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Abstract

The solution of a system of linear equations is by far the most important problem in Applied Mathematics.
It is important both in itself and because it is an intermediate step in many other relevant problems. Gaussian
elimination is nowadays the standard method for solving this problem numerically on a computer and it was
the �rst numerical algorithm to be subjected to rounding error analysis. In 1948, Alan Turing published a
remarkable paper on this topic: �Rounding-o� errors in matrix processes� (Quart. J. Mech. Appl. Math.
1, pp. 287-308). In this paper, Turing formulated Gaussian elimination as the matrix LU factorization and
introduced the �condition number of a matrix�, both of them fundamental notions of modern Numerical
Analysis. In addition, Turing presented an error analysis of Gaussian elimination for general matrices that
deeply in�uenced the spirit of the de�nitive analysis developed by James Wilkinson in 1961. Alan Turing's
work on Gaussian elimination appears in a fascinating period for modern Numerical Analysis. Other giants
of Mathematics, as John Von Neumann, Herman Goldstine, and Harold Hotelling were also working in the
mid-1940s on Gaussian elimination. The goal of these researchers was to �nd an e�cient and reliable method
to solve systems of linear equations in modern �automatic computers�. At that time, it was not clear at
all whether Gaussian elimination was a right choice or not. The purpose of this paper is to revise, at an
introductory level, the contributions of Alan Turing and other authors to the error analysis of Gaussian
elimination, the historical context of these contributions, and their in�uence on modern Numerical Analysis.

1 Introduction

Alan Turing made several contributions that are considered fundamental in Mathematics and Computer Science
and that are widely known by all mathematicians and computer scientists. Even more, the names of some of
these contributions are also very well known by many educated (but not specialists) people as, for instance, the
name Turing Machine or the name Enigma. In addition, Alan Turing made other fundamental contributions
that remain almost unknown for most mathematicians and computer scientists and, of course, completely
unknown outside the academic world. One of these contributions is Alan Turing's work on the error analysis
of the method of Gaussian Elimination (GE) for solving systems of linear equations, which is one of the most
important and ubiquitous numerical algorithms and, perhaps, the most, since it is used by many other numerical
algorithms. Curiously enough, basic versions of GE are explained in high school courses of Mathematics and,
therefore, GE is one of the best known algorithms by common people, but most professional mathematicians
and computer scientists are unaware of its relationship with Alan Turing's scienti�c contributions.

Many numerical analysts know that Alan Turing was one of the �rst researchers working on the error analysis
of GE. This is clearly explained in some standard references on Numerical Analysis. In particular, an excellent
text that gives a detailed account on Turing's contributions to the analysis of GE is Nicholas Higham's �Accuracy
and Stability of Numerical Algorithms� [12]. Not incidentally, Nicholas Higham is �Richardson Professor� of
Applied Mathematics in the School of Mathematics at Alan Turing Building in The University of Manchester,
precisely the institution where Alan Turing spent the last part (1948-1954) of his short life, and [12] is dedicated
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to Alan Turing and James Wilkinson, who will be another important character in our story (see Figure 1).
Concerning Alan Turing's work on GE, one can read the following paragraph in [12, pp. 184-185]:

�The experiences of Fox, Huskey, and Wilkinson prompted Turing to write a remarkable paper
�Rounding-o� errors in matrix processes� [20]. In this paper, Turing made several important con-
tributions. He formulated the LU factorization of a matrix ... showing that Gaussian elimination
computes an LU factorization. He introduced the term �condition number� and de�ned two matrix
condition numbers ... He exploited backward error ideas ... Finally, and perhaps most importantly,
he analysed Gaussian elimination with partial pivoting for general matrices and obtained a bound for
(the error) ...�

I am not mentioning above all the contributions of Turing listed by N. Higham in [12], but only those that I
will consider in this manuscript because, in my opinion, they are the most interesting for a general audience.

Alan Turing (1912-1954) James Wilkinson (1919-1986)

Figure 1: Alan Turing on the left and James Wilkinson on the right.

Probably most mathematicians and computer scientists, and for sure most common people, are unaware
that Alan Turing was not the only great mathematician working on the error analysis of GE in the 1940's.
However, for numerical analysts it is well known that, before him, other giants of Mathematics considered the
error analysis of GE as a very important problem and worked on it in the 1940's. In fact, although Alan
Turing certainly did a number of key and original contributions in [20], some of the results presented in [20]
were previously known or were closely related to previous work by other authors. This has been pointed out in
the complete recent survey �John von Neumann's Analysis of Gaussian Elimination and the Origins of Modern
Numerical Analysis�1 by Joseph Grcar [9], where one can �nd the following [9, p. 633]:

�Turing coined the name �condition number� ... for measures of sensitivity of problems to error, and
he acronym �LU� for the general decomposition. Textbooks tend to intimate that Turing introduced
modern concepts by introducing the modern nomenclature, but the history is more complex. Algo-
rithms had been described with matrix decompositions before Turing's paper ... Measures of sensitivity
evolved from as early as Wittmeyer in the 1930s ...�

In this context, the main goal of this manuscript is to bring to the attention of a �widest as possible� audience
the work of Alan Turing on GE and to explain why this problem was (�is�) so important in Numerical Analysis
in particular, and in Mathematics in general. For this purpose, I aim to explain at an introductory level,
accessible to readers with a basic background in Mathematics (the level of a last high school course), the most
important ideas included in [20] and their role in modern Numerical Analysis. I also want to brie�y describe
the fascinating historical period in which Alan Turing's paper [20] was written and published, as well as the
work made by other very relevant researchers (Hotelling, von Neumann, Goldstine, Wilkinson) on the rounding
error analysis of GE before and after Turing's paper. I will stress the unique spirit of Alan Turing's approach to

1The title of [9] and the present paper are rather similar and this is not by chance!!
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the problem and its in�uence on modern Numerical Analysis. In my opinion, this spirit re�ects very well the
genius of Turing and establishes a di�erence between his work and the work by others. Finally, I will discuss a
couple of very recent developments on error analysis of GE and the main problem still open on this topic.

Before starting, let me say a few words about what this paper is not. It is not a rigorous mathematical
paper, since Numerical Analysis is a branch of Mathematics full of technical details that can hide the main ideas
for non-specialist readers. Therefore, I will omit to state many rigorous theorems in the exposition, although I
will provide references where interested readers may �nd complete information. Moreover, this paper is not a
work on the History of Mathematics. After reading with detail Turing's paper [20] and some recent works on
the History of Numerical Analysis, I am convinced that [20] deserves to be analyzed in depth, both from the
point of view of Turing's scienti�c biography and from the point of view of the History of Numerical Analysis.
An extensive study in the spirit of the recent paper by Joseph Grcar on von Neumann's contribution to GE [9]
is clearly necessary. However, this would lead to a very long paper or to a paper for specialists who already
know the error analysis of GE and are interested in its origins and evolution. Therefore, I have chosen to write
a paper on modern mathematical results, with modern mathematical notation, and where the history enters in
the form of comments and remarks instead as explicit statements of original results from the 1940's.

The paper is organized as follows. In Section 2, a brief history of GE is presented and the classic and
modern descriptions of GE are refreshed for those readers who have forgotten GE or who are not familiar with
its modern treatment. Section 3 describes the historical context, from the point of view of Mathematics and
Computer Science, in which the paper [20] was published. Since the title of [20] is �Rounding-o� errors in matrix
processes�, it is essential to describe in Section 4 in simple terms which are the errors committed by GE when
it is run on a computer. This will allow us to understand why this problem is so interesting and di�cult and
to understand why a complete solution still remains as an open problem. The error analysis of GE currently
accepted was not developed in the 1940's. It was developed by James Wilkinson in 1961 [24]. Therefore, we
discuss in Section 5 some key points about what Alan Turing did and did not in [20]. It is important to note
that rounding error analysis of GE is still an active area of research and some recent works in this area are
brie�y described in Section 6. Finally, some conclusions are presented in Section 7.

2 A brief history and description of Gaussian elimination

Classic books on the History of Mathematics, as well as recent studies on this subject, place the origins of
GE in a variety of ancient texts from di�erent places and times: China, Greece, Rome, India, medieval
Arabic countries, and European Renaissance. However, in my opinion, it is not exact to say that these an-
cient/medieval/renaissence texts describe what we understand today as the method of GE, since these texts
mainly present some speci�c problems that are solved in a way that �ts in what today is accepted as GE, but
they do not include any explicit statement of the set of rules that constitute the method of GE. In this context,
I refer the reader to the excellent recent papers [8, 10] for a detailed account of the History of GE (including
many interesting technical details) and of the researchers who contributed to its development. Here, for the
sake of brevity and simplicity, I will only highlight the most important contributions and contributors.

The developments of GE that include explicit statements of algorithmic rules can be organized essentially
in three periods [10] that are called the schoolbook elimination period, the professional elimination period, and
the modern elimination period.

