εdf̃(λ, ε),

where
f̃(λ, ε) = det(∆̂(λ) + G̃(λ, ε))

and

G̃(λ, ε) =




εG11(λ) εG12(λ) G13(λ)
εG21(λ) I + εG22(λ) G23(λ)
εG31(λ) εG32(λ) G33(λ)


 .

In addition, the function δ(λ) is given by δ(λ) = p(λ)q(λ) where, det(W (λ)) = 1/p(λ) and
det(V (λ)) = 1/q(λ). So δ(λ) is a polynomial such that δ(0) 6= 0 and that does not depend
on the perturbation M(λ). These facts imply that for ε 6= 0, the polynomial P (λ) + εM(λ)
is regular if and only if f̃(λ, ε) 6≡ 0, and that, in this case, the eigenvalues of P (λ) + εM(λ)
whose limit is λ0 = 0 as ε tends to zero are those zeros, λ(ε), of f̃(λ, ε) whose limit is 0.
Obviously, f̃(λ, ε) is a rational function in λ, where the coefficients of the numerator are
polynomials in ε, and the denominator is precisely δ(λ). So, f̃(λ, ε) can be also seen as a
polynomial in ε whose coefficients are rational functions in λ. Let us study more carefully
the function f̃(λ, ε).

In the first place, note that

Φ =
[

G11(0) G13(0)
G31(0) G33(0)

]
, and W2M(0)V2 = G33(0). (22)

We now make use of the Lemma in [11, p. 799] on determinants of the type det(D + G)
with D diagonal, to expand f̃(λ, ε) as

f̃(λ, ε) = det G̃(λ, ε) +
∑

λs det G̃(λ, ε)({ν1, . . . , νs}c) , (23)

where for any matrix C, C({ν1, . . . , νs}c) denotes the matrix obtained by removing from C
the rows and columns with indices ν1, . . . , νs . The sum runs over all s ∈ {1, . . . , g} and all
ν1, . . . , νs such that 1 ≤ ν1 < . . . < νs ≤ g . Finally, note that

det G̃(λ, ε) = εg(detΦ + Q0(λ, ε)) , (24)

for Q0(λ, ε) rational with Q0(0, 0) = 0, and

det G̃(λ, ε)({ν1, . . . , νs}c) = εg−s(detΦ({ν1, . . . , νs}c) + Qν1... νs(λ, ε)) , (25)
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with Qν1... νs(λ, ε) rational and Qν1... νs(0, 0) = 0. In particular,

det G̃(λ, ε)({1, . . . , g}c) = det G33(0) + Q1,...,g(λ, ε) .

From now on, it suffices to repeat the arguments in [11, pp. 799-800] by taking into account
that in this case, det G33(0) 6= 0 because W2M(0)V2 is nonsingular and, so, the point (g, 0)
appears in the Newton Polygon of f̃(λ, ε). This means that there are g eigenvalue expansions
near λ0 = 0. On the other hand, Φ nonsingular implies that also (0, g) is in the Newton
Polygon of f̃(λ, ε), so there is a line segment (whose extremal points are (g, 0) and (0, g)),
with slope equal to −1 and horizontal length equal to g. This implies the existence of exactly
g expansions with leading exponent equal to 1 and whose leading coefficients are the ones
described in the statement.

The expansion (20) in the case g = 1 follows from (18). The only point to justify is why
o(ε) is replaced by O(ε2). This follows from the fact that the polynomial (12) has only one
root equal to zero, and so the corresponding root of pε(λ) is analytic in ε [9]. ¤

The leading term of the eigenvalue expansion (20) for simple eigenvalues generalizes the
already known expression for simple eigenvalues of regular matrix polynomials [15, p. 345],
i.e.,

λ(ε) = λ0 − ε
wM(λ0)v
wP ′(λ0)v

+ O(ε2) ,

where w and v are, respectively, the left and right eigenvectors associated with λ0.
Let us illustrate the application of Theorem 2 with an example.

Example 3 We continue with Example 2. Here W2M(0)V2 = 1 is nonsingular, or, equiv-
alently, the pencil P(ζ) is regular and has only one finite eigenvalue ζ1 = −1. This means
that there is an unique eigenvalue of P (λ) + εM(λ) approaching λ0 = 0 of the form

λ1(ε) = −ε + O(ε2) .

