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Abstract

We prove that, given two matrix pencils L and M , if M belongs to the closure of the orbit of
L under strict equivalence, then the dimension of the orbit of M is smaller than or equal to
the dimension of the orbit of L, and the equality is only attained when M belongs to the orbit
of L. Our proof uses only the majorization involving the eigenstructures of L and M which
characterizes the inclusion relationship between orbit closures, together with the formula for the
codimension of the orbit of a pencil in terms of its eigenstruture.
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1. Introduction

The orbit (under strict equivalence) of a matrix pencil A+ λB, with A,B ∈ Cm×n, is the set

O(A+ λB) = {P (A+ λB)Q : P ∈ Cm×m and Q ∈ Cn×n are invertible}.

In other words, it is the set of strictly equivalent pencils to A+λB (where two pencils are strictly
equivalent if one of them can be obtained from the other after multiplying on the left and on the
right by invertible matrices). Strict equivalence preserves the eigenstructure of matrix pencils
and this eigenstructure is revealed by the canonical form under strict equivalence, namely the
Kronecker canonical form (KCF) (see [1, Ch. XII]). Therefore, the orbit of A+ λB is the set of
all m×n pencils with the same eigenstructure as A+λB. This makes orbits relevant tools in the
theory and applications of matrix pencils, since the eigenstructure is one of the most important
pieces of information about matrix pencils in the applications where they arise.

Orbits under strict equivalence of pencils are differentiable manifolds, as they are orbits under
the action of a group (namely, GLm(C) × GLn(C)) on a set (the set of m × n matrix pencils,
which can be identified with Cm×n×Cm×n). Then, the dimension of an orbit is the dimension of
the tangent space at any point of the orbit. Formulas for the dimension of orbits were obtained
in [2] from an explicit description of this tangent space. They have been reformulated in [3].

One interesting topic in the study of orbits of matrix pencils is the inclusion relationship
between their closures. More precisely, to determine whether the orbit of a given pencil, M , is
included in the closure of the orbit of another pencil, L (the closure is considered in the Euclidean
topology of Cm×n×Cm×n, and denoted by O). A characterization for this inclusion relation was
presented in [4] (and later reformulated in subsequent works, like [5]) in terms of majorizations
between some lists which encode the eigenstructure of L and M (see Section 2).



When O(M) ⊆ O(L), then O(L) is expected to be “larger” than O(M) namely dimO(M) ≤
dimO(L). This is actually true and well-known (see the Closed orbit lemma in [6, p. 53]).
However, no direct proof of this inequality is known. The main goal of this paper is to derive the
inequality directly from the characterization of the inclusion relationship between orbit closures
and the known formulas for their dimension.

2. Basic notions and results

Matrix pencils (or pencils for short) will be denoted by capital letters, like L and M (we drop
the reference to the variable λ for brevity). We also use the notation C := C ∪ {∞}.

The KCF is a direct sum (namely, a block diagonal pencil), uniquely determined up to
permutation of the blocks, of pencils (the diagonal blocks) of the following types: (1) Jordan
blocks of size k × k, with k ≥ 1, associated with either finite or infinite eigenvalues, denoted by
Jk(µ), where µ ∈ C is the eigenvalue; (2) Right singular blocks with size k× (k+ 1), with k ≥ 0,
denoted by Lk; and (3) Left singular blocks with size (k + 1) × k, with k ≥ 0, denoted by L⊤

k

(since they are transposes of right singular blocks). The form of these pencils is not relevant in
this note (we refer to [1, Ch. XII] for the details).

Given two lists of non-increasingly ordered integers M = (m1,m2, . . .) and N = (n1, n2, . . .),
we say that N weakly majorizes M, denoted M≺w N , if m1+ · · ·+mj ≤ n1+ · · ·+nj , for j ≥ 1.