The schoolbook elimination period corresponds to the development of GE essentially as it is presented in
current high school textbooks. This period started with Isaac Newton (see Figure 2), who lectured on Algebra
as it appeared in Renaissance texts while working for his promotion to the Lucasian professorship. In 1669-1670
Newton wrote some notes where he established the systematic rules for solving systems of linear equations via
the extermination (today elimination) method [8]. Taking into account the extremely powerful and systematic
mind of Newton, I conjecture that he was not satis�ed with the unsystematic way in which Renaissance Algebra
texts described the solution of linear systems of equations and that this motivated him to write his notes.
These notes remained unpublished until they were published in Latin in 1707 and in English in 1720. The
clarity of these notes, as well as the immense prestige of Newton, motivated that many Algebra textbooks in
the eighteenth century presented the solution of systems of linear equations by following essentially Newton's
rules. We only mention here the very well-presented text �Elemens d'algèbre� (Paris, 5th ed., 1804) by Sylvestre
Lacroix, where the modern word elimination was used for the �rst time instead of extermination.

The way GE is presented in high school textbooks is highly ine�cient for solving moderately large systems
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Isaac Newton (1643-1727)

Carl Friedrich Gauss (1777-1855)

Figure 2: Isaac Newton established �rst the rules of Gaussian elimination as they are still presented in current
high school textbooks. Carl Friedrich Gauss developed e�cient methods for solving normal equations, i.e., the
special type of linear systems arising in the solution of least squares problems, via Gaussian elimination.

of linear equations via hand computations. This was not a problem for some time, because large systems of
linear equations did not arise in relevant real-world applications. This abruptly changed with the invention of
the method of least squares by Adrien-Marie Legrendre (1805) and Carl Friedrich Gauss (1809) (or by Gauss
and Legendre in reverse order!) at the beginning of the nineteenth century.

The method of least squares answered the question of how to make accurate predictions from measurements
with errors, a question that was motivated by practical measurements in astronomy and, more important in real-
life applications, by geodetic research for cartography, an activity that was generously funded by governments
in the nineteenth century. The least squares method �nds a minimum of a certain quadratic function of many
variables, but the important point for our story is that this minimum is the solution of a linear systems of
equations that are called the normal equations. These systems of equations are very particular since, in modern
nomenclature, their coe�cient matrices are symmetric and positive de�nite. At the time of Gauss, normal
equations might have as much as 20 equations and 20 unknowns and this was a formidable task for professional
human computers if the elimination method was applied as described by Newton to compute the solution.

These di�culties motivated Gauss to modify the high school elimination method of Newton in a nontrivial
way and this is the start of the professional elimination period of GE. The details are too technical to be
explained here (see [8]), but the key point of Gauss's method is to avoid to write symbolic algebraic equations
and unknowns. By the use of a clever notation, Gauss computations were stored in lists of numbers. In addition,
he halved the number of needed arithmetic operations with respect the high school elimination method by taking
into account the symmetry of normal equations. Gauss's method does not super�cially resemble neither high
school elimination method nor modern GE, but it was very important from the point of view of applications
and it became part of the syllabus of geodesists, cartographers, and military engineers.

Gauss's method was signi�catively improved by Myrick Doolittle (1881), André-Louis Cholesky (1924), who
adapted it for being used with mechanical multiplying calculators, and Prescott Durand Crout (1941), who
developed a method valid for general systems of equations and not only for normal equations. This essentially
closes the professional elimination period of GE, since modern computers came into scene in the next few years.

The modern elimination period of GE started in 1947 with the key paper [21], by John von Neumann
and Herman Goldstine, and continued one year later with the paper [20], by Alan Turing, that motivates
this manuscript. These authors considered implementations of GE with the aim of being used on digital,
electronic, and programmable computers, i.e., modern computers. The motivation was not just to get an e�cient
implementation, but also a guaranteed and reliable implementation from the point of view of the rounding errors
committed by modern computers. This required the development both of algorithmic improvements and of error
analyses of GE. The interest on error analysis represents a fundamental di�erence with respect the activity in
previous periods. The de�nitive error analysis of GE accepted today was presented by James Wilkinson in [24].
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The contents of the references mentioned in this paragraph will be described in more detail in next sections.
It is important to observe that, since the 1940's, the research on di�erent aspects of GE has remained, and

still remains, very active. The interested reader is invited to consult the wide collection of references included
in [12, Chapters 8-14], as well as, the recent, complete, and easy-to-read review [13]. It may be also interesting
to know that during the early stages of the modern elimination period GE took the name �Gaussian� (before,
it was known simply as the �elimination method�), apparently as a consequence of misattributing high school
elimination to Gauss instead of Newton. More precisely, Turing writes �...Gauss's elimination method. This is
the method almost universally taught in schools...� in the �rst page of [20] and it seems that George Forsythe
was the �st to call it �Gaussian elimination� in 1953 [8, 10].

2.1 Refreshing Gaussian elimination from high school with Newton

In this section, I refresh the method of GE as it appears in high school textbooks via an example. Later, I
will use the same example to illustrate how modern GE is presented in Numerical Analysis textbooks at the
University-level. So, I propose the readers to imagine themselves again very young, living the good times of high
school, and, for making this exercise even more exciting, the readers may think that Newton is their teacher!

Consider that we are asked to solve the following system of equations.

2x1 + 3x2 − x3 + x4 = 9
−4x1 − 9x2 + 3x3 + 2x4 = −15

6x1 + 21x2 − 3x3 − 11x4 = 23
2x1 − 3x2 − 27x3 − 3x4 = −37

. (1)

The key point of Gaussian elimination is to eliminate unknowns from certain equations. For describing the
method of GE in a precise way, we number the equations in (1) from top to bottom, i.e., the top equa-
tion is equation(1) and the bottom equation is equation(4). In a �rst stage, we eliminate x1 in all equa-
tions below the �rst one via the following replacement operations: replace �equation(2)� by �equation(2) −
(−2)×equation(1)�; replace �equation(3)� by �equation(3) − 3×equation(1)�; and replace �equation(4)� by �equa-
tion(4) − 1×equation(1)�. So, we obtain the linear system

2x1 + 3x2 − x3 + x4 = 9
− 3x2 + x3 + 4x4 = 3

12x2 − 14x4 = −4
− 6x2 − 26x3 − 4x4 = −46

.

Next, we perform the second stage, where we eliminate x2 in all equations below the second one via the
replacement operations: replace �equation(3)� by �equation(3) − (−4)×equation(2)�; and replace �equation(4)�
by �equation(4) − 2×equation(2)�. So, we obtain the linear system

2x1 + 3x2 − x3 + x4 = 9
− 3x2 + x3 + 4x4 = 3

4x3 + 2x4 = 8
− 28x3 − 12x4 = −52

.

Finally, we perform the third stage, where we eliminate x3 in all equations below the third one via the replace-
ment operation: replace �equation(4)� by �equation(4) − (−7)×equation(3)�. This leads to the following upper
triangular linear system

2x1 + 3x2 − x3 + x4 = 9
− 3x2 + x3 + 4x4 = 3

4x3 + 2x4 = 8
2x4 = 4

. (2)

This in the end of the GE process that has transformed the linear system (1), which we did not know how
to solve it, into the linear system (2), which has the same solution and that can be solved very easily: from
equation(4) we compute x4; next from equation(3) we compute x3; next from equation(2) we compute x2; and,
�nally, from equation(1) we compute x1. This procedure of solving (2) is known as backward substitution, and
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it computes the following solution:

2x1 + 3x2 − x3 + x4 = 9 −→ x1 = 1
− 3x2 + x3 + 4x4 = 3 −→ x2 = 2

4x3 + 2x4 = 8 −→ x3 = 1
2x4 = 4 −→ x4 = 2

. (3)

The process above can be easily generalized to systems with any number of equations and unknowns.
The linear system (1) has some key features that have to be commented. First note that (1) has the same

numbers of equations as unknowns and that its solution is unique. In more advanced mathematical language,
this is equivalent to say that the coe�cient matrix of (1) is nonsingular. This is the only case in which GE
is used on modern computers and is the only case that is considered in this paper2. Probably, many readers
recall from their time in high school that GE was also used for linear systems with any number of equations and
unknowns for determining whether they have solution or not, and/or, in the case they have, to �nd a parametric
description of the in�nite number of solutions. However, in these cases, GE is not reliable from a numerical
point of view and other methods are used in actual numerical computations [3, 7, 19].

Another feature of (1) is that GE has run without interchanging equations. Interchanges of equations are
needed, for instance, if after the second stage x3 does not appear in equation(3). I will discuss later how
equations are interchanged when GE is currently implemented on computers. Finally, the readers might recall
that in high school they used, in addition to replacement and interchange operations, scaling of equations, i.e.,
to multiply an equation by a nonzero number. Scaling operations are never used in modern GE.

I am almost sure that most readers, apart from many happy memories in high school, have also recalled that
to perform GE by hand is a long and boring process and that it is easy to commit errors that spoil the whole
solution. An important point to be noted is that, although GE, as explained by Newton, is very e�cient from
the point of view of the number of arithmetic operations, it requires to write several systems of equations. In our
toy example (1), we have written just 4, but for solving a system of 20 equations with 20 unknowns, we should
write 20 large systems! This makes Newton's high school elimination very ine�cient for solving large systems
and motivated Gauss to developed his nontrivial professional elimination method. We skip the description of
this procedure and move directly to the description of modern GE.