To ascertain the quality of this approximation, we have computed the eigenvalues of the
pencil P (λ) + εM(λ), for ε = 10−4, 10−6, 10−8 and 10−10, solving the polynomial equation
det(P (λ) + εM(λ)) = 0 in the variable precision arithmetic of MATLAB with 64 decimal
digits of precision, and rounding the results to 4, 6, 8, and 10 digits respectively. The root
λ1(ε) closest to zero in each of these cases is

ε = 10−4 ε = 10−6 ε = 10−8 ε = 10−10

−0.9994 · 10−4 −0.999994 · 10−6 −0.99999994 · 10−8 −0.9999999994 · 10−10

The main assumption and the expansions in Theorem 2 depend on bases of the left and
right singular spaces of P (λ) at λ0. This is an important drawback, because these bases may
be difficult to calculate since they are defined through bases of certain vector spaces over the
field of rational functions C(λ). Fortunately this can be avoided and, based on Lemma 6 and
Theorem 2, it is possible to provide sufficient conditions for the existence of expansions near
λ0 and give also an expression for the leading coefficient using any bases of the null spaces
of the matrix P (λ0), that can be computed with classical procedures of Numerical Linear
Algebra. This is presented in Theorem 3 that is the most useful result in this work.

Theorem 3 Let P (λ) be an arbitrary n × n matrix polynomial (singular or not), M(λ) be
another polynomial with the same dimension, and λ0 be a finite semisimple eigenvalue of
P (λ) with geometric multiplicity g. Denote by W a matrix whose rows form any basis of
NT (P (λ0)) and by V a matrix whose columns form any basis of N (P (λ0)). Then

1. The pencil WM(λ0)V + ζ WP ′(λ0)V is generically regular and has exactly g finite
eigenvalues, i.e., this holds for all matrix polynomials M(λ) whose degree is less than
or equal the degree of P (λ) except those in an algebraic manifold of positive codimension.
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2. If the pencil WM(λ0)V + ζ WP ′(λ0)V is regular and has exactly g finite eigenvalues
equal to ζ1, . . . , ζg, then there are exactly g eigenvalues of P (λ) + εM(λ) such that

λj(ε) = λ0 + ζj ε + o(ε), j = 1, . . . , g , (26)

as ε tends to zero. If g = 1, i.e., λ0 is a simple eigenvalue, then o(ε) can be replaced
by O(ε2) in the previous expansions.

Proof. In the first place, notice that the eigenvalues and the regularity of the pencil
WM(λ0)V + ζ WP ′(λ0)V are independent on the bases W and V of the left and right
null spaces of P (λ0), because any change of bases simply transforms the pencil into a strictly
equivalent pencil. Therefore, we can choose W =

[
W1
W2

]
and V =

[
V1 V2

]
be bases as the

ones in Theorem 2. With this choice WM(λ0)V + ζ WP ′(λ0)V is precisely P(ζ) in (17).
Lemma 6 states that W2M(λ0)V2 is nonsingular if and only if WM(λ0)V + ζ WP ′(λ0)V is
regular with exactly g finite eigenvalues. On the other hand, the condition of W2M(λ0)V2

being nonsingular is generic because det(W2M(λ0)V2) is a multivariate polynomial in the en-
tries of the coefficients of M(λ), so the first item is proved. The second item is an immediate
consequence of Theorem 2 and Lemma 6. ¤

It is worth to compare Theorem 3 with the first paragraph of the statement of Theorem 6
in [10]. In both cases, the first order term of the eigenvalue expansions around a semisimple
eigenvalue are determined, and in both cases this is done through the eigenvalues of a certain
matrix pencil constructed in a similar way. The main difference is that in [10], the perturbed
matrix functions L(λ, ε) are regular in ε = 0 and in a neighborhood of this value (more
restrictive than in Theorem 3) and analytic (not necessarily polynomials, and so, more general
than our Theorem 3). With the notation in [10], the pencil whose eigenvalues determine
the first order coefficients of the eigenvalue expansions near λ0 is P(ζ) = W (ζ ∂L

∂λ (λ0, 0) +
∂L
∂ε (λ0, 0))V , where W and V are bases of, respectively, NT (L(λ0, 0)) and N (L(λ0, 0)).

5 Approximate eigenvectors for semisimple eigenvalues

This section is closely related to [3, Section 6], and the reader is referred to this reference
for some technical details that are omitted here. We consider in this section only right
eigenvectors. Counterpart results for left eigenvectors can be established in a similar way.

