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Abstract. Multiplicative backward stability results are presented for two algorithms which
compute the singular value decomposition of dense matrices. These algorithms are the classical one-
sided Jacobi algorithm, with a stringent stopping criterion, and an algorithm which uses one-sided
Jacobi to compute high accurate singular value decompositions of matrices given as rank-revealing
factorizations. When multiplicative backward errors are small, the multiplicative perturbation theory
for the singular value decomposition developed in the last decade can be applied to get high accuracy
bounds on the errors of the computed singular values and vectors.
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1. Introduction. The singular value decomposition (SVD) of a matrix G ∈
R

m×n (m ≥ n) is the factorization G = UΣV T , where U ∈ R
m×n has orthonormal

columns, V ∈ R
n×n is an orthogonal matrix, and Σ = diag(σ1, . . . , σn) is nonnegative

and diagonal. The columns of U are the left singular vectors of G, the columns of V
are the right singular vectors of G, and σi are the singular values of G. Given two
nonsingular square matrices D1 and D2, the matrix D1GD2 is called a multiplicative
perturbation of G. In the last decade, a perturbation theory bounding the differences
between the singular values and vectors of G and D1GD2 has been developed [13, 18,
19, 17]. Let σ1 ≥ · · · ≥ σn ≥ 0 and σ̃1 ≥ · · · ≥ σ̃n ≥ 0 be, respectively, the singular
values of G and D1GD2 and ui, vi, ũi, ṽi, i = 1, . . . , n, be the corresponding pairs
of left and right singular vectors. Let us denote by ‖ . ‖ the usual Euclidean vector
norm when the argument is a vector and the spectral, or two, matrix norm when the
argument is a matrix. Then the multiplicative perturbation theory essentially bounds

|σi − σ̃i|
σi

and max{‖vi − ṽi‖, ‖ui − ũi‖}relgapi, i = 1, . . . , n,(1)

where relgapi = minj �=i |σi − σ̃j |/σi, by a small integer constant times max{‖I −
D1‖, ‖I −D2‖} [13, 19]. Therefore, if D1 and D2 are close to the identity matrix, the
relative differences between the singular values of G and D1GD2 are small, and the
differences between the singular vectors multiplied by the relative gaps are also small.
Obviously, (1) makes sense only if σi �= 0. If σi = 0, then it is trivial that σ̃i = 0
and it can be shown that the differences between the corresponding singular vectors
are simply less than a small integer constant times max{‖I −D1‖, ‖I −D2‖} [13, 19].
Notice that classical perturbation theory [22], valid for additive perturbations of the
type G+E, bounds absolute differences between singular values, i.e., |σi− σ̃i| ≤ ‖E‖,
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†Departamento de Matemáticas, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911

Leganés, Spain (dopico@math.uc3m.es, jmoro@math.uc3m.es).

1021
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and the gaps appearing in the singular vector bounds are also absolute, i.e., gapi =
minj �=i |σi − σ̃j |/σ1.

Multiplicative perturbation theory has been successfully used in proving that
some algorithms are able to compute the SVD with high relative accuracy when
applied to matrices with special structure. Here high relative accuracy means that
the relative errors in the computed singular values are of order ε, with ε being the
machine precision, and that the errors in the computed singular vectors are of order
ε divided by the corresponding singular value relative gap, i.e., relgapi. Well-known
examples of matrices for which it is possible to compute high relative accuracy SVDs
are bidiagonal matrices [5, 14]; matrices of the form G = BD, with D diagonal and
B well-conditioned [6, 11, 20]; positive definite matrices of the form DAD, with D
diagonal and A well-conditioned [6]; and matrices for which it is possible to compute
accurately a rank-revealing decomposition [4]. This latter class contains the previous
ones and many others (see also [3, 7, 8]). A technical remark is in order here: although
the approach in [4] includes the case of bidiagonal matrices, since bidiagonal matrices
are acyclic, the original approaches in [5, 14] are much faster and do not require one
to compute a rank-revealing factorization.

