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Implicit Standard Jacobi Gives High Relative Accuracy
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Abstract We prove that the Jacobi algorithm applied implicitly on a decomposition A =
XDXT of the symmetric matrix A, where D is diagonal, and X is well conditioned, com-
putes all eigenvalues of A to high relative accuracy. The relative error in every eigenvalue
is bounded by O(ek(X)), where € is the machine precision and k(X) = [|X|2 - [|X '] is
the spectral condition number of X. The eigenvectors are also computed accurately in the
appropriate sense.

We believe that this is the first algorithm to compute accurate eigenvalues of symmetric
(indefinite) matrices that respects and preserves the symmetry of the problem and uses only
orthogonal transformations.
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1 Introduction

When conventional algorithms, like QR or divide-and-conquer, are used to compute the
eigenvalues and eigenvectors of ill-conditioned real symmetric matrices in floating point
arithmetic, only the largest in magnitude eigenvalues are computed with guaranteed relative
accuracy. The tiny eigenvalues may be computed with no relative accuracy at all—and even
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with the wrong sign. The only eigenvectors that are computed accurately are the ones cor-
responding to eigenvalues whose absolute separation from the rest of the spectrum is large.
See [2, section 4.7] for a survey on error bounds for the symmetric eigenproblem.

In contrast, in the last twenty years an intensive research effort has been made to derive
algorithms for computing eigenvalues and eigenvectors of n X n symmetric matrices fo high
relative accuracy, at O(n?) cost, i.e., roughly the same cost as that of conventional algo-
rithms for dense symmetric matrices [3,12,14,16,31,32,35,38,41,42]. The closely related
problem of computing the Singular Value Decomposition (SVD) with high relative accuracy
has received even more attention [5-8,10,11,18,20,21,23,45].

By high relative accuracy we mean that the eigenvalues A;, the eigenvectors v;, and their
computed counterparts 2; and 9;, respectively, satisfy

O(¢)

A=A <O(e)|M and  O(vi, ;) < ——
B

for i=1,...,n, (1)

min

J#i
where € is the machine precision, and 6(v;,¥;) is the acute angle between v; and ;. These
conditions guarantee that all eigenvalues, including the tiniest ones, are computed with cor-
rect sign and leading digits. The eigenvectors are computed accurately as long as the rela-
tive separations between the eigenvalues are large, regardless of how small the eigenvalues
themselves may be. For multiple or extremely close eigenvalues, the eigenvectors become
extremely ill conditioned in which case we develop error bounds for the corresponding in-
variant subspaces.

Many classes of structured symmetric matrices whose eigendecompositions and SVDs
can be computed with high relative accuracy have been identified [3,5-12,14,38,45]. In-
troduced by Demmel et al. [7], the key unifying idea in these high accuracy computations
is to compute first an accurate rank revealing decomposition (RRD), i.e., a decomposition
A = XDXT, where X is well conditioned and D is diagonal, and then to recover the eigen-
values and eigenvectors from the factors of the RRD.

At present, accurate computations of RRDs are possible for the following classes of
symmetric matrices: scaled diagonally dominant matrices [3], diagonally scaled well con-
ditioned positive definite matrices [12], certain diagonally scaled well conditioned indef-
inite matrices [40], weakly diagonally dominant M-matrices [10], Cauchy matrices, diag-
onally scaled Cauchy matrices, Vandermonde matrices, totally nonnegative matrices [14],
total signed compound matrices, diagonally scaled totally unimodular matrices [38], and
properly parameterized diagonally dominant matrices [45].

The fundamental property that makes an RRD very useful in high relative accuracy
computations is that its factors accurately determine the eigenvalues and eigenvectors of
the original matrix. Namely, small componentwise relative perturbations in D and small
normwise relative perturbations in X produce small relative perturbations in the eigenvalues
of A, and small perturbations in the eigenvectors with respect to the relative eigenvalue gap
[7,14].

Several algorithms have been proposed in the past to compute eigendecompositions of
symmetric RRDs to high relative accuracy. These algorithms are very satisfactory in the
positive definite case and are based on the one-sided Jacobi algorithm [13, Section 5.4.3]
with a stringent stopping criterion [12,18,35].

Two algorithms are proposed for the indefinite case. While both algorithms work well
in practice, they both have shortcomings:

d

— The algorithm proposed by Veseli¢ [44], and carefully analyzed and developed by Slap-
nicar [41,42] uses hyperbolic transformations, an unfortunate situation, since symmetric



matrices are diagonalizable by an orthogonal similarity. Furthermore, this hyperbolic
procedure does not guarantee small error bounds';

— In contrast, the algorithm of Dopico, Molera, and Moro [16] does guarantee the error
bounds (1), but does not respect the symmetry of the problem.

Our main result in this paper is a new algorithm which, given an RRD A = XDX of
a symmetric matrix A (definite or indefinite), computes its eigenvalues and eigenvectors to
high relative accuracy by using only orthogonal transformations and respecting the sym-
metry of the problem. When A is nonsingular this algorithm is simply the standard Jacobi
algorithm applied implicitly on X using the well known cyclic-by-row strategy [13, Section
5.3.5] to create the “implicit” zeros in A. The algorithm stops when

|a;j| < toly/|aziaj;l, (2)

for all i < j, where tol is a given tolerance, typically O(g). Once the stopping criterion has
been satisfied, the eigenvalues of A are computed as the diagonal entries of XyDX fT , where
Xy is the last iterate. The eigenvectors are accumulated from the Jacobi rotations in each
step.

In Section 5 we prove that the relative error in each eigenvalue is bounded by O(x(X)e),
where k(X) = ||X|2/|X "2 is the condition number of X, and || - |2 is the spectral norm.
Note that since we are using only orthogonal transformations in the Jacobi iteration, the
condition number of X does not change. Therefore, when X is well conditioned, i.e., when
K(X) < %, the eigenvalues are computed to high relative accuracy. Roughly, each eigen-
value is computed with log,, 1/(€x(X)) correct leading significant decimal digits. We also
prove that the error in each computed eigenvector is bounded by O(x(X)¢€) divided by the
corresponding relative eigenvalue gap.

To establish our relative error bounds we prove that the computed eigenvalues and eigen-
vectors are the exact eigenvalues and eigenvectors of a small multiplicative perturbation of
XDX',ie.,

(I+E)XDXT(1+E)T, (3)

with ||E||2 = O(e k(X)). This backward error result is in stark contrast with the unstructured
additive backward error bounds for conventional symmetric eigensolvers [2, section 4.7].
This is the key fact which, combined with the multiplicative perturbation theory bounds
in [22,33,34], allows us to prove that the implicit Jacobi algorithm delivers high relative
accuracy when X is well conditioned.

In exact arithmetic, the implicit Jacobi algorithm is mathematically equivalent to apply-
ing the standard cyclic-by-row Jacobi algorithm to XDX7, and therefore the convergence
properties of the implicit method are the same as those of standard Jacobi, to be found for
instance in [13,25,37]. Thus we do not address its convergence properties in this paper.

The paper is organized as follows. We introduce the main result—the implicit Jacobi
algorithm for nonsingular RRDs—in Section 2, as well as some of its key properties. It sets
the stage for the rest of the paper, where detailed proofs and tests are developed. In Section 3
we summarize multiplicative perturbation bounds for eigenvalues and eigenvectors. Section
4 is concerned with the accuracy of the last step of the implicit Jacobi algorithm. In Section
5 a complete multiplicative backward error analysis for the implicit Jacobi algorithm is

! See [41, Theorem 4] and do notice that the error bound for the eigenvalues depends on the inverse of
the minimum singular values of all the column scaled matrix iterates generated by the hyperbolic one-sided
Jacobi algorithm. As far as we know, there is no proof that these quantities are bounded, but they have never
been observed to be large in practice.



developed. In Section 6 we show that our algorithm extends trivially to singular RRDs.
Since the factors X and D of an RRD may be results of previous computations (and thus
carry uncertainties), we discuss how these uncertainties affect the final output in Section 7.
In Section 8 we present a simple but very effective preconditioning technique to speed up
the implicit Jacobi algorithm. We present numerical tests in Section 9 and draw conclusions
in Section 10.

Notation: In this paper we consider only real matrices and denote the set of m x n real
matrices by R"™*". The entries of a matrix A are denoted by a;; and |A] is the matrix with
entries |a;;|. We use MATLAB [36] notation for submatrices, e.g., A(i : j,k : [) will indicate
the submatrix of A consisting of rows i through j and columns k through I, and A(:,k : [)
will indicate the submatrix of A consisting of columns k through /.

2 The implicit Jacobi algorithm

In this section we present our main result—the implicit Jacobi algorithm. We assume that
an RRD A = XDXT of a symmetric matrix A is given, where X,D € R™" are nonsingular
and D = diag(dy,...,d,). The case when X is rectangular or D is singular is considered in
Section 6. Note that when A is nonsingular its eigenvalues are different from zero, therefore
the Jacobi algorithm stops in a final iterate that is an almost diagonal matrix with nonzero
diagonal entries.

We adopt the standard notation for Jacobi rotations

i J
1 -
1 C —S
R(i,j7C,S): ’
j s c
1

where the computation of the cosines, ¢, and sines, s, is performed in the traditional way —
see the classical texts [13, Section 5.3.5], [25, Section 8.4.2], and [37, Chapter 9] for details.

