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Abstract. The group of symplectic matrices is explicitly parameterized and this description
is applied to solve two types of problems. First, we describe several sets of structured symplectic
matrices, i.e., sets of symplectic matrices that simultaneously have another structure. We consider
unitary symplectic matrices, positive definite symplectic matrices, entrywise positive symplectic ma-
trices, totally nonegative symplectic matrices, and symplectic M-matrices. The special properties of
the LU factorization of a symplectic matrix play a key role in the parametrization of these sets. The
second class of problems we deal with is to describe those matrices that can be certain significant
submatrices of a symplectic matrix, and to parameterize the symplectic matrices with a given matrix
occurring as a submatrix in a given position. The results included in this work provide concrete tools
for constructing symplectic matrices with special structures or particular submatrices that may be
used, for instance, to create examples for testing numerical algorithms.
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1. Introduction. Let In denote the n-by-n identity matrix and J the 2n-by-2n
matrix

J :=
[

0 In

−In 0

]
. (1.1)

J is an orthogonal, skew-symmetric real matrix, so that J−1 = JT = −J .
Definition 1.1. A 2n-by-2n matrix S with entries in C (R) is called symplectic

if S∗JS = J (ST JS = J).
For the sake of brevity most of the results in this paper are presented only for

complex symplectic matrices. They remain valid for real symplectic matrices by
replacing every conjugate tranpose matrix, A∗, by the tranpose AT . Notice also that
the complex matrices satisfying S∗JS = J are sometimes called conjugate symplectic
matrices in the literature [10, 37].

The set of symplectic matrices forms a group. This group is very relevant both
from a pure mathematical point of view [18], and from the point of view of applica-
tions. For instance, symplectic matrices play an important role in classical mechanics
and Hamiltonian dynamical systems [1], in particular, in the theory of parametric
resonance, a problem that have received recent attention from the matrix analysis
community [23]. They are also used in electromagnetism [48]. Symplectic integrators
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are the preferred methods for the numerical solution of the differential equations ap-
pearing in these physical problems because they preserve the Hamiltonian structure
[45, 46, 47], and in these integrators symplectic matrices arise. A natural extension
of these methods is for solving linear Hamiltonian difference systems [9], and here
symplectic matrices also occur. Moreover, eigenvalues and eigenvectors of symplec-
tic matrices are important in applications like the discrete linear-quadratic regula-
tor problem, discrete Kalman filtering, the solution of discrete-time algebraic Riccati
equations, and certain large, sparse quadratic eigenvalue problems. See [33, 34, 41, 42]
and the references therein. These applications have motivated the development of
numerical structured algorithms for computing eigenvalues and eigenvectors of sym-
plectic matrices–see [16] for a complete treatment of this topic and [5, 6, 17] for three
interesting original references–, as well as for computing certain specific factorizations
of symplectic matrices [7]. In general, these algorithms are potentially unstable (al-
though they work very well for most symplectic matrices) and, therefore, a careful
testing process is necessary to assess their practical numerical behaviour. These tests
require to construct symplectic matrices with particular properties and the results
presented in this work provide a variety of ways for performing this task.

The symplectic matrices are implicitly defined as solutions to a quadratic matrix
equation. This definition is very convenient for checking if a matrix is symplectic
and for proving certain properties of symplectic matrices, but, for instance, it is
not convenient for constructing symplectic matrices. The implicit definition of the
symplectic matrices makes it difficult to work with them in theory, and, also, in nu-
merical algorithms. The main goal of this paper is to present an explicit description
or parametrization of the group of symplectic matrices, i.e., to find the set of solu-
tions of the matrix equation S∗JS = J . This description is based on two previous
results: Proposition 2.36 in [40], a result whose theoretical relevance has not been
fully appreciated, and the complementary bases theorem in [14, Theorem 3.1].

The classical parametrization of the symplectic group relies on the fact that every
2n-by-2n symplectic matrix is a product of at most 4n symplectic transvections [2].
See also [36] where a modern proof of this fact is presented. Symplectic transvections
can be easily constructed, and so symplectic matrices. However, this parametrization
does not allow us to know directly how the entries of a symplectic matrix are related
to each other, to construct easily symplectic matrices with special structures, or to
recognize if a certain matrix can be a submatrix of a symplectic matrix, which is
the first step towards solving symplectic completion problems [28]. In addition, in
numerical practice, multiplication by a symplectic matrix may be unstable and the
computed product of several symplectic matrices may be far from being symplectic. A
parametrization as a finite product of certain elementary unitary-symplectic matrices
has been also developed for the unitary-symplectic group [43]. Another work in this
line is [32].

A different parametrization of the matrix symplectic group as a finite product of
elementary symplectic matrices can be inferred from [3], where the authors present a
method to reduce every symplectic matrix to butterfly form by using symplectic sim-
ilarities. Symplectic butterfly matrices are at the heart of the most efficient structure
preserving algorithms for the symplectic eigenvalue problem [5, 16, 17]. The butter-
fly form is closely related to tridiagonal matrices, and 2n-by-2n symplectic butterfly
matrices can be simply parameterized using 4n − 1 parameters. As a consequence,
an arbitrary 2n-by-2n symplectic matrix can be parameterized as the product of
(n− 1) symplectic Gauss matrices [16] and their inverses, (n2− n) symplectic Givens
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matrices [16] and their inverses, 2(n − 2) symplectic Householder matrices [16] and
their inverses, one parameterized symplectic butterfly matrix, and, very rarely, some
symplectic interchange matrices. The number of parameters in this parametrization
is optimal because it coincides with the dimension of the symplectic group. This
parametrization has the same drawbacks as the classical parametrization previously
mentioned.

The parametrization of the symplectic group that we present describes the entries
of the matrices and can be very useful in different contexts. In this work, we apply
it to solve two types of problems: first, to parametrize sets of structured symplectic
matrices, i.e., sets of symplectic matrices that also have another structure; second,
to describe those matrices that can be certain significant submatrices of a symplec-
tic matrix, and the parametrization of the symplectic matrices with a given matrix
occurring as a submatrix in a given position. We will see that these parameteriza-
tions provide concrete tools for constructing matrices with special structures or fixed
submatrices that may be used, for instance, to test numerical algorithms.

In the first class of problems, we describe the sets of unitary symplectic matrices,
positive definite symplectic matrices, entrywise positive symplectic matrices, totally
nonegative symplectic matrices, and symplectic M-matrices. Loosely speaking, one
can say that these sets contain many nontrivial elements, except in the case of the set
of totally nonnegative symplectic matrices, where we prove, in dimensions larger than
two, that all its elements are diagonal and that there are no symplectic matrices that
are totally positive or oscillatory. Our results can be used to easily generate symplectic
matrices that have the additional structures previously mentioned, something that is
not obvious from the definition of a symplectic matrix.

The structure of the matrix J in (1.1) makes it natural to consider any 2n-by-2n
symplectic matrix in the partitioned form

S =
[

S11 S12

S21 S22

]
, (1.2)

in which S11 is n-by-n. We shall use this partition throughout this work without
explicitly referring to it. Therefore, unless otherwise stated, the reader should under-
stand every 2-by-2 partitioned matrix appearing in the text with the dimensions of
(1.2).

The partition in (1.2) is related to the second class of problems we consider. We
call these problems subparametrization problems. In this context, we parametrize
the set of symplectic matrices whose (1, 1)-block has given rank (the same can be
obviously done for any other block). As a consequence of this result, we show that
any n-by-n matrix can be one of the blocks appearing in (1.2), and, if we fix a matrix
A as one of these blocks, the set of symplectic matrices having A as the corresponding
submatrix is explicitly parametrized. We will see that this problem is much simpler
in the case one of the blocks is nonsingular. In fact, the set of symplectic matrices
whose, say, (1, 1)-block is nonsingular has a simple structure that makes it easy to
work with it from several points of view. We also show that this set is an open
dense subset of the group of symplectic matrices. These topological features imply
that some properties of symplectic matrices can be proved first for the matrices whose
(1, 1)-block is nonsingular and then be extended to any symplectic matrix by a proper
limiting argument. We will also parametrize the set of 2n-by-n matrices that can be
the first (or the last) n columns of a symplectic matrix, and the set of symplectic
matrices whose first n columns are fixed. Also some results on principal submatrices
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of dimension larger than n of symplectic matrices are presented. It is interesting to
remark that to study subparametrization problems with respect to the partition in
(1.2) is related to intrinsic properties of symplectic geometry. For instance, it is well
known that the columns of a 2n-by-n matrix span a Lagrangian subspace if and only
if this matrix is the submatrix containing the first n-columns of a symplectic matrix
[18] (see also [19, Proposition 1.4]).