There exists a relative perturbation theory for additive perturbations which gives
structured bounds for the quantities appearing in (1); see [17] and references therein.
This perturbation theory has been used to guarantee the high relative accuracy of the
SVDs computed by some algorithms [6, 11, 20]. However, it was shown in [4] that
multiplicative perturbation theory can also be used in these cases. Thus, at present, it
seems that multiplicative perturbation theory has a wider applicability in the context
of high relative accuracy computations of SVDs. In fact, multiplicative perturbation
theory and some of its applications have already been presented in some recent text
books [2, sections 5.2.1, 5.4.2, 5.4.3].

Although the accurate computation of the SVD is still a work in progress and, as
a consequence, it is still too early to know which tools will be the most useful in future
developments, there are sound reasons to support the prominent role of multiplicative
perturbation theory: for instance, the simplicity of the bounds, or the simple way in
which multiplicative perturbation bounds can be composed with each other.

In spite of the present importance of multiplicative perturbation theory, there is
no theorem so far stating in multiplicative form the backward stability properties of
high accuracy algorithms for the SVD, i.e., a theorem saying that the computed SVD
of a matrix G is essentially the exact SVD of a nearby multiplicative perturbation
of G. In the context of usual algorithms for SVD computations the usual backward
stability result [1, section 4.9.1] states that the computed SVD of a matrix G is
essentially the exact SVD of a nearby additive perturbation of G, i.e., a matrix G+E
with ‖E‖ ≤ p(m,n) ε ‖G‖ and p(m,n) a modestly growing function of m and n. Our
goal in this note is to prove a very strong form of multiplicative backward stability for
two algorithms which are able to compute SVDs with high relative accuracy in some
important cases. The starting point will be the roundoff error analysis previously
developed by other authors in [4, 6], and especially in [11]. The theorems we obtain
have already been used in [9] and greatly simplify the way in which the error bounds
for singular values and vectors are obtained in [6, 20, 4] just by using the multiplicative
perturbation theory for the SVD. Moreover, we hope that the theorems we present
will be useful in future error analyses of accurate SVD algorithms.

Finally, it is interesting to stress that the multiplicative backward error results
we are going to present cannot be deduced from additive backward error results of
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the form G + E just by factoring out the inverse or pseudoinverse of G. This is
obvious in the case of standard backward stability results [1, section 4.9.1], because
the information about the perturbation is just ‖E‖ ≤ p(m,n) ε ‖G‖. Therefore,
if we write G + E = G(I + G−1E), the most we can assert on the magnitude of
the multiplicative perturbation is ‖G−1E‖ ≤ p(m,n) ε ‖G−1‖ ‖G‖, and the condition
number ‖G−1‖ ‖G‖ can be very large. On the other hand, factoring out G in the
additive backward error result appearing in [11, Proposition 3.13] for the one-sided
Jacobi algorithm will play an essential role in our developments, but this is not the
only thing to do. In fact, we will need to introduce multiplicative perturbations on
both sides of the matrix. This is the reason why the stability results presented in
[6, 11] are mixed forward-backward error results.

The paper is organized as follows: a multiplicative backward stability theorem
is proved in section 2 for the one-sided Jacobi algorithm, and the same is done for
Algorithm 3.1 of [4] in section 3. Finally, in section 4 we discuss a different version of
one-sided Jacobi, which is usually faster although the error bounds are weaker.

Notation and model of arithmetic. In the statements of the subsequent theorems
big-O notation will be used. Given a scalar quantity b, the meaning of O(εb) is that
O(εb) = p(m,n) ε b+O(ε2) with p(m,n) a polynomial of low degree in the dimensions
m,n of the problem.

The conventional error model for floating point arithmetic with guard-digit will
be used:

fl(a� b) = (a� b)(1 + δ),

where a and b are real floating point numbers, � ∈ {+,−,×, /}, and |δ| ≤ ε, where
ε is the machine precision. Moreover, we assume that neither overflow nor underflow
occur. For the sake of simplicity, we will commit a slight abuse of notation, denoting
by fl(expr) the computed result in finite precision of expression expr, instead of its
rigorous meaning of the closest floating point number to expr.