The Weyr characteristic of a finite list, S, of non-negative integers is the ordered list W (S) =
(W0(S),W1(S),W2(S), . . .), where Wi(S) is the number of integers in S which are greater than
or equal to i (in particular, W0(S) is the length of S). If S only contains positive integers,
then its Weyr characteristic is W (S) = (W1(S),W2(S), . . .). The Weyr characteristics of the
sizes of the Jordan blocks associated with µ ∈ C, the sizes of the right singular blocks, and
the sizes of the left singular blocks in the KCF of some pencil L are denoted, respectively, by
W (µ,L) = (W1(µ,L),W2(µ,L), . . .), r(L) = (r0(L), r1(L), . . .), and ℓ(L) = (ℓ0(L), ℓ1(L), . . .).
Note that W (µ,L), r(L), and ℓ(L) have a finite number of non-zero elements. We can consider
them as finite lists or infinite lists with all their terms equal to zero from a certain index on.

We highlight that, for every m× n matrix pencil L, the following relation holds

m− ℓ0(L) = n− r0(L) := rank (L), (1)

where rank (L) denotes the rank of L (see, for instance, [1, Ch. XII, §3]).
The following two identities, which hold for every m×n matrix pencil M , will be used later:

m =
∑
i≥1

ri(M) +
∑
i≥0

ℓi(M) +
∑
λ∈C

∑
i≥1

Wi(λ,M), (2)

n =
∑
i≥0

ri(M) +
∑
i≥1

ℓi(M) +
∑
λ∈C

∑
i≥1

Wi(λ,M). (3)

A formula for the codimension of the orbit of an m×n pencil L was obtained in [2, Th. 2.2],
in terms of the sizes of the blocks in its KCF. Recently, the following formula has been presented
in [3] in terms of the Weyr characteristics:

codimO(L) = ℓ0(L)n+ r0(L)m−
∑
i≥0

ri(L)ri+1(L)−
∑
i≥0

ℓi(L)ℓi+1(L) +
∑
λ∈C

∑
i≥1

Wi(λ, L)
2. (4)

The last term in (4) can be replaced with
∑p

k=1

∑
i≥1 Wi(λk, L)

2, where λ1, . . . , λp ∈ C are the
distinct eigenvalues of L, since Wi(λ, L) = 0, for all i ≥ 1, if λ is not an eigenvalue of L.

2



It is well-known (see the Closed orbit lemma in [6, p. 53]) that, if O(M) ⊆ O(L), then
dimO(M) ≤ dimO(L) (or, equivalently, codimO(L) ≤ codimO(M)). The proof of this fact in
[6] uses tools and basic (but sound) results from the theory of algebraic groups. However, it is
possible to get it without the use of such machinery by means of inequalities of lists of integers.
In particular using (4) and the following characterization for the inclusion O(M) ⊆ O(L) (or,
equivalently, M ∈ O(L)) in [4, Th. 3]. Here, we present the reformulation in [5, Lemma 1.3].

Theorem 1. If L and M are matrix pencils of the same size and h := rankL−rankM ≥ 0, then
M ∈ O(L) if and only if the following three majorizations hold: (1) r(M) ≺w r(L) + (h, h, . . .);
(2) ℓ(M) ≺w ℓ(L) + (h, h, . . .); and (3) W (λ, L) ≺w W (λ,M) + (h, h, . . .), for all λ ∈ C.

We will need the following two lemmas on inequalities of non-negative integer lists.

Lemma 2. If k ≥ 1, and d1, . . . , dk and δ1, . . . , δk are integers such that (a) δ1 ≥ δ2 ≥ · · · ≥
δk ≥ 0, and (b) d1 + · · ·+ dj ≥ 0, for all j = 1, . . . , k, then

d1δ1 + · · ·+ dkδk ≥ 0. (5)

If the equality holds in (5), then d1 + · · ·+ dj = 0 or δj = δj+1, for 1 ≤ j ≤ k (with δk+1 := 0).

Proof. Using recursively conditions (a) and (b) in the statement, we get the following inequalities:

d1δ1 + d2δ2 + · · ·+ dkδk ≥ (d1 + d2)δ2 + d3δ3 + · · ·+ dkδk
≥ (d1 + d2 + d3)δ3 + · · ·+ dkδk
...

