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Computing roots of scalar polynomials as the eigenvalues of Frobenius companion matrices using back-
ward stable eigenvalue algorithms is a classical approach. The introduction of new families of companion
matrices allows for the use of other matrices in the root-finding problem. In this paper, we analyze the
backward stability of polynomial root-finding algorithms via Fiedler companion matrices. In other words,
given a polynomial p(z), the question is to determine whether the whole set of computed eigenvalues of
the companion matrix, obtained with a backward stable algorithm for the standard eigenvalue problem,
are the set of roots of a nearby polynomial or not. We show that, if the coefficients of p(z) are bounded
in absolute value by a moderate number, then algorithms for polynomial root-finding using Fiedler ma-
trices are backward stable, and Fiedler matrices are as good as the Frobenius companion matrices. This
allows us to use Fiedler companion matrices with favorable structures in the polynomial root-finding
problem. However, when some of the coefficients of the polynomial are large, Fiedler companion matri-
ces may produce larger backward errors than Frobenius companion matrices, although in this case neither
Frobenius nor Fiedler matrices lead to backward stable computations. To prove this we obtain explicit
expressions for the change, to first order, of the characteristic polynomial coefficients of Fielder matrices
under small perturbations. We show that, for all Fiedler matrices except the Frobenius ones, this change
involves quadratic terms in the coefficients of the characteristic polynomial of the original matrix, while
for the Frobenius matrices it only involves linear terms. We present extensive numerical experiments that
support these theoretical results. The effect of balancing these matrices is also investigated.

Keywords: roots of polynomials; eigenvalues; characteristic polynomial; Fiedler companion matrices;
backward stability, conditioning

1. Introduction

Let p(z) be a monic polynomial of degree n,

p(z) := zn +
n−1

∑
k=0

akzk, (1.1)

with ak ∈ C, for k = 0, . . . ,n−1. The first and second Frobenius companion matrices of p(z) are defined as

C1 :=


−an−1 −an−2 · · · −a1 −a0

1 0 · · · 0 0

0 1
. . . 0 0

...
. . . . . .

...
...

0 · · · 0 1 0

 and C2 :=


−an−1 1 0 · · · 0

−an−2 0 1
. . .

...
...

...
. . . . . . 0

−a1 0 0 · · · 1
−a0 0 0 · · · 0

 , (1.2)

and they satisfy: det(zI−C1) = det(zI−C2) = p(z). Hence, the eigenvalues of both C1 and C2 coincide with the
roots of p(z). Then, the root-finding problem for scalar monic polynomials (1.1) can be reformulated as an eigenvalue
problem. However, these two problems present relevant differences from the numerical point of view regarding, in
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particular, conditioning and backward errors. The difference relies on the fact that, due to perturbations, the companion
matrix may become a dense matrix, which has not the structure of a companion matrix any more. In other words, small
perturbations of the companion matrix might not correspond to small perturbations of the associated polynomial.

To be more precise, a standard way to compute the roots of p(z) is just by computing the eigenvalues of C1 (or
C2). This is, for instance, the way followed by the MATLAB command roots, after balancing the Frobenius matrix.
The MATLAB command roots then uses the QR-algorithm on the Frobenius matrix to get its eigenvalues. Though
this may not be the best way to address the polynomial root-finding problem, from the point of view of efficiency
and storage (see, for instance, Moler (1991)), it has been extensively used because of the advantages of the QR
algorithm (robustness and backward stability). Nonetheless, to overcome the mentioned drawbacks on the efficiency
(measured in number of operations) and storage, several fast variants of the QR method have been proposed, which
take advantage of the structure of the companion matrix (see, for instance, Aurentz et al. (2013); Bini et al. (2004,
2005, 2010); Calvetti et al. (2002); Chandrasekaran et al. (2008); Gemignani (2007); Van Barel et al. (2010)), but
none of them has been proved to be stable. In a different line of research, also variants of C1,C2 have been proposed,
devoted to improve the accuracy in the case of multiple roots, where the standard companion matrix gives less accurate
results than for simple roots (see Brugnano & Trigiante (1995); Niu & Sakurai (2003)). In this paper, we are interested
in the backward stability of the root-finding problem solved via an eigenvalue backward stable method, but for a wider
class of companion matrices (namely, the Fiedler matrices, see Fiedler (2003)). Our work is motivated by Edelman &
Murakami (1995) and Toh & Trefethen (1994), which address related issues for the Frobenius matrices.

Let us first focus on the root-finding problem for p(z) using the first Frobenius companion matrix C1. Since
the QR-algorithm is backward stable, the whole ensemble of computed eigenvalues is the whole ensemble of exact
eigenvalues of a matrix C1 +E, where E is a dense matrix such that

‖E‖= O(u)‖C1‖, (1.3)

for some matrix norm ‖ · ‖, and where u denotes the machine epsilon. However, this does not guarantee that these
(computed) eigenvalues are the roots of a nearby polynomial of p(z) or, in other words, that the method is backward
stable from the point of view of the polynomials. In this paper, we investigate this issue. In order for the method to be
backward stable from the point of view of the polynomials in a normwise sense, the computed eigenvalues should be
the exact roots of a polynomial p̃(z) such that

‖ p̃− p‖
‖p‖

= O(u),

for some polynomial norm ‖ · ‖. As we will see in Section 3, the backward stability of polynomial root-finding
algorithms using companion matrices is closely related to the conditioning of the characteristic polynomial under
perturbations of these matrices. This conditioning can be measured through the first order term of the Taylor expansion
of the coefficients of the characteristic polynomial. In Edelman & Murakami (1995) it has been shown that, if

p̃(z) = det(zI−C1−E) = zn +
n−1

∑
k=0

ãkzk (1.4)

then, to first order in (the entries of) E,

ãk−ak =
k

∑
s=0

n−k−1

∑
j=1

asE j−s+k+1, j−
n

∑
s=k+1

n

∑
j=n−k

asE j−s+k+1, j. (1.5)

If the eigenvalues of C1 are computed with a backward stable algorithm, it may be proved from (1.5) that, to first order
in E, the computed eigenvalues are the exact roots of a polynomial p̃(z) as in (1.4) such that

‖ p̃− p‖
‖p‖

= O(u)‖p‖, (1.6)

with E satisfying (1.3). Note that (1.6) does not imply that computing the roots of p(z) using C1 (or C2) is a backward
stable method from the point of view of the polynomials, since large values of ‖p‖ can give large backward errors.
This had been already noticed, for instance, in Lemmonier & Van Dooren (2003), where the authors analyze diagonal
scalings of the companion matrix to get small backward errors.
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A key advantage in using Frobenius companion matrices in the root-finding problem is that they are easily con-
structible from the polynomial, without performing any arithmetic operation, by means of a uniform template valid
for all polynomials. Any uniform template with these properties is what we mean by a companion matrix.

In Fiedler (2003), the author expanded the family of companion matrices associated with the monic polynomial
p(z). These matrices were named Fiedler matrices in De Terán et al. (2010). The family of Fiedler matrices includes
C1 and C2 but, provided that n> 3, it contains some other different matrices and, in fact, many others when n is large.
These matrices provide a new tool that could be used instead of C1 and C2 for computing the roots of p(z). Some
features of Fiedler matrices have been recently studied. For instance, in De Terán et al. (2013) the condition numbers
for inversion of different Fiedler matrices have been compared, and it has been proved that, in many cases, some of the
new Fiedler matrices have better conditioning than C1 and C2. Also, in De Terán et al. (2014a), Fiedler matrices have
been used to get new lower and upper bounds for the modulus of the roots of p(z). We provide the formal definition
of Fiedler matrices in Section 2. For the moment, the only relevant information is that, to construct them, we only
need to know the polynomial p(z) and to fix a bijection σ : {0,1, . . . ,n−1}→ {1, . . . ,n}, and that the Fiedler matrices
contain, in different positions, exactly the same entries as C1 and C2. We denote the Fiedler matrix associated with the
polynomial p(z) and the bijection σ by Mσ (p), or Mσ for brevity.

A natural question is whether or not computing the roots of p(z) using a Fiedler matrix Mσ and a backward stable
eigenvalue algorithm is backward stable from the point of view of the polynomials, that is, whether or not the computed
roots are the exact roots of a polynomial p̃(z) such that ‖p̃− p‖ = O(u)‖p‖. As it happens with Frobenius matrices,
if we compute the roots of p(z) as the eigenvalues of Mσ with a backward stable algorithm (like the QR algorithm),
then the computed roots are the exact eigenvalues of Mσ +E, where ‖E‖= O(u)‖Mσ‖. However, again, this does not
guarantee backward stability from the point of view of the polynomials. The goal of this paper is to analyze this issue.

