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Abstract

We obtain the generic real Jordan canonical forms for n x n matrices with real entries.
More precisely, we prove that the set of n X n real matrices is the union of the closures
of [n/2] 4+ 1 sets, which are called generic bundles, as they are particular “bundles”. In
general, a bundle is the set of n x n real matrices with the same real Jordan canonical form,
up to the values of the eigenvalues, provided that the eigenvalues which are distinct in one
matrix of the bundle remain distinct in any other matrix of the same bundle. The kth
generic bundle, for 0 < k < |n/2], contains the n x n real matrices having k different pairs
of non-real conjugate eigenvalues and n — 2k different real eigenvalues. We prove that each
of the |n/2] + 1 generic bundles is an open subset of the set of n X n real matrices. Some
numerical experiments are carried out with large sets of random matrices of different sizes
to confirm that all the generic bundles show up, and only these ones.
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1 Introduction

It is well-known that most n X n matrices with complex entries have n different eigenvalues.
In the terminology of the present work, this can be rephrased as follows: the “generic” Jordan
canonical form for n x n complex matrices consists of a direct sum of n Jordan blocks of size
1 x 1 corresponding to different eigenvalues. Recall that the Jordan form is a canonical form
under similarity of complex matrices, where two matrices A and B are similar if there is some
invertible matrix P such that B = P~ 'AP. It is natural to ask: what happens when the matrices
have real entries and the allowed similarities are restricted to be real? Namely: which are the
generic Jordan canonical forms of real n x n matrices under real similarity? It is known that the
eigenvalues of a real matrix are either real numbers or pairs of non-real conjugate numbers, but,
how many of each kind appear generically in an n x n matrix? This is the question we aim to
answer in this work from a topological point of view.

The real Jordan canonical form of A (denoted by RJCF(A)) is the representative of the
real matrix A under real similarity. It is a direct sum of blocks of two different kinds which
correspond to, respectively, real eigenvalues and pairs of non-real conjugate eigenvalues of A
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(see |6, Th. 3.4.1.5] and Section [2] for the definitions). In this work, we determine the generic
real Jordan canonical form of real n x n matrices. More precisely, we prove that there is a finite
number of n x n RJCFs (which we explicitly describe) such that the set of matrices having these
RJCFs is open and dense in R™*", that is, in the set of real n x n matrices. Each of these RICFs
is determined by the number of real eigenvalues.

Let us provide a more detailed description of the contribution of this work. The main result
is Theorem where we show that R"*" is the union of the closures of [n/2] + 1 bundles under
real similarity, which are different to each other (we prove a stronger fact, namely that the closure
of a given generic bundle has empty intersection with any other generic bundle), and that these
bundles are open in R"*" (in the standard topology). Therefore, the union of these bundles
is an open dense set in R™™" and, so, it is generic in the standard topological sense. We call
these [n/2] + 1 bundles generic under real similarity. Each bundle corresponds to the set of real
n X n matrices having the same number of different real eigenvalues, and the rest of eigenvalues
being different couples of non-real conjugate eigenvalues. In terms of RJCFs, the tth bundle is
a direct sum of ¢ real Jordan blocks of size 2 x 2 associated with different couples of non-real
conjugate eigenvalues together with n — 2¢ Jordan blocks of size 1 x 1 associated with different
real eigenvalues. Since ¢ ranges from 0 to [n/2], all possible numbers of real eigenvalues appear
in the union. In other words, each generic bundle corresponds to an integer k, for 0 < k < n,
with the same parity as n, and contains all the n x n real matrices having exactly k different real
eigenvalues and (n — k)/2 different couples of non-real conjugate eigenvalues.

It is expected that the dimension of each generic bundle is n2, which coincides with the
dimension of R™*". By introducing an appropriate notion of dimension for the similarity bundles,
and using the codimension within R™*" instead, we prove that this is indeed the case, namely
we show that the codimension of each generic bundle is 0.

The problem we address in this paper is related to the one of determining which is the expected
RJCF of random matrices. Mimicking the previous considerations for the generic RJCF, it is
natural to expect that a random real matrix has all its eigenvalues different to each other, so
the remaining question is: how many of them are real? This question has been addressed in
several previous works. In [3], Edelman obtained, for every 0 < k < n, the probability of a
random n X n real matrix to have exactly k real eigenvalues, whereas in [4] the expected number
of real eigenvalues was calculated (random matrices in these works are matrices whose entries
follow independent standard normal distributions, though it is mentioned that, after extensive
numerical experience, similar results can be obtained for other distributions). According to our
results, all values 0 < k < n having the same parity as n must have a positive probability, and
they should show up experimentally in a sufficiently large number of tests. We confirm this fact
with several numerical experiments.