Eigenvectors are not well defined in singular matrix polynomials [2, p. 145], [3]. However,
for ε 6= 0, the perturbed polynomial P (λ) + εM(λ) is generically regular, has simple eigen-
values, well defined associated eigenvectors, and, given a semisimple eigenvalue λ0 of P (λ)
with geometric multiplicity g, Theorem 3 guarantees the existence of exactly g eigenvalue
expansions of P (λ)+ εM(λ) near λ0 for most perturbations M(λ). The (right) eigenvectors,
vj(ε), j = 1, . . . , g, associated to these g eigenvalues can expanded as power series of ε [3,
Lemma 7]. We will determine, under generic perturbations, limε→0 vj(ε), j = 1, . . . , g, and,
as a consequence, we will see that these limits belongs to N (P (λ0)). This is presented in
Theorem 4, an analog, for singular matrix polynomials, of the second part of Theorem 6 in
[10].

Theorem 4 Let P (λ) be an arbitrary n × n matrix polynomial (singular or not), M(λ) be
another polynomial with the same dimension, and λ0 be a finite semisimple eigenvalue of
P (λ) with geometric multiplicity g. Denote by W a matrix whose rows form any basis of
NT (P (λ0)) and by V a matrix whose columns form any basis of N (P (λ0)). Let us assume
that the pencil

WM(λ0)V + ζ WP ′(λ0)V

is regular, and has exactly g finite eigenvalues ζ1, . . . , ζg different from zero, such that ζi 6= ζj

if i 6= j, with associated right eigenvectors c1, . . . , cg. Then in a punctured neighborhood
0 < |ε| < b the eigenvectors v1(ε), . . . , vg(ε) of P (λ)+εM(λ) corresponding to the eigenvalues
(26) satisfy

vj(ε) = V cj + O(ε), j = 1, . . . , g.

15



Proof. As in the proof of Theorem 3 the result is independent on the bases W and V .
Therefore, we can choose W =

[
W1
W2

]
and V =

[
V1 V2

]
be the bases in Lemma 2, that also

satisfy Lemma 3. Observe that the assumptions of Theorem 4 guarantee that the matrices
W2M(λ0)V2 and Φ defined in (16) are nonsingular by Lemma 6. For each eigenvalue λj(ε)
in (26), we consider, for ε 6= 0, the corresponding eigenvector vj(ε). It can be shown as in [3,
Lemma 7] that this eigenvector is analytic at ε = 0, so we can write vj(ε) = vj +

∑∞
k=1 ujkεk.

Our task is to determine vj .
For simplicity, we take λ0 = 0 as in the proof of Theorem 2. Again the proof is based on

the local Smith form (7), which is well defined and analytic in a neighborhood of λ0 = 0. To
take advantage of this local Smith form we replace vj(ε) with

zj(ε) = V (λj(ε))−1vj(ε), (27)

which satisfies
[∆(λj(ε)) + εM̃(λj(ε))] zj(ε) = 0, (28)

where
M̃(λj(ε)) = W (λj(ε)) M(λj(ε)) V (λj(ε)).

Notice that one can easily recover vj = vj(0) from zj(0), since vj(0) = V (0)zj(0). We
partition M̃(λj(ε)) as a 3 × 3 block matrix according to the three diagonal blocks of ∆(λ)
specified in partition (7), and denote, as in the proof of Theorem 2, [Gik(λj(ε))]3i,k=1 ≡
M̃(λj(ε)). The vector zj(ε) is partitioned accordingly, and (28) can be written as







λj(ε) Ig

I
0d×d


 + ε




G11(λj(ε)) G12(λj(ε)) G13(λj(ε))
G21(λj(ε)) G22(λj(ε)) G23(λj(ε))
G31(λj(ε)) G32(λj(ε)) G33(λj(ε))










z
(1)
j (ε)

z
(2)
j (ε)

z
(3)
j (ε)


 = 0.

(29)
For ε = 0 this equation reduces to z

(2)
j (0) = 0. The rows corresponding to the first and third

rows of blocks are

λj(ε) z
(1)
j (ε) + ε(G11(λj(ε)) z

(1)
j (ε) + G12(λj(ε)) z

(2)
j (ε) + G13(λj(ε)) z

(3)
j (ε)) = 0 (30)

G31(λj(ε)) z
(1)
j (ε) + G32(λj(ε)) z

(2)
j (ε) + G33(λj(ε)) z

(3)
j (ε) = 0. (31)

Notice that the terms of lower order in ε of λj(ε) are of the form ζj ε, for j = 1, . . . , g, with
ζj 6= 0. So we can divide (30) and (31) by ε and take the limit ε → 0 to obtain (see (22))

(
ζj

[
Ig 0
0 0

]
+ Φ

) [
z
(1)
j (0)

z
(3)
j (0)

]
= 0.