The key idea of our algorithm below is to apply the Jacobi rotations implicitly and
keep the matrix in factored form, i.e., to implement each Jacobi step XDXT — RT (XDXT)R
by updating X — RTX. Since the multiplicative backward errors introduced by this update
are unaffected by right diagonal scaling on X, we refactor XDX” as GJGT, where G =
Xdiag(\/]di],-..,/|dn|) and J = diag(sign(d),...,sign(d,)), and update G instead. We
use this second updating procedure because it is more convenient in the preconditioned
version in Algorithm 3.

The entries of A = GJG” needed for the computation of the Jacobi rotation in Algorithm
1 and for the computation of the eigenvalues in the last step are computed through the usual
formula

aij =Y gikgjk sign(dy). 4
=1



Algorithm 1, and the rest of algorithms in this paper, guarantees high relative accuracy
in the computed eigenvalues and eigenvectors if X is well conditioned. As explained in the
Introduction, this means that k(X) < é We will see that the smaller the condition number
of X, the larger the accuracy.

Algorithm 1 (Implicit cyclic-by-row Jacobi on XDXT) Given a nonsingular well condi-
tioned matrix X € R"*" and a diagonal nonsingular matrix D = diag(di,...,d,) € R"",
this algorithm computes the eigenvalues Ai,..., A, of A = XDXT and an orthogonal matrix
U € R™" of eigenvectors to high relative accuracy.

K(X) is the computed estimation of k(X)
U=1I,
G =X diag(\/[d1],...,\/]dn])
J = diag(sign(d, ),...,sign(d,))
repeat
fori=1:n-1
forj=i+1:n
compute a;;,a;j,a;; of A = GJGT asin (4)
compute T = {C _S} , %+ 5% =1, such that T {aﬁ ai’} T = {“1 O]
s C aij ajj 0 u
G=R(ij,cs5)G
U=UR(,j,c,s)
endfor
endfor
until convergence (\/% < emax{n,k(X)} forall i < j and ):’?‘:ailll‘g’z" < 2K(X) for all i)

compute A; = a;; fori=1,2,... n.

Apart from the implicit nature of Algorithm 1, it differs from the usual Jacobi algorithm
in the last two lines—the stopping criterion and the final computation of the eigenvalues.
Both lines paramount in guaranteeing high relative accuracy of the computed eigenvalues
and the associated error analysis is one of the main contributions in this work. They deserve
a brief explanation.

Let us start with the last line of the code, the computation of the eigenvalues as the
diagonal entries of the last iterate A = GJGT from the factors G and J using (4). To get the
eigenvalues with high relative accuracy it is necessary to guarantee that no severe cancelation
is produced in this process. To this purpose, first we will prove in Theorem 5 in Section 4
that, in exact arithmetic, if the implicit Jacobi algorithm stops according with the usual
stopping criterion (2), then the conditions

n 2
18k < op(x), i=1,....m, )
|aii]
are automatically satisfied for the last iterate. This fact is what induces the use of (5) as the
second part of the stopping criterion in the line before the last in Algorithm 1. This second
part of the criterion, together with standard error analysis [29, Section 3.1], leads to the
following satisfactory relative error bounds in the a;; computed in the last line:

’fl(aii) —aii|
aj;

2
ne Yk 8ik o 2ne o
“l—ne Jay| T 1-—ne

R(X), i=1,...n. ()




These relative errors are small whenever k(X) is small. Note that in exact arithmetic the
conditions (5) are satisfied without the need of extra Jacobi steps with respect to (2). We
have always observed the same in thousands of numerical tests, but, in finite precision, we
need to impose (5) explicitly to guarantee the error bounds.

The stopping criterion (2) with tol = ¢ max{n, K(X)} in Algorithm 1 includes £x(X)
laij|
of order €k(X) in the computed diagonal entries. A complete explanation of the stopping

criterion in Algorithm 1 is presented in Section 5.1

The crucial part of the error analysis of Algorithm 1 corresponds to the stopping crite-
rion because standard error analysis guarantees that the application of the Jacobi rotations
on G is safe. The reason is that G is well conditioned after column scaling since X is well
conditioned, and therefore only small backward multiplicative errors are introduced by the
rotations [13, p. 251] [29, Lemma 19.9]. In fact, we will see in Lemma 3 in Section 5.1
that the errors introduced by the stopping criterion can also be expressed as small back-
ward multiplicative errors. This is combined with the errors coming from the rotations in
Theorem 6 in Section 5.2 to prove that Algorithm 1 computes the eigenvalues and eigen-
vectors of XDXT with small multiplicative backward errors (3) with ||E||» = O(ek(X)).
We will recall in Section 3 multiplicative perturbation results for eigenvalues and invariant
subspaces (eigenvectors) that together with Theorem 6 show that Algorithm 1 computes the
eigenvalues and eigenvectors of XDXT with errors

because involves the computed entries a;;,a;; and a;;, and (6) imply relative errors

O(ex(X))

i

|Ai— A <O(ex(X))|Ai| and O(v;,9;) < for i=1,....,n. (7
min
JFi

In the case of extremely close or equal eigenvalues, the bound for 6(v;,?;) explodes, then
one can get bounds for the invariant subspaces using Theorem 2.

Let us consider the computational cost of Algorithm 1. Assume, without loss of gen-
erality, that the p positive entries on the diagonal of D come first, then the entries a;; are
ajj = Zi:l 8ik&jk — Z,’(’:IH_] gikgjk- So the cost of computing a Jacobi rotation is 6n flops,
the cost of multiplying G by a Jacobi rotation is 6n flops, and the cost of multiplying U
by a Jacobi rotation is 6n flops. So each Jacobi step costs 12n flops if the eigenvectors are
not desired and 18 if they are. If Ny is the total number of Jacobi rotations performed in
Algorithm 1 the total cost is

12nNg flops to compute only eigenvalues

18nNg flops to compute eigenvalues and eigenvectors.

These costs can also be expressed in terms of the number of Jacobi sweeps, denoted by
Nj,. Since one sweep involves n(n — 1) /2 consecutive rotations, the cost is 613 Ny, flops to
compute eigenvalues and 913 N, if the eigenvectors are also desired. It is accepted that Ny,
is proportional to log(n) for the classical Jacobi algorithm [25, Section 8.4]. For information
on the number of sweeps performed by Algorithm 1 we refer to the numerical tests presented
in Section 9. Several ideas to decrease the computational cost of Algorithm 1 are discussed
in Section 8.
In practice, the rotation R(i, j,c,s) is applied on G and/or U only if

i > emax{n, €00} lazas |



or
n n
Z 8k > 2K(X) |ai|, or Y g% >2K(X)laj;|.
k=1 k=1

Once a;j, a;;, and aj; are computed, the cost of checking the first condition is 3 flops,
negligible with respect to the cost of a rotation. The second condition involves the un-
known quantity Y}, gl.zk that can be computed with negligible cost as follows: assume
again that the p positive entries on the diagonal of D come first, then we can compute
ai=Yr_ gizk —Yhept1 gizk and Y7 gizk =Yr, gizk +Xk—pt1 gizk. As a consequence, to com-
pute Y}, g; only costs one additional flop if Y-_, g7 and Y}, gj; are stored. A similar
remark holds for Y}, g?k. So, the total cost of checking the second condition of the stopping
criterion is four flops.

Finally, we mention that if the matrix D is extremely ill-conditioned, then underflow
may appear in the computation of the Jacobi rotations. This can cause loss of accuracy and
failure of convergence. In this case, the rotations should be carefully implemented in the
spirit of the procedure presented in [17] for the SVD computation.

3 Basic results on multiplicative perturbation theory

In this section we recall two bounds for the relative perturbations of eigenvalues and eigen-
vectors of symmetric matrices under multiplicative perturbations [22,34].

Theorem 1 [22, Theorem 2.1] Let A = AT € R™" and A = (I+ E)A(I + E)T € R™™",

where I + E is nonsingular. Let Ay > --- > A, and 7Ll - > 7L be, respectively, the eigen-
values of A and A. Then

A=Al < QIE|2+|EI3) Al,  for i=1,...;n
Lemma 1 is a corollary of Theorem 1.

Lemma 1 Let X € R"™" be a matrix of full column rank, and D = diag(dy,...,d,) and
D = diag(d,,...,d,) € R™" be nonsingular diagonal matrices such that

ldi—di| <Bldi|, i=1,...r,

where 0 < B < 1. Let 4y > --- > A, and il > > L be, respectively, the eigenvalues of
XDXT and XDXT. Define « = 1 — /1 — B, and assume that ax(X) < 1. Then

A=A < 4|2+ ak(X)ak(X), i=1,....n.