2. Backward error of one-sided Jacobi SVD algorithm. One-sided Jacobi
algorithms for the SVD [15, section 8.6.3] multiply a matrix by a sequence of Jacobi
rotations, all of them acting on the same side. When the rotations are applied to the
matrix from the left (right), the goal is to converge to a matrix with orthogonal rows
(columns). These two different implementations of one-sided Jacobi will be called,
respectively, left-handed and right-handed Jacobi. A detailed pseudocode for the
right-handed Jacobi algorithm can be found in [6, Algorithm 4.1]. The left-handed
version follows easily from the right-handed version applied to the transpose matrix.

A plain implementation of one-sided Jacobi yields an algorithm much slower than
the SVD algorithms based on first bidiagonalizing the matrix. However, one-sided
Jacobi has an important advantage: if the stopping criterion proposed in [6, Algorithm
4.1] is used, then the one-sided Jacobi algorithm is able to compute the SVD with
high relative accuracy for matrices that are the product of a diagonal matrix (possibly
with elements of widely varying magnitudes) and a well-conditioned matrix. To be
more precise, let D be a diagonal matrix; then high relative accuracy is achieved for
matrices of the type DB if B has full row rank and is well-conditioned, or BD if B
has full column rank and is well-conditioned. This high relative accuracy was first
proved in [6] under a minor proviso. A proof valid in general was presented in [11]
(see also references therein) and [20]. In this latter proof it is essential that the Jacobi
rotations are applied on the side opposite to the diagonal matrix D. At present,
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fast and sophisticated versions of one-sided Jacobi algorithm are being developed by
Drmač along the ideas of [12].

It is very important to remark that if one-sided Jacobi is implemented as in [6,
Algorithm 4.1], then underflows appear frequently for very ill conditioned matrices,
and the high relative accuracy in the computed SVD expected for matrices of the
form DB or BD (see previous paragraph) is lost. To get results with high relative
accuracy, whenever the singular values are inside the range of the arithmetic, the
Jacobi rotations have to be carefully implemented according to the method developed
in [10].

The next theorem proves that the one-sided Jacobi SVD algorithm on a square
invertible matrix produces a small multiplicative backward error; i.e., the computed
SVD is nearly the exact SVD of a close multiplicative perturbation of the original ma-
trix. We restrict ourselves to square matrices because, in practice, for the nonsquare
case a QR factorization is computed first, and then one-sided Jacobi is applied to the
square factor R. This reduces the computational cost. The following notation will
be used: the ith column (resp., row) of any matrix A is denoted by A(:, i) (resp.,

A(i, :)), Ã denotes the last matrix in the sequence computed by the right-handed Ja-
cobi process, and κ(A) is the spectral condition number of A. This theorem is based
on the error analysis presented in [11, Proposition 3.13] and shows that with a small
additional effort a strong backward multiplicative result can be obtained.

Theorem 2.1. Let A ∈ R
n×n be an invertible matrix and let Û Σ̂V̂ T be the SVD

computed in finite arithmetic with machine precision ε by the right-handed Jacobi SVD
algorithm applied on A with stopping criterion1

max
i �=j

fl

(
|Ã(:, i)T Ã(:, j)|
‖Ã(:, i)‖ ‖Ã(:, j)‖

)
≤ n ε for i �= j.(2)

Then there exist matrices U ′, V ′, EL, ER ∈ R
n×n, such that U ′ and V ′ are orthogo-

nal,

‖U ′ − Û‖ = O(ε), ‖V ′ − V̂ ‖ = O(ε),

‖EL‖ = O(ε), ‖ER‖ = O(εκ(AN )),
(3)

where AN = D−1
N A, with DN a diagonal matrix with elements (DN )ii = ‖A(i, :)‖,

and

(I + EL)A(I + ER) = U ′Σ̂V ′T .(4)

Proof. It is known [11, Proposition 3.13] that, under the conditions above, the

matrix Ã satisfying the stopping criterion (2) can be written as

Ã = (A + δA)V ′

for an orthogonal matrix V ′ with ‖V ′ − V̂ ‖ = O(ε) and δA such that

‖δA(i, :)‖ ≤ εJ ‖A(i, :)‖, i = 1, . . . , n,(5)

1A similar result holds with nε replaced by any tolerance tol in criterion (2). In that case,