...
≥ (d1 + d2 + · · ·+ dk)δk ≥ 0.

(6)

For the claim about the equality, note that the equality in (5) implies that all the inequalities in
(6) become equalities. Then, subtracting in each of these equalities the right-hand side from the
left one yields (d1 + d2 + · · ·+ dj)(δj − δj+1) = 0, for all j = 1, 2, . . . , k.

Lemma 3. Let p ≥ 0 and let α1, . . . , αk and β1, . . . , βk be integers such that (i) 0 ≤ αi+1 ≤ αi ≤ p
and 0 ≤ βi+1 ≤ βi ≤ p, for all i = 1, . . . , k − 1, and (ii) α1 + · · · + αj ≤ β1 + · · · + βj, for all
j = 1, . . . , k. Then

k∑
i=1

α2
i ≤

k∑
i=1

β2
i , and (7)

pα1 +

k−1∑
i=1

αiαi+1 ≤ pβ1 +

k−1∑
i=1

βiβi+1. (8)

Moreover, the equality is attained in (7) or (8) if and only if αi = βi, for all i = 1, . . . , k.

Proof. Note that (7) is equivalent to
∑k

i=1(β
2
i −α2

i ) ≥ 0, which is in turn equivalent to
∑k

i=1(βi−
αi)(βi + αi) ≥ 0, which follows from Lemma 2 for di = βi − αi and δi = βi + αi.

Next, let us assume that the equality in (7) holds. By Lemma 2, for each j = 1, 2, . . . , k,

αj + βj = αj+1 + βj+1 (where αk+1 = βk+1 = 0) or
∑j

i=1(βi − αi) = 0. In addition, by the
assumption (i), the equality αj + βj = αj+1 + βj+1 is equivalent to αj = αj+1 and βj = βj+1. If∑j

i=1(βi − αi) > 0 for all j = 1, 2, . . . , k, then αj + βj = αj+1 + βj+1 for j = 1, 2, . . . , k, which

implies that αj = βj = 0 for j = 1, 2, . . . , k and leads to a contradiction. Then,
∑j

i=1(βi−αi) = 0

for at least one 1 ≤ j ≤ k. Let j0 = min{j :
∑j

i=1(βi − αi) = 0} and note that j0 = 1,

because otherwise α1 = · · · = αj0 and β1 = · · · = βj0 , which implies j0(β1 − α1) =
∑j0

i=1(βi −
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αi) = 0, namely β1 − α1 = 0, which is a contradiction. Thus β1 = α1. Then, the sequences
α2 ≥ · · · ≥ αk ≥ 0 and β2 ≥ · · · ≥ βk ≥ 0 satisfy the assumptions of the statement and the
equality

∑k
i=2 α

2
i =

∑k
i=2 β

2
i , so the argument above applied to these sequences yields α2 = β2.

Continuing in this way we get αi = βi, for i = 1, 2, . . . , k.
Now let us prove (8). Lemma 2 applied to di = βi − αi and δi = αi−1, for i = 1, 2, . . . , k,

with α0 := p, gives us p(β1 − α1) +
∑k−1

i=1 αi(βi+1 − αi+1) ≥ 0, which is equivalent to

pα1 +

k−1∑
i=1

αiαi+1 ≤ pβ1 +

k−1∑
i=1

αiβi+1. (9)

Similarly, Lemma 2 with di = βi − αi and δi = βi+1, for i = 1, 2, . . . , k − 1, yields pβ1 +∑k−1
i=1 αiβi+1 ≤ pβ1 +

∑k−1
i=1 βiβi+1, which combined with (9) gives (8).