Proof Letc;’;:d,»(l—i—u,-), where |y;| < B, fori=1,...r. We define §; from 1+ 6; = /1 + ;.
Then |§;] <1—+/1— B = a. We also define A = diag(dy,...,J,), obtaining

D=(I+A)DI+A), |A]r<a.
If X1 is the pseudoinverse of X then X tX =1, therefore
XDXT =X(I+A)D(I+A)'XT = (1+XAXXDXT (1+XxAXx"7T, ®)

and | XAXT|2 < ak(X) < 1. Therefore I +XAX" is nonsingular, and Theorem 1 can be
applied to (8) to obtain the result. O



For the eigenvector perturbations we use the results of Li [34]. The presence of multiple
or extremely close eigenvalues is permitted by bounding the canonical angles [43] between
invariant subspaces. We establish some additional notation to state the perturbation bound.
Let A and A be two real n X n symmetric matrices with eigendecompositions

JE

=0, U] {A] AJ {Uﬂ and A= [U) Uz] o7

U

where Ul,Ul € Rk, [U) Uy] and [U1 Uz] are n X n orthogonal matrices, and A; ,A2,A], and
A, are diagonal matrices. We denote by ©(U,,U,) the canonical angles between Span(U; )
and Span(U; ), and by A(A;) and /I(Az) the spectra of A, and Ay, respectlvely We assume
in (9) that if the elgenvalues of A and A are decreasingly ordered, i.e., A; > --- > A, and
7L] L> l”, then A, = {/'L,l, Ai }if and only if Ay = {A;,..., 4, }.

Theorem 2 [34, Theorem 2.2, Remark 2.1] Ler A = AT € R and
A=(I+E)A(I+E)" e R™",

where ||E||2 < 1, have eigendecompositions (9). Let us assume that A(A)NA(Ay) =0 and
define

relgap(A;) = min min =] , 1.
uer(Ay)ver(dy) lu
Then
2k 1+|IE]»

- 2|El]2 + ||E|3),

1, . ~
S llsin 20Uy, ) <

where || - ||F denotes the Frobenius matrix norm.

The case for single eigenvectors corresponds to k = 1.

4 Diagonal and scaled diagonally dominant RRDs

In this section we focus on RRDs A = XDXT such that X and D are nonsingular square
matrices. We will consider the singular and rectangular cases in Section 6.

In the last step of Algorithm 1 the eigenvalues are computed as the diagonal entries of
a matrix satisfying the stopping criterion (2). We will call the matrices satisfying (2) scaled
diagonally dominant matrices®. According to (6) the diagonal entries of such matrices can
be safely and accurately computed in floating point arithmetic from the factors of the RRD

A=XDXT = GJGT through the formula a; = Y{_, g&sign(dy), i = 1,...,n, if the ratios

ZZ 18121( _ Yi- 1x12k|dk| Zzzlxizk‘d”
|Zk 1g,k51gn dk ’ |Zk 1xlkdk| |aii|

. i=1,....n, (10)

2 Note that a matrix A with nonzero diagonal entries and satisfying the stopping criterion (2) can be
expressed as A = DyCDy, where Dy = diag(+/|ai1],. .., v/|an|) and |c;;| < tolif i # j. Therefore, according
to the definition in [3, pp. 764-765], A is tol-scaled diagonally dominant with respect to the (non-consistent)
max-norm, i.e., ||B|[y = max;;|b;;| for any matrix B. This is the reason why we adopt the name scaled
diagonally dominant for matrices satisfying (2). For brevity, we omit the norm and the parameter tol.



are much smaller than 1/(ne). The purpose of this section is to prove in exact arithmetic
that the ratios in (10) are essentially bounded by x(X) when the matrix A fulfils (2).

We first consider diagonal RRDs in Theorem 3, then the final result for scaled diagonally
dominant RRDs is proved in Theorem 5.

Theorem 3 Let X € R"™" be nonsingular and D = diag(dy,...,d,) be diagonal and non-
singular. If XDXT is diagonal then

SIS
ink\dk|

<Kk(X), i=12,....n (11)

lkdk

Proof We denote A = XDXT, where A = diag(A{,...,A,). Note that A; = Zzzlxizkdk, i=
1,...,n, are the eigenvalues of XDX T and that, for each i, the left and right eigenvectors
of A; are both equal to the ith column of I,. We denote this ith column by ¢;. We assume
without loss of generality that A; > --- > A,,.

F1rst we prove the result when 7L is a simple eigenvalue. Let d =d;j(1+0 ngn(d )

,n, where & is a small real parameter, and let D = dlag(dl7 .,dn).

Let ll - > A, be the elgenvalues of XDXT = A + 8 X|D|X”. The classical first order
perturbatlon expansion for simple eigenvalues [13, Theorem 4.4] implies? that as § — 0

A=A+ 8l X|ID|XTe;+0(8%) = 4+ 8 Y. x%ldi] +0(82).
k=1

Then

A Sl
Ims—72 ~~ i (12)

On the other side, Lemma 1 can be applied to XDX” and XDX” with B = |§| and o =

1—+/1-B=18]/2+0(8%) to get

2= 4|
|l

< 18]x(X) +0(8%)

and B
1 |Ai—A
b S A = <X

This is combined with (12) to prove the claim.

Next, let A; be a multiple eigenvalue, e.g., 4;_1 > A4 =---=A =--- =21, > A,4. Pick
0 >0 and define D' = diag(dy,...,d;), whered; =1+ 8 if [ <k < (i—1)or (i+1) <k < p,
and d; = 1 otherwise. Note that d,’ = 1, therefore (D'X); = x;; for all k, and 4; is a simple
eigenvalue of the diagonal matrix

D'AD' = (D'X)D(D'X)T.

3 According to [13, Theorem 4.4], one gets A=A+ eI X|D|XTe;+ 0(||6X|D|XT||3). The exact mean-
ing of O(||§ X|D|XT ||3) is that there exists a constant K depending only on XDX” and not on the perturbation
such that |O(||6 X|DIXT|13)| <K ||6X|D|XT||3 < K ||X||3 || D||36%. Note that this is O(8%) with the constant
K | X || || D||3, that depends only on the unperturbed matrix XDX” and not on the perturbation. Since the value
of the constant is not relevant in our argument, we simply use O(52).
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Thus, we can apply the result for simple eigenvalues to the ith entry of the diagonal matrix
(D'X)D(D'X)T to get
The1 Xl
|Ail
where the left hand side does not depend on 8. By taking the limit § — O the result follows.
O

< k(D'X),

Next, we prove an auxiliary result—that setting the off-diagonal entries of a scaled di-
agonally dominant matrix to zero is a small multiplicative perturbation of the matrix.

Theorem 4 Let A = AT € R™" be such that a;; # 0 for all i, and

|aij|
vV |aiiajj|

where & < % Then the following hold.

<6 forall i+ ], (13)

—2né’
2. Let D4 =diag(\/|aiil,.--s\/|aml)- If laii| > -+ > |ann|, then

A = (I+E)diag(aiy,...,anm) I+ E)T,

5
1. diag(arn,....am) = I+ FJA+F)" with |F|[p < 5 "

é né
41—-nd

. nd
D4 EDal|p < 1=

Here || - || denotes the eo-matrix norm [29, p. 108].

where E is lower triangular,

and |[D;'ED, |, <

Proof The result in the first claim is invariant under permutations PAPT of A, thus we as-
sume that |aj| > --+ > |aun|. Define C = DXIADK1 and note that C is symmetric, ¢;; =
sign(a;;) for all i, and |¢;;| < O for all i # j. Let J = diag(c11, ..., ¢nm) and write

—

1
C=J+G, where|G|F<nd< and ||Glleo <nd < 5 (14)

5
Next, we prove that C has a unique LU factorization with the factor L unit lower triangular
by showing that all its leading principal submatrices are nonsingular [29, Theorem 9.1]. Let
By denote the kth leading principal submatrix of any matrix B. Then, since J;, is nonsingular,
Cy = Jx + Gy, is nonsingular if and only if J;Cy, = I 4 J; Gy, is nonsingular. The matrix / 4 J; Gy
is nonsingular because ||JyGi||F = ||Gk||F < ||G||F < 1. Since C is symmetric, it has a unique
LDL factorization:

C=LDLT, (15)

again with the factor L unit lower triangular. Equation (14) allows us to consider C as a

perturbation of J, where the unique LDL factors of J are simply L = I and D = J. Then
Theorem 6.2 in [15] can be used to get4

IL—1|<(|Gl(1-]G])""), and (16)

D—J < (IGIt=1G)™"),,. (17)

4 Theorem 6.2 in [15] holds for block LDL” factorizations. In our case all blocks are 1 x 1.
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where for any matrix B, (B), denotes its strictly lower triangular part and (B)p its diagonal
part. Note that the matrix |G|(I — |G|) ™! = X5, |G|¥ is symmetric, because |G| is. Therefore
the bound (16) implies

7 - 1 L _l6llr
IL=1llr <1 (IGIE=1G) ") lIr < —zlIGIT=IG) MlF < —z -7, (18)
( e =35 v TGl
for the Frobenius norm, and
7 - 1G]eo
IZ~1lleo < IGI(I = 1G)) " loo < —— =, (19)
1= |[Glle
for the co-norm.
The next step is to use the bound (17) to prove that
5 / nT / IGIIZ / |GlI3
D=(I+D")J(I+D"), where |[D'|r<——5— and [|D'|cc < —F~—, (20)
1[Gl 1—[|Glleo

and D' = diag(d],...,d,) is diagonal. For this purpose, we writt D=J+D—J =J(I+ W),
where W = diag(wy,...,w,) =J(D—J). Thus, from (17),

wi< Y (1of),= X (19,

because (|G|),, = 0 by (14). Therefore every diagonal entry of W satisfies,

s G
il < Wl < E | (16), |, < & ot < 71500 <.
=2 —IGllF
Analogously,
[wi| <|[W]leo < & < 1.
G
Thus we can write 1+w; = (1 +d!)?, with |d!| < |w;| for all i. Then
D=J(I+W)=(I+D")J(I+D)
and (20) is proved.
We define L' = L — I and combine (15), (18), and (20) to get
C=I+L)I+D)JI+D) (1+L)".
Therefore
~ ~ 1 G G|? 1 G|}