‖U ′ − Û‖ ≤ n tol + O(ε) and ‖EL‖ ≤ n tol + O(ε). Notice, however, that if the tolerance is larger
than O(ε), then the computed left singular vectors will fail, in general, to be orthogonal up to O(ε).
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for a certain εJ = O(ε) which depends on the sweeps required for convergence.2

Hence,

Ã = A(I + ER)V ′(6)

for ER = A−1δA. If we now scale A = DNAN , so that AN has rows of unit Euclidean
length, the bound (5) implies

‖ER‖F ≤ ‖A−1
N ‖F ‖D−1

N δA‖F ≤
√
n εJ ‖A−1

N ‖F ,

where ‖ · ‖F stands for the Frobenius norm.3 Finally, since ‖AN‖F =
√
n, it follows

that the Frobenius norm of ER, and consequently its spectral norm, is bounded by
εJ κF (AN ) = O(εκ(AN )).

On the other hand, recall that if we denote by Σ̃ the diagonal matrix whose ith
diagonal entry is the Euclidean norm of the ith column of Ã, then Σ̂ and Û are
computed as Σ̂ = fl(Σ̃) and Û = fl(ÃΣ̂−1). Notice that each element ûij of Û

can be written as ûij = (Ãij/Σ̂jj)(1 + εij) with |εij | ≤ ε. Let U be the matrix such

that Ã = U Σ̂. Then (6) implies that

U Σ̂(V ′)T = A(I + ER)

with ‖U − Û‖F ≤ ε‖U‖F . It remains only to show, using the stopping criterion, that
there is an orthogonal matrix U ′ such that

U = (I + EL)−1U ′

with ‖EL‖ = O(ε) and ‖U ′ − Û‖ = O(ε).
It follows from condition (2) that each off-diagonal element of UTU is bounded

in absolute value by cnε + O(ε2), with c a small integer constant. The diagonal
elements of UTU, on the other hand, are 1 + αii with |αii| ≤ cnε + O(ε2). Thus,
‖UTU−I‖F ≤ cn2ε+O(ε2). If U = WL(I+δΣ)WT

R is the SVD of U, then ‖δΣ‖F ≤
cn2ε + O(ε2). Denoting U ′ = WLW

T
R , it follows that U = (I + δU)U ′, where U ′ is

orthogonal and ‖δU‖F = ‖δΣ‖F .
Defining EL = (I + δU)−1 − I, we obtain that ‖EL‖F = ‖δU‖F + O(‖δU‖2

F ) ≤
cn2ε + O(ε2).

Finally, ‖Û − U ′‖F ≤ ‖Û − U‖F + ‖U − U ′‖F , but ‖U − U ′‖F = ‖δU‖F ≤
cn2ε + O(ε2), and ‖Û − U‖F ≤ ε‖U‖F ≤

√
nε + O(ε2).

As explained in the introduction, applying multiplicative perturbation results to
(4) yields relative error bounds on the singular values of order O(εκ(AN )) and of order
O(εκ(AN )) divided by the relative gaps in the singular vectors. Thus, the magnitude
of κ(AN ) gives the relative accuracy of the computed SVD. In this respect, recall that
κ(AN ) ≤

√
nminκ(DA), with D any diagonal matrix [21].

3. Backward error of a SVD algorithm for rank-revealing decomposi-
tions. A rank-revealing decomposition (RRD) [4] of G ∈ R

m×n, m ≥ n, is a factor-
ization G = XDY T with D ∈ R

r×r diagonal and nonsingular and X ∈ R
m×r, Y ∈

2Admittedly, it is not fully true that εJ = O(ε) with the meaning we have given to O(ε) in the
Notation, since a dependence in the number of steps required for the convergence of the algorithm
is hidden in the constant of the O(ε) (see [11, Proposition 3.13]). However, extensive numerical
experience indicates that this dependence is polynomic in the dimensions of the problem.