2.2 From high school to modern GE: the LU Matrix Factorization

The most important mathematical concept of modern GE is the LU matrix factorization. It allows us to state
in a compact and elegant matrix language the GE method described above, it plays an important role in the
implementation of GE in modern computers, and, �nally, it is essential to facilitate the rounding error analysis
of the algorithm. To explain the LU factorization, we use again the linear system (1). To begin with, let us
write (1) in matrix notation as

Ax = b, where A =


2 3 −1 1
−4 −9 3 2

6 21 −3 −11
2 −3 −27 −3

 , x =


x1
x2
x3
x4

 , b =


9
−15
23
−37

 . (4)

The matrix A is called the coe�cient matrix of system (1), x the unknown vector, and b the vector of inde-
pendent terms (since it does not depend on the unknowns). The replacement operations for equations that
were performed for transforming (1) into the upper triangular system (2) can be translated into replacement
operations for rows of the matrix A and by applying them

A =


2 3 −1 1
−4 −9 3 2

6 21 −3 −11
2 −3 −27 −3

 is transformed into U =


2 3 −1 1
0 −3 1 4
0 0 4 2
0 0 0 2

 , (5)

where U is the coe�cient matrix of the system (2). Note that, at the moment, we are not paying attention
to the vector b in (4). Let us collect the information in the paragraphs after (1) and list the row replacement

2Readers should note that for systems having the same number of equations as unknowns this is, by far, the most frequent case
in practice, since the probability that a square matrix is singular is zero.
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operations applied in (5)
row(2) → row(2) − (−2)× row(1)
row(3) → row(3) − 3× row(1)
row(4) → row(4) − 1× row(1)
row(3) → row(3) − (−4)× row(2)
row(4) → row(4) − 2× row(2)
row(4) → row(4) − (−7)× row(3)

. (6)

The numbers −2, 3, 1,−4, 2, and −7 that multiply rows in each row replacement operation in (6) are called the
multipliers of GE and our next step is to store them in a 4 × 4 matrix L. The entries where they are stored
are easily determined by the two rows involved in each replacement operation in (6): −2 is stored in the entry
(2, 1), 3 is stored in the entry (3, 1), 1 is stored in the entry (4, 1), and so on. Clearly, the multipliers only �ll
the entries below the diagonal of L. The remaining entries are de�ned as follows: all diagonal entries are set
equal to one and all entries above the diagonal are set equal to zero. In this way we get

L =


1 0 0 0
−2 1 0 0

3 −4 1 0
1 2 −7 1

 . (7)

Up to now, the matrix L is nothing else that a table where the multipliers of GE are stored, but from (5) and
(7), the reader may check that the following miracle happens!!

A = LU , (8)

which is the very famous LU factorization of the matrix A. This factorization expresses A as a product of a
lower triangular matrix L with 1's on the diagonal times an upper triangular matrix U . The LU factorization
exists for almost all matrices and was introduced by von Neumann and Goldstine in 1947 in their celebrated
paper [21]. It was also considered later by Turing in [20], where its current name LU was introduced. Here L
stands for �lower� (triangular) and U for �upper� (triangular). Turing also stated the condition for the existence
and uniqueness of the LU factorization in terms of the nonsingularity of the leading principal minors of A [20,
p. 289], as it is still stated today in standard texts on matrix computations [3, 7, 12].

I want to remark that we have constructed (8) via the multipliers of GE and the �nal matrix U obtained by
the GE method. Conversely, if a matrix A is constructed as a product of an arbitrary lower triangular matrix
L with 1's on the diagonal times an arbitrary upper triangular matrix U , then the multipliers of GE applied on
A are the lower triangular entries of L and U is the �nal matrix obtained by GE.

The LU factorization is not the only factorization of a matrix involving triangular factors that is important in
Numerical Analysis. In fact, accurate and e�cient algorithms for computing di�erent triangular factorizations
of matrices were considered among the top ten algorithms of the twentieth century [5], since they are widely
used in the numerical solution of many applied problems.

2.3 Modern GE: Solving linear systems via the LU factorization

Nowadays, the solution of a linear system Ax = b, where A is an n × n matrix, via the LU factorization is
performed in three steps:

1. Compute the LU factorization of A: A = LU .

2. Solve for y the lower triangular linear system Ly = b by forward substitution, i.e., start by computing the
�rst unknown y1 = b1 from the �rst equation, then use y1 to compute the second unknown y2 from the
second equation, then use y1, y2 to compute the third unknown y3 from the third equation, and so on.

3. Solve for x the upper triangular linear system Ux = y by backward substitution as in (3).

It is easy to see that these steps compute the solution, because if we substitute y from the third step into the
equation in the second step, then we get L(Ux) = b, which is Ax = b. This three-step approach was suggested
�rst by Turing in [20, p. 291], together with several other approaches for solving Ax = b. However, it is
interesting to mention that Turing did not identify the three-step approach as preferred over other options.
Today, it is widely recognized that the three-step approach has several important advantages as, for instance,
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that it allows us to solve very easily, and almost without extra computational cost, other linear systems Ax = b′

with the same coe�cient matrix but di�erent right-hand sides (a situation arising often in applications), and
that it simpli�es considerably the rounding error analysis of solving Ax = b on a computer.

Explicit algorithms for solving the triangular systems Ly = b and Ux = y appearing in the three-step
approach can be written very easily and are not discussed here (see the standard references [3, 7, 12]). However,
the computation of the LU factorization of A deserves some comments. The �rst one is that it is only needed to
store the strictly lower triangular part of L, i.e., the entries below the diagonal, since the remaining entries are
known to be zeros below or ones on the diagonal. Analogously, it is only needed to store the upper triangular
part of U , i.e., the entries above and on the diagonal. Therefore, the nontrivial parts of L and U �t into the
original matrix A and this saves storage requirements in computers and allows us to write the elegant and
simple Algorithm 1 for computing the LU factorization of a matrix. I do not pretend at this level that average
readers understand Algorithm 1. It is not di�cult, but it requires some work and familiarity with programming
matrix algorithms (see [3, 7, 12]). However, please, trust me! Yes, this simple algorithm computes really the
LU factorization! Also, please look carefully at Algorithm 1 before reading my comments below.

Algorithm 1 (LU factorization of a matrix)
Input: A matrix of size n× n
Output: L stored in strictly lower triangular part of A

U stored in upper triangular part of A

for k = 1 : n− 1
for i = k + 1 : n

aik = aik/akk
for j = k + 1 : n

aij = aij − aikakj
end

end
end

Observe that Algorithm 1 consists only of two lines of arithmetic operations and three for-loops. Its simplicity
is fascinating, specially when it is compared with the long explanation process that is required to present GE
and the construction of the LU factorization in most textbooks. Although it may not be obvious, note that the
outer for-loop of Algorithm 1 corresponds to the �stages`� of GE, i.e., the k-th step in the loop corresponds to
the operations needed to eliminate (to set to zero) all entries below the diagonal in the kth column.

The computational cost of Algorithm 1 is 2n3/3 + O(n2) arithmetic operations and this is also the cost of
the three-step approach for solving Ax = b, since the solution of the triangular systems Ly = b and Ux = y
costs 2n2 − n arithmetic operations.

2.4 Modern GE: Partial pivoting

Algorithm 1 may produce huge errors when it is implemented on a computer if a very small pivot akk appears
in some kth stage3, k = 1, 2, . . . , n − 1. In actual computational practice, it is necessary to permute the
rows of the matrix A (equivalently, the equations of the system Ax = b) for obtaining a reliable algorithm.
The permutations are performed �on line� as GE proceeds and several permutation (or pivoting) strategies
are described in textbooks on Numerical Linear Algebra [3, 7, 12]. However, only one of these strategies is
universally adopted in professional software for solving linear systems. This is the partial pivoting strategy.

For describing partial pivoting, it is convenient to introduce some additional notation. Let us de�ne the
matrices A(1) := A, A(k) as the matrix produced by GE at the start of the kth stage for k = 2, . . . , n− 1, and

A(n) := U as the upper triangular U factor obtained at the end of GE. The entries of A(k) are denoted by a
(k)
ij ,

as usual. Recall that the kth stage of GE sets to zero the entries below the diagonal in the kth column. Partial
pivoting interchanges at the start of the kth stage the kth and rth rows, where

|a(k)rk | := max
k≤i≤n

|a(k)ik | ,

3Note that akk at kth stage is not the (k, k) entry of the original matrix since the entries of A are updated by Algorithm 1.
Although it is very rare, akk = 0 may happen and, in this case, Algorithm 1 fails.
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and after that an standard kth stage of GE is performed. To understand better how partial pivoting proceeds,
let us apply it to the matrix A = A(1) in (4). Note that the entry with largest absolute value in the �rst column
of A(1) is 6 in position (3, 1). Then partial pivoting exchanges rows 1 and 3 and after that the replacement
operations �row(2) → row(2) −(−2/3)×row(1)�, �row(3) → row(3) −(1/3)×row(1)�, and �row(4) → row(4)
−(1/3)×row(1)� are performed to obtain A(2). This is summarized in the following equation:

A(1) =


2 3 −1 1
−4 −9 3 2

6 21 −3 −11
2 −3 −27 −3

→


6 21 −3 −11
−4 −9 3 2

2 3 −1 1
2 −3 −27 −3

→ A(2) =


6 21 −3 −11
0 5 1 −16/3
0 −4 0 14/3
0 −10 −26 2/3

 .
Next, observe that the entry with largest absolute value in the second column of A(2) on and below the diagonal
is −10 in position (4, 2). Then partial pivoting exchanges rows 2 and 4 and after that the replacement operations
�row(3)→ row(3) −(2/5)×row(2)� and �row(4)→ row(4) −(−1/2)×row(2)� are performed to obtain A(3). This
is summarized in the following equation:

A(2) =


6 21 −3 −11
0 5 1 −16/3
0 −4 0 14/3
0 −10 −26 2/3

→


6 21 −3 −11
0 −10 −26 2/3
0 −4 0 14/3
0 5 1 −16/3

→ A(3) =


6 21 −3 −11
0 −10 −26 2/3
0 0 52/5 22/5
0 0 −12 −5

 .
Next observe that the entry with largest absolute value in the third column of A(3) on and below the diagonal is
−12 in position (4, 3). Then partial pivoting exchanges rows 3 and 4 and after that the replacement operation
�row(4) → row(4) −(−13/15)×row(3)� is performed to obtain the upper triangular matrix A(4) =: UP , and the
process of GE with partial pivoting �nishes. This is summarized in the following equation:

A(3) =


6 21 −3 −11
0 −10 −26 2/3
0 0 52/5 22/5
0 0 −12 −5

→


6 21 −3 −11
0 −10 −26 2/3
0 0 −12 −5
0 0 52/5 22/5

→ UP =


6 21 −3 −11
0 −10 −26 2/3
0 0 −12 −5
0 0 0 1/15

 .
Once the row exchanges that have been done by partial pivoting are known, it is clear that the process is
mathematically equivalent to permute A in advance accordingly and then to perform GE without any pivoting.
Therefore GE with partial pivoting computes an LU factorization of a matrix PA = LPUP that is obtained
by exchanging rows 1 and 3 of A, after that rows 2 and 4, and, �nally rows 3 and 4. We already know the
matrix UP and I propose the reader to deduce from the replacement operations performed above and taking
into account the row interchanges the lower triangular factor LP . The �nal factorization is

6 21 −3 −11
2 −3 −27 −3
−4 −9 3 2

2 3 −1 1


︸ ︷︷ ︸

PA

=


1 0 0 0

1/3 1 0 0
−2/3 −1/2 1 0

1/3 2/5 −13/15 1


︸ ︷︷ ︸

LP


6 21 −3 −11
0 −10 −26 2/3
0 0 −12 −5
0 0 0 1/15


︸ ︷︷ ︸

UP

. (9)

The comparison of the LU factorization of PA in (9) with the one of the original matrix A in (8)-(7)-(5) reveals
that row permutations in A induce drastic changes in the LU factors: L and LP are very di�erent, as well as
U and UP . This is an indicator of why rounding errors in GE depend deeply on the pivoting strategy and why
the error analysis of GE is extremely di�cult. A key observation is that all entries of LP coming from partial
pivoting have absolute values less than or equal to 1, while this does not happen for L. This property is of
fundamental importance and the reader may �nd more information on it in [3, 7, 12].

Partial pivoting can be easily and elegantly incorporated in Algorithm 1. The details are omitted, but can be
found in [3, 7, 12]. Partial pivoting allows us to write the de�nitive algorithm of modern Gaussian elimination.

Algorithm 2 (Modern Gaussian Elimination)
Input: A matrix of size n× n and b vector of size n× 1
Output: Solution of linear system Ax = b given as vector x of size n× 1

1. Compute the LU factorization of A with partial pivoting: PA = LU .
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2. Solve for y the lower triangular linear system Ly = Pb by forward substitution.

3. Solve for x the upper triangular linear system Ux = y by backward substitution.

The term �partial pivoting� was introduced by Wilkinson in [24], but pivoting techniques were in use in the
1940s and it is not clear who can be said to have invented them.

3 Historical context of Alan Turing's paper on rounding errors

In the 1940s there were three very famous papers giving error analyses of GE. The �rst one was written by
Harold Hotelling in 1943 [15]; the second one was written by John von Neumann and Herman Goldstine in
1947 [21]; and the third one is the paper published by Alan Turing in 1948 [20]. There were, of course, other
papers published in the 1940's on the same subject, but they have had much less in�uence than the three
papers mentioned above and, therefore, are not considered in this work. Among the three papers [15, 21, 20],
the one by Von Neumann and Goldstine in the best known and, without any doubt, the most in�uential. It is
a key paper that has been considered by several top numerical analysts as the �rst paper of modern Numerical
Analysis, where �modern� has here the sense, already used before, of �analyzing methods to be used on digital,
electronic, programmable computers�. More information on [21] can be found in [9, 27].

The three papers were written before modern computers existed, but they were motivated by the existence
of several projects for constructing the �rst �modern computers� in United Kingdom and USA. In this work, as
usual, the term �modern computer� should be understood as a �digital, electronic, and programmable computer�.
To fully realize the context in the 1940s with respect numerical computations, we can imagine ourselves as
researchers in the 1940s. Then, it would be clear for us that modern computers would come very soon and that
they would o�er a huge power of computation compared with that of available desk electro-mechanical calcu-
lators. For taking advantage of this �computational giant step�, a key question would be to determine whether
the numerical methods used in the 1940s and before would be accurate and e�cient on modern computers or
not. For those problems where a negative answer was obtained, new methods had to be developed.

In the 1940s, as well as today, one of the most important numerical problems was the solution of �large�
(the precise meaning of �large� changes continuously with time) systems of linear equations, since they appear
in many applications. In addition, in Turing's own words [20, p. 287], �The best known method for the solution
of linear equations is Gauss's elimination method. This is the method almost universally taught in schools.�.
Therefore, we can see as very natural for a researcher in the 1940s to study GE from a new perspective: its
practical use on modern computers.

The paper by Hotelling was mainly motivated by applications in Statistics. GE was considered in pages
6-7 in [15], where Hotelling presented a very simple error analysis that produces an error bound that increases
exponentially with the number of equations n, more precisely, it increases as 4n−1. This error bound led Hotelling
to state [15, pp. 7-8]: �The rapidity with which this increases with n is a caution against relying on the results
of ... elimination methods ... when the number of equations and unknowns is at all large.� and �There is here
a distinct need of using an iterative process ...�

Hotelling's results led to general pessimism in mid 1940s about the practical use of GE for solving large
systems of equations and motivated the papers by von Neumann and Goldstine [21] and by Turing [20]. In
particular we can read in the �rst page of Turing's paper: �(GE) has, unfortunately, recently come into disrepute
on the ground that rounding o� will give rise to very large errors. It has, for instance, been argued by Hotelling
(ref. 5) that in solving a set of n equations we should keep n log10 4 extra or �guarding� �gures.� A key point of
this discussion is to realize that during a period of �ve years GE was almost discarded as a reliable method for
solving linear systems of equations in modern computers and, as a consequence, that several other methods were
actively investigated. In addition, note that the cause of this situation was the absence of an adequate rounding
error analysis of GE guaranteeing good error bounds for the computed solution, but that GE was accepted in
the 1940s to be very e�cient with respect the number of needed arithmetic operations. The technical discipline,
often considered boring and too specialized in the 21st century, of rounding error analysis came to scene as a
�rst actor, and it was essentially created in the 1940s for solving the GE problem.

The error analyses developed by von Neumann and Goldstine [21] and by Turing [20] are much more
sophisticated than the one by Hotelling and they restored the con�dence on GE. However, it should be remarked
that none of these papers solved satisfactorily the problem of the error analysis of GE: this problem was too
formidable even for genius as von Neumann and Turing, two of the greatest mathematicians in history, who are
famous for solving some of the hardest problems in the History of Mathematics. This di�culty in the analysis
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is in stark contrast with the fact that GE is a very simple algorithm taught at high school level. The error
analysis of GE accepted nowadays came much later, in 1961, with the pioneer work by James Wilkinson in [24]
and it will be discussed with detail in Subsection 4.3. However, a complete rigorous solution of the problem of
the rounding error analysis of GE remains as one of the major unsolved problems in Numerical Analysis, and
its precise formulation will be discussed in Subsection 4.4.

The results in [21] deserve a few words. The long, di�cult, and rigorous error analysis by von Neumann
and Goldstine is not general because is only valid for systems Ax = b where the matrix A is positive de�nite.
This covers the important case of the normal equations arising in least squares problems4, but not many other
linear systems that are important in applications. After developing a theory of GE and LU factorization for
general matrices A, von Neumann and Goldstine honestly recognize at the beginning of Section 5.1 in [21] that
they are unable of performing a general rounding error analysis and they limit their analysis to positive de�nite
matrices. We quote from [21, p. 1056]: �We have not so far been able to obtain satisfactory error estimates for
the pseudo-operational equivalent of the elimination method in its general form, ... We did, however, succeed in
securing everything that is needed in the special case of a de�nite A.�.

In contrast, Turing considered in [20] the error analysis of GE in the general case. Facing a problem that von
Neumann could not solve is a very strong indicator of Turing's great courage, self-con�dence, and unbounded
ambition as researcher. However, the analysis done by Turing has some important drawbacks, although his
conclusions on the errors committed by GE with partial pivoting and its practical use on modern computers
still remain valid today. These questions will be further discussed in Section 5.

Next, two additional points on the three papers are discussed. The three papers [15, 20, 21] were written
by top researchers, who considered the problem very important from an applied point of view, but also, from a
fundamental point of view, since GE was the �rst algorithm to be subjected to rounding error analysis and the
fundamentals of rounding error analysis had to be established for the �rst time. This is especially evident in the
paper by von Neumann and Goldstine that spends 19 pages establishing the sources of errors in computations
and the rules to perform rounding error analyses of algorithms running on modern computers.