V2 1=[Gllr 1-Glr V2 (=Gl

)
Note that I+ E = (I 4+ L')(I + D') is lower triangular. Taking into account that ||G||r <
by (14), we can simplify the bound on ||E|| as follows

~ G 1 1 Gl3

U=

—i6i- \ 3 V2 1[Gl
ﬁLlL.i

Sl—meCﬁ+s+wil—UﬁQ
1G]l

A

2 1)
1[Gl
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For the co-norm, we use (19) instead of (18) to get

s < Gl 161
IElleo < 1 rr (141160 + 11
1[Gl TGl
ol (1,1, 1)
~ 1 -Gl 5 1—(1/5)
5G]
== —— (22)
41— |Glloo

We are now in a position to finish the proof of the Theorem. We write

A=DsCDsy = Da(I+E)D,'DaJDsD (I+E) Dy
= (I+DAED; ") diag(aiy, ..., am) (I+DAED )T,

define E = DAEDfl, and use (14) and (21) to prove the second claim for the Frobenius
norm. For the second claim in the co-norm, use (14) and (22). In addition |e;;| < |¢j;|, since

E is lower triangular, and |a;;| > -+ > |ay,|. Therefore || E|| < ||E||r < 1. To prove the first
claim, take I+ F = (I +E) ™' = ¥5_o(—E)*, and write

)
HFHF < HEHF < lﬁn5 _ no
STEl S 1w T T b

O

Finally, we prove the main result in this section—that there is no severe cancellation in
computing the diagonal entries of a scaled diagonally dominant matrix from its RRD.

Theorem 5 Let X € R™" be nonsingular and D = diag(dy, ... ,d,) € R"" be diagonal and
nonsingular. If the matrix A = XDXT satisfies a;; # 0 for all i, and
|aij|

Vlaiiajj|

<6, forall i+ ],

1
where 8 < =, then

)
pREALA

k=1 K‘(X) 31’[26 .
< 1 =1,...,n
lai| — 1-2né ( s ) T

Proof The result is invariant under permutations PAPT of A, so we assume layi| > >
|@n|. We apply Theorem 4-part 2 to A = XDXT to write

diag(aii,...,am) = I+E) ' XDX" I+ E)"T =XDX",
where X = (I4+E)~' X. We apply Theorem 3 to the diagonal matrix XDXT to obtain

n =2 d ~
zk:%z/'c‘k‘ <k(X) fori=1,...,n. (23)
aijj

For all i, k,

n n
Xik =Xig+ Y eijxie, and x| < Xl + Y Jeij|[Xjel.
= =
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However from (23)

ik | < |‘Zii|| \/ k(X) for all i, k.
I

Therefore for all i,k

2
n
Xp <X +2 Z e ||| + (Z |€ij||97jk|>

Jj=1 J=1

Z|el]|\/@+<z|eu|m>

2
= X)|aii| |a |a
:xizlﬂL |d|” 22|l/| H Z|11| H

Jj=

><

Observe that with the notation of Theorem 4 we have that (DXIEDA) ij = eij % and that
HDXIEDA Hoo < %5,7, where §, = 1’1‘25. Therefore for all i,k

(X)) ||
|di|

<32 ()|a,,| 2 é
=St O 2 + 1%

_ 25 1/5
<32 k(X )|au|6 i
=St g o 2+161—1/5

k(X )|aii|
|di]

G (z\|D;1EDAum+|rD;1EDA|ri)

<o+ 38,

which combined with (23) implies

Yie lxlk‘dkl

i <K(X)(14+38,n). (24)

The result now follows by observing that X = (I+E)~'X and thus

B k()

(%) < O+ 0+ £ < K0T g < {5

where we used ||[E||2 < ||E||r <||Dy' EDal|r < §, since, from Theorem 4, E is lower trian-
gular. O

5 Rounding error analysis of the implicit Jacobi algorithm

In the rounding error analysis of Algorithm 1 we use the conventional error model for float-
ing point arithmetic [29, section 2.2]:

flla®b)=(a®b)(1+9),
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where a and b are real floating point numbers, ® € {+,—,x,/}, and |8| < &, with ¢ the
machine precision. We assume that this holds also for the square root operation and that
neither overflow nor underflow occurs. We also use the following notation introduced in
[29, Chapter 3]: 6, is any number such that
q€

0, <—=7,.

| q ‘ - 1= qe ’Yq
The constants appearing in the error bounds are not important unless they become too large.
Thus, we use a big-O notation that shows the dimensional dependence for the bounds. More
precisely, if p(n) is a moderately increasing function in n

h(€) = O(p(n)e) means |h(e)| < a|p(n)|e,

where o denotes a small integer constant that does not depend on the dimension n of the
problem. We also use sometimes the following notation introduced in [29, p. 68]

- oge
ta = 1—oge’

We warn the reader that for making the notation as simple as possible, fI(expression)
will denote the computed value in floating point arithmetic of any expression, where, in turn,
every variable appearing in expression has to be computed in floating point arithmetic.

5.1 Rounding errors in the stopping criterion of Algorithm 1

Note that the stopping criterion in Algorithm 1 involves entries of the matrix G/GT that have
to be computed from the factors J and G, where G is the last iterate of the implicit Jacobi
algorithm. Therefore, the errors introduced by the stopping criterion have to be carefully
analyzed. This analysis starts with Lemma 2 that shows that if the stopping criterion is sat-
isfied in floating point arithmetic then the exact matrix GJGT is scaled diagonally dominant
with a slightly different constant. In Lemma 2 we consider arbitrary thresholds 7, and 7,, but
remember that, according to Theorem 5, 7, should be, more or less, k(X). In Algorithm 1
we have used use 7, = 2K(X). Recall that the entries of GJG” in Algorithm 1 are computed
with formula (4).

Lemma 2 Let G € R"™" be a matrix of floating point numbers and J = diag(sy,...,s,) €
R™" be a diagonal matrix whose entries are s; = £1. Let A = GJIGT as in (4). If
al—lal \ cn praniz; 25)
Vlaiiajj|
n 2
fl (M) <w foralli, (26)
|aii]
and T Y41 < i (observe that v > 1), then
. T2 .
1. fl(a;) =a; (1 ;) with ;] < i
f (all) au( +¢1) wi |¢z| S 1721_2%“—1 fora 1
|aij| ( T2 ) Y372 L
——— <11+ + , foralli . 27
Vs =\ 2n0 ) T2y, T
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Proof The proof is standard rounding error analysis. We simply sketch it. Define B = GG .
Then a;; = Y}, g5k bii = X, g% and

n
Fllai) =Y. ghse(1+61) = i + 0,b. (28)
=1
From (26)
bij + 6,41 bj; bj; (%) .
20T IOt o o B foralli (29)
|aii + 6,bii : lai] = 1 =202

The first claim follows by combining (29) with (28). To prove the second claim, write

fl <\/ |a,»,»aj,-|> =/ laiiajj| (1+¢i;)(1+61)(1+ &),

where |9;;| < % 72/(1 =2 T %41) and |61],|02| < €. Then (25) implies
|aij + On3 Loy ikl gk

ST,
Vaiiajj| (1+ i)

|aij| Yie1 lgikllg ]
Vlaiiajj| Vlaiiajj|
Finally, from Cauchy-Schwarz Y7, |gi||g k| < /biib}; , and the result follows from (29).
O

and
<11 (L4 ij) + Yy 3

The first important consequence of Lemma 2 is that one should not take 7; < €7, in
the stopping criterion given by (25) and (26), because this stopping criterion implies the
bound (27) on the matrix A, and the right hand side in (27) is larger than 7| + (n+ 3)e1.
Therefore trying to make the matrix A more scaled diagonally dominant by choosing a very
small threshold 7; in (25) has a marginal effect in the matrix. We have used in Algorithm
1: 7, = 2K(X), where K(X) is the computed estimation of k(X), and 7| = emax{n, K(X)}
with good results.

The second important consequence of Lemma 2 is that it can be combined with The-
orem 4 to prove that the stopping criterion causes a small multiplicative backward error in
the RRD. From now on, we use big-O notation for the error bounds, because the precise
constants may be complicated and are of no interest to us.

Lemma 3 With the same notation and assumptions as in Lemma 2, suppose, in addition,
that T = O(g). Then

diag(fl(arr), ..., fl(am)) = [+ F)GIGT (I+F)T,
where |F||r = O(nt) +n’€e1,).
Proof From Lemma 2 and Theorem 4,
diag(ayy,....am) = I+ F)GJGT(I+F)T with ||F|r = 0(nt +n’en).