To accomplish this task we need to know how the coefficients of the characteristic polynomial of Mσ change when
the matrix is perturbed as Mσ +E, with E an arbitrary perturbation with no special structure. This change can be
estimated, up to first order in E, through the gradients ∇ak(Mσ ), where ak(X) : Cn2 → C is the kth coefficient of the
characteristic polynomial of a matrix X ∈Cn×n, considered as a function of its entries. In particular, we find explicitly
∇ak(Mσ ) in terms of the coefficients of p(z). This allows us to get, up to first order, a formula for the variation of
the characteristic polynomial of Mσ under small perturbations of Mσ . From this formula, we analyze the backward
stability of the polynomial root-finding problem solved by applying backward stable eigensolvers to Fiedler matrices.
In the recent reference Lawrence & Corless (2014), the authors address the same problem as in the present paper,
namely, to know whether or not solving the polynomial root-finding problem as an eigenvalue problem is backward
stable, but they use a suitable companion matrix for the polynomial expressed in barycentric form. In that reference
the polynomials are not necessarily monic, but the authors follow a similar approach to ours.

To get an expression for ∇ak(Mσ ), we first prove that its coordinates are the entries of the (k+ 1)th coefficient
of the adjoint adj(zI−Mσ ). Then, we get an explicit formula of adj(zI−Mσ ). This is a general theoretical result on
Fiedler matrices that may be useful in the future to analyze other features of this family of matrices.

For a precedent on the perturbation analysis of the characteristic polynomial, we refer the reader to Ipsen &
Rehman (2008). In that paper, several bounds are derived for the variation of the characteristic polynomial of an
arbitrary matrix A under perturbations, in terms of symmetric functions of the singular values of A. The bounds there
are very pessimistic for general matrices. However, here we take advantage of the sparsity and the structure of the
Fiedler matrices to get more specific bounds depending on the coefficients of p(z).

Throughout this paper, if A ∈ Cn×n is a matrix, then ‖A‖∞ denotes the usual matrix ∞-norm (see (Higham, 2002,
p. 108)). In particular, for a vector v =

[
v1 . . . vn

]T ∈ Cn, we have ‖v‖∞ = max{|v1|, . . . , |vn|}. Similarly, for a
polynomial p(z) = ∑

n
k=0 akzk (not necessarily monic), ‖p‖∞ is the norm on the vector space of scalar polynomials of

degree less than or equal to n defined as

‖p‖∞ := max{|an|, |an−1|, . . . , |a1|, |a0|}.

Notice that, since we deal in this paper with monic polynomials, an = 1 and we always have ‖p‖∞ > 1.
The main results of this work are Theorem 3.3 and Corollary 3.2. Theorem 3.3 gives, to first order in E, the

coefficients of the characteristic polynomial of Mσ +E, and Corollary 3.2 tells us that if we compute the roots of a
monic polynomial p(z) as the eigenvalues of a Fiedler matrix Mσ other than the Frobenius companion matrices using
a backward stable eigenvalue algorithm, then the computed roots are the exact roots of a monic polynomial p̃(z) with

‖p̃− p‖∞

‖p‖∞

= O(u)‖p‖2
∞, (1.7)
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which implies that computing the roots of p(z) using any of the Fiedler matrices of p(z) is not backward stable if
‖p‖∞ is large. For the Frobenius companion matrices, Corollary 3.2 recovers (1.6). In Section 4 we provide numerical
experiments that support this theoretical result.

Our results are even more general because our formulation allows us to translate the backward errors of any
algorithm for computing the eigenvalues of Mσ to the backward error of the polynomial root-finding problem, even
when the algorithm is not backward stable. This is particularly interesting for any fast algorithm that has been or might
be developed in the future for computing eigenvalues of special Fiedler matrices. To be more precise, if instead of an
expression like (1.3) the eigensolver computes the eigenvalues of a matrix Mσ +E, with

‖E‖= c(p)O(u)‖Mσ‖,

where c(p) is some quantity depending on p(z), then (1.7) is replaced by

‖ p̃− p‖∞

‖p‖∞

= c(p)O(u)‖p‖2
∞.

As a consequence of (1.6) and (1.7) we get the following conclusions:

(C1) From the point of view of the normwise backward errors in the (monic) polynomial p(z), any Fiedler matrix can
be used for solving the root-finding problem with the same reliability as Frobenius companion matrices when
‖p‖∞ = O(1). In this case, the root-finding problem solved by applying a backward stable eigenvalue algorithm
on any Fiedler companion matrix is a backward stable method.

(C2) However, when ‖p‖∞ is large none of the Fiedler matrices leads to a backward stable algorithm for the root-
finding problem and, moreover, any Fiedler matrix other than Frobenius companion matrices may produce much
larger backward errors than the ones produced when using Frobenius matrices.

Note, in particular, that since ‖p‖∞ > 1, no Fiedler matrix can improve the behavior of Frobenius matrices in the
root-finding problem from the point of view of backward errors. Anyway, the particular structure of some Fiedler
matrices can make their use more efficient than the use of classical Frobenius companion matrices. For instance, we
could take advantage of the pentadiagonal structure of some Fiedler matrices (which exist for any value of n, see
De Terán et al. (2010)) to devise structured versions of the LR algorithm to get its eigenvalues in O(n2) flops (see, for
instance, Zhlobich (2012)). However, as for all structured methods for the root-finding problem, stability can not yet
be guaranteed.

We have also considered the effect of balancing (see Parlett & Reinsch (1969)) Fiedler companion matrices on the
backward errors of the root-finding problem for p(z) using a Fiedler matrix Mσ . The numerical experiments carried
out in Section 4 indicate that balancing very often improves the backward errors for general polynomials, including
some polynomials for which the backward error without balancing is quite large. However, we prove that, when |an−1|
is much larger than |an−2|, the condition number of p(z) using any balanced Fiedler matrix is large, and so is the
backward error. Some experiments on polynomials with |an−1| much larger than |an−2| show that, indeed, balancing
the Fiedler matrices does not guarantee backward stability for the root-finding polynomial problem.

The paper is organized as follows. In Section 2 we introduce Fiedler matrices and their basic properties. In Section
3 we analyze, to first order, the change of the coefficients of the characteristic polynomial of Fiedler matrices under
matrix perturbations, and we connect it with the backward error of the polynomial root-finding problem solved via an
eigenvalue algorithm. This section contains the main results of the paper. Due to the length and technical nature of
this section, some proofs have been omitted or reduced. For more detailed proofs, we refer the reader to De Terán
et al. (2014b), which is an extended version of this paper. Section 4 is devoted to numerical experiments that illustrate
the theoretical results obtained in Section 3. In Section 5 we provide a geometric interpretation of the change, to
first order, of the characteristic polynomial of Fiedler matrices in terms of the orbit space under similarity of these
matrices. This is motivated by the one in Edelman & Murakami (1995) for Frobenius companion matrices, and gives
a decomposition of Cn×n as the sum of the tangent space to the similarity orbit of a Fiedler matrix and the Sylvester
space of matrices associated to it. Section 6 presents a summary of the main contributions of the paper.

2. Fiedler matrices. Definition and basic properties

For a given polynomial p(z) as in (1.1), we define the n×n matrices
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M0 :=
[

In−1 0
0 −a0

]
and Mk :=


In−k−1

−ak 1
1 0

Ik−1

 , k = 1, . . . ,n−1, (2.1)

which are the basic factors used to build all Fiedler matrices. Here and in the rest of the paper I j denotes the j× j
identity matrix. In Fiedler (2003) Fiedler matrices are constructed as the product Mi1Mi2 · · ·Min , where (i1, i2, . . . , in)
is any possible permutation of the n-tuple (0,1, . . . ,n− 1). In order to better express certain key properties of this
permutation and the resulting Fiedler matrix, in De Terán et al. (2010) the authors index the product of the Mi factors
in a slightly different way, as it is described in the following definition.

DEFINITION 2.1 Let p(z) = zn +∑
n−1
k=0 akzk, with n > 2, and let Mi, for i = 0,1, . . . ,n− 1, be the matrices in (2.1).

Given any bijection σ : {0,1, . . . ,n−1}→ {1, . . . ,n}, the Fiedler matrix of p(z) associated with σ is the n×n matrix

Mσ (p) := Mσ−1(1) · · ·Mσ−1(n). (2.2)

We want to notice that σ(i) in (2.2) describes the position of the factor Mi in the product
Mσ−1(1) · · ·Mσ−1(n), i.e., σ(i) = j means that Mi is the jth factor in the product. We want to note also that the building
factors (2.1) of (2.2) depend also on p(z) (to be precise, they depend on its coefficients). However, in this case we do
not write explicitly this dependence for the sake of simplicity. For the same reason, we will also drop the dependence
on p in Mσ when there is no risk of confusion (namely, until Section 5).