3.1 A few words on the authors of the three papers

I will not explain in detail the mathematical contributions of John von Neumann (see Figure 3) and Alan Turing
(see Figure 1), since both are very well-known and are considered as two of the most important mathematicians
in history. Jean Dieudonné wrote that John von Neumann has been �the last of great mathematicians� [4], as a
consequence of the large number of di�erent �elds where von Neumann did major contributions. These �elds
include, among others, set theory, functional analysis, numerical analysis, quantum mechanics, game theory,
and computer science. In fact, von Neumann was a founder of some of these �elds as, for instance, game theory
and computer science. Alan Turing made also fundamental contributions in several areas. He solved the famous
�decision problem� posed by David Hilbert in 1928 via the invention of Turing's machines. In addition, Turing
was one of the founders of modern cryptanalysis, of computers science, of arti�cial intelligence, of modern
numerical analysis, and of mathematical biology. The de�nitive source of information about Turing's life and
contributions is the monumental biography [14] by Andrew Hodges.

Harold Hotelling and Herman Goldstine (see Figure 3), the other authors of the three papers, were also top
researchers in their times, although not of the same level as von Neumann and Turing. Hotelling was born in
Minnesota in 1895. He was a mathematical statistician and an in�uential economic theorist. He held positions in
prestigious institutions as Stanford University (1927-31), Columbia University (1931-46), and �nally he became
Professor of Mathematical Statistics at the University of North Carolina at Chapel-Hill (1946-1973). He received
the North Carolina Award for contributions to science in 1972 and a street in Chapel Hill bears his name. He
is widely known to statisticians because he introduced Hotelling T-square distribution and, more importantly,
the canonical correlation or principal component analysis, which is a fundamental technique in statistics.

Herman Goldstine was born in Chicago in 1913. He was awarded bachelor (1933), master (1934) and PhD
(1936) degrees in mathematics from the University of Chicago. In 1941 he wrote the technical description for
ENIAC (Electronic Numerical Integrator And Computer), which was the �rst electronic computer starting to
work in 1946 (up to 1955). He joined the Army in 1942, when the United States entered into World War II and

4It should be noted that today, it is widely known that the use of normal equations for solving least squares problems may be
unstable and they are never used in professional software. The standard algorithm for least squares problems is based on another
famous matrix factorization: the QR factorization [3, 7, 12]. However, this was unknown when the paper by von Neumann and
Goldstine was published.
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John von Neumann (1903-
1957)

Herman Goldstine (1913-
2004)

Harold Hotelling (1895-
1973)

Figure 3: John von Neumann and Herman Goldstine were the authors of �Numerical inverting of matrices of
high order� in 1947 [21], often considered as the �rst paper of modern Numerical Analysis. Harold Hotelling was
an in�uential statistician who introduced principal component analysis, among other contributions. In 1943, he
did an error analysis of GE which led to general pessimism on its practical use in modern computers.

he persuaded the Army to fund the construction of ENIAC in 1943. He became program manager of ENIAC.
Although ENIAC was thousands of times faster than previously available electro-mechanical machines and was
programmable, there was no way to issue orders at electronic speed (modern programs)5 and ENIAC had to be
con�gured with patch cords and rotary switches for each task. Therefore, the need of a ENIAC's successor was
evident even before ENIAC was completed and this motivated an indirect contribution, but extremely important
for the history of computer science and GE, by Goldstine: In 1944 Goldstine involved von Neumann in planning
ENIAC's successor and this resulted in the famous von Neumann's 1945 report �First draft of a report on the
EDVAC� on how to build a modern computer (available in [1]), and in a long and fruitful collaboration between
Goldstine and von Neumann. Goldstine was awarded the USA National Medal of Science in 1985.

An additional information may be of interest for readers on the fascinating 1940's: It is often said that
von Neumann's famous report �First draft of a report on the EDVAC�, together with Turing's also famous
1946 report �Proposed Electronic Calculator� (available in [2]) are the foundational documents of computer
architecture and that most of the ideas stated there still remain valid today.

3.2 Turing's and von Neumann's projects for building modern computers

Many projects for constructing modern computers got underway in the 1940s. A brief account of them may
be found in [9] and a complete history in [17]. Here, I say just a few words on the projects in which Alan
Turing and John von Neumann were involved, because then, they simultaneously became interested in the error
analysis of GE. This stresses further the fact that the research on rounding error analysis of GE is motivated
by applications and runs parallel with the development of modern computers.

Turing was involved in the NPL Pilot ACE (National Physical Laboratory Pilot Automatic Computing
Engine) project developed in Teddington, England. Turing worked at NPL from 1945 to 1948 and during this
period he also worked in rounding error analysis of GE. Basically, Turing did the �rst design of Pilot ACE in
1946 which was, probably, very ambitious for the resources of NPL and was never constructed. The Pilot ACE
started to work in May 1950, without Turing, based mainly on ideas of Harry Huskey and James Wilkinson
(see more comments in [28]).

Turing moved to The University of Manchester in September 1948. There, he collaborated in the Baby/Mark
1 project. The Small-Scale Experimental Machine, known as the �Baby�, made its �rst successful run of a
program on June 21st 1948. It was the �rst machine that had all the components now regarded as characteristic
of a modern computer. Most importantly it was the �rst computer that could store not only data but any
user program in electronic memory and process it at electronic speed. From the �Baby� a full-sized machine

5Therefore ENIAC is not considered a �modern computer�.
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was designed and built, the Manchester Mark 1, which by April 1949 was generally available for computation
in scienti�c research in the University of Manchester. Turing worked in the project and helped to design the
program language of the computer.

Von Neumann started to lead the computer project at the Institute of Advanced Studies at Princeton (USA)
(the �IAS computer project�) in 1946 and Goldstine joined him from the very beginning. In this period they
became interested in rounding errors in GE. The �rst IAS computer started to work in 1951, i.e., later than
its UK competitors. However, its in�uence on modern computers is, probably, more important, since several
clones of the IAS computer were built from 1952 to 1957, including the �rst IBM mainframe.

4 Rounding error bounds for Gaussian elimination

After explaining the history of GE and its particular historical context in the 1940's, now the key properties of
the rounding errors committed by GE are considered. This is the most technical section of the paper and �for
encouraging� the reader, I will start with a quotation from the Preface of one of the most popular textbooks on
Numerical Linear Algebra, written by Lloyd N. Trefethen and David Bau [19]:

�...We have departed from the customary by not starting with Gaussian elimination. That algorithm
is atypical of Numerical Linear Algebra, exceptionally di�cult to analyze, yet at the same time
tediously familiar to every student...�

In plain words, this means that GE is recognized by professional numerical analysts as very easy to explain,
but very di�cult to analyze. Therefore, I am asking the reader an extra e�ort for understanding its analysis!

4.1 The axioms of rounding error analysis

Rounding errors in computers come from two facts. First, computers can only represent a �nite subset of the
real numbers, which is called the set of �oating point numbers, and is usually denoted by F. This fact alone,
obviously, produces errors when storing the data of any problem on the computer. Second, F is not closed under
the basic arithmetic operations (+,−,×, /), however when these operations are performed on a computer, they
must give another number of F, and this fact produces further errors. These two facts are encapsulated into
the axioms of rounding error analysis, that can be found in many textbooks [3, 7, 12, 19]. These axioms are:

Axiom 1 (Rounding) If x ∈ R lies in the range of F, then x is approximated by a number fl(x) ∈ F such that

fl(x) = x (1 + δ), |δ| ≤ u,

where u is the unit roundo� of the computer.

In current computers u = 2−53 ≈ 1.11 × 10−16 in double precision and u = 2−24 ≈ 5.96 × 10−8 in single
precision. In Axiom 1, the exact meaning of the sentence �x ∈ R lies in the range of F� is that the absolute
value of x is smaller than or equal to the largest absolute value of the numbers in F and larger than or equal to
the smallest absolute value of the nonzero numbers in F.

Axiom 2 (Floating Point Arithmetic) If x, y ∈ F and op ∈ {+,−,×, /}, then

computed(xop y) = (xop y) (1 + α), |α| ≤ u,

where (xop y) is the exact result of the operation, that may not be in F, and computed(xop y) is the result
produced by the computer.

Axiom 2 is sometimes called the �exact-round principle� and, in plain words, it can be stated as �computers
should be thought of as performing each arithmetic operation exactly and then rounding to a �oating point
number�. The reader should note the key role that the unit roundo� u plays in Axioms 1 and 2. All algorithms
are combinations of (many) basic {+,−,×, /} operations and the idea of rounding error analysis is to combine via
the axioms above the errors in all these operations to produce a �nal relative error in the computed magnitude.
In most cases, only the �rst order term in u of the relative error is necessary and this makes the analyses much
simpler. So, in this paper, we will restrict ourselves to state �rst order rounding error bounds.
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From a historical point of view, it should be noted that Axioms 1 and 2 of �oating point arithmetic were
introduced by Wilkinson in 1960 [23], but that the original idea of establishing simple axioms for rounding error
analysis goes back to von Neumann and Goldstine in their 1947 paper [21], where they introduced corresponding
axioms for the �xed point arithmetic used in the 1940s. The error analysis in Turing's 1948-paper [20] does not
include axioms for rounding errors and, in this sense, is very far from current error analyses.