Define o from 1+ o = /T + ¢; and let E = diag(ay, ..., 0). Since || < |¢i] = O(neT),
|E||r = O(n*/?€1,). Then

diag(f(an), ..., fl(am)) = (I +E)diag(an, ..., aum) ([ +E)"
= (I+E)I+F)GIGT(I+F)T(1+E)T

and the result follows by defining F from I+ F = (I+E)(I +F). O
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5.2 Multiplicative backward error analysis of Algorithm 1

We present in this section a detailed multiplicative backward error analysis for Algorithm 1.
The multiplicative backward error bound in Theorem 6 below can be easily combined with
Theorems 1 and 2 to prove that Algorithm 1 computes the eigenvalues and eigenvectors of
an RRD XDXT with errors (7). We start with the technical Lemma 4 that we use in the
proof of the main Theorem 6. This lemma is essentially known (see [13, p. 251], [29, pp.
367, 360]), our contribution is simply to bound the Frobenius norm of the backward error in
terms of the spectral norm of the matrix without any dimensional penalty.

~

Lemma 4 Let A € R™", D € R™" be any diagonal matrix with positive entries, R, ... Ry
be computed Jacobi rotations, and Ry,...,R, be exact Jacobi rotations. Assume that for
each rotation Ry the computed cosine, ¢, and the computed sine, $, satisfy

¢=c(1+06s5) and §=s(1+6i), (30)

where ¢ and s are the exact cosine and sine corresponding to Ry. Then

~ ~ _ oge
fUR; - R1A) =Ry ---Ri (A+F) where |[FD||r < 5 ‘(Ixe
—ag

IADI2,

and o denotes a small integer constant.

Remark 1 The constant g, i.e., the number of Jacobi rotations, in the error bound in Lemma
4 is pessimistic. For instance, if the Jacobi rotations correspond to a whole sweep then
q =n(n—1)/2, but in the error bound one can put 2n — 3 if the notion of disjoint Jacobi
rotations is used [24] (see also [18, Prop. 3.5]). We will express the rest of our error bounds
in terms of the numbers of Jacobi rotations applied until the stopping criterion is satisfied,
but the right quantity is the number of sets of disjoint Jacobi rotations that are applied.
However, it is difficult to know exactly this number, specially in the last sweeps where just
a few rotations may be applied.

Proof of Lemma 4 This is a standard error analysis. We simply sketch the proof. Let us
study the application of one rotation fI (I’Q\lA). It is well known (see [13, Lemma 3.1] or
[29, Lemma 19.9]) that fI(R, A) = R (A + F}) with ||Fy (:,k)||2 < 71||A(:,k)| 2 for all k. But
if Ry is an R(i, j,c,s) rotation then operations are only performed on rows i and j of A, so
Fi(l,:) =0forl+#iand!+# j, and we have the stronger bound ||Fi (:,k)||2 = [|Fi ([i, j],k)|l2 <
Y A([i, j],k)|2. Therefore

[ deFr (. k) ||, < 7 |diwc Al 1,0 ||, = 7 1(AD) (12, 1, k)l

and
IFD|r <7 (AD) (i, /1, )|l <% V2 [(AD) (i, j],:)ll, < 71 V2 ||AD],.

Finally, for one rotation
SIRIA) =Ri(A+Fy) where [|FiD|y <% AD], (31

where the factor v/2 has been absorbed in the moderate constant used in the definition of
%i. Now the proof continues with an inductive argument. Denote Ay = fI(Ry--- Ry A) for
k=1,2,...,q, and assume that the result holds for A;,_;. From (31), we get

Ay =Ry(A, 1 +F) where HEDHFg%HXq,IDHZ. (32)
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Then,

~

Ag=Ry(Ry—1-Ri(A+F;_1)+F) where |F,_1D|, <%-1|AD|,. (33)

The result is obtained by combining (32) and (33), using that HX{FIDHZ = H (A+ F‘Fl)Duz <
(14 %,-1) ||AD||,, and [29, Lemma 3.3]. O

Theorem 6 If Ny Jacobi rotations are applied in Algorithm 1 until the stopping criterion
is sansﬁed (X )}/,,H < 8’ and \/nx(X)p < ;, then the computed matrix of eigenvalues,

= dlag(ll7 ..JLn), and the computed matrix of eigenvectors, U, are nearly the exact
elgenvalue and eigenvector matrices of a small multiplicative perturbation of XDXT. More
precisely, there exists an exact orthogonal matrix U € R"™" such that

UAUT = (I+E)XDXT (I+E)T, (34)
with ||E||r = O(& (n*K(X) + Ngx(X))) and ||U — U ||r = O(Ng €).

Remark 2 Taking into account that the X factor of an RRD is a well-conditioned matrix any
sensible way to estimate k(X ) will produce an estimation such that x(X) ~ K(X). Therefore,
the bound above for E usually simplifies to

IE|lF ~ O(e (n* +Ne)x(X)).

Proof of Theorem 6 Let D = diag(dy,...,d,). Then |D|'/? = diag(\/|d1],...,+/]d4|). The
computed version of X |D|'/? is

G =fI(X|D|'?), andsatisfies G=X|D|'? with %, =x; (1+6\7).  (35)

Let G = fl (ﬁzrvk - i?\f (A}) be the computed matrix after the N Jacobi rotations are applied.

Recall that for each Jacobi rotation the cosine and sine are, respectively, 1/v/1+¢% and
t/V'1+12, where the quantity ¢ may be found for instance in [13, Section 5.3.5]. Even in
the case that the computed 7 has a large relative error’, the computed ¢ and § satisfy (30)
with respect to the following exact cosine ¢ = 1/+v/1 +#% and sine s = ¢f, and we can apply
Lemma 4 to get

Gr =Rk, Rl (G+F), where ||F|D|™"2||p = O(Nge)[|G|D|""/?||2 = O(Nge) | X 2.

Then
Gr=RL, - R{(I+F)G, where||F'||r = O(Nge)x(X), (36)

because [|F'||r = |FG |7 = |F|D|""2X |l < |FID| /2|7 | X~ |2.
The matrix G ] GT satisfies the stopping criterion in finite arithmetic, and Lemma 3 can
be applied with 1) = 8 max{n,K(X)} and 7, = 2K(X). We get

A=(I+F)GpJG(I+F)", where |F|r = O(n*ek(X)). (37)

5 Large relative errors in 7 do not affect the error analysis and, so, do not affect the accuracy of the eigenval-
ues and eigenvectors. However, it should be remarked that they may affect the rate of convergence in floating
point arithmetic and make the algorithm slow, especially at the beginning of the process.
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Define the exact orthogonal matrix U7 = RK,R - -RIT, and combine (36), (37), and (35) to
obtain

A =UT(I+UFUT)(1+F\GJIG" (1+F)T(1+UFUT)"U
=UT(I+UFUT(1+F)XDXT (1+F)T(1+UFUT)TU. (38)

Note that (35) implies that X = X +Ey = (I+Ex X )X, with [|[Ex X !||p < ||Ex||r || X~"[]2 <
Yav/nk(X). If we define I + E = (I +UFUT)(I+ F')(I+Ex X~') and use (38), then

UAUT = (I+E)XDXT (I+E)", where ||E||r = O(e(n®R(X) + Nrk(X) + vnk(X))).
To obtain (34), it remains to relate k(X) and k(X ). From X = (I+Ex X)X,

. LB o T py/e()

K(X)SK(X)I_HEXX_ln2 < <3K(X).

1—pynk(X) ~
This implies (34) under the mild assumption Ng > /n.

We still have to prove that || — U||r = O(Nge). For this purpose, we use Lemma 4
with D =1 and A = I to prove that

U=fI(R,--Ryy) = (I+Ey)U, where|Ey||lr = O(Nge)|[I]2 = O(Nge).

6 Singular RRDs: RRDs with rectangular factors

So far we have considered RRDs A = XDXT with square and nonsingular X and D, which
excludes singular matrices A. If we only insist on X being nonsingular, then any zero eigen-
values of A will be explicitly revealed as zero entries on the diagonal of D. If dy,...,d,,r <n,
are the nonzero diagonal entries of D, then for D = diag(dy,...,d,) and X = X (:,1:r),

A=XDX" =XDX",

which leads us to consider rectangular RRDs. Computing the QR factorization of X is all
that it takes to reduce the computation to Algorithm 1.

Algorithm 2 Given X € R™", n > r, of full column rank and D € R"*" diagonal and non-
singular, this algorithm computes the eigenvalues A, ..., A, of A=XDXT and an orthogonal
eigenvector matrix U € R"*".

1. Let Q {Ig} = X be the QR factorization of X (Q € R™" R € R™") computed with

Householder reflections [29, Ch. 19].

Let A1,...,A and Ug € R™" be the output of Algorithm 1 applied on R and D.
Then A,...,4,,0,...,0 are the n eigenvalues of A (n — r zeros).
U(:,1:r)=0(,1:1)Ug.

U(G,r+1:n)=00G,r+1:n).

A
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The mathematical explanation for Algorithm 2 follows from the following block manip-
ulation. If Ag = diag(44,...,4,), then

T T T
o[ o[ 45 o[ o

Next, we show that Algorithm 2 introduces small multiplicative backward errors of or-
der O(e k(X)) and thus it computes the eigenvalues and eigenvectors of A to high relative
accuracy.