The family of matrices {Mk}n−1
k=0 satisfies the following commutativity relations

MiM j = M jMi for |i− j| 6= 1. (2.3)

It is proved in Fiedler (2003) that all Fiedler matrices of p(z) are similar, so they have p(z) as characteristic polyno-
mial. Frobenius companion matrices of p(z) are particular cases of Fiedler matrices, namely, C1 =Mn−1Mn−2 · · ·M1M0
and C2 = M0M1 · · ·Mn−2Mn−1 .Observe that the matrices Mi are symmetric, and therefore the transpose of any Fiedler
matrix is another Fiedler matrix, obtained by reversing the order of the Mi factors in (2.2).

The relations (2.3) imply that some Fiedler matrices associated with different bijections σ are equal. For example,
for n = 3, the Fiedler matrices M0M2M1 and M2M0M1 are equal. These relations suggest that the relative positions of
the matrices Mi and Mi+1 in the product Mσ are of fundamental interest in studying Fiedler matrices. This motivates
Definition 2.2, partially introduced in De Terán et al. (2010).

DEFINITION 2.2 Let σ : {0,1, . . . ,n−1}→ {1, . . . ,n} be a bijection.

(a) For i = 0, . . . ,n− 2, we say that σ has a consecution at i if σ(i) < σ(i+ 1) and that σ has an inversion at i if
σ(i)> σ(i+1).

(b) The positional consecution-inversion sequence of σ , denoted by PCIS(σ), is the (n − 1)-tuple
(v0, . . . ,vn−2) such that v j = 1 if σ has a consecution at j and v j = 0 otherwise.

REMARK 2.1 We note that σ has a consecution at i, that is vi = 1, if and only if Mi is to the left of Mi+1 in the product
defining the Fiedler matrix Mσ , while σ has an inversion at i, that is vi = 0, if and only if Mi is to the right of Mi+1 in
Mσ . This simple observation on Definition 2.2 will be used freely.

In order to keep the notation in future sections reasonably simple we introduce the following definitions.

DEFINITION 2.3 Let σ : {0,1, . . . ,n−1}→ {1, . . . ,n} be a bijection with PCIS(σ) = (v0,v1, . . . ,vn−2), then:

(a) The extended positional consecution-inversion sequence of σ , denoted by EPCIS(σ), is the n-tuple (v0,v1, . . . ,vn−1),
where vn−1 = vn−2.

(b) For 06 i6 j 6 n−2, we set

iσ (i : j) :=
j

∑
k=i

(1− vk) and cσ (i : j) :=
j

∑
k=i

vk

for, respectively, the number of inversions and consecutions of σ from i to j. We also set iσ (i : j) := cσ (i : j) := 0
for i > j.
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The following immediate identities will be used several times along the paper:

iσ (i : j)+ cσ (i : j) = j− i+1, for 06 i6 j 6 n−2, (2.4)
iσ (0 : i)+ cσ (0 : j)6 n−1, for 06 i, j 6 n−2. (2.5)

We close this section with the following notion, that will be used along the paper.

DEFINITION 2.4 Let p(z) = zn+∑
n−1
k=0 akzk be a monic polynomial of degree n. For d = 0,1, . . . ,n, the degree d Horner

shift of p(z) is the polynomial pd(z) = zd +an−1zd−1 + · · ·+an−d+1z+an−d .

Notice that the Horner shifts of p(z) satisfy the following recurrence relation{
p0(z) = 1 , and
pd(z) = zpd−1(z)+an−d , for d = 1,2, . . . ,n. (2.6)

3. Backward error, conditioning, and first order perturbation terms of the characteristic polynomial

A natural definition of the normwise backward error of the computed roots, λ̃1, . . . , λ̃n, of the monic polynomial (1.1)
via a certain algorithm is

η∞(λ̃1, . . . , λ̃n) :=
‖p̃− p‖∞

‖p‖∞

,

where p̃(z) = ∏
n
i=1(z− λ̃i). This notion of backward error coincides with the relative distance, in the ∞-norm, between

the original polynomial p(z) and the monic polynomial p̃(z) whose roots are λ̃1, . . . , λ̃n. The key in our approach is
that the roots are computed as the eigenvalues of a (companion) matrix, A, so that the computed roots are the exact
eigenvalues of some perturbation of A, say A+E. In other words, p(z) = det(zI−A) and, following (1.4) for a general
companion matrix A, we also have p̃(z) = det(zI− (A+E)). Hence, the difference between p(z) and p̃(z) can be
measured from the variation of the coefficients of the characteristic polynomial of A under small perturbations of A.

Hence, we consider the kth coefficient of the characteristic polynomial of a matrix X = [xi j] ∈ Cn×n as a function
of the entries of X , ak(X) : Cn2 → C, for k = 0,1, . . . ,n−1. Equivalently:

det(zI−X) = zn +
n−1

∑
k=0

ak(X)zk.

The function ak(X) is a multivariable polynomial function of the entries of X . Therefore, the first order term in E of
its Taylor polynomial centered at A is (see, for instance (Grauert & Fritzsche, 1976, Th. 3.8)) for functions of several
complex variables)

ak(A+E) = ak(A)+
n

∑
i, j=1

∂ak(X)

∂xi j

∣∣∣∣
X=A

Ei j = ak(A)+∇ak(A) ·vec(E), for k = 0,1, . . . ,n−1, (3.1)

where, for a given m×n matrix M = [mi j], vec(M) is the vectorization of M, namely, the column vector

vec(M) := [m11 . . . mm1 m12 . . . mm2 . . . m1n . . . mmn]
T

(see (Horn & Johnson, 1985, Def. 4.2.9), for instance), and

∇ak(A) =
[

∂ak(X)
∂x11

∣∣∣
X=A
· · · ∂ak(X)

∂xn1

∣∣∣
X=A

∂ak(X)
∂x12

∣∣∣
X=A
· · · ∂ak(X)

∂xn2

∣∣∣
X=A
· · · ∂ak(X)

∂x1n

∣∣∣
X=A
· · · ∂ak(X)

∂xnn

∣∣∣
X=A

]
.

Therefore, to first order in E, we have

|ak(A+E)−ak(A)|= |∇ak(A) ·vec (E)|.

For any Fiedler matrix Mσ , we get an explicit expression of ∇ak(Mσ ) in terms of the entries of Mσ or, equivalently,
in terms of the coefficients of its characteristic polynomial p(z). The corresponding expression was given in Edelman
& Murakami (1995) for Frobenius companion matrices, which are particular cases of Fiedler matrices. The general
expression we provide here, valid for any Fiedler matrix, requires different techniques to the ones in that paper.

The following well-know result (known as Jacobi’s formula, see Bhatia & Jain (2009)) provides us a description
of the gradient of the determinant. We include a short proof here for completeness.
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LEMMA 3.1 Let A ∈ Cn×n, and consider a small perturbation A+E, with E ∈ Cn×n. Then, the function

det : Cn×n −→ C
X 7−→ det(X),

is analytic in a neighborhood of A, and

det(A+E) = det(A)+ tr(adj(A)E)+O(‖E‖2),

where ‖ · ‖ is any norm in Cn×n, adj(A) is the adjugate matrix of A (see Bernstein (2009)), and tr(B) is the trace of B.

Proof. The function det : Cn×n −→ C is clearly analytic in a neighborhood of A, since it is a polynomial function on
the entries of X ∈ Cn×n. Moreover, analogously to (3.1), with the function det instead of ak, we get

det(A+E) = det(A)+∇det(A) ·vec(E)+O(‖ E ‖2).

Now, it is straightforward to check that
∂ det(X)

∂xi j

∣∣∣∣
X=A

= (adj(A)) ji

(see also (Bernstein, 2009, Fact 10.11.21)). The result now follows from the identity tr(AB) = vec(AT )T · vec(B),
which is valid for every A,B ∈ Cn×n. �

As an immediate consequence of Lemma 3.1, applied to p(z) = det(zI−A), we get Proposition 3.1, which gives a
description of the gradient of the coefficients of the characteristic polynomial of A and, as a consequence, an expression
for the variation of the characteristic polynomial under small perturbations, up to first order.

PROPOSITION 3.1 Let A ∈ Cn×n and z ∈ C. Let us write the adjugate matrix of zI−A as

adj(zI−A) =
n−1

∑
k=0

zkPk+1, (3.2)

with Pk+1 ∈ Cn×n, for k = 0,1, . . . ,n−1. Let ak(X) : Cn2 → C be the kth coefficient of the characteristic polynomial
of X = [xi j] ∈ Cn×n, and let ∇ak(A) be the gradient of the function ak(X) evaluated at A. Then, for k = 0,1, . . . ,n−1,

∇ak(A) =−
[
vec (PT

k+1)
]T

.