2 Notation and basic definitions

Following the notation in [6], by C(a,b) := [ _% ] we denote a 2 x 2 real Jordan block associated
with a couple of non-real conjugate eigenvalues a + bi, with a,b € R and b > 0 (from now on, i
denotes the imaginary unit). Also, we use the following notation for, respectively, a k x k Jordan
block associated with the eigenvalue p € C and a 2k x 2k real Jordan block associated with a
couple of non-real conjugate eigenvalues a + bi, with a,b € R and b > 0:

o1 C(a,b) I,

Ty (1) = ' Il. 1 ) Cila,b) = ’ C’(a;b) L (D)

C(a,b)

H s 2 x 2k



When k = 1, the block J; (1) will be written as [p] for simplicity, as it is just a number.
For A € R™*", its real orbit under similarity is the set of real matrices which are similar to
A, namely,
Op(A) = {P'AP: P e R™" invertible}. (2)

The orbit Or(A) is a differentiable manifold over R, and its tangent space at A is the set
(see, for instance, |2, §4.1]):

Ta={XA—AX: X e R™"}.

Therefore, the dimension of Ty, denoted by dimp(7,), is the dimension of the real vector space
of matrices of the form XA — AX. This is the dimension of the orbit Og(A). We will consider
instead the codimension of OR(A), namely the dimension of the normal space to T, which is
equal to codimpTy = n?— dimp Ty, as n? is the dimension of the ambient space R"*™. Moreover,

codimp Ok (A) = dimp{X € R"*" : XA - AX =0}, (3)

namely the codimension of the orbit Or(A) is the dimension of the solution space of the linear
equation XA — AX = 0, which is a real vector space (see, for instance, [2, p. 71]).

The real bundle under similarity of A € R™ ", denoted by Bg(A), is the set of real matrices
which have the same RJCF as A, up to the specific values of the eigenvalues, provided that the
eigenvalues which are distinct in one matrix remain distinct in the other ones. More precisely, if

RJCF(A @ @CZ (@;b;) @@ @Jk @) | (4)

=1 Jj=1

with @;,b; > 0,¢; € R, and & # ¢y (a5, b;) # (ay b,), for i # i, then the real bundle of A is
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T i
Bg(A) = U o | P | P, . (aiby) @@ @Jk )
a;,b;>0,c; €R, =1 j=1 i=1 j=1
ci;éci/ ) if i
(a;,b)#(a b)), if ii’

Following Arnold, [1, §5.5], the codimension of the bundle By(A) is defined as the difference
between the codimension of the orbit and the number of different eigenvalues in any matrix of
the bundle. More precisely, if RJCF(A) is as in (), then

codimpBg (A) = codimgOg(A) — (2r + s). (6)
Since bundles under similarity are subsets of R"*", the topological notions (like the closure
or the openness) of bundles are considered in the standard (Euclidean) topology of R"*". The
closure of Br(A) will be denoted by Bg(A).

3 The main result

In Theorem [3.2) we provide the generic RJCFs of real n x n matrices. This is done by showing
that R™*" is the union of the closures of [n/2]+ 1 bundles, which correspond to some particular
RJCFs. These are the “generic” bundles (in each of these RJCFs the eigenvalues are different
to each other and the number of real eigenvalues determines each RJCF). Moreover, we see that



the intersection of the closure of any of the generic bundles with any other generic bundle is
empty, which implies that none of these closures is included in any other. We also prove that
the generic bundles are open sets. Note that this, in particular, implies that the union of these
bundles is an open and dense set in R™*". Finally, we show that the codimension of each of the
generic bundles is equal to zero.

To prove Theorem we will use the following technical lemma.

Lemma 3.1. If M € By (@le C(a;, b;) ® @?;ft[ci]), for some 0 <t < |n/2|, with a;,b;,¢c; €
R, b; > 0, then
(a) M has, at least, n — 2t real eigenvalues, counting multiplicities, and

(b) if M has more than n — 2t real eigenvalues, counting multiplicities, then at least one of the
eigenvalues of M is multiple.