3One can also show that ‖ER‖ ≤
√
n εJ ‖A−1

N ‖ in the spectral norm.
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R
n×r, where both matrices X, Y have full column rank and are well-conditioned

(notice that this implies r = rank(G)). One of the most important contributions of
Demmel et al. in [4] is developing algorithms which compute high relative accuracy
SVDs for any matrix such that an RRD can be computed with enough accuracy. The
accuracy required in the computed X̂, D̂ and Ŷ is the following (see [4, Theorem
2.1]):

1. each entry of D has small relative error,

|Dii − D̂ii| ≤ O(ε)|Dii|,(7)

2. X̂ and Ŷ have small norm errors,

‖X − X̂‖ = O(ε)‖X‖ and ‖Y − Ŷ ‖ = O(ε)‖Y ‖.(8)

Once the RRD is computed, Algorithms 3.1 or 3.2 in [4] can be used to compute the
SVD with high relative accuracy. Both algorithms have as inputs the three factors,
X,D and Y , of an RRD. The error bounds for the computed SVD presented in [4] for
Algorithm 3.2 are better than those proved for Algorithm 3.1. However, the authors
of [4] strongly recommend the use of Algorithm 3.1. The reasons are that Algorithm
3.1 is faster and that no significant difference in accuracy is observed in practice.

In this section we prove that Algorithm 3.1 in [4] produces a small backward
multiplicative error when executed in finite precision arithmetic. This result is based
on the proof of Theorem 3.1 in [4, section 3.2.1] and greatly clarifies the way in which
the error bounds for the computed singular values and vectors are obtained in [4]. The
error analysis done in [4] is backward multiplicative up to the one-sided Jacobi step of
Algorithm 3.1 in [4]. From this point on the analysis is made in the forward sense and
becomes quite involved. The crucial ingredient to get a multiplicative backward error
result like Theorem 3.1 below is Theorem 2.1 for one-sided Jacobi proved in section
2.

Algorithm 1 below is the version of Algorithm 3.1 in [4] we analyze. We stress that
the inputs for Algorithm 1 are the three matrices X ∈ R

m×r, D ∈ R
r×r, Y ∈ R

n×r

of a RRD. Moreover, the QR and LQ factorizations appearing in the Algorithm are
economy size or reduced factorizations, i.e., if C = QR is a n× r matrix (n > r), then
Q is a n× r matrix with orthonormal columns.

Algorithm 1.

Input: rank-revealing decomposition, X, D, Y , of G = XDY T ∈ R
m×n.

Output: singular value decomposition UΣV T of G.
1. Compute a QR decomposition with column pivoting, XD = QRP ,

of XD.
2. Compute the product W = RPY T using conventional matrix

multiplication.
3. Compute a LQ decomposition W = LωQ

T
ω of W .

4. Compute an SVD Lω = UωΣV T
ω of Lω using right-handed Jacobi.

5. Compute the products U = QUω and V = QωVω. Strassen’s method
may be used.

We should point out that this implementation differs from the one presented in
[4]: here the Jacobi step is split in two stages, steps 3 and 4. This is recommended
in [4, section 3.3] to reduce the computational cost of the one-sided Jacobi step, the
most expensive one in the whole algorithm. This saving is clear if the rank r is less
than n. In the case r = n, W is square and, at first glance, the computation of the
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LQ factorization of W would increase the cost because right-handed Jacobi does not
make any use of the triangular form of Lω. However, if the LQ factorization of W is
done with row pivoting, then numerical experience shows that more than one sweep
is saved in right-handed Jacobi. This is enough to compensate the cost of the LQ
factorization and makes step 3 of Algorithm 1 still interesting. Anyway, the reader
can check that skipping step 3 above does not affect the error bounds in Theorem 3.1.

Theorem 3.1. Algorithm 1 produces a small multiplicative backward error; i.e.,
if Û Σ̂V̂ T is the SVD computed by the algorithm in finite arithmetic with machine
precision ε, then there exist matrices U ′ ∈ R

m×r, V ′ ∈ R
n×r, E ∈ R

m×m, F ∈ R
n×n

such that U ′ and V ′ have orthonormal columns,

‖U ′ − Û‖ = O(ε), ‖V ′ − V̂ ‖ = O(ε),

‖E‖ = O(εκ(X)), ‖F‖ = O(εκ(R′)κ(Y )),
(9)

where R′ is the best conditioned row diagonal scaling of the triangular matrix R ap-
pearing in step 1 of Algorithm 1 and

(I + E)G(I + F ) = U ′Σ̂V ′T .(10)

Remark 1. It is proved in [4] that κ(R′) is at most of order O(n3/2κ(X)), but in
practice extensive numerical tests show that κ(R′) behaves as O(n) [4, 9]. One can
get rid of the factor κ(R′) at the price of using the more costly Algorithm 3.2 of [4].
The proof of this follows closely the proof of Theorem 3.1.