As a consequence, if A+E is a small perturbation of A, with E ∈ Cn×n, then

det(zI− (A+E))−det(zI−A) =−
n−1

∑
k=0

zk [vec(PT
k+1)

]T ·vec(E)+O(‖E‖2) =−
n−1

∑
k=0

zk tr(Pk+1E)+O(‖E‖2),

where ‖ · ‖ is any norm in Cn×n.

Proof. From Lemma 3.1 and (3.2), we have

det(zI− (A+E)) = det(zI−A)− tr(adj(zI−A)E)+O(‖E‖2)

= det(zI−A)−∑
n−1
k=0 zktr(Pk+1E)+O(‖E‖2)

= det(zI−A)−∑
n−1
k=0 zk

[
vec(PT

k+1)
]T ·vec(E)+O(‖E‖2),

and the expression for ∇ak(A) follows immediately from this. Note that in the last identity we have used that tr(AB) =
vec(AT )T ·vec(B), as in the proof of Lemma 3.1. �

Proposition 3.1 tells us that the variation of the characteristic polynomial of A ∈ Cn×n is given, to first order, by
the trace of adj(zI−A). This adjugate matrix is an n× n matrix whose entries are polynomials of degree at most
n− 1 or, equivalently, a matrix polynomial of size n× n with degree at most n− 1. Actually, its degree is exactly
n−1, because of the identity: (zI−A) · adj(zI−A) = det(zI−A)In. In Section 3.1 we give an explicit expression for
the entries of adj(zI−A), for A being an arbitrary Fiedler matrix Mσ . Then, in Section 3.2, we use this information,
following Proposition 3.1, to present an explicit expression for the variation, up to first order, of the coefficients of the
characteristic polynomial of Mσ or, in other words, an explicit expression for ∇ak(Mσ ).
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3.1 Adjugate matrix of zI−Mσ

The main result of this section is Theorem 3.2, which gives an explicit expression for adj(zI−Mσ ). As we have seen in
(3.2), this is a matrix polynomial in the variable z. We use the notation Cn×n[z] for the set of n×n matrix polynomials.

An explicit expression for the adjugate in the case of first and second Frobenius companion matrices was already
known (see (Gantmacher, 1959, Ch. IV §4) or (Edelman & Murakami, 1995, p. 768)):

adj(zI−C2) =


p0(z)
p1(z)

...
pn−1(z)

[zn−1 · · · z 1
]
− p(z)



0
1 0

z 1
. . .

... z
. . . . . .

...
...

. . . . . . . . .
zn−2 zn−3 · · · z 1 0


, (3.3)

and adj(zI−C1) = (adj(zI−C2))
T . Here p0(z), . . . , pn−1(z) are the Horner shifts introduced in Definition 2.4. Equation

(3.3) has a very particular structure: it is a sum of a rank-1 matrix plus a matrix whose (i, j) entry is of the form
p(z)pi j(z), where pi j(z) is a polynomial of degree at most n− 2. We will prove that this structure is shared also by
adj(zI−Mσ ), for any Fiedler matrix Mσ . For example, if we consider the Fiedler matrix Mσ of a degree-6 monic
polynomial p(z) = z6 +∑

5
k=0 akzk, with PCIS(σ) = (1,0,1,0,1), we will show that

adj(zI−Mσ ) =


z2

z2 p1(z)
z

zp3(z)
1

p5(z)


[
z3 p0(z) z2 z2 p2(z) z zp4(z) 1

]
− p(z)


0 0 1 0 z 0
1 0 p1(z) 0 zp1(z) 0
0 0 0 0 1 0
z 1 p2(z) 0 p3(z) 0
0 0 0 0 0 0
z2 z zp2(z) 1 p4(z) 0

 .

THEOREM 3.2 Let p(z) = zn +∑
n−1
k=0 akzk be a polynomial and pd(z), for d = 0,1, . . . ,n−1, the degree d Horner shift

of p(z). Let σ : {0,1, . . . ,n− 1} → {1, . . . ,n} be a bijection with EPCIS(σ) = (v0,v1, . . . ,vn−1) and let Mσ be the
Fiedler matrix of p(z) associated with σ . Let xσ ,yσ ∈ Cn[z] be the vector polynomials whose kth entry is

xσ (k) =
{

ziσ (0:n−k−1)pk−1(z) if vn−k = 1,
ziσ (0:n−k−1) if vn−k = 0,

and yσ (k) =
{

zcσ (0:n−k−1)pk−1(z) if vn−k = 0,
zcσ (0:n−k−1) if vn−k = 1,

(3.4)

for k = 1,2, . . . ,n, and let Aσ ∈ Cn×n[z] be the matrix polynomial whose (i, j) entry is

Aσ (i, j) =



0 if vn−i = vn− j = 0 and i> j,
ziσ (n− j+1:n−i−1) if vn−i = vn− j = 0 and i < j,
zcσ (n−i+1:n− j−1) if vn−i = vn− j = 1 and i > j,
0 if vn−i = vn− j = 1 and i6 j,
0 if vn−i = 0 and vn− j = 1,
zcσ (n−i+1:n− j−1)p j−1(z) if vn−i = 1, vn− j = 0 and i > j,
ziσ (n− j+1:n−i−1)pi−1(z) if vn−i = 1, vn− j = 0 and i < j,

(3.5)

for i, j = 1,2, . . . ,n. Then,
adj(zI−Mσ ) = xσ yT

σ − p(z)Aσ .

Note that xσ ,yσ and Aσ depend on the variable z, though we drop it for the ease of notation.
Before proving Theorem 3.2 we state and prove some technical lemmas.

LEMMA 3.2 Let xσ and yσ be the vectors defined in (3.4), and Aσ be the matrix defined in (3.5). Then, Aσ is the
unique n×n matrix satisfying the following two properties:

(i) The entries of Aσ are polynomials in z, and

(ii) all entries of xσ yT
σ − p(z)Aσ are polynomials of degree less than or equal to n−1.
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Proof. To prove that the entries of Aσ are polynomials, it suffices to see that the exponents of the powers of z
appearing in the entries of (3.5) are nonnegative. This is immediate by Definition 2.3. To prove that the (i, j) entry
of xσ yT

σ − p(z)Aσ is a polynomial of degree less than or equal to n− 1 is straightforward using (2.4) and (2.5). We
show here the proof of just one case in (3.5) and refer the reader to De Terán et al. (2014b) for more details on the
remaining cases. In particular, we assume that vn−i = vn− j = 0 and i < j. In this case, using (2.4), the (i, j) entry of
xσ yT

σ − p(z)Aσ is equal to

xσ (i)yσ ( j)− p(z)Aσ (i, j) = ziσ (0:n−i−1)+cσ (0:n− j−1)p j−1(z)− p(z)ziσ (n− j+1:n−i−1)

= ziσ (n− j+1:n−i−1)(zn− j+1 p j−1(z)− p(z))
= ziσ (n− j+1:n−i−1)(−an− jzn− j−an− j−1zn− j−1−·· ·−a1z−a0),

which is a polynomial of degree less than n−1, because iσ (n− j+1 : n− i−1)+n− j 6 n− i−1 < n−1.
Now, suppose that there is another matrix B, whose entries are polynomials in z, and such that the entries of the

matrix xσ yT
σ − p(z)B are polynomials in z of degree at most n−1. Let W1 = xσ yT

σ − p(z)Aσ and let W2 = xσ yT
σ − p(z)B,

then, W1−W2 = p(z)(B−Aσ ) is a matrix whose entries are polynomials of degree at most n−1, but if Aσ 6= B, then
p(z)(B−Aσ ) has, at least, one entry which is a polynomial of degree at least n, hence Aσ = B. �

Lemma 3.3 is key to prove Theorem 3.2. It allows us to relate adj(zI−Mσ ) with the adjugate of an (n−1)×(n−1)
matrix obtained by deflating zI−Mσ in a certain way. In the following, a matrix polynomial P(z) ∈ Cn×n[z] is said to
be unimodular if detP(z) is a nonzero constant. In other words, P(z) has a polynomial inverse.