4.2 A simple explanation of Hotelling's exponentially-increasing error bound

The main reason why Hotelling obtained a rounding error bound for GE that increases exponentially with
the size of the matrix is easy to understand by combining Axioms 1 and 2 (that Hotelling did not know!)
with Algorithm 1, and performing a naive direct rounding error analysis. If Algorithm 1 is written in formal
mathematical language, i.e., avoiding equalities like aij = aij−aikakj that in formal Mathematics have the only
meaning of aikakj = 0, then the following updating is obtained

a
(k+1)
ij = a

(k)
ij −

a
(k)
ik a

(k)
kj

a
(k)
kk

, k + 1 ≤ i, j ≤ n . (10)

Here a
(k)
ij are entries of the matrix A(k), k = 1, 2, . . . , n, de�ned in Subsection 2.4 and note that only the entries

k + 1 ≤ i, j ≤ n are updated at the kth stage, so we de�ne a
(k+1)
ij = a

(k)
ij for the remaining entries. In addition,

due to the fact that Algorithm 1 stores the nontrivial entries of the L factor in the strictly lower triangular part
of A, the matrix A(k) has the following structure: it has zeros below the diagonal in the �rst k− 1 columns and

the rest of the entries are the a
(k)
ij entries de�ned above.

Now, let us proceed with a simpli�ed analysis and denote by Â(k) the computed matrix in �oating point
arithmetic by Algorithm 1 corresponding to the exact matrix A(k). Â(1) does not involve any arithmetic

operation, since it comes from storing A(1) := A in the computer and, therefore, Axiom 1 implies that â
(1)
ij =

a
(1)
ij (1 + δij) with |δij | ≤ u. This is equivalent to the following bound for the relative error6 in each entry:∣∣∣â(1)ij − a

(1)
ij

∣∣∣ / ∣∣∣a(1)ij

∣∣∣ = |δij | ≤ u. Assume now that the entries of Â(k) satisfy the relative error bound∣∣∣∣∣ â
(k)
ij − a

(k)
ij

a
(k)
ij

∣∣∣∣∣ ≤ ek, for all k ≤ i, j ≤ n, (11)

i.e., ek is an upper bound on the maximum relative error at the kth stage of GE. This is what we want to
determine by induction and by taking into account that we know e1 = u. Next, let us pay attention to the last

term in (10), i.e., a
(k)
ik a

(k)
kj /a

(k)
kk , which is in fact the responsible of the exponential growth of the error bound.

As most readers learnt when they were very young (probably, even before they learnt GE or, for sure, no later
than the �rst year in the University), the relative error of an exact series of products and quotients of numbers
a�ected by relative errors is the sum of the relative errors of each individual number. So, from (11),∣∣∣∣∣∣∣

â
(k)
ik â

(k)
kj

â
(k)
kk

− a
(k)
ik a

(k)
kj

a
(k)
kk

a
(k)
ik a

(k)
kj

a
(k)
kk

∣∣∣∣∣∣∣ ≤ 3 ek, (12)

where 2nd-order terms in the errors have been discarded. Of course, there are still more errors, coming from
Axiom 2, when computing (10) in �oating point arithmetic, but their e�ect is to increase the error bound in
(12), they are not essential in our simpli�ed analysis, and they are omitted. Therefore, a bound on the maximum
relative error at (k + 1)th stage of GE, i.e., ek+1, satis�es ek+1 & 3ek, and, since e1 = u ≈ 10−16 and GE
performs (n− 1) stage transitions for an n× n matrix, the following error bound

en & 3n−1e1 ≈ 3n−1 · 10−16 (13)

is �nally obtained. The error bound in (13) is really huge even for small sized matrices: for n = 30, en &
6.9× 10−3; for n = 40, en & 4.1× 102; and, for n = 50, en & 2.4× 107. Therefore, for n ≥ 40, the error bound

6In this informal analysis, it is assumed that all entries a
(k)
ij , for 1 ≤ k ≤ n and k ≤ i, j ≤ n, are di�erent from zero. This

assumption is generic and allows us to avoid technicalities that would obscure the main ideas.
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(13) does not guarantee a single digit of accuracy in the results of GE! As it was explained in Section 3, this led
to general pessimism in mid 1940s about the practical use of GE and motivated the papers by von Neumann
and Goldstine [21] and by Turing [20]. However, the error analysis that appears in modern textbooks is the one
presented by James Wilkinson in his fundamental paper [24]. This is discussed in next subsection.

4.3 James Wilkinson's backward error analysis of GE

Backward error analysis represents a drastic change of mind. The natural approach to rounding error analysis
seems to be to bound the di�erence between the exact solution x of the linear system Ax = b and the approximate
solution x̂ computed in �oating point arithmetic by Algorithm 2, i.e., by modern GE. In contrast, backward error
analysis bounds the di�erence between the matrix A and a certain matrix A+ ∆A such that (A+ ∆A)x̂ = b. If
this di�erence is small, then backward error analysis establishes that the computed solution is the exact solution
of a nearby linear system. Although this might seem odd at a �rst glance, note that the exact matrix A is never
available for the computer, because errors are committed just by storing A in the computer (see Axiom 1) and,
in addition, very often in practice the entries of A are a�ected by experimental or modelling errors. Therefore,
even in the ideal case that GE does not make errors after storing A and b in the computer, the computed
solution would be just the solution of a nearby linear system and backward error analysis aims to describe the
best possible situation that one can imagine in practice.

Before the famous result by Wilkinson is stated, it is necessary to establish e�ective ways to measure
di�erences between matrices (A and A+ ∆A) and vectors (x and x̂). This is done via matrix and vector norms
[12, Chapter 6]. In this paper only the in�nite-norm is used. If x is an n× 1 vector and A is an n× n matrix,
then their vector and matrix in�nite-norms are de�ned as

‖x‖∞ = max
1≤i≤n

|xi| and ‖A‖∞ = max
1≤i≤n

n∑
j=1

|aij | .

Nowadays, every numerical analyst is familiar with matrix norms, but this was not the case in the 1940's. In
fact, the paper by Von Neumann and Goldstine [21] is the �rst one to bring matrix norms to the attention of
numerical analysts in a systematic way. Now we can state (to �rst order in u) the result by Wilkinson.

Theorem 1 (Wilkinson, 1961 [24]. Backward errors in GE.) Let A be a real n× n nonsingular matrix,
let b be a real n× 1 vector, and let x̂ be the approximate solution of the linear system Ax = b computed by GE
with partial pivoting in a computer with unit roundo� u. Then x̂ satis�es

(A+ ∆A)x̂ = b, with
‖∆A‖∞
‖A‖∞

≤ 3n3 uρn , (14)

where

ρn =
maxijk |a(k)ij |
maxij |aij |

(15)

is the growth factor of GE with partial pivoting. Here A(1) = A,A(2), . . . , A(n) = U are the matrices appearing
in the GE process as they were de�ned in Section 2.4.

The proof of Theorem 1 is not di�cult with the tools currently available, but it requires some technical work
and is omitted. Interested readers can found two di�erent modern proofs in [12] (shorter and sharper) and [7]
(following step by step Algorithm 2). Observe that equation (14) indeed states that the computed solution x̂
is the exact solution of a linear system that is very close to the original one, i.e., to Ax = b, as long as the
growth factor ρn is not large. This is in fact the case as we will discuss in Subsection 4.4 and, so, it is said
that GE with partial pivoting is a backward stable algorithm. Theorem 1 is an instance of the �mantra� that
every numerical analyst working on matrix computations should repeat again and again: �The ideal objective
of an algorithm is to compute outputs that are exact for nearby inputs, because this means that the algorithm
achieves as much accuracy as the data warrants�. The most reputed algorithms of Numerical Linear Algebra
are backward stable, but not all algorithms used in practice are.

Some modern texts [12, p. 185] and papers [9] indicate that Von Neumann & Goldstine and Turing introduced
�backward error analysis� in [21, 20] . In my opinion, this is not completely true. Von Neumann & Goldstine and
Turing indeed mentioned backward errors (without the name) in these papers, but in a rather marginal way, and
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did not realize the importance of this concept. For instance, Turing mentions backward errors in the last page
of his 22 pages long paper and Von Neumann & Goldstine in page 71 of their 79 pages long paper. Wilkinson
attributed in [27] the credit for the �rst backward error analysis to Wallace Givens in 1954 for an analysis of
an algorithm for computing the eigenvalues of symmetric tridiagonal matrices by using the Sturm sequence
property of their leading principal minors. Nowadays, backward error analysis is one of the most fundamental
and powerful ideas in Numerical Analysis and this is mostly a consequence of the monumental research work
done by James Wilkinson on rounding errors (see Figure 1).