The paper is organized as follows: Section 2 contains basic and previous results
that will be used in the rest of the paper. In Section 3 the explicit description of
the symplectic group is presented. The special properties of the LU factorization
of symplectic matrices are discussed in Section 4. This will be used in Section 5,
where several sets of structured sympletic matrices are described. Subparametrization
problems are studied in Section 6 and the brief Section 7 contains the conclusions.

2. Preliminaries. The set of all m-by-n matrices with entries in F (F = R or
C) is denoted by Mm,n(F), and Mn,n(F) is abbreviated to Mn(F). We will use in
some results MATLAB [39] notation for submatrices: A(i : j, k : l) will denote the
submatrix of A consisting of rows i through j and columns k through l; A(i : j, :) will
denote the submatrix of A consisting of rows i through j; and A(:, k : l) will denote
the submatrix of A consisting of columns k through l.

The following properties are very easily proved from Definition 1.1 and will be
often used: the product of two symplectic matrices is also symplectic, and if S is
symplectic then S−1 and S∗ are symplectic. We will also need the following auxiliary
lemma.

Lemma 2.1. Let X,Z, G, Y, A,B,C ∈ Mn(C). Then
1. The matrix

[
I
X

0
I

]
is symplectic if and only if X = X∗.

2. The matrix
[

I
0

Z
I

]
is symplectic if and only if Z = Z∗.

3. The matrix
[

G
0

0
Y

]
is symplectic if and only if Y = G−∗.

4. The matrix
[

I
B

A
C

]
is symplectic if and only if A = A∗, B = B∗ and C =

I + BA.
Proof. The first three items follow trivially from Definition 1.1. Let us prove the

fourth item. Let us denote S ≡ [
I
B

A
C

]
. If A = A∗, B = B∗, and C = I + BA then,

S =
[

I A
B I + BA

]
=

[
I 0
B I

] [
I A
0 I

]
,

where the factors in the right hand side are both symplectic as a consequence of the
first and second items. Thus S is symplectic. Now, we prove the converse. The
equation S∗JS = J implies B = B∗, C = I + B∗A, and A∗C = C∗A. Then
A∗ + A∗BA = A + A∗BA, which implies A = A∗.

The next result is an n-by-n block LU factorization of a symplectic matrix. It
appears in [40] and is the first key result on which many other results in this work are
based. A proof is presented for completeness.

Theorem 2.2. [40, Prop. 2.36] Let S =
[

S11
S21

S12
S22

] ∈ M2n(C) be symplectic and
S11 be nonsingular. Then

S =
[

I 0
S21S

−1
11 I

] [
S11 0
0 S−∗11

] [
I S−1

11 S12

0 I

]
, (2.1)

where the three factors are symplectic, equivalently, where S21S
−1
11 and S−1

11 S12 are
Hermitian matrices.
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Proof. The matrix
[

S−1
11 0
0 S∗11

]
S =

[
I S−1

11 S12

S∗11S21 S∗11S22

]

is symplectic because it is the product of two symplectic matrices. The fourth item
of Lemma 2.1 implies that S−1

11 S12 and S∗11S21 are Hermitian, and that S∗11S22 = I +
S∗11S21S

−1
11 S12. Notice that S21S

−1
11 = S−∗11 (S∗11S21)S−1

11 is also Hermitian. Therefore,
we have already proved that the three factors appearing in the right hand side of (2.1)
are symplectic because the off-diagonal blocks in these factors are Hermitian. We still
have to prove that equation (2.1) holds. From S∗11S22 = I + S∗11S21S

−1
11 S12, we get

S−∗11 = S22 − S21S
−1
11 S12. The result follows from the identity

S =
[

I 0
S21S

−1
11 I

] [
S11 0
0 S22 − S21S

−1
11 S12

] [
I S−1

11 S12

0 I

]
.

In the proof of Theorem 2.2, we have proved the next result on Schur complements
in symplectic matrices.

Corollary 2.3. Let S =
[

S11
S21

S12
S22

] ∈ M2n(C) be symplectic and S11 be nonsin-
gular. Then the Schur complement of S11 is S−∗11 , i.e., S−∗11 = S22 − S21S

−1
11 S12.

The symplectic matrices introduced in Definition 2.4 will appear in several results.
They are traditional interchange matrices except for the fact that the sign of one of
the rows (or columns) is changed to preserve the symplectic structure. They have
been previously used in [4, 31].

Definition 2.4. Let 1 ≤ j ≤ n. The symplectic interchange matrix Πj is the
2n-by-2n matrix obtained by interchanging the columns j and j + n of the 2n-by-2n
identity matrix and multiplying the jth column of the resulting matrix by −1. The
symplectic interchange matrix Π̃j is the 2n-by-2n matrix obtained by interchanging
the columns j and j + n of the 2n-by-2n identity matrix and multiplying the (j + n)th
column of the resulting matrix by −1. Notice that ΠT

j = Π̃j.
Notice that Πj (Π̃j) can be also obtained by interchanging the rows j and j +n of

the 2n-by-2n identity matrix and multiplying the (j + n)th (jth) row of the resulting
matrix by −1.

Next, we state the second key result on which the rest of the results in this
paper are based: the complementary bases theorem proved in [14]. To this purpose,
we need to introduce the following notation: |α| denotes the cardinality of a set α.
Moreover the binary variables p and q can take as values 1 or 2, and p′ and q′ denote,
respectively, the complementary variables of p and q.

Theorem 2.5. [14, Th. 3.1] Let S =
[

S11
S21

S12
S22

] ∈ M2n(C) be symplectic. Suppose
that rank(Spq) = k, p, q ∈ {1, 2}, and that the rows (columns) of Spq indexed by α,
α ⊆ {1, . . . , n} and |α| = k, are linearly independent. Then the rows (columns) of
Sp′q (Spq′) indexed by α′, the complement of α, together with the rows (columns) α
of Spq constitute a basis of Cn, i.e., they constitute a nonsingular n-by-n matrix.

The reader should notice that Theorem 2.5 was proved for matrices S satisfying
ST JS = J and with entries in any field, but it remains valid for the matrices defined
in Definition 1.1. This is commented after the proof of Corollary 3.2 in [14]. We will
also use the following consequence of Theorem 2.5.

Corollary 2.6. Let S =
[

S11
S21

S12
S22

] ∈ M2n(C) be symplectic and S11 be singular.
Then there exist matrices Q and Q′ that are products of at most n different symplectic
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interchange matrices such that QS and S Q′ are symplectic matrices with nonsingular
(1, 1)-block.

Note that according to Theorem 2.5 the matrices Q and Q′ in Corollary 2.6 may
be not unique.

3. Parametrization of the set of symplectic matrices. The first result we
present is Theorem 3.1 that parametrizes the set of symplectic matrices whose (1, 1)-
block is nonsingular. The same can be done for any other of the four blocks in the
partition (1.2), because, by multiplying a symplectic matrix on the left, on the right,
or on both sides by the matrix J , any of the blocks can be placed in the position
(1, 1) and the matrix remains symplectic. This remark applies to many of the results
in this paper.

Theorem 3.1. The set of 2n-by-2n complex symplectic matrices with nonsingular
(1, 1)-block is

S(1,1) =
{[

I 0
C I

] [
G 0
0 G−∗

] [
I E
0 I

]
: G ∈ Mn(C) nonsingular

C = C∗ , E = E∗

}

=
{[

G GE
CG G−∗ + CGE

]
: G ∈ Mn(C) nonsingular

C = C∗ , E = E∗

}
.

Proof. According to Theorem 2.2 every symplectic matrix with nonsingular (1,1)-
block can be written as

[
I 0
C I

] [
G 0
0 G−∗

] [
I E
0 I

]
, with C = C∗, E = E∗. (3.1)

Conversely, every matrix like the one in (3.1) is symplectic because it is a product of
three symplectic matrices. See Lemma 2.1.

Remark 1. Notice that the set S(1,1) is parametrized in terms of the entries of G,
C and E. In the case of real symplectic matrices these entries amount to 2n2 +n real
parameters.1 Note that for complex matrices the fact that the diagonal entries of C
and E are real numbers prevents to parametrize S(1,1) in terms of complex parameters,
although it is obvious that it depends on 4n2 real parameters. To avoid such minor
complications, from now on, we will only present the number of parameters for subsets
of real symplectic matrices. The interested readers can count the parameters in the
complex case from the descriptions we will introduce. Notice that 2n2 + n is precisely
the dimension of the real symplectic group [18, Lemma 1.15], so the parametrization
in Theorem 3.1 is optimal in this respect.