LEMMA 3.3 Let p(z)= zn+∑
n−1
k=0 akzk, let σ : {0,1, . . . ,n−1}→{1, . . . ,n} be a bijection with PCIS(σ)= (v0,v1, . . . ,vn−2),

let Mσ be the Fiedler matrix of p(z) associated with σ , and define unimodular Q(z),R(z) ∈ Cn×n[z] as

Q(z) :=

 1 0
z 1

In−2

 and R(z) :=

 0 1
−1 p1(z)

In−2

 .
Then,

(a) if σ has a consecution at n−2,

Q(z)(zIn−Mσ )R(z) =
[

1
zIn−1− M̃ρ

]
,

(b) if σ has an inversion at n−2,

R(z)T (zIn−Mσ )Q(z)T =

[
1

zIn−1− M̃ρ

]
,

where ρ : {0,1, . . . ,n − 2} → {1, . . . ,n − 1} is a bijection such that PCIS(ρ) = (v0,v1, . . . ,vn−3), and
M̃ρ = M̃ρ−1(1)M̃ρ−1(2) · · ·M̃ρ−1(n−1), with M̃0 = diag(In−2,−a0), and

M̃k =


In−k−2

−ak 1
1 0

Ik−1

 , for k = 1,2, . . . ,n−3, M̃n−2 =

−p2(z)+ z 1
1 0

In−3

 .
Proof. We only prove part (a) because part (b) is similar. So, let us assume that σ has a consecution at n−2. Then,
using (2.3), the factors of Mσ can be rearranged so that Mσ = XMn−2Mn−1Y , where X ,Y are products of Mi matrices,
with i < n−2. Now, since Q(z) and R(z) commute with Mi, for i < n−2, we have
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Q(z)(zIn−Mσ )R(z) = zQ(z)R(z)−XQ(z)Mn−2Mn−1R(z)Y

=


0 z 0
−z z2 + zp1(z) 0
0 0 z

zIn−3

−X


−1 z 0
−z z2−an−2 1
0 1 0

In−3

Y

=


0 z 0
−z z2 0
0 0 z

zIn−3

−X



−1 z 0
−z z2− z 0
0 0 0

0n−3

+


0 0 0
0 −p2(z)+ z 1
0 1 0

In−3


Y

=


1

z
z

zIn−3

−X


0 0 0
0 −p2(z)+ z 1
0 1 0

In−3

Y

=

[
1

zIn−1

]
−
[

0
M̃ρ−1(1)M̃ρ−1(2) · · ·M̃ρ−1(n−1)

]
=

[
1

zIn−1− M̃ρ

]
,

where we have used that p2(z) = zp1(z)+ an−2 and the fact that multiplying any matrix of the form diag(A,0n−2),
with A ∈ C2×2, by Mk, for k = 0,1, . . . ,n−3, keeps that matrix unchanged. Finally, note that the relative positions of
M̃0,M̃1, . . . ,M̃n−2 in M̃ρ coincide with the ones of M0,M1, . . . ,Mn−2 in Mσ , so PCIS(ρ) = (v0,v1, . . . ,vn−3). �

REMARK 3.1 Some important observations about the matrix M̃ρ in Lemma 3.3 are in order:

(a) The matrix M̃i, for i = 0, . . . ,n−3 is obtained from Mi by removing the first row and column.

(b) The matrix M̃ρ can be seen formally as a Fiedler matrix of the polynomial r(z) := zn−1 +∑
n−2
k=0 bkzk, where

bn−2 = p2(z)− z and bk = ak for k = 0,1, . . . ,n− 3. Notice that r(z) = p(z) for all z ∈ C. We also want to
emphasize that the formal (n−2)th coefficient of r(z) is not an scalar, but a polynomial in z.

(c) The formal Horner shifts of r(z) satisfy: r0(z) = p0(z) = 1 and rk(z) = pk+1(z) for k = 1,2, . . . ,n−2.

Now, armed with Lemmas 3.2 and 3.3, we are in the position to prove Theorem 3.2.
Proof. (of Theorem 3.2) The proof proceeds by induction in n. For n = 2 there are only two Fiedler matrices, namely
the first and second Frobenius companion matrices. For these two matrices we have

adj(zI−C2) = adj
([

a1 + z −1
a0 z

])
=

[
z 1
−a0 a1 + z

]
=

[
1

p1(z)

][
z 1

]
− p(z)

[
0 0
1 0

]
and adj(zI−C1) is the transpose of adj(zI−C2). These are the matrices in the statement with PCIS(σ) = (1) and
PCIS(σ) = (0), respectively. Assume that the result is true for Fiedler matrices of size (n−1)× (n−1). To prove it
for size n×n, we assume that σ has a consecution at n−2 (the proof when σ has an inversion at n−2 is similar and
we omit it). Then, from Lemma 3.3 (a), we have that

zIn−Mσ = Q(z)−1
[

1
zIn−1− M̃ρ

]
R(z)−1,

therefore

adj(zIn−Mσ ) = adj
(
R(z)−1)adj

([
1

zIn−1− M̃ρ

])
adj
(
Q(z)−1)= R(z)

[
p(z)

adj(zIn−1− M̃ρ)

]
Q(z),

where we have used the identities adj(AB) = adj(B)adj(A), detR(z) = detQ(z) = 1, and det(zIn−1− M̃ρ) = p(z). By
the induction hypothesis

adj(zIn−Mσ ) = R(z)
[

p(z)
xρ yT

ρ − p(z)Aρ

]
Q(z) = R(z)

[
0
xρ

][
0 yT

ρ

]
Q(z)− p(z)R(z)

[
−1

Aρ

]
Q(z).
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Note that in the induction step we may see M̃ρ as a Fiedler matrix associated with r(z) = zn−1 +∑
n−2
k=0 bkzk, with bi, for

i = 0, . . . ,n−2, as in Remark 3.1, part (b). To finish the proof it suffices to prove the following three identities:

(i) xσ = R(z)
[

0
xρ

]
, (ii) yσ = QT (z)

[
0
yρ

]
, and (iii) Aσ = R(z)

[
−1

Aρ

]
Q(z).

(i) From the expressions of PCIS(σ) and PCIS(ρ) we have iρ(0 : k− 1) = iσ (0 : k− 1), for k = 1,2, . . . ,n− 2.
Also, the Horner shifts corresponding to M̃ρ are p0(z), p2(z), . . . , pn−1(z). These observations imply that xρ(k)=
xσ (k+1), for k = 2,3, . . . ,n−1 (note that, for the permutation ρ , n must be replaced by n−1 in (3.4)). Therefore

R(z)
[

0
xρ

]
=

 0 1
−1 p1(z)

In−2

 0
ziρ (0:n−3)

xρ(2 : n−1)

=

 ziρ (0:n−3)

ziρ (0:n−3)p1(z)
xρ(2 : n−1)

=

ziσ (0:n−2)p0(z)
ziσ (0:n−3)p1(z)

xσ (3 : n)

= xσ ,

where we have used, since vn−2 = 1, that iσ (0 : n−3) = iσ (0 : n−2) and p0(z) = 1.

(ii) This can be proved in a similar way as (i). We refer the reader to De Terán et al. (2014b) for more details.

(iii) We prove this using Lemma 3.2. From (i) and (ii) we know that

adj(zI−Mσ ) = xσ yT
σ − p(z)R(z)

[
−1

Aρ

]
Q(z).

But the entries of R(z)diag(−1,Aρ)Q(z) are polynomials in z and, moreover, the entries of adj(zI−Mσ ) are
polynomials of degree less than or equal to n−1. By the uniqueness proved in Lemma 3.2, we get (iii).

�

3.2 First-order perturbation of the coefficients of the polynomial det(zI−Mσ )

In this section, we derive formulas, to first order in E, for the coefficients of the characteristic polynomial of Mσ +E,
where E is an arbitrary dense matrix.

THEOREM 3.3 Let p(z) = zn +∑
n−1
k=0 akzk be a monic polynomial, let σ : {0,1, . . . ,n−1} → {1, . . . ,n} be a bijection

with EPCIS(σ) = (v0,v1, . . . ,vn−1), let Mσ be the Fiedler companion matrix of p(z) associated with σ , and let E ∈
Cn×n be an arbitrary matrix. If the characteristic polynomial of Mσ +E is denoted by p̃(z) = zn +∑

n−1
k=0 ãkzk, then, to

first order in E,

ãk−ak =−
n

∑
i, j=1

p(σ ,k)
i j (a0,a1, . . . ,an−1)Ei j, k = 0,1, . . . ,n−1, (3.6)

where, for i, j = 1,2, . . . ,n, the function p(σ ,k)
i j (a0,a1, . . . ,an−1) is a multivariable polynomial in the coefficients of

p(z). More precisely, p(σ ,k)
i j (a0,a1, . . . ,an−1) is equal to:

(a) if vn−i = vn− j = 0 :

• ak+iσ (n− j:n−i) , if j > i and n− k− i+16 iσ (n− j : n− i)6 n− k;

• −ak+1−iσ (n−i:n− j−1) , if j < i and k+1+ i−n6 iσ (n− i : n− j−1)6 k+1;

• 0 , otherwise;

(b) if vn−i = vn− j = 1 :

• ak+cσ (n−i:n− j) , if j 6 i and n− k− j+16 cσ (n− i : n− j)6 n− k;

• −ak+1−cσ (n− j:n−i−1) , if j > i and k+1+ j−n6 cσ (n− j : n− i−1)6 k+1;

• 0 , otherwise;

(c) if vn−i = 1 and vn− j = 0 :
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• 1 , if iσ (0 : n− j−1)+ cσ (0 : n− i−1) = k ,

• 0 , otherwise;

(d) if vn−i = 0 and vn− j = 1 :

•
l=min{k+1−cσ (n− j:n−i−1),i−1}

∑
l=max{0,k+1+ j−cσ (n− j:n−i−1)−n}

−(an+1−i+l ak+1−cσ (n− j:n−i−1)−l) ,

if j > i and k+2+ j− i−n6 cσ (n− j : n− i−1)6 k+1;

•
l=min{k+1−iσ (n−i:n− j−1), j−1}

∑
l=max{0,k+1+i−iσ (n−i:n− j−1)−n}

−(an+1− j+l ak+1−iσ (n−i:n− j−1)−l) ,

if j < i and k+2+ i− j−n6 iσ (n− i : n− j−1)6 k+1;

• 0 , otherwise;

where we set an := 1.