Finally, if we assume that the equality is attained in (8) then it is also attained in (9). Lemma
2 implies that, for each j = 1, 2, . . . , k, α1+ · · ·+αj = β1+ · · ·+βj or αj−1 = αj , where α0 := p.
If α1 < β1, then β1 ≤ p = α1, which is a contradiction. Thus α1 = β1. If there exists ℓ > 1 such
that αj = βj and αℓ < βℓ, for j = 1, . . . , ℓ− 1 < k, then αℓ = αℓ−1 = βℓ−1 ≥ βℓ, which is again
a contradiction. Then, it must be αi = βi, for i = 1, 2, . . . , k.

3. The main result

We want to prove the following result.

Theorem 4. Let L and M be two m × n matrix pencils with rankM ≤ rankL, and set h :=
rankL− rankM . If the following three majorization relationships are satisfied

(M1) r(M)≺w r(L) + (h, h, . . .),

(M2) ℓ(M)≺w ℓ(L) + (h, h, . . .), and

(M3) W (µ,L)≺w W (µ,M) + (h, h, . . .), for all µ ∈ C,

then
codimO(L) ≤ codimO(M), (10)

where codimO(N) denotes the codimension of the orbit of N , given by (4). Moreover, the equality
holds in (10) if and only if h = 0 and “≺w” is replaced by “=” in (M1)–(M3).

A key tool in our proof is a characterization of the inclusion relationship between orbit
closures given in Theorem 1 (namely, a characterization of (M1)–(M3) in Theorem 4) by means
of six elementary transformations. This result was derived in [7] following [4]. See also [8] for a
complete modern treatment. Here we follow [9, Th. 2.2], where the notation A⇝ B means that
the pencil A is replaced by the pencil B and J0(µ) is the empty matrix.

Theorem 5. Let L and M be two matrix pencils as in the statement of Theorem 4. Then (M1)–
(M3) in Theorem 4 hold if and only if the KCF of L can be obtained from the one of M after a
sequence of changes, where each change can be of the following six types:

1. Lj−1 ⊕ Lk+1 ⇝ Lj ⊕ Lk, with 1 ≤ j ≤ k.

2. L⊤
j−1 ⊕ L⊤

k+1 ⇝ L⊤
j ⊕ L⊤

k , with 1 ≤ j ≤ k.

3. Lj ⊕ Jk+1(µ)⇝ Lj+1 ⊕ Jk(µ), with j, k ≥ 0 and µ ∈ C.
4. L⊤

j ⊕ Jk+1(µ)⇝ L⊤
j+1 ⊕ Jk(µ), with j, k ≥ 0 and µ ∈ C.

5. Jj(µ)⊕ Jk(µ)⇝ Jj−1(µ)⊕ Jk+1(µ), with 1 ≤ j ≤ k and µ ∈ C.
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6. Lp ⊕ L⊤
q ⇝

⊕s
i=1 Jni(µi), with p+ q + 1 =

∑s
i=1 ni, µi ∈ C, and µi ̸= µi′ for i ̸= i′.

Now, we are in a position to prove Theorem 4.

Proof of Theorem 4. By (4), the inequality (10) is equivalent to

ℓ0(M)n+ r0(M)m−
∑
i≥0

ri(M)ri+1(M)−
∑
i≥0

ℓi(M)ℓi+1(M) +
∑
λ

∑
i≥1

Wi(λ,M)2

≥ ℓ0(L)n+ r0(L)m−
∑
i≥0

ri(L)ri+1(L)−
∑
i≥0

ℓi(L)ℓi+1(L) +
∑
λ

∑
i≥1

Wi(λ, L)
2.

(11)

Using that r0(M) − r0(L) = ℓ0(M) − ℓ0(L) = h, which follows from (1), we get ℓ0(M)n +
r0(M)m− ℓ0(L)n− r0(L)m = h(m+ n). Hence, (11) (and, so, (10)) is equivalent to∑

i≥0

ri(L)ri+1(L)−
∑
i≥0

ri(M)ri+1(M) +
∑
i≥0

ℓi(L)ℓi+1(L)−
∑
i≥0

ℓi(M)ℓi+1(M)

+
∑
λ

∑
i≥1

Wi(λ,M)2 −
∑
λ

∑
i≥1

Wi(λ, L)
2 + h(m+ n) ≥ 0.