Theorem 3.1 implies that every nonsingular n-by-n matrix is the (1, 1)-block of
a symplectic matrix. More precisely, given an arbitrary nonsingular n-by-n matrix
G, the set of symplectic matrices whose (1, 1)-block is G can be parametrized by the
entries of the Hermitian matrices C and E appearing in Theorem 3.1. So, for real
matrices this set depends on n2 + n parameters. Theorem 6.6 will show that every
n-by-n matrix, singular or not, is the (1, 1)-block of a symplectic matrix.

1 Note that the n2 entries of G are not totally free parameters because G is nonsingular. However,
for instance, the whole set of nonsingular n-by-n matrices can be explicitly parameterized with n2

parameters as G = ΠLU , where Π is an arbitrary permutation matrix, L is an arbitrary lower
triangular matrix with ones on the diagonal, and U is an arbitrary upper triangular matrix with
nonzero diagonal entries. The nontrivial entries of L and U amount to n2 free parameters. In this
work, for simplicity, we will frequently use the entries of nonsingular matrices as free parameters of
certain sets without writing explicitly these matrices in nonsingular form.
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It is easy to construct examples of symplectic matrices whose four blocks are
singular, therefore S(1,1) is not the whole set of symplectic matrices S. However, we
will prove in Section 6.2 that S(1,1) is a dense open subset in S. Here, we are using on
S the subspace topology induced by the usual topology in M2n(C), i.e., the topology
associated with any norm defined on M2n(C). This means that a subset G ⊂ S is open
(closed) in S if G is the intersection of S and an open (closed) subset of M2n(C). The
fact that S(1,1) is dense and open in S implies that many properties of the set S can
be obtained by proving first the corresponding property in S(1,1) and then applying
a proper limit argument. The advantage of this approach is that S(1,1) admits the
simple explicit parametrization presented in Theorem 3.1 and this makes simple to
work in this set.

The next theorem describes explicitly the whole set of symplectic matrices.
Theorem 3.2. The set of 2n-by-2n complex symplectic matrices is

S =



Q

[
I 0
C I

] [
G 0
0 G−∗

] [
I E
0 I

]
:

G ∈ Mn(C) nonsingular
C = C∗ , E = E∗

Q a product of symplectic interchanges





=



Q

[
G GE

CG G−∗ + CGE

]
:

G ∈ Mn(C) nonsingular
C = C∗ , E = E∗

Q a product of symplectic interchanges



 .

The symplectic unitary matrix Q is a product of at most n different symplectic inter-
change matrices. The matrix Q may also be placed on the right side of the product.

Proof. The result follows by combining Corollary 2.6 and Theorem 3.1.
A different explicit description of the set S will be discussed in Remark 2 in

Subsection 6.1. Theorem 3.2 is not a strict parametrization, because given a sym-
plectic matrix S, several matrices Q may exist that allow us to express S in the form
appearing above for different sets of parameters.

4. The LU factorization of a symplectic matrix. The existence of the LU
factorization of a symplectic matrix is completely determined by properties of its
(1, 1)-block. Moreover, the LU factors of a symplectic matrix have a very special
structure that will play a key role in Section 5, where sets of symplectic matrices with
additional structures are studied. Some of these additional structures imply further
properties on the LU factors that allow us to describe explicitly relevant subsets of
symplectic matrices. In this paper, we adopt the usual convention that in the LU
factorization of a matrix, A = LU , the L factor is unit lower triangular and the U
factor is upper triangular. The next theorem presents the most important properties
of the LU factorization of a symplectic matrix.

Theorem 4.1. Let S =
[

S11
S21

S12
S22

] ∈ M2n(C) be symplectic. Then
1. If S has an LU factorization then the factorization is unique.
2. S has LU factorization if and only if S11 and S−∗11 have LU factorizations.
3. S has LU factorization if and only if S11 is nonsingular and has LU and UL

factorizations.
4. S has LU factorization if and only if detS11(1 : k, 1 : k) · det S11(k : n, k :

n) 6= 0 for k = 1, . . . , n.
5. If S11 = L11U11 and S−∗11 = L22U22 are LU factorizations, then the LU

factorization of S is

S =
[

L11 0
S21U

−1
11 L22

] [
U11 L−1

11 S12

0 U22

]
(4.1)
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6. The LU factors of S are symplectic if and only if S11 is diagonal and non-
singular.

Proof. 1. Symplectic matrices are nonsingular and the LU factorization of a
nonsingular matrix is unique when it exists [24, Theorem 3.2.1].
2. If S has LU factorization, S = LU , then the factorization is unique. Therefore,
all the leading principal minors of S are nonzero [25, Ch. 9]. This implies that S11 is
nonsingular and that (2.1) holds. By combining (2.1) with S = LU , one gets

[
S11 0
0 S−∗11

]
=

([
I 0

−S21S
−1
11 I

]
L

)(
U

[
I −S−1

11 S12

0 I

])
≡ L̃Ũ .

This means that L̃Ũ is the LU factorization of
[

S11
0

0
S−∗11

]
. Let us write the previous

equation as
[

S11 0
0 S−∗11

]
=

[
L̃11 0
L̃21 L̃22

][
Ũ11 Ũ12

0 Ũ22

]
.

Then, it is straightforward to see that L̃21 = Ũ12 = 0, S11 = L̃11Ũ11, and S−∗11 =
L̃22Ũ22. This proves S11 and S−∗11 have LU factorizations.

Conversely, if S11 and S−∗11 have the LU factorizations S11 = L11U11 and S−∗11 =
L22U22 then we obtain from (2.1) that

S =
[

L11 0
S21U

−1
11 L22

] [
U11 L−1

11 S12

0 U22

]

is the LU factorization of S. This also proves item 5.
3. Simply notice that if S11 is nonsingular then S−∗11 = L22U22 if and only if S11 =
L−∗22 U−∗

22 , i.e., S−∗11 has LU factorization if and only if S11 has UL factorization.
4. It follows from the fact that S−∗11 has LU factorization if and only if detS−∗11 (1 :
k, 1 : k) 6= 0, for k = 1, . . . , n. This is equivalent to det S11(k : n, k : n) 6= 0, for
k = 1, . . . , n, taking into account the well known expressions for the minors of the
inverse [26, Sec 0.8.4] and that S11 is nonsingular.
5. It was proved in the proof of 2..
6. If S11 is diagonal and nonsingular then in (4.1) L11 = L22 = I, U11 = S11, and
U22 = S−∗11 . So, the L factor of S is

[
I

S21S−1
11

0
I

]
, which is the first factor in (2.1) and,

therefore, it is symplectic. The U factor is
[

S11
0

S12

S−∗11

]
, which is the product of the

second and third factor in (2.1) and, therefore, symplectic.
Conversely, if the LU factors of S are symplectic then the matrices L =

[ L11

S21U−1
11

0
L22

]

and U =
[

U11
0

L−1
11 S12
U22

]
in (4.1) are symplectic. The fact that U is symplectic implies

that U11 is nonsingular then the block factorization (2.1) holds for U with the (2, 1)-
block equal to zero. Therefore, U22 = U−∗

11 . But U22 is upper triangular and U−∗
11 lower

triangular, hence U11 is diagonal. A similar argument on L implies that L22 = L−∗11 ,
hence L11 = I. This shows that S11 = U11 is diagonal.

We have seen that, except in the very particular case that S11 is diagonal and
nonsingular, the LU factors of a symplectic matrix do not inherit the symplectic
structure. If one insists on preserving this structure then block LU factorizations
have to be considered. Apart from the block LU factorization appearing in Theorem
2.2, we have these other two block LU-like factorizations2.

2Notice that the factorizations in Theorem 4.2 are not block LU factorizations in the sense defined
in [25, p. 246] because they do not have identity matrices on the diagonal blocks of the L matrices.
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Theorem 4.2. Let S =
[

S11
S21

S12
S22

] ∈ M2n(C) be symplectic. Then
1. If S11 is nonsingular and has the LU factorization S11 = L11U11 then

S =
[

L11 0
S21U

−1
11 L−∗11

] [
U11 L−1

11 S12

0 U−∗
11

]
,

and both factors are symplectic.
2. If S−∗11 has the LU factorization S−∗11 = L22U22 then

S =
[

L−∗22 0
S21U

∗
22 L22

] [
U−∗

22 L∗22S12

0 U22

]
,

and both factors are symplectic.
Proof. Both results follow straightforwardly from (2.1).