Proof. From Proposition 3.1, the coefficients of the characteristic polynomial of Mσ +E satisfy, to first order in E,

ãk−ak =−
n

∑
i, j=1

Pk+1( j, i)Ei j,

where Pk+1( j, i) is the ( j, i) entry of Pk+1 which, according to (3.2) is the kth matrix coefficient of the matrix polynomial
adj(zI−Mσ ). Hence p(σ ,k)

i j (a0,a1, . . . ,an−1) is the kth coefficient of the ( j, i) entry of adj(zI−Mσ ). From Theorem
3.2, we know an explicit expression for the ( j, i) entry of adj(zI−Mσ ). By analyzing separately each case in the
statement, it is straightforward to check that the kth coefficient of this entry coincides with the expression given in this
theorem (see De Terán et al. (2014b) for more details). �

REMARK 3.2 According to the notation in (3.1), we have

∇ak(Mσ ) =−
[

p(σ ,k)
11 . . . p(σ ,k)

n1 p(σ ,k)
12 . . . p(σ ,k)

n2 . . . p(σ ,k)
1n . . . p(σ ,k)

nn

]
,

where we have dropped the dependence on a0, . . . ,an−1 for brevity.

REMARK 3.3 For k = n−1, and σ an arbitrary bijection, a direct verification in Theorem 3.3 gives

p(σ ,n−1)
i j (a0, . . . ,an−1) =

{
1 if i = j
0 otherwise .

Then, for any Fiedler matrix Mσ , it follows from (3.6) that

an−1(Mσ +E)−an−1(Mσ ) =−
n

∑
i=1

Eii.

But, since the (n−1)th coefficient of the characteristic polynomial of A is equal to −tr(A), this is a restatement of the
well-know identity: tr(Mσ +E) = tr(Mσ )+ tr(E).

We emphasize that p(σ ,k)
i j (a0,a1, . . . ,an−1) are always linear or quadratic polynomials in the coefficients a0, . . . ,an−1.

They depend, at a first stage, on whether the bijection σ has a consecution or an inversion at n− i and n− j. In partic-
ular, p(σ ,k)

i j (a0,a1, . . . ,an−1) can only be quadratic when there is a consecution at n− j and an inversion at n− i.

COROLLARY 3.1 Let Mσ be C1 or C2 in the statement of Theorem 3.3. Then p(σ ,k)
i j (a0,a1, . . . ,an−1) in (3.6) is a

polynomial of degree at most 1 in a0, . . . ,an−1, for all k = 0,1, . . . ,n− 1, and all 1 6 i, j 6 n. For the remaining
Fiedler matrices Mσ , there is always some k and some i, j such that p(σ ,k)

i j (a0,a1, . . . ,an−1) is a quadratic polynomial
in a0,a1, . . . ,an−1.
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Proof. Let us first recall that the bijection associated with C1 is σ1 = (σ1(0),σ1(1), . . . ,σ1(n−1)) = (n,n−1, . . . ,1),
whereas the bijection associated with C2 is σ2 = (σ2(0),σ2(1), . . . ,σ2(n−1)) = (1,2, . . . ,n). Hence, σ1 has no con-
secutions, whereas σ2 has no inversions.

Then, it remains to show that, if σ : {0,1, . . . ,n−1} → {1, . . . ,n} is a bijection having a consecution at n− j and
an inversion at n− i, for some 26 i, j6 n, then there is some 06 k6 n−1 such that p(σ ,k)

i j (a0,a1, . . . ,an−1) has degree
2. Note, first, that it must be i 6= j. Without loss of generality, let us assume that j > i. The proof for the case j < i is
analogous. We need to prove that, in the sum defining p(σ ,k)

i j (a0,a1, . . . ,an−1) in the first bullet of case (d) in Theorem
3.3 there is at least one monomial aras such that 06 r,s6 n−1. More precisely, we need to prove:

(i) There is some 06 k 6 n−1 such that k+2+ j− i−n6 cσ (n− j : n− i−1)6 k+1.

(ii) There is some l, with max{0,k+1+ j− cσ (n− j : n− i−1)−n}6 l 6min{k+1− cσ (n− j : n− i−1), i−1},
such that 06 n+1− i+ l 6 n−1 and 06 k+1− cσ (n− j : n− i−1)− l 6 n−1.

For this, it suffices to take k = cσ (n− j : n− i−1)−1 = cσ (n− j+1 : n− i−1) and l = 0. Note that (ii) is fulfilled
for these values of k and l, because i> 2. �

The expressions given in Theorem 3.3 for the variation of the coefficients of the characteristic polynomial of Mσ

are involved in general (that is, for arbitrary Fiedler matrices). We will show them explicitly in Section 3.2.2 for some
particularly relevant Fiedler matrices, including the Frobenius companion matrices.

The following result, which is a direct consequence of Theorem 3.3 (see De Terán et al. (2014b)), describes one
property of the polynomials p(σ ,k)

i j (a0, . . . ,an−1) that will be used later.

LEMMA 3.4 Let p(σ ,k)
i j (a0,a1, . . . ,an−1) be the polynomial defined in (3.6), and set an = 1. Then:

(a) For k = 0,1, . . . ,n−1,

p(σ ,k)
ii (a0,a1, . . . ,an−1) =

{
ak+1 if i> n− k ,
0 if i < n− k .

(b) If σ has a consecution at n− 2, then p(σ ,0)
12 (a0,a1, . . . ,an−1) = −a0, and if σ has an inversion at n− 2, then

p(σ ,0)
21 (a0,a1, . . . ,an−1) =−a0.

To identify those indices k for which ∇ak(Mσ ) contains quadratic terms in a0, . . . ,an−1 may be interesting in
practice. The presence of such terms implies that the sensitivity of the coefficient ak(Mσ ) to perturbations of Mσ is
quadratic in a0, . . . ,an−1, instead of linear. This implies in turn that, for large values of a0, . . . ,an−1, we can expect
much larger changes after small perturbations in these coefficients than in the ones where ∇ak(Mσ ) contains only
linear terms. We have seen in Corollary 3.1 that, for all Fiedler matrices but the Frobenius ones, there is always at least
one k such that ∇ak(Mσ ) contains quadratic terms. Moreover, the proof of Corollary 3.1 tells us that if i, j are such that
σ has a consecution at n− j and an inversion at n− i, and j > i (respectively, j < i), then for k = cσ (n− j+1 : n− i−1)
(resp., k = iσ (n− i+ 1 : n− j− 1)) the gradient ∇ak(Mσ ) contains quadratic terms. In particular, Lemma 3.5 states
that, for all Fiedler matrices but the Frobenius ones, ∇a0(Mσ ) contains always quadratic polynomials in a0, . . . ,an−1.
Its proof is a direct consequence of Theorem 3.3 (see De Terán et al. (2014b) for more details).

LEMMA 3.5 Let p(σ ,k)
i j (a0,a1, . . . ,an−1) be the polynomial defined in (3.6), and let t ∈ {0,1, . . . ,n−3}.

(a) If PCIS(σ) = (v0,v1, . . . ,vt = 1,vt+1 = 0,vt+2 = 0, . . . ,vn−2 = 0) then

p(σ ,0)
2,n−t(a0,a1, . . . ,an−1) =−an−1a0.

(b) If PCIS(σ) = (v0,v1, . . . ,vt = 0,vt+1 = 1,vt+2 = 1, . . . ,vn−2 = 1) then

p(σ ,0)
n−t,2(a0,a1, . . . ,an−1) =−an−1a0.

The main result, from the theoretical point of view, in this section is a direct consequence of Theorem 3.3.

COROLLARY 3.2 Let p(z) = zn +∑
n−1
k=0 akzk be a monic polynomial, and Mσ be a Fiedler companion matrix of p(z).