Proof. Since we will use results in [4, section 3.2.1], we need to match our notation
with that of [4]: the matrices Q,W,R (and R′) appearing in the proof, which are
the computed ones, are named in the proof without hats. The rest of the computed
matrices are denoted, as elsewhere in this paper, with their hats on.

It is shown in [4, p. 34] that, after step 2 of Algorithm 1, the matrix Q computed
in step 1 and the matrix W computed in step 2 are such that

(I + E1)G(I + F1) = QW(11)

for square matrices E1, F1 with

‖E1‖ = O(ε κ(X)), ‖F1‖ = O(ε κ(R′)κ(Y )).

Although the columns of the computed Q are not exactly orthonormal, it is well
known [16, p. 360] that there exists a matrix Q′ with orthonormal columns such that

Q = Q′ + Eq = (I + Eq(Q
′)T )Q′,(12)

with ‖Eq‖ = O(ε). Thus, (11) becomes (I + E′
1)G(I + F1) = Q′W, with ‖E′

1‖ =
O(ε κ(X)).

The LQ factorization of W in step 3 of Algorithm 1 is equivalent to computing
a QR factorization of WT ∈ R

n×r. The usual additive backward error analysis of
the QR factorization, applied columnwise [16, p. 360], ensures that the computed L̂ω

satisfies

L̂ω(Q′
ω)T = (W + Eω),

where Q′
ω ∈ R

n×r is a matrix with orthonormal columns satisfying ‖Q′
ω−Q̂ω‖ = O(ε)

for the computed Q̂ω. The backward error Eω satisfies the rowwise bound

‖Eω(i, :)‖ = O(ε)‖W (i, :)‖, i = 1, . . . , r.(13)
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If we write W + Eω = W (I + W †Eω) multiplicatively, with W † the pseudoinverse
of W, then

W = L̂ω(Q′
ω)T (I + W †Eω)−1.

Now, let R′ = (D′)−1R be the best conditioned row scaling of the triangular matrix
R computed in step 1. In order to bound ‖W †Eω‖, we define Z = (D′)−1W and
Ez = (D′)−1Eω. The equations (13) imply ‖Ez‖ = O(ε)‖Z‖, and since both D′ and
Z have full rank, we obtain

‖W †Eω‖ = ‖Z†Ez‖ = O(ε)κ(Z) = O(εκ(R′)κ(Y )).

The last equality above is a consequence of the first equation in [4, p. 34], which
implies ‖(D′)−1δW‖ = O(ε)‖R′‖ ‖Y ‖ for the error δW in the matrix multiplication
of step 2 of Algorithm 1. Therefore, since Z = R′PY T − (D′)−1δW, we arrive at
κ(Z) ≤ κ(R′)κ(Y )(1 + O(ε)κ(R′)κ(Y )).

Thus, upon completion of step 3 of Algorithm 1, we have

(I + E2)G(I + F2) = Q′ L̂ω(Q′
ω)T(14)

with E2 = E′
1, I + F2 = (I + F1)(I + W †Eω) and ‖F2‖ = O(εκ(R′)κ(Y )).

Now, Theorem 2.1 applied to step 4 ensures the existence of r × r matrices

U
′
, V

′
, EL, ER with U

′
, V

′
orthogonal,

‖U ′ − Ûω‖ = O(ε), ‖V ′ − V̂ω‖ = O(ε)

‖EL‖ ≤ O(ε), ‖ER‖ ≤ O(εκ((D′)−1L̂ω)),
(15)

and

L̂ω = (I + EL)U
′
Σ̂(V

′
)T (I + ER),(16)

where ÛωΣ̂V̂ T
ω is the SVD computed by the right-handed Jacobi SVD algorithm on

L̂ω. In (16), (I + EL) and (I + ER) appear in a different side than in (4). It is easy
to see that this does not change the first order error bounds. Notice that we have
replaced the unit row scaling of L̂ω with the scaling given by (D′)−1. We can do
this because the condition number of the former matrix is not larger than a factor√
r times the condition number of the latter [21]. Note also that κ((D′)−1L̂ω) =

κ((D′)−1L̂ω (Q′
ω)T ) = κ(Z + Ez) = κ(Z)(1 + O(ε)κ(Z)). Hence,

‖ER‖ = O(εκ(R′)κ(Y )).