5. Structured sets of symplectic matrices. This section is devoted to the
study of five subsets of symplectic matrices: unitary symplectic matrices, positive def-
inite symplectic matrices, entrywise positive symplectic matrices, totally nonnegative
symplectic matrices, and symplectic M-matrices.

5.1. Unitary symplectic matrices. The results presented in this section for
complex unitary symplectic matrices remain valid for real orthogonal symplectic ma-
trices by replacing conjugate transpose (∗) by transpose (T ), and unitary by orthogonal
matrices.

The intersection between the unitary and the symplectic groups is treated in
general references, as for instance [18]. In addition, a parametrization of this group in
terms of finite products of certain elementary symplectic-unitary matrices is described
in [43]. We present in this section an alternative description by blocks of the unitary-
symplectic matrices in terms of unitary and Hermitian matrices.

It is well-known that the set of 2n-by-2n unitary symplectic matrices is [44, p.
14]

SU =
{[

Q1 Q2

−Q2 Q1

]
: Q∗1Q1 + Q∗2Q2 = I

Q∗1Q2 −Q∗2Q1 = 0

}
. (5.1)

This result is easily proved because if S is simultaneously symplectic and unitary then
JS = SJ . This implies the block structure appearing in (5.1). The conditions on
Q1 and Q2 follow from imposing S∗S = I (or equivalently S∗JS = J) to the matrix
S =

[
Q1
−Q2

Q2
Q1

]
. However, (5.1) is not an explicit description of the set SU because

the n-by-n matrices Q1 and Q2 are defined through a system of quadratic equations.
In Theorem 5.1 we describe explicitly SU in terms of n-by-n Hermitian and unitary
matrices, and of products of at most n symplectic interchange matrices of dimension
2n-by-2n. A related result that allows us to generate unitary symplectic matrices
according to the Haar measure was presented in [35].

Theorem 5.1. The set of 2n-by-2n unitary symplectic matrices is

SU =
{

Q

[
(I + C2)−1/2U −C(I + C2)−1/2U

C(I + C2)−1/2U (I + C2)−1/2U

]
:

U ∈ Mn(C) unitary
C = C∗ ∈ Mn(C)

Q a product of symplectic interchanges



 ,
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where the symplectic unitary matrix Q is a product of at most n different symplectic
interchange matrices and (I + C2)1/2 denotes the unique positive definite square root
of I + C2. Besides, if U is unitary and C is Hermitian then

[
(I + C2)−1/2U −C(I + C2)−1/2U

C(I + C2)−1/2U (I + C2)−1/2U

]
=

[
I 0
C I

] [
(I + C2)−1/2 0

0 (I + C2)1/2

] [
I −C
0 I

] [
U 0
0 U

]
. (5.2)

Proof. According to Theorem 3.2 we have to prove that every unitary symplectic
matrix with nonsingular (1, 1)-block can be written as (5.2), and, conversely, that
every matrix of the form (5.2) is unitary and symplectic. This latter fact can be
easily proved by checking that every matrix S of the form (5.2) satisfies S∗S = I
and S∗JS = J (or notice that the matrix in (5.2) is the product of three symplectic
matrices by Lemma 2.1, and, therefore, is symplectic).

To prove that every unitary symplectic matrix with nonsingular (1, 1)-block is of
the form (5.2), let us remember that Theorem 3.1 states that every symplectic matrix
with nonsingular (1, 1)-block can be expressed as

S =
[

G GE
CG G−∗ + CGE

]
, (5.3)

with G nonsingular and C = C∗, E = E∗. The equation S∗S = I is equivalent to

(1, 1)− block G∗G + G∗C2G = I (5.4)
(2, 1)− (1, 2)− blocks EG∗G + G−1CG + EG∗C2G = 0 (5.5)

(2, 2)− block EG∗GE + (G−∗ + CGE)∗ (G−∗ + CGE) = I. (5.6)

The equation (5.4) implies

I = G∗(I + C2)G = ((I + C2)1/2G)∗((I + C2)1/2G),

therefore

G = (I + C2)−1/2U with U unitary. (5.7)

Notice that equation (5.5) can be written as E(G∗G + G∗C2G) + G−1CG = 0, and
with (5.4), we get

E = −G−1CG.

This result can be combined with (5.7) to get

E = −U∗CU. (5.8)

Equation (5.6) is directly satisfied by G and E given by (5.7) and (5.8). So, the
Hermitian matrix C and the unitary matrix U remain as free parameters. The result
is proved by substituting (5.7) and (5.8) in (5.3).

As in Theorem 3.2, the description presented in Theorem 5.1 is not a strict
parametrization because given a unitary symplectic matrix S, several matrices Q
may exist that allow us to express S in the form appearing in Theorem 5.1. However,
it is a strict parametrization in the case of unitary symplectic matrices whose (1, 1)-
block is nonsingular, because then Q is not present, and, given S, there exists only
one pair of matrices C and U to represent S as in Theorem 5.1.
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5.2. Positive definite symplectic matrices. Theorem 5.2 presents the most
relevant properties of positive definite symplectic matrices. Item 5 was proved in a
much more general setting in [38, Sec. 3]. We include the proof of this item for
completeness.

Theorem 5.2. Let S =
[

S11
S21

S∗21
S22

] ∈ M2n(C) be Hermitian and symplectic. Then
1. S is positive definite if and only if S11 is positive definite.
2. The set of positive definite symplectic matrices is

SPD =
{[

I 0
C I

] [
G 0
0 G−1

] [
I C
0 I

]
:

G ∈ Mn(C) positive definite
C = C∗

}

=
{[

G GC
CG G−1 + CGC

]
: G ∈ Mn(C) positive definite

C = C∗

}
.

3. For real symplectic matrices the set SPD depends on n2+n parameters.3 For
complex matrices, see Remark 1.

4. If S is positive definite and S11 = L11L
∗
11 is the Cholesky factorization of S11

then S = HH∗, in which

H =
[

L11 0
S21L

−∗
11 L−∗11

]

is symplectic.
5. If S is positive definite then the unique positive definite square root of S is

symplectic.
Proof. 1. If S is positive definite then all its principal submatrices are positive

definite. Hence, S11 is positive definite. Conversely, if S11 is positive definite then it
is nonsingular, and S−∗11 = S−1

11 is also positive definite. The factorization (2.1) can
be written in this case as:

S =
[

I 0
S21S

−1
11 I

] [
S11 0
0 S−1

11

] [
I 0

S21S
−1
11 I

]∗
, (5.9)

which implies that S is positive definite because
[

S11
S−1

11

]
is positive definite.

2. According to (5.9), every positive definite symplectic matrix can be written as
[

I 0
C I

] [
G 0
0 G−1

] [
I C
0 I

]
, (5.10)

with G positive definitive and C Hermitian. To prove the converse, simply notice that
any matrix as in (5.10) is symplectic, because it is the product of three symplectic
matrices, and is positive definite because it is congruent to the positive definite matrix[

G
G−1

]
.

3. In item 2., G contributes with (n2 + n)/2 parameters and the same holds for C.
4. It follows from (5.9) by taking into account that in (5.9) the three factors are
symplectic.
5. Let S1/2 be the unique positive definite square root of S. Notice that S = S1/2S1/2

implies that S−1 = (S1/2)−1(S1/2)−1, so the positive definite square root of S−1

3Every n-by-n positive definite matrix can be written as G = LL∗, with L lower triangular with
positive entries on the diagonal. Therefore, the whole set of n-by-n positive definite matrices can be
explicitly described using as free parameters the (n2 + n)/2 nontrivial entries of L.



12 F. M. DOPICO AND C. R. JOHNSON

is (S−1)1/2 = (S1/2)−1. Let us denote this matrix simply by S−1/2. Notice that
SJS = J because S is symplectic and Hermitian. Then S = JS−1J∗ = (JS−1/2J∗)2.
The matrix JS−1/2J∗ is positive definite. This means that S1/2 = JS−1/2J∗ and
S1/2JS1/2 = J , i.e., S1/2 is symplectic.

An alternative proof of the last item in Theorem 5.2 relies in the special struc-
ture of the singular value decomposition of a symplectic matrix, see [50, Theo-
rem 2]. This result easily implies that if S is symplectic and positive definite then
S = U diag(Σ, Σ−1)U∗, where U is unitary symplectic and Σ is diagonal with all its
diagonal entries larger than or equal to one. Therefore, S1/2 = U diag(Σ1/2,Σ−1/2)U∗

and this matrix is symplectic since the three factors are symplectic.