Proof. 1If M € By (@2:1 C(a;,b;) ® @?;ft [ci]), there is a sequence {M,, },,en Which converges
to M and such that M, € Bg (@Z:l C(a;, b;) ® @?;ft[ci]), for all m € N. Let RICF(M,,) =
@7;:1 C(my b5 ) @ @?:_1%[01-7”1], for some a; ., 0; 1, Cim € R, b;,, > 0. By the real Schur

factorization (see, for instance, |6, Th. 2.3.4-(b)]), there is an orthogonal matrix @,, € R™™"
such that

T, * * * cee *
T,
T t,m nxn
QnM,Q,, = € R™, (7)
Cl,m
*
L 0 Cn—2t,m_

where T; ,, € R**? is real similar to C(a;m,b; ) for 1 < i < t, the block lower triangular
part of the right-hand side matrix in is zero and the entries of the block upper triangular
part, marked with %, are not of interest in our developments. Since the orthogonal group is
a compact set, taking a subsequence if necessary, the sequence {Q,,}en converges to some
orthogonal matrix ). Therefore, {Q;MQO}meN converges to QTMQ, which is similar to M
and has the same block upper triangular structure as . If the block diagonal part of QTM Q
is diag(Ty,..., Ty, ¢y - - Cp_or), Where T € R**? and ¢; € R, then T; = lim,,_,, T} ,,, and ¢; =
lim,,,_, o €; . Moreover, if a;, 3; are the two eigenvalues of T}, then o; = lim,,_, . (a; , + b; 1)
and 3; = lim,, (@, ,,, —b; 1), for 1 < i < ¢, by the continuity of the eigenvalues [6, Th. 2.4.9.2].
Since the eigenvalues of M are ay, B1,...,;, B, ¢1,...¢,_9, and ¢; € R, because ¢; ,,, € R, we
get that the matrix M has, at least, n — 2t real eigenvalues. This proves (a).

To prove (b), assume that M has more than n — 2¢ real eigenvalues. For this to happen, it
must be lim,,, . b; ,,, = 0, for some 1 < ¢ < t. But then o; = 3; = lim,,,_, a; ,,, is a multiple
(at least double) eigenvalue of M. O

Now we are in the position to state and prove Theorem The first term of the direct sum
in the right-hand side of is empty when ¢ = 0, and the same happens with the second term
when n — 2t = 0, namely when ¢t = n/2.



Theorem 3.2. The set of real n X n matrices is equal to the following finite union of bundle

closures under similarity:
[n/2] B t n—2t
R™ " = U Bg <ED Cla;, b;) & @ [Q]) ;
t=0 i=1 i=1

with a;, by, c; € R, b; > 0, and where (a;,b;) # (ay,by) and ¢; # ¢y fori #1i'.
Moreover:

(i) codimgBg (@1 L Clag,b) @B e ]) =0, forall0 <t <|n/2],

(®)

(i) Br (@I, Claiby) © @5 e]) N B (DI, Clar by) @ @5 [6]) =0, Jor t £, and

(iii) Bg (@Z 1 Cla;, b)) ® P 2t[ci]) is open, for all0 <t < [n/2].

Proof. Let us first prove the identity (8). For this, let A € R™ ", Assume that RJCF(A)

is as in (@), so there is some invertible matrix P € R™™" such that PlAP =

RICF(A).

We are going to see that A € By (D2, Cla;,b;) & D)2, [c;]), where ny = >0, Z?’;l ¢;; and
ng =0, Z;;l k; ;. For this, we consider the following sequence {A,,},cn, constructed as a

perturbation of A = P-RJCF(A)- P~ "

1 1
Clots ms)
I . Clgmss mrs)
@ @ Cy, (a;,b;) +
i=1 | j=1
1
m+7j 1
s e; ) TmTs .
@@ @ka,i(c’i) + . P .
i=1 | j=1 :

kj im+j
Note that the sequence {A,,}nen converges to A = P - RJCF(A) - P~

i # 14, because of the following:

Moreover, A,
Br (D2, C(a;,b;) ® @2, [c;]) for m large enough, with ¢; # ¢, and (a;,b;) # (ay,b

), for

i’ V!

e The real eigenvalues of A,, are ¢; + ﬁﬂ,, where 1 <i<s,1<j<e,and 1 <k<Ekj,

Let us see that all of them are distinct for m sufficiently large. If ¢; + kml =

forsome 1 <k <k, ;,

C +km+;

1Sk/gkj/i,andl§j,j/Sei,thenitmustbe(kfk)mfj —7.

But, for m large enough, this is not possible unless k = k" and j = 5, because |5’ — j| < e;.

For i # i, since ¢; # ¢;, a value of m large enough guarantees that 5i+ﬁ+j # ¢+
1<5<e;,1< kK< kj/’i/, and 1 < j' < e, because kmlﬂ. and

for any 1 <k < kj,,
tend to 0 as m tends to infinity.

e Similarly, the non-real complex conjugate eigenvalues of A,, are a; + ﬁﬂ.