Theorem 7 Let N be the number of Jacobi rotations applied in step 2 of Algorithm 2. Let
R be the R-factor computed in step 1, and f(l/?\) be the computed estimation of the condition
number ofﬁ used in the stopping criterion of step 2. If/l(\‘(l?)}/rﬂ < % and /1 K(X) Yor < %,
then Algorithm 2 computes a matrix of eigenvalues, A= diag(zl7 .. ,71,,0, .o,0) e R,
and a matrix of eigenvectors, U € R"™" that are nearly the exact eigenvalue and eigenvector
matrices of a small multiplicative perturbation of XDXT. More precisely, there exists an
exact orthogonal matrix U € R™" such that

UAUT = (I1+E)XDX" (I1+E)T, (39)

with ||E||r = O(& (P ®(R) + max{Ng, */?n} k(X))) and |U — U || r = O(e max{n*2r,Ng}).

~

Remark 3 As in Remark 2, if the X factor is well-conditioned then k(X) ~ K(R).

Proof of Theorem 7 According to Theorem 19.4 and equation (19.13) in [29], there exists
an exact orthogonal matrix Q such that the computed factors Q and R in step 1 of Algorithm
2 satisfy

R ) X i
x+ax=0[ ], where 4] <% X, and [0l < ViFi  (40)

Therefore, X + AX = (I+AX X +)X , where XT is the Moore-Penrose pseudoinverse of X,
and
X+AX =(I+Fx)X, where ||Fx|F <7 Y k(X).

Then,
%) pNRT
I+ F)XDXT (1 +F)T =0 [ﬂ D {1’5’ 0} o' =0 [R%R 8] or.
It KR is the computed eigenvalue matrix of RDR in step 2 of Algorithm 2, then Theorem 6
implies that there exists an orthogonal matrix Ug € R"™*" such that

(IJrFx)XDXT(HFX)T:Q[(“ERV1 0} [URKRUI? 0] {(HER)‘T

0] r
o 1]| o o 0 I}Q’(M)

with ||Eg||r = O( (*&(R) + Ng k(R))). In this bound we can replace k(R) by k(X) since’

LB oy TEVI T KO gy )

K(R) = k(4 F) X) < &) 7 = S k)7 2= 59 <

6 Note that X is rectangular, therefore to get (42) we need to use [30, Theorem 3.3.16] which implies
I+ Fx)~ "5 0i(X) < 6i((I + Fx)X) < |[[ + Fx|[26i(X), for i = 1,...,r, where the o;s denote singular
values.
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Define

note that || E||r = O(& (2 K(R) + max{Ng,nr*/2}x(X))), and use (41) to obtain

Ur 0] [A UL 0
(I—l—E)XDXT(H-E)T:Q{ s 1] HR 8} [ s I}QT.

This is (39) with U = Q[ % Y].
Next, we bound ||U — U ||p. If Uy is the eigenvector matrix computed in step 2 of Algo-
rithm 2, then

U= [fl(é(:,l r) (7R) Q(:,r+l n)} ,

and

||ﬁ—UHF = \/Hfl(é(:,l :r)l?R) —0(;,1:r)Ug||2 + HQ(:,r—i—l :n) —Q(,r+1:n)|%.

From (40), we get 10G,r+1:n) —Q(,r+1:n)||r < \/n¥, Taking into account that
lUgr — Ugrl|lr = O(NgE€), ||Ur|lF = ||Q(:,1: r)||F = /T, (40), and the standard error bound
for matrix multiplication [29, eq. (3.13)], we can prove that

I£1(Q(:,1: ) Ug) — Q(:, 1 : r) Ugllr < [IF1(Q(:,1:7)Ug) — Q(:, 1: 1) Urlr
110G, 1:r)Ur— OC, 1 : ) Ugllr
= 0(r%e) + O(Nge) + O(n**re).

Therefore, ||U — U||r = O(e max{n*/2r,Ng}). O

7 The effect of errors in X and D

In this section we consider the situation where the factors X and D in the RRD A = XDXT
carry some errors from previous computations. This is the typical scenario in practice where
the RRD is not given, but rather computed in floating point arithmetic. It turns out that the
factors X and D accurately determine the eigendecomposition of A. In other words it suffices
that X be computed with a small relative norm error and the diagonal of D be computed with
a small relative componentwise error.

Lemma 5 Let A € R™" be a symmetric matrix and A = XDXT be a factorization of A,
where X € R"™" has a full column rank and D = diag(dy,...,d,) € R™" is diagonal and

nonsingular. Let X and D = diag(jl, e ,c?,) be perturbations of X and D, respectively, that
satisfy
IX —X]l2 |d; —d;
——= <90 and
[1X (|2 |dil

<8 fori=1,...,r (43)

where 6 < 1. Then
XDXT = (I+F)A(I+F)T,

with |F|ly < (28 + 8%)k(X).



21

Proof Let d; = di(1 + ;) where || < 8 < 1,i=1,2,....r. Then d; = (1+ &)d;(1+ &),
where 1+ 6 = /1+ W;, and |6;| < §. Define W = diag(dy, ..., 6). Then

D=(I+W)DI+W)T,

where |[W||, < 8. We write X = X + E, with ||E||» < §||X|2, and denote by X the pseu-
doinverse of X. Then

XDXT = (I1+EXNX(I+W)DI+W)" X" (1+EX"T
= (I+EX)I+xwxXDXT (1+xwx ") (1+EXTT.

The result follows from defining F from I+ F = (I+EX")(I +XWXT). o

We now combine Lemma 5 with Theorem 6 or 7 to yield the final multiplicative back-
ward error result for the computed eigenvalues and eigenvectors of a symmetric matrix A
whose RRD is computed accurately with error bounds as in (43). For simplicity, we as-
sume that the computed condition numbers (X ) and K(R) appearing in Theorems 6 and 7,
respectively, are good approximations to x(X).

Theorem 8 Let A € R™" be a symmetric matrix and A = XDXT be a factorization of A
where X € R™ has full column rank and D € R"™" lS dla}gonal and nonsingular. Let X
and D satisfy (43), with 8 = O(g) such that 51 (X) < . Let A and U be the eigenvalue and
eigenvector matrices ofXDXT computed by Algorlthm 2 (or Algorithm 1 ifn=r). Let Ng be
the number of Jacobi rotations applied in step 2 of Algorithm 2. Then there exists an exact
orthogonal matrix U € R"" such that

UAUT = (I+F)A(I+F)T, (44)
where |F||y = O((& - max{Ng,*/?n} + &) - k(X)) and |U — U || = O(& - max{n*/?r,Ng}).
Proof From (39), UAUT = (I+E)XDXT (I+E)T, and from Lemma 5,

UAUT = (I+E)(I+Ep)A(I+Ep) (I+E)".

This is (44) with [ + F = (I+E)(I + Er), where we have replaced x(X) in the bound for
|E||F by k(X), because X = X + Ex = (I+ExX")X implies

14+ 0K(X) <35(X),

K(X) < x(x)m <

by using [30, Theorem 3.3.16]. O

8 QR factorization as preconditioner and other implementation details

We will see in the numerical tests presented in Section 9 that Algorithm 1 can be very slow
for RRDs with certain distributions of eigenvalues. The same is true for Algorithm 2 since it
uses Algorithm 1. This poor performance from the point of view of speed may compromise
the practical use of Algorithms 1 and 2 despite of their high accuracy. We present in this sec-
tion a simple modification of Algorithm 1 that has an extremely positive impact in speeding
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up this algorithm.” In addition, we mention at the end of this section some other ideas on
how to decrease the computational cost of each Jacobi sweep. The implementation and error
analysis of these ideas is postponed to future research, but they show that there are many
possible ways of improving the run-time performance of the implicit Jacobi algorithm.

n [20, Section 2], the QR factorization with column pivoting has been used as a very
efficient preconditioner to speed up the one-sided Jacobi algorithm for the SVD. On the
other hand, in the case of positive definite D, Algorithm 1 essentially reduces to the one-
sided Jacobi algorithm for the SVD, so it is natural to try also the QR factorization as a
preconditioner of the new implicit Jacobi algorithm. The specific procedure is the following:
let G =X /|D|, where \/|D| = diag(+/|d1],. .., /|dn|), be the matrix defined in Algorithm
1, and G = QRII be the QR factorization of G computed with the Businger-Golub column
pivoting strategy [4], where II is a permutation matrix. Then, with the notation of Algorithm
L,

A=XDX" = GJG" = QrRIIJITTRT Q" = Q(RJ'RT) QT

where J' = ITJIIT is the permuted diagonal signature matrix. This means that the QR fac-
torization with pivoting of G can be seen as an implicit preconditioning of A by orthogonal
similarity via Q. Now, one uses the implicit Jacobi algorithm on RJ'R” by applying the
Jacobi rotations on the left side of R. The formal algorithm for this process is Algorithm 3.

Algorithm 3 (QR-Preconditioned Implicit cyclic-by-row Jacobi on XDXT) Given X €
R"*" well conditioned and nonsingular, and D = diag(dy,...,d,) € R"*" diagonal and non-
singular, this algorithm computes the eigenvalues A1, ..., A, of A= XDXT and an orthogonal
matrix U € R"*" of eigenvectors to high relative accuracy.