The result now follows from (27). ¤

6 Expansions for arbitrary eigenvalues

In this last section, we consider the first order terms of the expansions around arbitrary
eigenvalues, i.e., the eigenvalue λ0 of P (λ) is not necessarily semisimple. In this general case
it is not possible to prove a counterpart of Theorem 3 valid for any bases of NT (P (λ0)) and
N (P (λ0)), and we cannot avoid the use of specific bases of these subspaces that are defined
through certain vectors with entries in the field of rational functions C(λ). As a consequence,
the first order terms that we will obtain are very difficult to compute in practice. Additional
notation has to be introduced before stating Theorem 5, the main result in this section.

To start with, recall that Theorem 1 is valid for arbitrary eigenvalues, therefore, for
generic perturbations M(λ), there exist (fractional) power expansions of the eigenvalues of
P (λ) + εM(λ) near any eigenvalue λ0 of P (λ). We will use again the local Smith form of
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P (λ) at λ0 given by (6), and we rename the degrees of the elementary divisors associated
with λ0 as

{n1, . . . , n1︸ ︷︷ ︸
r1

, . . . , nq, . . . , nq︸ ︷︷ ︸
rq

} ≡ {m1, . . . , mg}, (32)

where we assume that,
0 < n1 < n2 < · · · < nq. (33)

The natural numbers n1, n2, . . . , nq are sometimes called the partial multiplicities of λ0. Note
that the algebraic and geometric multiplicities of λ0 are given, respectively, by

a =
q∑

i=1

ri ni and g =
q∑

i=1

ri.

Let us define the sequence

fj =
q∑

i=j

ri, j = 1, . . . , q, and fq+1 = 0,

so f1 = g. We consider also the following submatrices of the matrices W (λ0) and V (λ0) in
(5):

W1j = (W (λ0))(g − fj + 1 : g , :) and V1j = (V (λ0))( : , g − fj + 1 : g ) , for j = 1, . . . , q,

W2 = (W (λ0))(n− d + 1 : n , :) and V2 = (V (λ0))( : , n− d + 1 : n ) ,

where we use MATLAB’s notation for submatrices. According to the notation in (15) and
Lemma 2, observe that W11 = W1 and V11 = V1. Note also that the rows of [WT

1 WT
2 ]T

(resp. the columns of [V1 V2]) form a very specific basis of NT (P (λ0)) (resp. of N (P (λ0))).
Now, we can build up the matrices

Φj =
[

W1j

W2

]
M(λ0)

[
V1j V2

]
, j = 1, . . . , q, and Φq+1 = W2M(λ0)V2. (34)

The matrix Φ1 coincides with Φ defined in (16), therefore Φj is the (fj + d)× (fj + d) lower
right principal submatrix of Φ. Finally, we define

Ej = diag(Irj , 0(fj+1+d)×(fj+1+d)) , j = 1, . . . , q. (35)

Now, we are in the position to state the main result of this section, which is the general-
ization to matrix polynomials of [3, Theorem 2], that is only valid for pencils.

Theorem 5 Let P (λ) be an arbitrary n×n matrix polynomial (singular or not), and M(λ)
another polynomial with the same dimension. Let λ0 be a finite eigenvalue of P (λ) such
that the degrees of the elementary divisors associated with λ0 satisfy (32) and (33). Let
Φj, j = 1, . . . , q + 1, and Ej, j = 1, . . . , q, be the matrices defined in (34) and (35). If
detΦj+1 6= 0 for some j ∈ {1, 2, ..., q}, let ξ1, . . . , ξrj be the rj finite eigenvalues of the pencil
Φj + ζEj, and (ξt)

1/nj
s , s = 1, . . . , nj, be the nj determinations of the njth root. Then, in a

neighborhood of ε = 0, the polynomial P (λ) + εM(λ) has rjnj eigenvalues satisfying

λrs
j (ε) = λ0 + (ξt)1/nj

s ε1/nj + o(ε1/nj ) , t = 1, 2, ..., rj , s = 1, 2, ..., nj , (36)

where ε1/nj is the principal determination of the njth root of ε. Moreover, the polynomial
P (λ) + εM(λ) is regular in the same neighborhood for ε 6= 0. If, in addition, detΦj 6= 0,
then all ξt in (36) are nonzero, and (36) are all the expansions near λ0 with leading exponent
1/nj.

Proof. The proof follows closely the one of [3, Theorem 2]. We omit the details for the sake
of brevity. ¤

Theorem 5, as well as Theorems 2 and 3, can be adapted to cover the perturbation
expansions of infinite eigenvalues by considering the dual polynomials, see [3, Corollary 1]
for more details.
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