Substituting (16) into (14) leads to

(I + E3)G(I + F3) = Q′U
′
Σ̂(V

′
)T (Q′

ω)T ,

where I + E3 = (I + ẼL)−1(I + E2) and I + F3 = (I + F2)(I + ẼR)−1 for

ẼL = Q′EL(Q′)T and ẼR = Q′
ωER(Q′

ω)T . Clearly, ‖E3‖ = O(εκ(X)) and ‖F3‖ =
O(εκ(R′)κ(Y )).

Finally, it only remains to show that Û = fl(QÛω) and V̂ = fl(Q̂ωV̂ω) differ

from Q′U
′

and Q′
ωV

′
by O(ε). We show it for Û ; the argument for V̂ is analogous.

Using (12) and (15), we obtain QÛω = Q′U
′
+ O(ε). Moreover, the standard error



MULTIPLICATIVE BACKWARD ERRORS IN SVD 1029

analysis for matrix multiplication implies that ‖Û−QÛω‖F ≤ r2ε+O(ε2). The proof

is concluded by observing that ‖Û−Q′U
′‖F ≤ ‖Û−QÛω‖F +‖QÛω−Q′U

′‖F .
Multiplicative perturbation theory for the SVD applied to (10) yields relative

error bounds of order O(ε κ(R′) max(κ(X), κ(Y ))) on the singular values and of or-
der O(εκ(R′) max(κ(X), κ(Y ))) divided by the relative gaps on the singular vectors.
These are the bounds previously obtained in [4, Theorem 3.1]. The backward multi-
plicative error (10) in Theorem 3.1 for Algorithm 1 can be easily combined with the
backward multiplicative error coming from computing a RRD, with errors (7), (8),
to produce an overall multiplicative backward error similar to (10) [9, section 2.1].
Other more general forward errors in the computation of a RRD can be managed in
a similar way.

4. The left-handed version. The backward error analysis in section 3 has been
performed assuming that right-handed Jacobi is employed in step 4 of Algorithm 1.
However, it has been observed that Algorithm 1 with left-handed Jacobi on Lω is
usually much faster. For instance, for rank-revealing decompositions coming from
quasi-Cauchy matrices, the following differences in computational cost (using double
precision arithmetic) have been reported in [3, p. 572]: 50 Jacobi sweeps if right-
handed Jacobi is used in step 4 and no more than 8 sweeps (4.6 on average) for the
left-handed version. In the numerical experiments presented in [9, section 6.2] for
random 100 × 100 matrices in RRD form, the average number of sweeps in the right
version doubles the number of sweeps in the left version.4 A heuristic reason of this
significant difference in computational cost is that the rows of Lω are usually closer
to being orthogonal than its columns; thus left-handed Jacobi is expected to converge
faster (see [20, p. 988] for a more detailed explanation of the advantages of one version
of one-sided Jacobi over the other depending on the scaling). These discrepancies in
speed make it interesting to undertake a brief analysis of the multiplicative backward
stability properties of Algorithm 1 using left-handed Jacobi in step 4. Before we begin,
it should be noted that all these remarks may be modified by future improvements
in one-sided Jacobi SVD algorithms. According to numerical tests conducted using a
preliminary version of the fast and sophisticated right-handed Jacobi routine which is
being developed by Drmač, right-handed Jacobi could be much faster than the usual
plain implementation of left-handed Jacobi.