K(X) is the computed estimation of k(X)

G =Xdiag(+\/|di|,..-,+/|dul)
J = diag(sign(dy),...,sign(d,))
ORII = G is the QR factorization of G with column pivoting

U=0
J' =1’
repeat
fori=1:n—1
forj=i+1:n
compute by, bij,bj; of B=RJ'RT and T = [¢ '], ¢ +5? = 1, such that
77 {bii bij] T— {Iil }
bij bjj 12
R=R(i,j,c,s)TR
U=UR(,j,c,s)
endfor

endfor

until convergence ( :h i ‘ < emax{n,k(X)} for all i < j and Zkl “’k < 2K(X) for all i)
biibjj

compute Ay = by fork=1,2,....n

7 The preconditioning technique presented in this section was suggested by Z. Drma¢ for which we are
very grateful.
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The numerical experiments in Section 9 will show that the number of sweeps performed
by Algorithm 3 may be much smaller than the number of sweeps of the unpreconditioned
Algorithm 1. The reduction in the number of sweeps depends heavily on the distribution of
the eigenvalues, and in some situations only a few sweeps are saved. A complete explanation
of the behaviour of this preconditioner is not known, even in the positive definite case, but
some insights may be found in [20]. Taking into account that the computational cost of
one Jacobi sweep is comparable to the cost of the QR factorization,® the overhead cost of
the QR factorization is paid off with just one saved sweep. This preconditioner extends
trivially to the rectangular case considered in Algorithm 2 without any additional cost, since
in Algorithm 2 a QR factorization is already computed. The only needed modification is to
first compute G =X diag(\/w e \/W ), and then to compute the QR factorization with
column pivoting of G.

A final consideration with respect to the QR preconditioner is that it preserves the high
relative accuracy of the implicit Jacobi algorithm on RRDs. The reason is simply that the
rounding error analysis presented in Theorem 6 remains valid except by some minor changes
in the constants of the error bounds of ||E||r and ||U — U||. To see this, note first that pivot-
ing does not affect the analysis because we can assume that X and D are ordered in advance
in such a way that permutations are not needed. Second, that the QR factorization of G con-
sists of applying orthogonal transformations on the left of G, so producing a columnwise
backward error that is independent of the column scaling (see [29, Lemma 19.3, Theorem
19.4], for Householder versions of this fact). This implies that a backward error relation
similar to (36) can be proved, and the rest of the proof remains the same.

Apart from reducing the number of sweeps, it is essential to decrease the computational
cost per step to get an efficient implementation of the implicit Jacobi algorithm. The first
issue is to pick the side on which the transformations are performed. For instance, in Fortran,
the updating step R(i, j,c,s)” R — R in Algorithm 3 is much slower than R” R(i, j,c,s) —
RT because the arrays are stored by columns. This can be addressed simply by rewriting
the algorithm in terms of R”. Another idea is to use the Rutishauser’s formulas to update
the diagonal entries [39] combined with keeping the diagonal entries in a separate vector
(see [42, Section 3.3.1] for details on how this can be implemented in a one-sided Jacobi
algorithm). This may save the computation of the diagonal entries b;; and b;; in each step.
However Rutishauser’s formulas may introduce large errors that can spoil the accuracy of
the algorithm, so their use must be accompanied by safety tests to decide when they can be
applied and by explicit updating of the diagonal entries at the end of each sweep. Finally,
self-scaled Jacobi rotations [1] may be used to save 2n flops each time a Jacobi rotation is
applied [42, Section 3.4.1].

Other interesting (and more complicated) ideas that can reduce the cost of the implicit
Jacobi algorithm are the following. First, to compute the eigenvector matrix a posteriori by
solving a linear system in the spirit of [19] instead of accumulating the Jacobi rotations.
This is motivated by the fact that we know the original matrix G and the final G, obtained
when the stopping criterion is satisfied, and then one can solve for U in the system UT G =
Gy. The numerical orthogonality in floating point arithmetic of the matrix U so computed
should be carefully analyzed, and U should be reorthogonalized if it is necessary. Second,
it may be possible to use a triangular form of the factor G after the preconditioning by
the QR factorization with column pivoting to design better pivoting strategies, as it was
done in [21] for a Jacobi SVD algorithm. Finally, the use of block versions of the implicit

8 In fact a BLAS 3 implementation of the QR factorization is faster than one Jacobi sweep.
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Jacobi algorithm apparently would inherit the same accuracy properties and may make the
algorithm much faster. See [26,27] for references on block Jacobi procedures.

9 Numerical tests

We have proved rigorously in Theorems 6 and 7 that the implicit standard Jacobi algorithm
computes the eigenvalues and eigenvectors of an RRD XDX” with small multiplicative
backward errors. This is combined with Theorems 1 and 2 to show that the forward errors
in the computed eigenvalues and eigenvectors are given by (7). In addition Algorithm 3, i.e.,
the QR-preconditioned version, has the same error bounds. Therefore, it is not surprising
that extensive numerical tests performed on different types of RRDs have confirmed the
high relative accuracy of Algorithms 1, 2 and 3. We present in this section some selected
numerical tests on RRDs with extremely ill-conditioned diagonal factors, and compare the
performance in number of Jacobi sweeps of the new implicit standard Jacobi algorithm, with
and without preconditioning, with other algorithms existing in the literature that compute
with high relative accuracy eigenvalues and eigenvectors of RRDs.

All of the numerical tests in this section have been performed in MATLAB 7.0 (R14)
with € = 2733, We will assume that the eigenvalues are decreasingly ordered, i.e., A; >...>

A, and we define
A=A >
relgap; = min | min ————,1 | .
s (jsﬁi |2

Test 1. We consider a 100 x 100 symmetric Cauchy matrix A with entries

1

ajj = P 45)
with x; = (—1)"~1 4+ (i — 1)274 for i = 1,2,...,100. For this matrix k(A) = 7.8-1073. A
symmetric RRD A = XDXT is computed using Algorithm 1 in [14] with errors as in (43)
with § = O(rn?/¢), and then Algorithm 1 or 3 can be applied on the factors to obtain the
eigenvalues and eigenvectors. The computed eigenvalues, i, and eigenvectors, V;, are com-
pared with the eigenvalues, A;, and the eigenvectors, v;, computed by the MATLAB eig
function with 100-decimal digit arithmetic. The maximum relative errors in the eigenvalues
and eigenvectors computed by Algorithm 1 are

max ‘ii_/lil
i A

=33-107", and max|9 —vill=1.9-107"
1

while the maximum relative errors in the eigenvalues and eigenvectors computed by Algo-
rithm 3 are

max ‘ﬁ’l _ Al|
i A

=4.7-107%, and max |9 — vl =4.7-1071.
1

The errors are very satisfactory in both cases. The number of Jacobi sweeps performed by
Algorithm 1 is 35, and by Algorithm 3 is 4. This is the first example that we show to illus-
trate how beneficial the QR-preconditioner may be. Other interesting data in this test are:
K(X) = 30.5, and min; relgap; = 0.62. The relative error in the eigenvalues computed by

the MATLAB eig function in standard IEEE double precision arithmetic was max; M";‘A"l =
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3.25-10°. Note that the eigenvalues of A = GJG”, where G = X diag(~/|d1],--,/|dnl)s
are equal to the eigenvalues of the matrix pencil GT G — AJ. We have also used the MAT-
LAB eig(GTG,J) function to compute the eigenvalues of this pencil, and the error was

max; Al = 5.18.10%.

Test 2. In this test we consider again a 100 x 100 symmetric Cauchy matrix A with entries
given by (45), and with x; =i — 0.5 fori =1,2,...,99 and x190 = —99.5, and proceed as in
Test 1. Note that A is the Hilbert matrix except for the last row and last column which are
modified to make the matrix indefinite. For this matrix x(A) = 3.5-10'47. The computed
eigenvalues, j,i, and eigenvectors, ¥;, are compared with the eigenvalues, A;, and the eigen-
vectors, v;, computed by the MATLAB eig function with 200-decimal digit arithmetic. The
maximum relative errors in the eigenvalues and eigenvectors computed by Algorithm 1 are

i — il
max

i Al

=1.2-10713, and max||9; —vi, =5.7-10714,
1

while the maximum relative errors in the eigenvalues and eigenvectors computed by Algo-
rithm 3 are

max 2= A
i Al

=49-10"", and max |9 —vll=3.9-1071%.
1

The errors in Algorithm 3 are considerably smaller than the errors in Algorithm 1. This
may be related to the fact that the number of Jacobi sweeps performed by Algorithm 3 is
just 5, while the number of sweeps performed by Algorithm 1 is 55. Other interesting data
in this test are: kK(X) = 45.22 and min; relgap; = 0.4. The relative error in the eigenvalues
computed by the MATLAB eig function in standard IEEE double precision arithmetic was

max[% =1.84-10132,

The results in Tests 1 and 2 are very satisfactory from the point of view of accuracy, both
for Algorithm 1 and 3. In addition, the number of Jacobi sweeps performed by Algorithm
3 is low, while Algorithm 1 performs too many sweeps. We will see in the next numerical
experiments that this sweep comparison varies widely for different types of RRDs, although
Algorithm 3 is always faster than Algorithm 1, and, therefore, QR-preconditioning is highly
recommended. Moreover, we will compare in the next tests the number of sweeps of Algo-
rithms 1 and 3 with the number of sweeps of other algorithms of Jacobi type for computing
the eigenvalues and eigenvectors of symmetric indefinite RRDs with high relative accuracy.
The algorithms we use are the following ones.