James Wilkinson was a Cambridge-trained English mathematician who worked as Turing's assistant at NPL
(1946-48). He is considered as the founder of modern rounding error analysis by using systematically backward
errors for analyzing many numerical algorithms for matrix computations. He wrote two in�uential books on
Numerical Analysis: Rounding Errors in Algebraic Processes in 1963 [25] and The Algebraic Eigenvalue Problem
in 1965 [26]. James Wilkinson said in [28, pp. 143-144] that his �rst contact with backward errors happened
while he was serving in the United Kingdom Armament Research Department during World War II. At that
time, he had to solve a system Ax = b of twelve linear equations and decided to use GE with partial pivoting.
Wilkinson was sure that the computed solution x̂ had errors several orders of magnitude larger than the unit
roundo� (of those times!). However, when he substituted x̂ in the equations to his �astonishment the left-hand
side agreed with the given right-hand side to� full accuracy. In modern language, this means that the residual
b−Ax̂ satis�ed ‖b−Ax̂‖∞ ≈ u ‖b‖∞, a fact that is deeply connected to backward errors, as we will discuss in
Section 4.6. Wilkinson claimed at that time �I have the exact solution corresponding to a right-hand side which
di�ers only in the tenth �gure from the given one�. Unfortunately, Wilkinson did not pursue then this line of
research since it was not appreciated by his taskmaster at the Armament Research Department.

4.4 One of the major unsolved problems in Numerical Analysis

The backward error bound (14) for GE with partial pivoting (GEPP) includes the growth factor ρn of the
matrix A. This factor is the ratio of the maximum absolute value of the entries of the matrices arising in GEPP
and the maximum absolute value of the entries of the original matrix A. Example 1 illustrates the growth factor
in a matrix that has been arranged, for simplicity, in such a way that GEPP does not require any permutation.

Example 1

A =


−4 2 1 −1

1 6 2 −2
1 −2 5 1
3 −4 2 −10

 −→ A(2) =


−4 2 1 −1

0 6.5 2.25 −2.25
0 −1.5 5.25 0.75
0 −2.5 2.75 −10.75

 −→

A(3) =


−4 2 1 −1

0 6.5 2.25 −2.25
0 0 5.77 0.23
0 0 3.62 −11.62

 −→ A(4) =


−4 2 1 −1

0 6.5 2.25 −2.25
0 0 5.77 0.23
0 0 0 −11.76

 .
The maximum absolute value of the entries of A is 10 and the maximum absolute value of the entries of A(2),
A(3), and A(4) is 11.76. Therefore

ρ =
11.76

10
= 1.1760 .

Note that the growth factor is larger than or equal to one for any matrix A by de�nition.

The key question in this context is to determine whether there exist matrices with very large growth factors
or not. The answer is given in Theorem 2 and is yes. Wilkinson knew this fact as early as in 1954 [22], long
before developing his backward error analysis.

Theorem 2 (Wilkinson, 1954) Let A be an n× n nonsingular matrix. Then the growth factor of A for GE
with partial pivoting satis�es

ρn(A) ≤ 2(n−1),
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and this bound is attained for the n× n matrix

Bn =



1 0 0 · · · 0 1
−1 1 0 · · · 0 1
−1 −1 1 · · · 0 1
...

...
...

. . .
...

...
−1 −1 −1 · · · 1 1
−1 −1 −1 · · · −1 1


.

Combining Theorem 2 with the bound in (14) for the unit roundo� u = 2−53 of double precision, one obtains

‖∆A‖∞
‖A‖∞

≤ 3n3 uρn ≤ 3n3 2(n−54) , (16)

which is a huge bound for matrices with n ≥ 54, i.e., for very small matrices, and would make GEPP useless
in practice. In some sense, (16) says us that Hotelling was right: there is no way of avoiding in GEPP errors
that increase exponentially with the size of the matrix. However, note that Wilkinson's analysis gives us much
more information than the one by Hotelling, since (14) implies that the backward errors are tiny whenever the
growth factor ρn of A is moderate. Therefore, GEPP would be a reliable algorithm in practice if matrices with
large growth factors are very rare, otherwise it may produce frequently large errors. This is indeed the case:
large growth factors are extremely rare, as it is stated in the next paragraph by Nick Higham [12, p. 168]:

�To summarize, although there are practically occurring matrices for which partial pivoting yields a
moderately large, or even exponentially large, growth factor, the growth factor is almost invariably
found to be small. Explaining this fact remains one of the major unsolved problems in Numerical
Analysis.�

How should we pose precisely this unsolved problem? One option is to consider random matrices whose entries
are independent random variables and to prove that the probability of encountering a growth factor ρn > α
decreases extremely fast as α increases (perhaps, exponentially fast!). More information on the solution of this
problem, including a money prize, can be found in [18]. Here, I want to stress some important facts on this open
problem. First, its solution would not change at all the algorithm of modern GE. Second, GEPP has not waited
to the solution of the open problem for being widely used, since GEPP is nowadays the standard method for
solving linear systems of equations on computers, despite the fact that its stability is not rigorously proved. This
is based on years of practical experience with GEPP that have shown that large growth factors never occur in
real computing. Third, the idea that practical numerical methods do not need to be fully supported by proofs
for being useful goes back to Turing's paper [20], as it will be discussed in Section 5. Finally, there are methods
that are perfectly backward stable for solving linear systems (like the one based on the QR factorization [19]),
but they are not used in practice since they are computationally more expensive than GEPP.

4.5 From backward to forward errors: The condition number of a matrix

The fact that a numerical algorithm is �backward stable� is very satisfactory for numerical analysts, since it is
equivalent to say that the errors are the best that can be expected from the input data. However, for users of
software it may be a somewhat obscure concept and many times a bound on the forward errors is preferred.
In the case of GEPP, the forward error is ‖x̂− x‖∞/‖x‖∞, where x and x̂ are, respectively, the exact and the
computed solution of Ax = b. From Theorem 1, the problem of bounding the forward error in the solution can
be posed as a pure mathematical problem of perturbation theory, i.e., if the input matrix A is perturbed, how
much does the solution change? We use the notation of Theorem 1 and present the solution of this problem as
it was stated by Wilkinson in [25, p. 93]

‖x− x̂‖∞
‖x‖∞

≤ ‖A‖∞ ‖A−1‖∞

‖∆A‖∞
‖A‖∞

1− ‖A−1‖∞ ‖∆A‖∞
, (17)

where it is assumed that ‖A−1‖∞ ‖∆A‖∞ < 1. By discarding second order terms in the perturbation ‖∆A‖∞
and by using (14), equation (17) becomes

‖x− x̂‖∞
‖x‖∞

. ‖A‖∞ ‖A−1‖∞
‖∆A‖∞
‖A‖∞

. ‖A‖∞ ‖A−1‖∞ (3n3 uρn) . (18)
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The inequalities in (18) tell us that tiny relative perturbations of the matrix A may produce large relative
variations in the solution if the number ‖A‖∞ ‖A−1‖∞ is huge and that, even in the case that the growth factor
of A is moderate, the �forward errors� committed by GEPP may be large if ‖A‖∞ ‖A−1‖∞ is huge. We see that
the number ‖A‖∞ ‖A−1‖∞ plays a fundamental role in the perturbation theory of the solution of linear systems
and in the �forward errors� committed by GEPP. It is the very famous condition number of a matrix:

κ∞(A) := ‖A‖∞ ‖A−1‖∞ . (19)

I want to insist more on a fact that is very familiar to numerical analysts, but that it is still surprising for
many users of numerical software. There are not numerical algorithms that solve linear systems of equations
with guaranteed tiny forward errors, i.e., with forward errors that are always of order unit roundo�. Bounds
O(u)κ∞(A) as the one in (18) are the best that hold for linear solvers valid for general matrices. There is no
way to avoid in general the presence of the condition number.

The condition number κ∞(A) (or in other norms) arises in many other problems in matrix computations and
from the point of view of perturbation theory and numerical applications is the most important single number
attached to a matrix [3, 7, 12]. It is not easy to determine who discovered the �condition number�. No question
that the name was introduced by Turing in [20] and, in my opinion, Turing also deserves the credit for the
concept. The essentials are in [20], although it is true that Turing gives an �unusual� de�nition of �condition
number� and also that shows in an unusual way its relationship with the variation of the solution of a linear
system Ax = b under perturbations of A and b. Before Turing's paper, von Neumann & Goldstine used the
condition number (in the 2-norm and with the name ��gure of merit�) in their error bounds, but they do not
show any clear perturbation inequality involving the condition number. The �rst fully rigorous perturbation
results on condition numbers were proved by Bauer in 1959 for matrix inverses and by Wilkinson in 1963 for
linear systems (see [9] for more details).

4.6 Backward errors and residuals

Theorem 1 presents backward errors of GEPP, but it does not show how Wilkinson reached this �at a �rst-glance
unnatural� way of presenting/analyzing rounding errors. I have already commented in the last paragraph of
Section 4.3 that Wilkinson was motivated by a few numerical tests that always produced tiny residuals. In
fact, we will see in Section 5 that this was also Turing's motivation for undertaking his error analysis of GE.
Therefore, I discuss in this section the deep connection existing between backward errors and residuals and how
residuals can be used to give sharp optimal estimates of backward errors. The results can be applied to any
algorithm for solving linear systems and not only to GEPP.