5.3. Entrywise positive symplectic matrices. The purpose of this section
is to show that there exist real symplectic matrices whose entries are all strictly
positive. This is in contrast to real orthogonal matrices, because it is clear that there
are no orthogonal matrices of dimension larger than one with all the entries strictly
positive. We will also show how to generate entrywise positive symplectic matrices.
These results are simple consequences of the parametrization in Theorem 3.1. Given
a matrix A, we write A > 0 if all the entries of A are positive. According to Theorem
3.1, entrywise positive symplectic matrices can be constructed through the following
three steps:

1. Select arbitrary real n-by-n matrices G > 0, C = CT > 0, and Ẽ = ẼT > 0
such that G is nonsingular.

2. Select a number α > 0 such that αCGẼ + G−T > 0. Obviously α may be
any positive number such that α > maxij

(
−(G−T )ij/(CGẼ)ij

)
.

3. Define E = αẼ.
Then the matrix

[
G GE

CG G−T + CGE

]

is symplectic with all the entries positive.
The previous procedure does not generate all the possible entrywise positive sym-

plectic matrices because, for instance, given G > 0, nonpositive matrices C such that
CG > 0 may be easily constructed. This shows that to describe explicitly the whole
set of entrywise positive symplectic matrices is difficult.

5.4. Totally nonnegative symplectic matrices. The matrices with all mi-
nors nonnegative (positive) are called totally nonnegative (TN) (totally positive (TP)).
They appear in a wide area of problems [20, 21] and many numerical linear algebra
tasks can be very accurately performed on nonsingular TN matrices when they are
properly parametrized [29, 30]. If a matrix A is TN and Ak is TP for some positive
integer k then A is called oscillatory. TN matrices are matrices with real entries,
therefore in this section we will only consider real symplectic matrices.

It is obvious that there exist TN symplectic matrices because the identity is TN
and symplectic. The existence of oscillatory or TP symplectic matrices is not evident.
Let us begin by considering this existence problem. We start by describing the set of
2-by-2 TN symplectic matrices.

Theorem 5.3. The matrix S ∈ M2(R) is symplectic and TP (TN) if and only if
detS = 1 and sij > 0 (sij ≥ 0) for all (i, j). Additionally, S ∈ M2(R) is symplectic
and TN but not TP if and only if sij ≥ 0 for all (i, j), s22 = 1/s11, and s12s21 = 0.
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Proof. The proof is straightforward. We sketch the main ideas. A real 2-by-2
matrix is symplectic if and only if its determinant is 1. Besides, a real 2-by-2 matrix
is TP (TN) if and only if all its entries and its determinant are positive (nonnegative).
For the last part, notice that if a 2-by-2 TN symplectic matrix is not TP then at least
one of its entries is zero. But the diagonal entries are necessarily different from zero
because, otherwise, det S = −a12a21 ≤ 0.

Therefore the set of 2-by-2 TP symplectic matrices depends on three parameters
and can be easily described, because if three arbitrary positive values are chosen for
s11, s12 and s21 then s22 is obtained from detS = 1 as s22 = (1+s12s21)/s11. However,
Theorem 5.4 shows that this is the end of the story, in the sense that for dimensions
larger than 2 there are no TP symplectic matrices, nor oscillatory symplectic matrices.

Theorem 5.4. Let S ∈ M2n(R), with n > 1, be symplectic. Then S is neither
TP, nor oscillatory.

Proof. Let us assume that S is TP and we will get a contradiction. If S is TP
then S has an LU factorization, S = LU , whose factors are triangular totally positive
(∆TP) matrices [11]. This means that all the “non-trivial” minors of L and U are
positive, where we understand by “trivial” minors of a lower (upper) triangular matrix
those minors that are zero for every lower (upper) triangular matrix with the same
dimension [11, 15]. Besides, if S is symplectic then (4.1) is the LU factorization of
S, and L22 and U22 are both ∆TP because they are submatrices of ∆TP matrices.
Notice that in this case S−T

11 = L22U22, with T (transpose) instead of ∗ (conjugate
transpose) because we are dealing with real matrices. This implies that S−T

11 is TP
[15, p. 700], so S−1

11 is TP. On the other hand S11 is TP because it is a submatrix
of the TP matrix S. Then, the well-known adjoint formula [26, Sec. 0.8.2] for the
elements of the inverse guarantees that all the entries of S−1

11 are different from zero
and the sign of (S−1

11 )ij is (−1)i+j . Thus S−1
11 has negative entries if n > 1. This is in

contradiction with S−1
11 being TP.

Proceed again by contradiction for the oscillatory case. If S is oscillatory then Sk

is TP for some positive integer k. This is impossible if n > 1 because Sk is a product
of symplectic matrices, and, therefore, it is symplectic.

The last task of this section is to describe the set of 2n-by-2n TN symplectic
matrices. For n > 1, this is simply the set of symplectic diagonal matrices with
positive diagonal entries. We need the simple Lemma 5.5 to prove this result in
Theorem 5.6. Lemma 5.5 appears implicitly in [29, p. 4], but we do not know an
explicit statement of it.

Lemma 5.5. Let A be a p-by-p nonsingular TN matrix. (i) If ai1 = 0 for some
i > 1 then al1 = 0 for l = i, . . . , p; and (ii) if a1j = 0 for some j > 1 then a1l = 0 for
l = j, . . . , p.

Proof. We only need to prove (i) because (ii) follows from applying (i) to AT . A is
nonsingular, thus there exists at least one nonzero element in its ith row. Let aik 6= 0,
k > 1, be such an element. Let us consider the minors det

[
ai1
al1

aik

alk

]
= −al1aik ≥ 0 for

l = i + 1, . . . , p. The entries of A are nonnegative, therefore these inequalities imply
al1 = 0 for l = i + 1, . . . , p.

Theorem 5.6. The set of 2n-by-2n, n > 1, TN symplectic matrices is

STN =





[
D 0
0 D−1

]
: D =




λ1

. . .

λn


 , λi > 0 for i = 1, . . . , n





.
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Proof. It is obvious that every matrix
[

D
D−1

]
with D positive diagonal is sym-

plectic and TN. It remains to prove that every TN symplectic matrix is a matrix of
this type. Let S =

[
S11
S21

S12
S22

]
be TN and symplectic then: (i) S is TN and nonsingular;

(ii) S has a unique LU factorization whose factors are also TN [12, 15, 22]; (iii) this
LU factorization is given by (4.1), and, therefore, L22 and U22 are TN; and (iv) S11

is TN and nonsingular, and, therefore, (S−1
11 )ij ≤ 0 whenever i + j is an odd number.

This last inequality is a consequence of the classical adjoint formula for the elements
of the inverse. Property (iii) implies that S−T

11 = L22U22 is TN. Thus, from (iv),

(S−T
11 )ij = 0 if i + j is an odd number. (5.11)

In particular, (S−T
11 )12 = (S−T

11 )21 = 0 and by Lemma 5.5, (S−T
11 )1l = (S−T

11 )l1 = 0
for l = 2, . . . , n. This implies that S−T

11 (2 : n, 2 : n) is nonsingular. By (5.11),
(S−T

11 )k,k+1 = (S−T
11 )k+1,k = 0 for all k, so Lemma 5.5 can be successively applied on

the TN nonsingular matrices (S−T
11 )(k : n, k : n), k = 2, . . . , n, to prove that S−T

11 is
diagonal. We have proved that

S11 = D and S−T
11 = D−1,

with D positive diagonal. This means, in the notation of (4.1), that L11 = L22 = I,
U11 = D, and U22 = D−1, and the LU factorization of S ≡ LU is

S =
[

I 0
S21D

−1 I

] [
D S12

0 D−1

]
.

According to (2.1), S21D
−1 and D−1S12 are symmetric matrices. This can be com-

bined with Lemma 5.5 applied successively to the TN nonsingular matrices L(k :
2n, k : 2n) and U(k : 2n, k : 2n), for k = 1, . . . , n, to show that S12 = S21 = 0.

5.5. Symplectic M-matrices. M-matrices occur very often in a wide variety of
areas including finite difference methods for partial differential equations, economics,
probability and statistics [8, Ch. 6]. In this section we want to find the set of
matrices that are simultaneously symplectic and an M-matrix. Therefore we consider
only nonsingular M-matrices. Many equivalent definitions of an M-matrix exist. We
adopt the following one [27, p. 113].

Definition 5.7. A ∈ Mn(R) is an M-Matrix if aij ≤ 0 for i 6= j and Re(λ) > 0
for every eigenvalue λ of A.