1

k/m—i-j'

+ (b + ﬁﬂ-)ia

for 1 <i<r, 1 <j<d;,and1l < ¢ <Y;; Tosee that all of them are distinct for
m large enough, it is sufficient to check that those correspondlng to the “+” sign are all

distinct, since b; > 0. If @, +ém+] (b, —|—€m+])t—a Tty + (b; +

—L )i, for some
+i



1<0<4;,,
enough, it must be £ = ¢ and j = j'. Also, for i # i/, since (&Z,l;) # (aif,l;Z ), we get
that, for m large enough, a, + ﬁ + (b; + émlJr L # ay + 5 T T (b + )i, for all
1<0<t;,,

é’er]
for m sufficiently large because l~)l > 0.

1</l < Kj/ ;> and 1 < 7, j' < d;, we conclude, as before, that, for m large

1<l <ty and 1 <j<d,1<j <d. Flnally, note that b; + >0

1
Im+j

Therefore, A € Br (D2, C(a;,b;) & B2, [c;]), with n; and n, as above and a;, b;, ¢; € R, b; > 0,
(a;,b;) # (al/,bl 1), and ¢; # ¢, for i # i'. Since it must be 2n; + ny = n, if we set t = ny, then
A€ By (@i:l Clay, b)) & P e }), and this proves (8).

Now let us prove claim (ii) in the statement. Assume that there is some matrix A €
Br (Bl Clar, by) © @)= [6:]) 1By (B, Clas, b)) © DI [ei]), for some 1 <t,¢' < [n/2].
Since A € By (@1 L Clag, by) ® B 2t[ ]) then A has exactly n — 2t real eigenvalues.

Moreover, since A € By (@Z 1 Cla, b)) @ B 2t [ Z}), by part (a) of Lemma A has, at

least, n — 2t’ real eigenvalues, so it must be n — 2t > n — 2t', namely ¢ > ¢. If ' > t, then
part (b) in Lemma implies that A has at least one multiple eigenvalue, which is not the case.
Therefore, it must be ¢’ = ¢.

Let us now prove claim (iii). For simplicity, set B, := By (@Z L Cla;, b)) @ B 2t[ ]), with
a;, b, and ¢; as in the statement, for 0 <t < |n/2]. Let M € B, , for some 0 < t, < [n/2]. We
are going to see that there is some € > 0 such that B(M,¢) C B, , where B(M,e) = {A € R""" :
|[M — All, < e} is the (open) ball of radius € centered at M (and where ||- ||, denotes the spectral
norm, see, for instance, |6, Example 5.6.6]). First, by the continuity of the eigenvalues (see, for
instance, |6, Th. D.2]), there is some €y > 0 such that all matrices in B(M, ey) have n different
eigenvalues, and this implies that B(M,ey) C Utn/ 2] . Now, assume, by contradiction, that,
for all € < gg, the open ball B(M,e¢) is not contalned in B, , which implies, since all matrices

in B(M,e) have n different eigenvalues, that B(M,e) N (Ut#O Bt) # (). As a consequence, M

belongs to the closure of Ut#0 B,, which is equal to U#to B,. Hence, M € B, N B,, for some
t # to, which is in contradiction with part (ii).

Finally, let us prove claim (i) in the statement. For this, we strongly rely on the developments
in [5, Ch. VIII]. More prec1se1y, the dimension of the solution space of XA — AX = 0 depends
on RJCF(A) and, for RICF(A) = @!_, C(a;,b;) ® @7 "[¢;], with the parameters a;, b;, and ¢;
as in the statement, it is equal to

t n—2t
ZdimR{X e R”? . XC(a;,b;) — Cla;, b)) X =0} + Z dimg{z € R : z¢; — c;x = 0}.
i=1 1=1

Since dimp{z € R : z¢; — ;& = 0} = 1 and, by a straightforward calculation, dimp{X € R?*? .

XC(a;,b;) — C(a;,b;) X =0} = 2, we conclude from that

n—2t
codimp O (@C’ a;,b;) ® @ > =2t +n— 2t =n,
and, as a consequence of (), codimpBg (@l 1 Clag, b)) @& D 2t[ ]) =n—-n=0. O
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5.71 -
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3.81-
2.56 -
1.46 -
5.93 -
2.57-

10°°
1078
1071
1071
1071

Table 1: The value of p,, ;, for n =8 and n =9 (from [3, Table 1]).