The error bounds for left-handed Jacobi on an invertible matrix A ∈ R
n×n remain

as in Theorem 2.1, at the prize of replacing the O(εκ(AN )) with O(εγ), where

γ = max
i=0,1,...,q

κ(Bi).(17)

Here, each Bi is the diagonal scaling with unit rows of the matrix Ai = Di Bi

(A0 = A) resulting from the action of the ith finite precision rotation along the process
of left-handed Jacobi, and Aq is the first iterate satisfying the stopping criterion

max
i �=j

fl

(
|Aq(i, :)Aq(j, :)

T |
‖Aq(i, :)‖ ‖Aq(j, :)‖

)
≤ n ε for i �= j.(18)

To explain the origin of the additional factor γ, notice that, according to [6, Theorem
4.1], if Ai (resp., Ai+1) is the matrix obtained after the ith (resp., (i + 1)th) finite

4Both in [3] and in [9] Algorithm 1 runs on square matrices and has been implemented without
step 3. If step 3 is done with row pivoting, then right-handed Jacobi can improve its speed by more
than one sweep, but this is not enough to wipe out the differences with the left-handed version.
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precision rotation, then Ai+1 can be written as

Ai+1 = Ri+1(Ai + δAi),

where Ri+1 is an exact rotation and the backward error δAi is such that ‖δBi‖ ≤
72ε+O(ε2) for the row scaling δAi = Di δBi, where Di is the diagonal matrix with
the row norms of Ai on the diagonal. Hence,

Ai+1 = Ri+1Ai(I + Ei)

with ‖Ei‖ = ‖A−1
i δAi‖ = ‖B−1

i δBi‖ ≤ (72ε + O(ε2))κ(Bi). Notice that replacing
‖B−1

i ‖ with κ(Bi) increases the bound at most by a factor
√
n.

Repeating the argument for all q rotations up to convergence, one obtains

Aq = (Ũ ′)TA(I + Ẽ)

for an exact orthogonal matrix Ũ ′ and a matrix Ẽ such that ‖Ẽ‖ ≤ (72ε+O(ε2))qγ,
with γ given by (17). The constant q in the previous error bound is pessimistic, and
in fact with a finer implementation of left-handed Jacobi q can be replaced by (s−1)p,
where s is the number of sweeps up to convergence, each of them implemented in p
parallell steps [11].

Using the stopping criterion as in the end of the proof of Theorem 2.1 shows that
if Û Σ̂V̂ T is the SVD computed by left-handed Jacobi on A with stopping criterion
(18), then

A(I + ẼR) = Ũ ′Σ̂Ṽ ′T

for orthogonal matrices Ũ ′, Ṽ ′ within a distance O(ε) of Û , V̂ , and

‖ẼR‖ ≤ 72εqγ + cn2ε + O(ε2) = O(εγ).

This last bound makes explicit the proviso needed in [6] to guarantee that one-sided
Jacobi is able to compute the SVD with high relative accuracy for matrices of the
form DB, where D is diagonal and B is well-conditioned: γ cannot be much larger
than κ(B).

Plugging these backward errors into the proof of Theorem 3.1, we obtain for the
left-handed version of Algorithm 1 (i.e., the one using left-handed Jacobi in step 4)
the backward error bound

(I + Ẽ)G(I + F̃ ) = U ′Σ̂V ′T ,

where, as in Theorem 3.1, U ′ and V ′ have orthonormal columns,

‖U ′ − Û‖ = O(ε), ‖V ′ − V̂ ‖ = O(ε)

for the computed matrices Û , Σ̂, V̂ , and the backward errors satisfy

‖Ẽ‖ = O(εκ(X)), ‖F̃‖ = O(εmax{γ, κ(R′)κ(Y )}),

with γ being the constant defined in (17) for left-handed Jacobi on the matrix L̂ω

computed in step 3 of Algorithm 1. Therefore, the error bounds for this left-handed
version of Algorithm 1 are larger than those for the right-handed one. Only if γ is
of the order O(κ(R′)κ(Y )) the same accuracy will be achieved. It is claimed in [6]
that there is strong numerical evidence of γ/κ(B0) ≈ 1. This has also been observed
in the numerical experiments done in [9]. Hence, it seems that the increase in speed
of the left-handed version is not penalized by a loss of accuracy.



MULTIPLICATIVE BACKWARD ERRORS IN SVD 1031

Acknowledgment. The authors thank Prof. Zlatko Drmač for providing the
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