1. The implicit one sided J-orthogonal Jacobi algorithm (see [42, Algorithm 3.3.1] or [41,
Algorithm 1]). This algorithm uses hyperbolic transformations applied on the right side
of the matrix G defined in Algorithm 1. This fact implies that the error bounds for the
computed eigenvalues and eigenvectors are not guaranteed to be small, but, in practice,
it has never been observed a significant loss of accuracy.

2. The SSVD algorithm presented in [16, Algorithm 1]. The SSVD algorithm does not pre-
serve the symmetry of the problem because it uses Algorithm 3.1 in [7] to compute the
SVD of the RRD XDXT. Step 3 of that algorithm applies the one sided Jacobi algorithm
for the SVD [12] to a certain matrix W applying the rotations from the right. In our tests,
we have computed first the QR factorization with the Businger-Golub column pivoting
strategy of W7 [20]. In this way the algorithm is faster and, simultaneously, the error
bounds are guaranteed to be small.
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In the tests below we have checked the accuracy of the eigenvalues computed by Algo-
rithms 1 and 3 through the relative errors with respect to those computed by the J-orthogonal
and the SSVD algorithm. For the eigenvectors, we also compare with the J-orthogonal and
the SSVD algorithm, and multiply the norm of the difference of the ith eigenvectors by
relgap;. This has to be O(ex(X)).

Test 3. In this test we study the behavior of the number of Jacobi sweeps performed by
Algorithms 1 and 3 as the condition number of the diagonal factor D of an RRD increases.
We consider random RRDs XDX7, where X € R100¥100 and p € R190%100 are generated by
the MATLAB command gallery(’randsvd’,...) developed by N. Higham [28]. For all
tested RRDs x(X) = 30, and the matrices X are generated with geometrically distributed sin-
gular values (MODE = 3in gallery(’randsvd’,...)). In afirst type of RRDs the diagonal
factors D are also generated with geometrically distributed singular values, and, in addition,
the signs of the diagonal entries are randomly selected. We consider the following values
of k(D) = 10192%119 "and for each value of k(D) five RRDs are generated. The average
numbers of sweeps are presented in Table 1. We have observed in the matrices of this test a
maximum relative difference between the eigenvalues computed by Algorithm 1 and those
computed by the other algorithms equal to 4.8 - 10~ 4. The maximum norm of the difference
between eigenvectors multiplied by the corresponding relative gap has been 2.8-10~'4. In
a second type of RRDs, we repeat the same experiment with the only modification that the
option MODE = 1 in gallery(’randsvd’,...) is used to generate the absolute values of
the diagonal factors D, i.e., D has one large singular value equal to one and the other sin-
gular values equal to 1/x(D). Note that this does not imply that there are 99 eigenvalues of
XDXT with the same absolute value, because we are multiplying by X. The average num-
bers of sweeps for these RRDs are presented in Table 2. We have observed in the matrices
of Table 2 a maximum relative difference between the eigenvalues computed by Algorithm
1 and those computed by the other algorithms equal to 2.8 - 1074, The maximum norm of
the difference between eigenvectors multiplied by the corresponding relative gap has been
3.3-10714

The first conclusion to be drawn from this test is that the performance of Algorithm 1
depends heavily on the distribution of the eigenvalues, while this dependence is milder for
the other three algorithms. The second conclusion is that Algorithm 3 is always faster than
Algorithm 1 and, that it can be much faster if the absolute values of the eigenvalues are ge-
ometrically distributed®. The third conclusion is that Algorithm 3 is also considerably faster
than the J-Orthogonal algorithm, specially again if the absolute values of the eigenvalues
are geometrically distributed. Therefore, we consider that the QR-preconditioning in Algo-
rithm 3 must be used in the new Implicit Jacobi algorithm. The last conclusion is that the
number of sweeps of the nonsymmetric SSVD algorithm is slightly smaller than the number
of sweeps of Algorithm 3, although the lack of symmetry of SSVD makes difficult a real
comparison of the computational cost of both algorithms. In addition, SSVD can use, at
present, the fast algorithm in [20,21] to compute the SVD of XDX T and then to be faster
than Algorithm 3.

Test 4. In this test we study the behavior of the number of Jacobi sweeps performed by
Algorithms 1 and 3 as the dimension of an RRD XDX7 increases for fixed condition num-
bers of the factors D and X. We have chosen k(D) = 10* and x(X) = 100. For all tested
RRDs, the matrices X are randomly generated with geometrically distributed singular val-
ues. In a first type of RRDs the diagonal factors D are also randomly generated with ge-

9 The order of magnitude of the eigenvalues of XDX” and D is similar because X is well-conditioned.



27

Table 1 Average numbers of Jacobi sweeps for random 100 x 100 RRDs with geometrically distributed
singular values for D (MODE=3) and x(X) = 30.

k(D) Algor.1  Algor.3 J-orth SSVD

100 16.2 6 9 52
103 25 5 9 4
10% 31.2 4 9.2 42
1070 342 4 9 3.2
10%0 39.6 4 9.2 3
10110 42.6 3.8 9.2 3

Table 2 Average numbers of Jacobi sweeps for random 100 x 100 RRDs with the singular values of D
generated with MODE=1 and x(X) = 30.

k(D) Algor.1 Algor.3 J-orth SSVD

1010 10.2 9 10.8 8
103 9.6 8.8 10.6 8
10%0 10.6 9 10.4 8.2
1079 10.8 9 10.8 8
10% 11 8.8 10.8 8
10110 11 8.6 11 8

Table 3 Average numbers of Jacobi sweeps for random n x n RRDs with geometrically distributed singular
values for D (MODE=3), k(D) = 10*°, and k(X) = 100.

n Algor. 1  Algor.3  J-orth SSVD

100 28.8 4.6 10 4
500 46 6 11 5.6
1000 58.3 6 11 6
2000 69 7 11 7

ometrically distributed singular values, and, in addition, the signs of the diagonal entries
are randomly selected. We consider n x n factors X and D for n = 100,500, 1000,2000.
Five RRDs were generated for n = 100, five for n = 500, three for n = 1000, and two for
n = 2000. The average numbers of sweeps are presented in Table 3. We have observed in
the matrices of this test a maximum relative difference between the eigenvalues computed
by Algorithm 1 and those computed by the other algorithms equal to 1.63 - 107'2, and the
maximum norm of the difference between eigenvectors multiplied by the corresponding rel-
ative gap has been 1.04 - 10~!2. Both of them occurred for n = 2000. In a second type of
RRDs, we repeat the same experiment with the only modification that the option MODE =
1in gallery(’randsvd’,...) is used to generate the absolute values of the diagonal fac-
tors D. The average numbers of sweeps for these RRDs are presented in Table 4. We have
observed in the matrices in Table 4 a maximum relative difference between the eigenvalues
computed by Algorithm 1 and those computed by the other algorithms equal to 6.39- 10713,
and the maximum norm of the difference between eigenvectors multiplied by the corre-
sponding relative gap has been 5.83 - 1073, Both of them occurred again for n = 2000.

One can obtain from Test 4 similar conclusions to those obtained from Test 3 on the
comparison of the different algorithms.
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Table 4 Average numbers of Jacobi sweeps for random n x n RRDs with the singular values of D generated
with MODE=1, k(D) = 10*, and x(X) = 100.

n Algor. 1 Algor.3  J-orth SSVD

100 10.8 8.8 11.6 7.8
500 12.8 12 13.2 9.6
1000 13 13 14 10.7
2000 14.5 13.5 15 11

10 Conclusions

We have introduced the first algorithm that computes with guaranteed high relative accuracy
the eigenvalues and eigenvectors of any symmetric indefinite (or definite) matrix in RRD
form, A = XDXT, by using only orthogonal transformations and respecting the symmetry
of the problem. This algorithm simply applies the rotations of the standard cyclic-by-row
Jacobi algorithm implicitly on the factor X. A rigorous error analysis proving the high rel-
ative accuracy obtained by this algorithm has been developed. This error analysis is based
on new theoretical results on properties of diagonal and scaled diagonally dominant sym-
metric RRDs that show that disastrous cancellations do not appear in the computation of the
eigenvalues. Numerical tests have been performed to confirm the high relative accuracy of
the new implicit Jacobi algorithm. The new algorithm can be easily preconditioned through
the QR decomposition with column pivoting. This preconditioned version preserves all the
good properties of the implicit Jacobi algorithm and runs much faster, as it has been shown
in Section 9. The computational cost of the preconditioned implicit Jacobi algorithm is sim-
ilar to the nonsymmetric SSVD algorithm, which is at present the fastest existing algorithm
for computing eigenvalues and eigenvectors of symmetric indefinite RRDs with guaranteed
high relative accuracy. In future work we will consider how to speed up the new algorithm
preserving its three fundamental properties: guaranteed error bounds, preservation of the
symmetry, and using only orthogonal transformations. This may require much more sophis-
ticated ideas in the spirit of the ones presented in [20,21,26,27] for the accurate computation
of the Singular Value Decomposition.
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