As in Section 5.4, we will consider in this section symplectic matrices with real
entries because M-Matrices have real entries.

The proof of Theorem 5.8 below has the same flavor as the proof of Theorem
5.6. It is again based on the special properties of the LU factors of M-Matrices. The
condition that the matrix HDK is diagonal, appearing in Theorem 5.8, is not explicit
and it may seem awkward at a first glance but Lemma 5.9 will show that the sign
structures of H, K, and D make it extremely simple to choose matrices H and K
such that HDK is diagonal for any positive diagonal matrix D.
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Theorem 5.8. The set of 2n-by-2n symplectic M-matrices is

SM =





[
I 0
H I

] [
D 0
0 D−1

] [
I K
0 I

]
:

D ∈ Mn(R) positive diagonal
H = HT ≤ 0
K = KT ≤ 0

HDK diagonal





=





[
D DK

HD D−1 + HDK

]
:

D ∈ Mn(R) positive diagonal
H = HT ≤ 0
K = KT ≤ 0

HDK diagonal





,

where the inequalities H ≤ 0 and K ≤ 0 mean that hij ≤ 0 and kij ≤ 0 for all i, j.
Proof. In the first place we will prove that any matrix of the form

[
I 0
H I

] [
D 0
0 D−1

] [
I K
0 I

]
=

[
D DK

HD D−1 + HDK

]
, (5.12)

with D positive diagonal, H = HT ≤ 0, K = KT ≤ 0, and HDK diagonal, is
symplectic and an M-matrix. The matrix in (5.12) is the product of three symplectic
matrices, see Lemma 2.1, therefore it is symplectic. Note also that the product of the
last two factors in the left hand side of equation (5.12) is an upper triangular matrix
whose diagonal is diag(D, D−1), so this product is the U factor of the LU factorization
of the matrix in the right hand side of (5.12). This implies that the leading principal
minors of this matrix are positive because they are products of entries of D and D−1

[25, Eq. (9.1), p. 161]. Besides, the matrix in (5.12) has nonpositive off-diagonal
entries and, therefore, it is an M-matrix by [27, Theorem 2.5.3, p.114-115].

In the second part of the proof, we will see that every symplectic M-matrix can
be written as in (5.12). Let S =

[
S11
S21

S12
S22

]
be a symplectic M-matrix then: (i) S11 is

an M-matrix [27, p. 114]; (ii) S11 is nonsingular and S−1
11 ≥ 0 componentwise [27,

Theorem 2.5.3]; (iii) S has a unique LU factorization and both factors are M-matrices
[27, p. 117]; and, (iv) the LU factorization of S = LU is given by (4.1). Thus

S−T
11 = L22U22 ≥ 0, (5.13)

and L22 and U22 are M-matrices because they are principal submatrices of the M-
matrices L and U . This means, in particular, that the diagonal entries of L22 and
U22 are positive while the off-diagonal entries are non-positive. If this information is
combined with (5.13), we get in MATLAB notation: L22(2 : n, 1) = 0 and U22(1, 2 :
n) = 0; then L22(3 : n, 2) = 0 and U22(2, 3 : n) = 0; ... ;L22(n, n − 1) = 0 and
U22(n − 1, n) = 0. We have proved that L22, U22, and S−T

11 are diagonal positive
matrices. Let us denote

S11 = D and S−T
11 = D−1,

with D positive diagonal. This means, in the notation of (4.1), that L11 = L22 = I,
U11 = D, and U22 = D−1, and the LU factorization of S ≡ LU is

S =
[

I 0
S21D

−1 I

] [
D S12

0 D−1

]
=

[
I 0

S21D
−1 I

] [
D 0
0 D−1

] [
I D−1S12

0 I

]
,

where, according to (2.1), S21D
−1 and D−1S12 are symmetric matrices, and S21D

−1 ≤
0 and D−1S12 ≤ 0 because the LU factors of S are M-matrices. Therefore, we have
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proved that every symplectic M-matrix S can be expressed as:

S =
[

I 0
H I

] [
D 0
0 D−1

] [
I K
0 I

]
=

[
D DK

HD D−1 + HDK

]
,

with D positive diagonal, H = HT ≤ 0 and K = KT ≤ 0. Notice that the off-diagonal
elements of D−1 + HDK are less than or equal to zero because S is an M-matrix,
but, on the other hand, D−1 +HDK ≥ 0. This implies that HDK is diagonal.

Lemma 5.9. Let D, H, and K be n-by-n real matrices such that D is positive
diagonal, H = HT ≤ 0, and K = KT ≤ 0. Then

1. HDK is diagonal if and only if HK is diagonal.
2. HK is diagonal if and only if for every (i, j) such that hij = hji 6= 0,

kil = kli = 0 for l 6= j, and kjp = kpj = 0 for p 6= i.
Notice that item 2. implies that for every pair hij = hji 6= 0 the only elements that
can be different from zero in the rows i and j and in the columns i and j of K are
precisely kij = kji.

The proof of this Lemma is trivial. The important point with respect to Theorem
5.8 is that once arbitrary matrices D, positive diagonal, and H = HT ≤ 0 are chosen,
a set of zero entries of K is easily fixed, and those entries of K that are not in this
set can be arbitrarily chosen with only the constraint K = KT ≤ 0. Obviously, it
is possible to choose H, D and K arbitrary diagonal matrices with the required sign
constraints. It is also possible to choose H = HT ≤ 0 completely arbitrary, however,
loosely speaking, the nonzero off-diagonal entries of H impose many zeros on K by
Lemma 5.9. Let us illustrate this with a simple example.

Example 1. Let us assume that an arbitrary positive diagonal matrix D has been
chosen, and H = HT ≤ 0 is such that

H =




0 × 0
× 0 ×
0 × 0


 ,

where × denotes a negative entry. Then neccesarily K = 0. Note that Lemma 5.9
and h12 = h21 6= 0 imply that all the entries in the rows 1 and 2 and the columns 1
and 2 of K are zero except perhaps k12 = k21. But k12 = k21 are also zero because
h23 = h32 6= 0. This also implies that k33 is zero and so K = 0. This example extends
easily to prove that K = 0 if H is an irreducible tridiagonal matrix.

6. Subparametrization problems and consequences. Several results in this
section are stated for the (1, 1)-block of a symplectic matrix. The reader should notice
that similar results hold for any other of the four blocks in the partition (1.2), because
by multiplying a symplectic matrix on the left, on the right, or on both sides by the
matrix J any of the blocks can be placed in the position (1, 1) and the matrix remains
symplectic. A similar remark holds for the results we present for the first n columns
of a symplectic 2n-by-2n matrix.

6.1. Symplectic matrices with (1, 1)-block of given rank. This section
extends Theorem 3.1 to symplectic matrices whose (1, 1)-block has a given rank that
is different from n. The result we present, Theorem 6.2, is different from Theorem 3.2
because symplectic interchanges among different blocks in the partition (1.2) are not
allowed. The results in this section are based on the following simple lemma, whose
trivial proof is omitted.
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Lemma 6.1. The set of n-by-n complex matrices with rank k is

Mk
n(C) =



P

[
X1

F X1

]
:

X1 ∈ Mk,n(C) , F ∈ Mn−k,k(C)
rank(X1) = k

P ∈ Mn(C) permutation matrix



 .

A counterpart of Lemma 6.1 by “columns” is obviously possible if the permutation
matrix is placed on the right. The explicit description of the set Mk

n(C) presented
in Lemma 6.1 is not a “rigurous” parametrization because given an n-by-n matrix
A with rank(A) = k, there may exist several permutation matrices P such that A
can be expressed as P

[
X1

FX1

]
. This is a fact similar to that appearing in Theorem

3.2. However, if this indeterminacy in the permutation is ignored, the description in
Lemma 6.1 is optimal because the number of free parameters,4 i.e., the number of
entries of X1 and F , is 2kn − k2. This is precisely the dimension of the manifold of
matrices with rank at most k [13, Lemma 3.3]. Another relevant fact to be remarked
here is that given A with rank(A) = k, once the permutation matrix P is chosen,
there are only one matrix X1 and only one matrix F such that A = P

[
X1

FX1

]
.

The main result in this section is Theorem 6.2, which reduces to Theorem 3.1 if
rank(S11) = n and P = In.