First, observe that if the approximated solution, x̂, of Ax = b computed by a certain algorithm satis�es
(A + ∆A)x̂ = b, with ‖∆A‖∞ = O(u) ‖A‖∞, then b − Ax̂ = ∆A x̂. So, ‖b − Ax̂‖∞ ≤ ‖∆A‖∞ ‖x̂‖∞ =
O(u) ‖A‖∞ ‖x̂‖∞. In plain words, this means that a tiny relative backward error of order u implies a tiny
relative residual ‖b−Ax̂‖∞ / (‖A‖∞ ‖x̂‖∞) also of order u. Much more surprising is that the implication in the
opposite direction is also true, i.e., that a tiny relative residual implies a tiny relative backward error. In fact,
for any matrix A and for any vectors x̂ and b, it can be proved that

‖b−Ax̂‖∞
‖A‖∞ ‖x̂‖∞

= min

{
‖∆A‖∞
‖A‖∞

: (A+ ∆A)x̂ = b

}
. (20)

According to the discussion in [12, pages 12 and 29], the result in (20) was proved by Wilkinson for the 2-norm in
some moment in the 1950s and, after discovering it, he began to develop backward error analysis systematically.
Rigal and Gaches proved in 1967 [16] a result much more general than (20), where they allow perturbations in
A and b and the use of any vector norm and the corresponding subordinate matrix norm. An excellent modern
reference on di�erent relationships between residuals and backward errors for linear systems is [12, Chapter 7].

Now, the reader can fully appreciate why the fact that GEPP computed solutions x̂ with relative residuals
‖b−Ax̂‖∞ / (‖A‖∞ ‖x̂‖∞) = O(u) in all the numerical tests that Wilkinson performed was a strong motivation
for trying to prove a result in the spirit of Theorem 1, but the proof had to wait for some years and came from
the hand of the nontrivial growth factor. Also note that the left-hand side of (20) provides a simple practical
way for computing the �best possible backward error� of the approximate solution x̂ with respect the linear
system Ax = b. We �nish this section with an example that illustrates the presented concepts.
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Example 2 Consider the matrix

A =

 8.679678 · 1013 −1.992403 · 10−1 2.542877 · 10−1

2.274573 · 1014 −5.221239 · 10−1 6.663797 · 10−1

−1.134348 · 1014 2.603875 · 10−1 −3.32329 · 10−1


and store it in the program MATLAB [12, p. 575], which uses double precision �oating point arithmetic.
MATLAB gives the following value for the condition number of A: κ∞(A) ≈ 1.06×1022. De�ne the 3×1 vector
x = [1, 1, 1]T and compute in MATLAB b = Ax. So, we have constructed a linear system whose exact solution
is known. Compute the solution x̂ by using the backslash command (\) of MATLAB, which uses GEPP. Then
we get, also in MATLAB,

‖x− x̂‖∞
‖x‖∞

= 1 and
‖b−Ax̂‖∞
‖A‖∞‖x̂‖∞

≈ 1.4 · 10−16 .

The growth factor (15) of A for GEPP is 1. Observe that the relative error in the solution is huge, which is
explained by (18) with u ≈ 10−16. However, the relative residual is of order u, according to (14) and (20). As
Wilkinson used to say, huge errors in the solution must be �diabolically correlated� to give tiny residuals.

5 Remarks on Alan Turing's paper on rounding errors

Alan Turing wrote his famous �rounding-o� error� paper [20] when he and James Wilkinson were in the National
Physical Laboratory. The story of the genesis of the paper is told by Wilkinson in [28, pp. 144-45], where one
can read the following

�... it happened that some time after my arrival, a system of 18 equations arrived in Mathematics
Divison and ... we �nally decided to abandon theorizing and to solve it ... The operation was manned
by Fox, Goodwin, Turing, and me, and we decided on Gaussian elimination with complete pivoting.
Turing was not particularly enthusiastic ... partly because he was convinced that it would
be a failure. History repeated ... and the residuals were again of order 10−10, that is of the size
corresponding to the exact solution rounded to ten decimals. ... I suppose this must be regarded as a
defeat for Turing since he, at that time, was a keener adherent than any of the rest of us
to the pessimistic school. However, I'm sure that this experience made quite an impression on
him and set him thinking afresh on the problem of rounding errors in elimination processes. About
a year later he produced his famous paper �Rounding-o� errors in matrix processes� ...�

In the modern language introduced in Section 4.6 what Turing, Wilkinson and coworkers observed was that the
relative residual was of order unit roundo�. Turing recognized in [20, pp. 287] that he was prompted to carry
out his �research largely by the practical work of L. Fox in applying the elimination method�. Curiously, Turing
did not mention here to Wilkinson, although he cited among the references in [20] a paper by Fox, Huskey, and
Wilkinson on this subject published in the same journal and volume as [20] but 140 pages before.

Turing believed, based on a few numerical tests available in the 1940s, that GE with pivoting was an stable
method for solving general systems of linear equations on a computer, and he undertook for �rst time the task of
developing the corresponding rounding error analysis. Recall, in this context, that Von Neumann and Goldstine
[21] only analyzed the stability of positive de�nite linear systems. However, Turing knew that GE could fail,
although only in exceptional cases. This is made explicit in the �rst page of [20], where one �nds

�Actually, although examples can be constructed where as many as n log10 2 extra �gures would be
required, these are exceptional. In the present paper the magnitude of the error is described in terms of
quantities not considered in Hotelling's analysis; from the inequalities proved here it can immediately
be seen that in all normal cases the Hotelling estimate is far too pessimistic.�

Therefore, Turing essentially reached in the 1940s the same conclusion that remains valid today and that has
been discussed in Section 4.4: although the error bounds of GEPP may increase exponentially with the size for
some matrices, these matrices are very rare and GEPP can be used with con�dence in practice. This Turing's
pioneer insight has in�uenced in depth Numerical Analysis in general, and Matrix Computations in particular.
Observe also in this point, the di�erences between Turing's way of thinking and those of Hotelling and Von
Neumann & Goldstine. Hotelling discovered that GE may produce errors that increase exponentially with the
size of the matrix, something that is fully true, and this led him to pessimism on the use of GE. He was not able
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of thinking if these exponentially increasing error bounds happen very rarely or not. On the other hand Von
Neumann & Goldstine did not consider even the possibility of performing an error analysis of GE for general
matrices, since they were not able of avoiding the exponential error bound.

However, it should be also remarked that Turing's analysis is non-standard from a modern point of view. In
particular, it is based on the next key assumption [20, pp. 302 and 306], that I quote literally

�We assume that in the calculation of each quantity

A
(r−1)
ij −

A
(r−1)
rj A

(r−1)
ir

A(r−1)
rr

,

an error of at most ε is made. How this is to be secured need not be speci�ed, but it is clear that the

number of �gures to be retained in A
(r−1)
ir /A(r−1)

rr will have to depend on the values of the A
(r−1)
rj .�

The di�culty with this assumption is that no computer, neither present or past, can guarantee a rounding error
bound like this in �nite precision arithmetic. In fact, �the error at most ε� eliminates from Turing's analysis any
possibility of discovering the growth factor, which does not appear at all in [20]. Turing's rounding error bound
for the solution of Ax = b are expressed in terms of the unknown quantity ε. Even with the unrealistic and ideal
assumption ε = u ‖A‖∞, Turing's error bound for the approximate solution x̂ computed by GEPP becomes a

non-optimal bound of the type ‖x− x̂‖∞/‖x‖∞ .
(
‖A‖∞ ‖A−1‖∞

)2
p(n)u , with p(n) a low degree polynomial

in n that does not depend on the growth factor. A trivial change in the last steps of Turing's analysis would
produce ‖x − x̂‖∞/‖x‖∞ .

(
‖A‖∞ ‖A−1‖∞

)
(p(n)u), which has the standard form (18) but does not include

the growth factor.

6 Research on error analysis of Gaussian elimination is still active

Since Wilkinson's pioneer paper [24] was published in 1961 many papers have been written on rounding error
analysis of GE. This is a consequence of the fact that Wilkinson's Theorem 1 is essentially the best that
can be proved for general nonsingular matrices A via a normwise analysis, i.e., bounding just the norm of
∆A. However, if the matrix A belongs to some particular classes, then the properties of those classes can be
exploited to obtain better bounds. It is also possible to perform a componentwise backward error analysis that
often produces sharper results. The discussion of these topics is beyond the scope of this introductory paper,
and I refer the reader to [12] and the references therein for a complete information on these topics.

As examples of very recent activities on the error analysis of GE, I discuss here very brie�y the researches
presented in the papers [11] and [6] published in the last two years. Reference [11] considers the LU factorization
in the context of one of the hottest topics of numerical computations of the last years: �communication avoiding
algorithms�. In current and future computers the cost of communication (moving data between di�erent levels of
memory or between di�erent processors) greatly exceeds the cost of performing arithmetic operations, therefore
there is a strong motivation for developing new algorithms that communicate as little as possible, even if they
do more arithmetic. In GE, this prevents the use of partial pivoting and a new strategy known as �tournament
pivoting� has been proposed, which has required a new error analysis to prove its backward stability. Reference
[6] develops and analyzes a framework that uses special implementations of GE with complete pivoting that
allow us to compute solutions of linear systems with relative errors O(u), i.e., removing the condition number
in the bound (18), for the largest class of structured matrices known so far.

7 Conclusions

I have revised at an introductory level the �rst research works on the rounding error analysis of one of the most
important numerical algorithms in Mathematics: Gaussian elimination for solving systems of linear equations.
The pioneer work on this topic published by Alan Turing in 1948 has received particular attention, as well as
the key results proved by James Wilkinson in 1961. In addition, other works published in the 1940's on the
error analysis of GE have been discussed and the historical context of all these works has been considered in
connection with the construction of modern computers in the 1940s. It has been pointed out that a complete
and rigorous solution for the stability problem of GE still remains as an open problem.
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