4 Real eigenvalues of random matrices: Numerical exper-

iments

In this last section we provide some numerical experiments to support our main result, i.e.,
Theorem [3.2] and to connect it with some results available in the literature on real eigenvalues
of random matrices. Let us refer to a real n x n matrix whose entries are i.i.d. random variables
with standard normal distribution as a “random matrix”. The probability that a random matrix
has exactly k real eigenvalues has been obtained in [3]. Following the notation in |3], we denote
this probability by p,, ,. According to Theorem whenever k£ and n have the same parity, it
must be p,, , # 0. The values of p,, ;, for n = 8 and n = 9 are provided in Table

We have computed the number of real eigenvalues of real random matrices using the following

MATLAB code:




function realevals(n,m)
% counts the number of real evals of m random nxn matrices
counter=zeros(m,1);
for i=1:m
a=randn(n) ;
e=eig(a);
normi=abs(e) ;
for j=1:n
if abs(e(j)/normi(j)-1)<=eps*cond(a)
counter (i)=counter (i)+1;
elseif abs(e(j)/normi(j)+1)<=eps*cond(a)
counter (i)=counter(i)+1;
else
counter(i)=counter(i);
end
end
end

X = unique(counter) ;

N = numel(x);
count = zeros(N,1);
for k = 1:N
count (k) = sum(counter==x(k));
end

disp([ x(:) count ]);

The results, for 107 test matrices for each size n = 8,9, 10,15, which have been computed with
MATLAB R2024b, are displayed in Table |2 The column k is the number of real eigenvalues, and
the column F' denotes the frequency. The last column displays the ratio between the frequency
and the total number of tests, which is an experimental approximation to the probability p,, .
For n = 8 and n = 9 the experimental results are very close to the corresponding values p,,
in Table Actually, for some values of k they sharply coincide with the theoretical ones up
to three digits of accuracy. For n = 10 all possible numbers of real eigenvalues occur (namely
k=0,2,4,6,8, and 10). Therefore, for n = 8,9, and 10, all generic bundles described in Theorem
show up. However, for n = 15 only up to k = 11 real eigenvalues appear (so k = 13 and
k = 15 are missing). In both cases, the results are in accordance with the expected number of
real eigenvalues obtained in [4]. More precisely, the expectation for n = 10 is, approximately,
2.93 (see Table 1 in [4]), whose closest even number is k = 2, which is the one with the highest
frequency, whereas for n = 15 it can be calculated from the formula in [4, Cor. 5.3] and gives,
approximately, 3.51, whose closest odd number is £ = 3, which is, again, the one with largest
frequency.

We can slightly force the random matrices for n = 15 in order to get positive frequencies for
k =13 and k = 15, namely for 13 and 15 real eigenvalues to show up. For this, we add to each
random matrix a diagonal matrix with the (i,4) entry being equal to 2i. The results for these
matrices are displayed in Table As it can be seen, in this case all possible numbers of real
eigenvalues (namely, k real eigenvalues, with k being any odd number from 1 to 15) show up,
which confirms the genericity of the bundles described in Theorem for n = 15.
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n] k]| F [ F/10" |
8 594 5.94-10°
6 | 205759 | 2.06-1072
8 | 4 | 3456910 | 3.46- 107"
2 | 5713924 | 5.71-107"
0 | 622813 | 6.23-1072
9 46 4.6-10°°
7 | 35384 | 3.53-107°
9 | 5 | 1462469 | 1.46-10""
3 | 5931622 | 5.93-107!
1 | 2570479 | 2.57-107"
10 2 2107
8 4325 | 4.22-107*
10 | 6 | 444855 4.45-1072
4 | 4172775 | 4171071
2 | 4944333 | 4.94-107"
0 | 433710 | 4.34-1072
11 12 1.2-10°°
9 5444 | 5.44-107*
15 | 7 | 335896 | 3.36-107"
5 | 3142390 | 3.14-10"*
3 | 5248744 | 5.25-107"
1 | 1267514 | 1.27-107"

Table 2: Number of real eigenvalues of 10" real random matrices with size n x n.

k] F | F/10° |
15 | 11240 | 1.12-10°7
13 | 91675 | 9.17-1072
11 | 269714 | 2.70-107"
9 | 352263 | 3.52-107"
7 | 212891 | 2.13-107*
5 | 56619 | 5.66-10"2
3 | 5477 | 5.48-107°
1 121 | 121-107%
Table 3: Number of real eigenvalues of 10° real matrices of the form
randn(15)+diag(2,4,6,...,2*15).
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