Theorem 6.2. The set of 2n-by-2n symplectic matrices S =
[

S11
S21

S12
S22

]
, where

S11 ∈ Mn(C) and rank(S11) = k is

S(1,1)
k =





[
P 0
0 P

]



X1

C21 X1

X1E
X−∗(k + 1 : n, :) + C21 X1 E

[C11 C∗21] X
−X2

X−∗(1 : k, :) + [C11 C∗21] X E
−X2E


 :

X1 ∈ Mk,n(C) , P ∈ Mn(C) permutation matrix

X =
[

X1

X2

]
∈ Mn(C) nonsingular ,

[
C11 C∗21
C21 0

]
∈ Mn(C) Hermitian

E = E∗ ∈ Mn(C)





.

Notice that C11 ∈ Mk(C) follows from
[

X1
C21X1

] ∈ Mn(C), and that this theorem holds
true for k = 0 if we consider that X1, C11, C21 are empty matrices, P = In, X = X2,
and the (1, 1)-block

[
X1

C21X1

]
= 0 ∈ Mn(C).

Remark 2. Notice that Theorem 6.2 provides the following explicit description
of the group S of symplectic matrices: S =

⋃n
k=0 S(1,1)

k . This description is different
from the one presented in Theorem 3.2, because the permutation Q in Theorem 3.2
interchanges rows between different blocks. However, both descriptions are based on
the same ideas: Theorems 2.2 and 2.5. Notice that a counterpart of Theorem 6.2 with
the permutation P on the right is also possible.

Proof of Theorem 6.2. First, we prove that every matrix of the form

[
P 0
0 P

]



X1

C21 X1

X1E
X−∗(k + 1 : n, :) + C21 X1 E

[C11 C∗21]X
−X2

X−∗(1 : k, :) + [C11 C∗21] X E
−X2E


 , (6.1)

4Analogously to the footnote 1, the kn entries of X1 are not totally free parameters due to
the rank condition on X1. But the whole set of k-by-n matrices with rank k can be explicitly
parameterized in terms of nk parameters as X1 = ΠLUΠ′, where L is an arbitrary k-by-k lower
triangular matrix with ones on the diagonal, U is an arbitrary k-by-n upper triangular matrix with
nonzero diagonal entries, and Π and Π′ are arbitrary permutation matrices.
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with the properties mentioned in Theorem 6.2 is symplectic and the rank of its (1, 1)-
block is k. This latter fact is obvious. To prove that the matrix in (6.1) is symplectic
notice that

Π̃n · · · Π̃k+1




X1

C21 X1

X1E
X−∗(k + 1 : n, :) + C21 X1 E

[C11 C∗21]X
−X2

X−∗(1 : k, :) + [C11 C∗21] X E
−X2E


 =




X X E[
C11 C∗21
C21 0

]
X X−∗ +

[
C11 C∗21
C21 0

]
X E


 ,

where Π̃j are the symplectic interchange matrices introduced in Definition 2.4. The
matrix in the right hand side of the previous equation is symplectic by Theorem
3.1, therefore the second factor in (6.1) is also symplectic because Π̃n · · · Π̃k+1 is
symplectic. Combining this with the fact that S =

[
P
0

0
P

]
is symplectic, we get that

any matrix as the one in (6.1) is symplectic.
Now, let us prove that every symplectic matrix S =

[
S11
S21

S12
S22

]
with rank(S11) = k

can be expressed as (6.1). By Lemma 6.1 S11 = P
[

X1
C21X1

]
, where X1 ∈ Mk,n(C) and

rank(X1) = k. Thus, we can partition

[
PT 0
0 PT

]
S =




X1

C21X1

Y1

Y2

Z1

−X2

K1

−K2


 . (6.2)

Theorem 2.5 guarantees that the n-by-n matrix
[

X1
X2

]
is nonsingular. Thus the sym-

plectic matrix

Π̃n · · · Π̃k+1

[
PT 0
0 PT

]
S =




X1

X2

Y1

K2

Z1

C21X1

K1

Y2




has its (1, 1)-block nonsingular and has the structure described in Theorem 3.1, i.e.,

Π̃n · · · Π̃k+1

[
PT 0
0 PT

]
S =




X1

X2

[
X1

X2

]
E

C

[
X1

X2

] [
X1

X2

]−∗
+ C

[
X1

X2

]
E


 , (6.3)

with C =
[

C11
C21

C∗21
0

]
. The structure (6.1) appears when S is found from equation (6.3).

Corollary 6.3. The set of 2n-by-2n real symplectic matrices whose (1, 1)-block
has rank k depends on

2n2 + n− (n− k)2 + (n− k)
2

real parameters. For complex matrices, see Remark 1.
Proof. This is just the sum of free entries in X =

[
X1
X2

]
, C11, C21 and E.
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6.2. S(1,1) is a dense open subset of S. As announced in Section 3, the set
S(1,1) of symplectic matrices whose (1, 1)-block is nonsingular is a dense open subset
in the group of symplectic matrices, S, when we consider in S the subspace topology
induced by the usual topology on M2n(C). The purpose of this section is to prove
this result. Although it can be accomplished through general properties of algebraic
manifolds, we follow here a different way based on the explicit description presented
in Theorem 6.2. We begin with the technical Lemma 6.4 that shows how to generate
a sequence of symplectic matrices whose (1, 1)-block is nonsingular and whose limit
is a given symplectic matrix S.

Lemma 6.4. Let S ∈ M2n(C) be a symplectic matrix whose (1, 1)-block has rank
k, and let us express S according to Theorem 6.2 as follows

S =
[

P 0
0 P

]



X1

C21 X1

X1E
X−∗(k + 1 : n, :) + C21 X1 E

[C11 C∗21]X
−X2

X−∗(1 : k, :) + [C11 C∗21] X E
−X2E


 ,

where X1 ∈ Mk,n(C), P ∈ Mn(C) is a permutation matrix, X =
[

X1
X2

] ∈ Mn(C) is

nonsingular, and
[

C11
C21

C∗21
0

]
and E are n-by-n Hermitian matrices. Let {C(q)

22 }∞q=1 ⊂
Mn−k(C) be any sequence of nonsingular Hermitian matrices such that limq→∞ C

(q)
22 =

0. Then the sequence

S(q) =
[

P 0
0 P

]



[
Ik 0
C21 C

(q)
22

]
X

[
0 0
0 In−k

]
X−∗ +

[
Ik 0
C21 C

(q)
22

]
X E

[
C11 C∗21
0 −In−k

]
X

[
Ik 0
0 0

]
X−∗ +

[
C11 C∗21
0 −In−k

]
X E


 ,

satisfies
1. S(q) is symplectic for all q ∈ {1, 2, . . .}.
2. The (1, 1)-block of S(q) is nonsingular for all q ∈ {1, 2, . . .}.
3. limq→∞ S(q) = S.

This lemma holds true for k = 0 under the same considerations for which Theorem
6.2 does.

Remark 3. It is very easy to create sequences {C(q)
22 }∞q=1 ⊂ Mn−k(C) as those

appearing in Lemma 6.4. For instance C
(q)
22 = diag(1/q, . . . , 1/q) is one of them.

Proof of Lemma 6.4. It is straightforward to check that the (1, 1)-block of S(q) is
nonsingular for all q and that limq→∞ S(q) = S. To prove that S(q) is symplectic for
all q notice that

Π̃n · · · Π̃k+1

[
PT 0
0 PT

]
S(q) =




X X E[
C11 C∗21
C21 C

(q)
22

]
X X−∗ +

[
C11 C∗21
C21 C

(q)
22

]
X E


 .

The right-hand side of the previous equation is symplectic by Theorem 3.1, and
Π̃n · · · Π̃k+1 and

[
P T

0
0

P T

]
are obviously symplectic, therefore S(q) is symplectic.

Now, we prove the main result in this section.
Theorem 6.5. S(1,1) is a dense open subset of S when we consider in S the

subspace topology induced by the usual topology on M2n(C).
Proof. Lemma 6.4 implies that every symplectic matrix whose (1, 1)-block is

singular is the limit of a sequence of symplectic matrices with nonsingular (1, 1)-
blocks. Therefore S(1,1) is dense in S. Now, let us prove that S(1,1) is open in
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S. Let S =
[

S11
S21

S12
S22

] ∈ S(1,1), S′ =
[S′11

S′21
S′12
S′22

] ∈ M2n(C) with S′11 singular, and
σn be the smallest singular value of S11. Let ‖A‖2 be the spectral norm of the
matrix A. Then, it is well-known that ‖S − S′‖2 ≥ ‖S11 − S′11‖2 ≥ σn [49]. So,
C = {R =

[
R11
R21

R12
R22

] ∈ M2n(C) : ‖S − R‖2 < σn} is an open set in M2n(C) with
R11 nonsingular. By definition of the subspace topology, S ∩ C is open in S, besides
S ∈ S ∩ C, and S ∩ C ⊂ S(1,1). This means that S is an interior point of S(1,1), which
proves that S(1,1) is open in S.