(12)

We first prove (12) when h = 0. Note that, if we set αi := Wi(λ, L) and βi := Wi(λ,M), for
i ≥ 1, then the definition of the Weyr characteristic guarantees that αi, βi satisfy (i) in Lemma
3, whereas condition (M3) guarantees that (ii) in that lemma is also satisfied. Hence, (7) implies∑

λ

∑
i≥1

Wi(λ, L)
2 ≤

∑
λ

∑
i≥1

Wi(λ,M)2. (13)

Similarly, if either αi := ri(M), βi := ri(L), for i ≥ 1, together with p := r0(L) = r0(M) (since
h = 0), or αi := ℓi(M), βi := ℓi(L), for i ≥ 1, together with p := ℓ0(L) = ℓ0(M) (again because
h = 0), then (M1)-(M2) guarantee that αi, βi, p satisfy (i)–(ii) in Lemma 3, so (8) gives∑

i≥0

ri(M)ri+1(M) ≤
∑
i≥0

ri(L)ri+1(L) and
∑
i≥0

ℓi(M)ℓi+1(M) ≤
∑
i≥0

ℓi(L)ℓi+1(L). (14)

Adding up (13) and (14) we obtain (12) for h = 0.
For the case h > 0, we are going to prove (12) for L = N ⊕NL and M = N ⊕NM , with NL

and NM being the pencils in, respectively, the right-hand side and the left-hand side of each rule
1-6 in the statement of Theorem 5. Note that h = 0 in rules 1-5, and we have already proved
that (12) holds in this case. Hence, it only remains to prove that it holds for rule 6, namely for

M = N ⊕ Lp ⊕ LT
q ⇝ L = N ⊕

s⊕
i=1

Jni
(λi),

s∑
i=1

ni = p+ q + 1, λi ̸= λj , i ̸= j,

for some pencil N . Then, r(M) = r(L) + (1, . . . , 1︸ ︷︷ ︸
p+1

, 0, . . . , 0), ℓ(M) = ℓ(L) + (1, . . . , 1︸ ︷︷ ︸
q+1

, 0, . . . , 0),

and
W (λi, L) = W (λi,M) + (1, . . . , 1︸ ︷︷ ︸

ni

, 0, . . . , 0), i = 1, . . . , s, (15)

so, in particular, h = r0(M)− r0(L) = 1. Note that (12) is equivalent to∑
i≥0

ri(L)ri+1(L) +
∑
i≥0

ℓi(L)ℓi+1(L) +
∑
λ

∑
i≥1

Wi(λ,M)2 + h(m+ n)

≥
∑
i≥0

ri(M)ri+1(M) +
∑
i≥0

ℓi(M)ℓi+1(M) +
∑
λ

∑
i≥1

Wi(λ, L)
2.

(16)

5



Starting from the left-hand side in (16), with h = 1, we get:∑
i≥0

ri(L)ri+1(L) +
∑
i≥0

ℓi(L)ℓi+1(L) +
∑
λ

∑
i≥1

Wi(λ,M)2 + (m+ n)

=

p−1∑
i=0

(ri(M)− 1)(ri+1(M)− 1) + (rp(M)− 1)rp+1(M) +
∑

i≥p+1

ri(M)ri+1(M)

+

q−1∑
i=0

(ℓi(M)− 1)(ℓi+1(M)− 1) + (ℓq(M)− 1)ℓq+1(M) +
∑

i≥q+1

ℓi(M)ℓi+1(M)

+
∑

λ̸=λ1,...,λs

∑
i≥1

Wi(λ, L)
2 +

s∑
k=1

nk∑
i=1

(Wi(λk, L)− 1)2 +

s∑
k=1

∑
i≥nk+1

Wi(λk, L)
2 +m+ n

=
∑
i≥0

ri(M)ri+1(M)−
p−1∑
i=0

(ri(M) + ri+1(M)) + p− rp+1(M)