Assume that the roots of p(z) are computed as the eigenvalues of Mσ with a backward stable algorithm i. e., an
algorithm that computes the exact eigenvalues of some matrix Mσ +E, with ‖E‖∞ = O(u)‖Mσ‖∞. Then the computed
roots are the exact roots of a polynomial p̃(z) such that:
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(a) If Mσ =C1,C2,
‖p̃− p‖∞

‖p‖∞

= O(u)‖p‖∞, (3.7)

(b) if Mσ 6=C1,C2,
‖p̃− p‖∞

‖p‖∞

= O(u)‖p‖2
∞, (3.8)

where u is the machine epsilon. In other words, the backward error of the computed roots λ̃1, . . . , λ̃n is

η∞(λ̃1, . . . , λ̃n) =

{
O(u)‖p‖∞, if Mσ =C1,C2,
O(u)‖p‖2

∞, if Mσ 6=C1,C2.

Proof. If the eigenvalues of Mσ are computed with a backward stable algorithm, the computed eigenvalues are the
exact eigenvalues of a matrix Mσ +E, for some E ∈Cn×n with ‖E‖∞ = O(u)‖Mσ‖∞. Thus, the computed eigenvalues
are the exact roots of p̃(z) = zn +∑

n−1
k=0 ãkzk = det(zI−Mσ −E). From Theorem 3.3, to first order in E,

|ãk−ak| =
∣∣∣∑n

i, j=1 p(σ ,k)
i j (a0,a1, . . . ,an−1)Ei j

∣∣∣6 ∑
n
i, j=1

∣∣∣p(σ ,k)
i j (a0,a1, . . . ,an−1)

∣∣∣ · |Ei j|

6
(
max16i, j6n |Ei j|

)
·
(

∑
n
i, j=1 |p

(σ ,k)
i j (a0,a1, . . . ,an−1)|

)
.

(3.9)

Notice, also from Theorem 3.3, that the absolute value of every polynomial p(σ ,k)
i j (a0,a1, . . . ,an−1) is bounded by

n‖p‖2
∞ and that, by Corollary 3.1, the square in the norm of p is necessary in all Fiedler matrices except the Frobenius

companion matrices, where it can be replaced by 1. Therefore,

max
k=0,1,...,n−1

|ãk−ak|= ‖ p̃− p‖∞ = O(u)‖Mσ‖∞‖p‖2
∞ = O(u)‖p‖3

∞,

using that maxi, j=1,2,...,n |Ei j|= O(u)‖Mσ‖∞ and ‖Mσ‖∞ = O(1)‖p‖∞ (see (De Terán et al., 2014a, Th. 3.3)). �
It is worth to remark that if the matrix E in the statement of Corollary 3.2 satisfies ‖E‖∞ = c(p)O(u)‖Mσ‖∞, with

c(p) being some positive quantity depending on p(z) then, with the appropriate changes in (3.9), we could replace
(3.7) and (3.8) by, respectively:

‖ p̃− p‖∞

‖p‖∞

= c(p)O(u)‖p‖∞ and
‖ p̃− p‖∞

‖p‖∞

= c(p)O(u)‖p‖2
∞.

Hence, even for eigensolvers whose backward stability can not be guaranteed (like the fast QR-like algorithms men-
tioned in the Introduction for the Frobenius companion matrix or those that can be applied to other Fiedler matrices)
our developments allow us to provide backward error estimates for the polynomial root-finding problem using Fiedler
companion matrices.

3.2.1 Recursive formula for the derivatives of the coefficient of the characteristic polynomial. In Section 3.1 we
have given an explicit formula for the entries of adj(zI−Mσ ). The aim of this subsection is to provide, in Proposition
3.4, a recursive formula for the coefficients of adj(zI−A) when viewed as a matrix polynomial in z, for arbitrary
A ∈Cn×n. This is an interesting theoretical result that gives an alternative description of the coefficients of adj(zI−A)
and, as a consequence of Lemma 3.1, of the gradient of the characteristic polynomial of A. It may also have a practical
interest, as it provides a recursive construction of these coefficients. This construction is related to the Faddev-Leverrier
method to compute the coefficients of the characteristic polynomial (Gantmacher, 1959, Ch. 4, §5).

PROPOSITION 3.4 (Gantmacher, 1959, Ch. 4, §4) Let A ∈ Cn×n and let p(z) = zn +∑
n−1
k=0 akzk be the characteristic

polynomial of A. Let the matrices A1,A2, . . . ,An ∈ Cn×n be defined by the following recurrence relation{
An = I , and
Ak = A ·Ak+1 +akI, for k = n−1,n−2, . . . ,1. (3.10)

Then,

adj(zI−A) =
n−1

∑
k=0

zkAk+1.
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We note that, as a consequence of the recursive relations of the Horner shifts (2.6), the matrices Ak are the Horner
shifts of p(z) = det(zI−A) evaluated at A. More precisely:

Ak = pn−k(A) = An−k +an−1An−k−1 + · · ·+ak+1A+akI .

With this in mind, Proposition 3.1 gives the following expression for the gradient of the kth coefficient of the charac-
teristic polynomial of A:

∇ak(A) =−
[
vec(pn−k−1(AT ))

]T
, for k = 0,1, . . . ,n−1. (3.11)

Proposition 3.4 has been used in Edelman & Murakami (1995) to get an explicit formula for the derivatives of the
coefficients of det(zI−C), with C being a Frobenius companion matrix. For this, the authors take advantage of the
explicit expression of the matrices Ak defined in (3.10) with A =C, which are very simple in this case (see (Edelman
& Murakami, 1995, p. 768)). However, for A being an arbitrary Fiedler matrix, the matrices Ak become much more
involved, and it is not easy to get an explicit expression of these matrices just using (3.10). For this reason, we have
obtained the expression of the entries of adj(zI−A) by other means. However, Proposition 3.4 gives us an alternative
way to get adj(zI−A) using the Horner shifts of A.

As a consequence of the previous remarks, the polynomial p(σ ,k)
i j (a0,a1, . . . ,an−1) in Theorem 3.3 corresponds to

the ( j, i) entry of pn−k−1(Mσ ). In the following section, we display these matrices for some particular cases, including
the Frobenius matrices. Corollary 3.1 implies that the first and second Frobenius matrices are the only Fiedler matrices
Mσ for which all Horner shifts pk(Mσ ) have entries which are linear multivariable polynomials in the coefficients of
p(z). For all other Fiedler matrices Mσ , there is at least one k such that pk(Mσ ) contains some quadratic entries.

3.2.2 Some particular cases. We obtain in this section the explicit expression (3.6) for some particular Fiedler
matrices. We start with the classical Frobenius companion matrices in Theorem 3.5, where we get analogous formulas
to the ones obtained in Edelman & Murakami (1995). The proof is a direct consequence of Theorem 3.3, so we omit
it. We refer the reader to De Terán et al. (2014b) for more details.

THEOREM 3.5 Let p(z) = zn +∑
n−1
k=0 akzk be a monic polynomial of degree n, let C = C1 or C2 be the first or second

Frobenius companion matrix of p(z), and let E ∈ Cn×n. If p̃(z) = zn +∑
n−1
k=0 ãkzk is the characteristic polynomial of

C+E. Then, to first order in E, for k = 0,1, . . . ,n−1:

(i) If C =C1:

ãk−ak =
k

∑
s=0

n−k−1

∑
j=1

asE j−s+k+1, j−
n

∑
s=k+1

n

∑
j=n−k

asE j−s+k+1, j. (3.12)

(ii) If C =C2:

ãk−ak =
k

∑
s=0

n−k−1

∑
i=1

asEi,i−s+k+1−
n

∑
s=k+1

n

∑
i=n−k

asEi,i−s+k+1. (3.13)

According to (3.11), the matrix pn−k−1(AT ) encodes the information about ∇ak(A). In particular, the (i, j) entry
of pn−k−1(AT ) is the coefficient of Ei j in (3.1). In the case of Frobenius companion matrices, these Horner shifts can
be computed without too much effort, since they are equal to:

pn−k−1(CT
1 ) = pn−k−1(C2) =



0 . . . 0 1 0
−ak an−1 1

...
. . .

... an−1
. . .

−a1
. . . −ak ak+1

...
. . . 1

−a0
. . .

... ak+1
. . . an−1

. . . −a1
. . .

...
0 −a0 0 ak+1


, for k = 0,1, . . . ,n−1, (3.14)
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where the first block-column contains n− k−1 columns, and the second block-column contains k+1 columns. The
reader may check that the (i, j) entry of (3.14) is the coefficient of Ei j in (3.12). The same happens with the transpose
of (3.14) and formula (3.13).

Excluding the Frobenius companion matrices, the simplest Fiedler matrices are those corresponding to bijections
with just one inversion (resp., consecution) at 0, and consecutions (resp., inversions) elsewhere. These particular
Fiedler matrices present several numerical advantages that may be of interest in new enhancements of the current
codes for the Polynomial Eigenvalue Problem (like MATLAB’s polyeig). To be precise, one of these matrices is

F = M0(Mn−1Mn−2 · · ·M1) =


−an−1 1
−an−2 0 1

...
. . . . . .