6.3. The (1, 1)-blocks of symplectic matrices and the set of symplectic
matrices with fixed (1, 1)-block. Theorem 6.2 allows us to answer the following
two questions: (i) what matrices can be the (1, 1)-block of a symplectic matrix?; (ii) if
the (1, 1)-block of a symplectic matrix is fixed, what is the set of symplectic matrices
that have this (1, 1)-block?

Theorem 6.6.
1. Every n-by-n complex matrix is the (1, 1)-block of a symplectic matrix.
2. Let G be an arbitrary n-by-n complex matrix with rank k. If G is expressed

as G = P
[

X1
C21X1

]
, where P is an n-by-n permutation matrix, X1 ∈ Mk,n(C), and

rank(X1) = k, then the set of symplectic matrices whose (1, 1)-block is G is

SG =





[
P 0
0 P

]



X1

C21 X1

X1E
X−∗(k + 1 : n, :) + C21 X1 E

[C11 C∗21] X
−X2

X−∗(1 : k, :) + [C11 C∗21]X E
−X2E


 :

X2 ∈ Mn−k,n(C) such that X =
[

X1

X2

]
∈ Mn(C) is nonsingular,

C11 = C∗11 ∈ Mk(C) , E = E∗ ∈ Mn(C)



 . (6.4)

The set SG for real matrices depends on

n2 + n

2
+

k2 + k

2
+ (n− k)n

parameters. For the complex case, see Remark 1.
Proof. Let G be any n-by-n matrix with rank k. Then one can express G =

P
[

X1
C21X1

]
by Lemma 6.1. Theorem 6.2 shows how to construct symplectic matrices

whose (1, 1)-block is G by choosing arbitrary matrices X2 ∈ Mn−k,n(C) such that[
X1
X2

]
is nonsingular, C11 = C∗11 ∈ Mk(C), and E = E∗ ∈ Mn(C). This proves that

every n-by-n matrix is the (1, 1)-block of a symplectic matrix. All the matrices in the
set (6.4) have G as its (1, 1)-block and they are symplectic by Theorem 6.2. Besides,
it is clear from the fact that P and

[
X1
X2

]
are nonsingular that different selections of

X2, C11, and E produce different symplectic matrices with (1, 1)-block equal to G,
i.e., the (n2+n)/2+(k2+k)/2+(n−k)n entries of X2, C11, and E are not redundant
parameters. The final step is to prove that every symplectic matrix whose (1, 1)-block
is G can be expressed as in (6.4). This can be done by the argument presented after
(6.2).

6.4. The first n columns of symplectic matrices and the set of sym-
plectic matrices whose first n columns are fixed. Theorem 6.2 also allows us
to answer the following two questions: (i) what 2n-by-n matrices can be the first n
columns of a 2n-by-2n symplectic matrix?; (ii) if the n first columns of a symplec-
tic matrix are fixed, what is the set of symplectic matrices that have these first n
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columns? We would like to remark that in [19, Proposition 1.4] the following an-
swer to the first question was presented: a 2n-by-n matrix

[
S11
S21

]
contains the n first

columns of a 2n-by-2n symplectic matrix if and only if [S∗11S
∗
21] J

[
S11
S21

]
= 0, i.e., if

and only if the columns of
[

S11
S21

]
span a Lagrangian subspace. This nice characteriza-

tion, however, is not explicit because it characterizes all possible
[

S11
S21

]
as the set of

solutions of a quadratic matrix equation. The first goal in this section is to present
an explicit description of this set that allows us to generate easily its elements.

Theorem 6.7. The set of 2n-by-n matrices
[

S11
S21

]
with rank(S11) = k that are

the first n columns of a 2n-by-2n symplectic matrix is

Sncol
k =





[
P 0
0 P

]



X1

C21 X1

[C11 C∗21]X
−X2


 :

X1 ∈ Mk,n(C) , P ∈ Mn(C) permutation matrix

X =
[

X1

X2

]
∈ Mn(C) nonsingular ,

[
C11 C∗21
C21 0

]
∈ Mn(C) Hermitian



 .

For real matrices, this set depends on (3n2 +n)/2− ((n−k)2 +(n−k))/2 parameters.
In the complex case, see Remark 1.

Proof. It is a direct consequence of Theorem 6.2.
The second result in this section reveals an interesting structure for the set of

symplectic matrices whose first n columns are fixed. In the case of real symplectic
matrices this set is an affine subspace of M2n(R), i.e., a fixed symplectic matrix plus
a vector subspace of M2n(R). It should be noticed, however, that the matrices in this
subspace are not symplectic.

Theorem 6.8. Let S1 ∈ M2n,n(C) be a matrix that contains the n first columns
of a 2n-by-2n symplectic matrix. Let us express S1 according to Theorem 6.7 as

S1 =
[

P 0
0 P

]



X1

C21 X1

[C11 C∗21] X
−X2


 ,

where X =
[

X1
X2

]
, C11, C21, and P have the properties appearing in Theorem 6.7.

Using the elements of S1, we define the symplectic matrix

Z0 =
[

P 0
0 P

]



X1

C21 X1

0
X−∗(k + 1 : n, :)

[C11 C∗21]X
−X2

X−∗(1 : k, :)
0


 , (6.5)

and the set

V =





[
P 0
0 P

]



0
0

X1

C21 X1

0
0

[C11 C∗21] X
−X2




[
0 0
0 E

]
: E = E∗ ∈ Mn(C)





.

Then,
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1. The set of symplectic matrices whose n first columns are S1 is

SS1 = {Z0 + V : V ∈ V} .

2. In the real case SS1 depends on (n2 + n)/2 parameters, that are the entries
of E. For complex matrices, see Remark 1.

3. For real matrices V is a linear subspace of M2n(R).
Proof. This theorem is a straightforward consequence of Theorems 6.2 and 6.7.

Notice that the fact that Z0 is symplectic follows from Theorem 6.2 by taking E = 0.

6.5. Leading principal submatrices of symplectic matrices of dimension
greater than n. Theorem 6.6 guarantees that, if p ≤ n, any p-by-p matrix is the
leading principal submatrix S(1 : p, 1 : p) of a 2n-by-2n symplectic matrix S. A
natural question in this context is if this property can be extended to leading principal
submatrices of dimension greater than n. Notice for instance that for real matrices
the number of entries of an (n+1)-by-(n+1) leading principal submatrix is less than
2n2 + n, i.e., the dimension of the group of 2n-by-2n symplectic matrices, whenever
n > 1. Therefore one might think that any (n + 1)-by-(n + 1) matrix can be the
leading principal submatrix S(1 : (n+1), 1 : (n+1)) of a 2n-by-2n symplectic matrix.
However, the next theorem shows that this is not the case. We focus on real matrices.

Theorem 6.9. Any (n + 1)-by-(n + 1) real matrix A with A(1 : n, 1 : n) non-
singular can be the leading submatrix S(1 : (n + 1), 1 : (n + 1)) of a real 2n-by-2n
symplectic matrix S, except for the fact that the entry A(n + 1, n + 1) is determined
by the others.

Proof. This is a consequence of the parametrization in Theorem 3.1. Let us use the
notation in that theorem. Let G = A(1 : n, 1 : n). Then the first column of E is simply
E(:, 1) = G−1A(1 : n, n + 1) and the first row of C is C(1, :) = A(n + 1, 1 : n)G−1.
Therefore A(n+1, n+1) = G−∗(1, 1)+C(1, :)GE(:, 1) is fixed by the remaining entries
of A.

Notice that the situation for complex matrices is more complicated because it is
no longer true that always the first column of E is E(:, 1) = G−1A(1 : n, n + 1) and
the first row of C is C(1, :) = A(n + 1, 1 : n)G−1, because E(1, 1) and C(1, 1) are
real numbers (E and C are Hermitian). Thus, it is not so simple to select a leading
(n + 1)-by-(n + 1) principal submatrix of a symplectic matrix.

7. Conclusions. Two explicit parameterizations of the group of symplectic ma-
trices have been presented in Theorems 3.2 and 6.2. These results are applied to
parameterize the sets of certain symplectic matrices that have additional structures,
and to parameterize the sets of symplectic matrices with certain fixed blocks. These
parameterizations provide concrete tools for constructing general symplectic matri-
ces, structured symplectic matrices, and symplectic matrices with fixed blocks. These
matrices may be used for instance for testing numerical algorithms.
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