+
∑
i≥0

ℓi(M)ℓi+1(M)−
q−1∑
i=0

(ℓi(M) + ℓi+1(M)) + q − ℓq+1(M)

+
∑

λ̸=λ1,...,λs

∑
i≥1

Wi(λ, L)
2 +

s∑
k=1

nk∑
i=1

Wi(λk, L)
2 − 2

s∑
k=1

nk∑
i=1

Wi(λk, L)

+

s∑
k=1

nk +

s∑
k=1

∑
i≥nk+1

Wi(λk, L)
2 +m+ n

=
∑
i≥0

ri(M)ri+1(M) +
∑
i≥0

ℓi(M)ℓi+1(M) +
∑
λ

∑
i≥1

Wi(λ, L)
2

−2

p−1∑
i=1

ri(M)− r0(M)− rp(M)− rp+1(M) + p

−2

q−1∑
i=1

ℓi(M)− ℓ0(M)− ℓq(M)− ℓq+1(M) + q − 2

s∑
k=1

nk∑
i=1

Wi(λk, L) +

s∑
k=1

nk +m+ n.

Hence, it remains to show that

m+ n+ p+ q +

s∑
k=1

nk − 2

(
p−1∑
i=1

ri(M) +

q−1∑
i=1

ℓi(M) +

s∑
k=1

nk∑
i=1

Wi(λk, L)

)
−r0(M)− rp(M)− rp+1(M)− ℓ0(M)− ℓq(M)− ℓq+1(M) ≥ 0.

(17)

Adding up (2) and (3), we get

m+ n = 2

∑
i≥1

ri(M) +
∑
i≥1

ℓi(M) +
∑
λ

∑
i≥1

Wi(λ,M)

+ r0(M) + ℓ0(M). (18)

From (15) we get the following identity:

∑
λ

∑
i≥1

Wi(λ,M) +

s∑
k=1

nk =
∑
λ

∑
i≥1

Wi(λ, L) ≥
s∑

k=1

nk∑
i=1

Wi(λk, L). (19)
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From (18) and the identity
∑s

k=1 nk = p+ q + 1, the left-hand side of (17) is equal to

2

 s∑
k=1

nk +
∑
λ

∑
i≥1

Wi(λ,M)−
s∑

k=1

nk∑
i=1

Wi(λk, L) +
∑

i≥p+2

ri(M) +
∑

i≥q+2

ℓi(M)


+rp(M) + rp+1(M) + ℓq(M) + ℓq+1(M)− 1.

(20)

By (19) and rp(M) ≥ 1, ℓq(M) ≥ 1, we conclude that (20) is at least 1, so (17) follows.
Now, let us prove the claim in the statement regarding the equality in (10). First, we note

that h = 0 for rules 1–5 in the statement of Theorem 5, so the equality in (10) implies that the
equality is attained in (12) (for h = 0), and then it is also attained in (13) and (14). By Lemma
3, this implies W (λ, L) = W (λ,M), for all λ ∈ C, together with r(L) = r(M) and ℓ(L) = ℓ(M).

For rule 6 in Theorem 5, we have proved that the expression in (20) is at least 1, which implies
that codimO(M) − codimO(L) ≥ 1 each time that rule 6 is applied. Thus, if the equality in
(10) is attained, only rules 1–5 are allowed in going from M to L, and in this case h = 0 and the
identity holds in the majorizations (M1)–(M3) in the statement. □

We want to emphasize that setting h = 0 and replacing “≺w” by “=” in (M1)–(M3) in the
statement of Theorem 4 is equivalent to say that M ∈ O(L).

An alternative approach to prove Theorem 4 is by using the formulas for the codimension
in terms of the Segre characteristic in [2]. Following a similar approach to the one in this note,
this would require to analyze independently all six changes of the eigenstructure described in
Theorem 5, and to prove that in every single change the codimension inequality is satisfied.
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