−a1 0 −a0
1 0 · · · 0 0

 ,
and the other one is FT . Theorem 3.6 is again a direct consequence of Theorem 3.3 (see De Terán et al. (2014b)).

THEOREM 3.6 Let p(z) = zn +∑
n−1
k=0 akzk be a monic polynomial of degree n, let Mσ = F be the Fiedler compan-

ion matrix of p(z) with PCIS(σ) = (0,1,1, , . . . ,1) and let E ∈ Cn×n. If p̃(z) = zn +∑
n−1
k=0 ãkzk is the characteristic

polynomial of F +E, then, to first order in E,

ãk−ak =
n−1

∑
j=k+1

a0an+k+1− jEn j +
k

∑
s=0

n−k−2

∑
i=1

asEi,i+k+1−s +
k

∑
s=1

asEn−k−1,n−s−En−k−1,n

−
n

∑
s=k+1

n−1

∑
i=n−k

asEi,i+k+1−s−En−k−1,n−ak+1Enn.

(3.15)

Theorem 3.6 illustrates how a single change in the PCIS of the Frobenius companion matrix (just the position
of the factor M0 in the product defining C1 and C2) implies the appearance of quadratic terms in the coefficients of
p(z) in the formula for the gradient of the coefficients of the characteristic polynomial (see the first summand in the
right-hand-side of (3.15)). As before, this can also be seen by explicitly displaying the Horner shifts evaluated at F :

pn−k−1(F) =



0 1 0

−ak an−1
. . .

...
...

. . .
...

. . . 1 0
−a1 −ak ak+2 an−1 −a0

−a0
. . .

... −ak ak+1
. . .

... −a0an−1
. . . −a1

...
. . . ak+2

...
−a0 −a1 ak+1 −a0ak+2

1 ak+1


, for k = 0,1, . . . ,n−3,

p1(F) =



0 0
−an−2 1
−an−3 an−1 1

... an−1
. . .

...
. . . 1

−a1 an−1 −a0
1 0 an−1


, and p0(F) = I.

The number of columns in the first block-column of pn−k−1(F) is n− k−1, and the number of columns in the second
block column is k+1. The reader may check that the (i, j) entry of pn−k−1(F)T is the coefficient of Ei j in (3.15).

Our last example is a pentadiagonal Fiedler matrix. For n> 3, there are four pentadiagonal matrices corresponding
to bijections whose PCIS are (1,0,1,0, . . .), (0,1,0,1, . . .), (1,1,0,1,0, . . .), and (0,0,1,0,1,0, . . .) (see De Terán et al.
(2010)). Formulas here become much more involved (see (De Terán et al., 2014b, Th. 3.17)), and the corresponding
matrices pn−k−1(Mσ ), for k = 0,1, . . . ,n−1, do not have a simple structure. For illustrative purposes, we include here
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a 6×6 example. Let Mσ be the Fiedler companion matrix of the polynomial p(z) = z6 +∑
5
k=0 akzk associated with a

bijection σ such that PCIS(σ) = (1,0,1,0,1). This matrix is

Mσ =


−a5 1 0 0 0 0
−a4 0 −a3 1 0 0

1 0 0 0 0 0
0 0 −a2 0 −a1 1
0 0 1 0 0 0
0 0 0 0 −a0 0

 .

Then, it can be seen that

p0(Mσ ) =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , p1(Mσ ) =


0 1 0 0 0 0
−a4 a5 −a3 1 0 0

1 0 a5 0 0 0
0 0 −a2 a5 −a1 1
0 0 1 0 a5 0
0 0 0 0 −a0 a5

 ,

p2(Mσ ) =


0 0 −a3 1 0 0
−a3 0 −a2−a3a5 a5 −a1 1

0 1 a4 0 0 0
−a2 0 −a1−a2a5 a4 −a0−a1a5 a5

1 0 a5 0 a4 0
0 0 −a0 0 −a0a5 a4

 ,

p3(Mσ ) =


0 0 −a2 0 −a1 1
−a2 0 −a1−a2a5 0 −a0−a1a5 a5

0 0 0 1 0 0
−a1 −a2 −a0−a1a5−a2a4 a3 −a0a5−a1a4 a4

0 1 a4 0 a3 0
−a0 0 −a0a5 0 −a0a4 a3

 ,

p4(Mσ ) =


0 0 −a1 0 −a0 0
−a1 0 −a0−a1a5 0 −a0a5 0

0 0 0 0 −a1 1
−a0 −a1 −a0a5−a1a4 0 −a0a4−a1a3 a3

0 0 0 1 a2 0
0 −a0 −a0a4 0 −a0a3 a2

 ,

p5(Mσ ) =


0 0 −a0 0 0 0
−a0 0 −a0a5 0 0 0

0 0 0 0 −a0 0
0 −a0 −a0a4 0 −a0a3 0
0 0 0 0 0 1
0 0 0 −a0 −a0a2 a1

 .

Unlike the previous cases C2 and F , there does not seem to be a simple pattern for pn−k−1(Mσ ) for arbitrary n,
with σ : {0,1, . . . ,n−1}→ {1, . . . ,n} being the bijection such that PCIS(σ )= (1,0,1,0, . . .).

3.3 Balancing and backward errors

Balancing is a standard preprocessing technique for computing the eigenvalues of a given matrix A, which leads,
very often, to more accurate results, especially when the entries of A have very different magnitudes (see Parlett &
Reinsch (1969)). Actually, balancing is implemented by default as an initial step in the command eig for computing
eigenvalues in MATLAB. Balancing consists of performing diagonal similarities DAD−1 (i. e., with D diagonal) to
A, in order to reduce the norm of A by equilibrating as much as possible the ∞−norm of all rows and columns. In
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addition, very frequently balancing reduces the eigenvalue condition numbers (see (Golub & Van Loan, 1996, §7.2.2)).
We recall that we are not interested in the eigenvalue condition number, but in the condition number of the coefficients
of the characteristic polynomial or, equivalently, in the backward error of the polynomial root-finding problem solved
as an eigenvalue problem. However, our numerical experiments show that balancing is also, in general, a good strategy
to reduce this backward error.

Balancing first computes in exact arithmetic a matrix DMσ D−1, which has the same characteristic polynomial as
Mσ , namely p(z). Then a backward stable algorithm is applied to compute the eigenvalues of DMσ D−1, so that we
get the exact eigenvalues of DMσ D−1 + Ẽ, with

‖Ẽ‖= O(u)‖DMσ D−1‖, (3.16)

for some matrix norm ‖ · ‖. Now, we can get a crude formula like (3.6) for the change of the coefficients of the
characteristic polynomial of DMσ D−1 using the identity:

det(zI−DMσ D−1− Ẽ) = det(zI−Mσ −D−1ẼD),

and applying Theorem 3.3 with the perturbation D−1ẼD instead of E. In particular, following the arguments in the
proof of Corollary 3.2, we get

|ãk−ak|6 n2 max
16i, j6n

(∣∣∣∣p(σ ,k)
i j (a0,a1, . . . ,an−1)

d j

di

∣∣∣∣) · max
16i, j6n

|Ẽi j| ,

with Ẽ as in (3.16). In this way, we get a formula which provides an “a posteriori” (that is, once the diagonal parameters
di are known) measure for the backward error of the polynomial root-finding problem using balanced Fiedler matrices.

Though the numerical experiments carried out in Section 4 indicate that balancing usually produces smaller back-
ward errors, we see in Proposition 3.10 that, for any degree, there are infinitely many polynomials for which the
condition numbers of all coefficients of the characteristic polynomial of any matrix DMσ D−1 are large. This shows
that, though in practice balancing Fiedler matrices may be a good strategy for the root-finding problem, there are
polynomials, with any degree, for which the strategy does not lead to small backward errors.

3.4 Conditioning of the characteristic polynomial of a matrix A

The developments carried out at the beginning of this section are closely related to the conditioning of the characteristic
polynomial of the matrix A. The condition number of the characteristic polynomial provides a measure of its sensitivity
to perturbations of the matrix. As we have seen at the beginning of this section, this is in turn related with the gradient
of the coefficients of the characteristic polynomial. In this subsection, we introduce the condition number (absolute
and relative) for the coefficients of the characteristic polynomial, and we relate it with (the norm of) its gradient. In
this way, we will see that the backward stability of the polynomial root-finding problem via eigenvalue methods is
determined by the conditioning of the characteristic polynomial. In other words, the conditioning of the map from the
matrix A to the coefficients of the (monomial basis) characteristic polynomial, that is, the absolute condition number
of the vector functions ak(A).

Let us assume that the entries of the matrix E in (3.1) satisfy |Ei j|6 ε‖vec(A)‖∞. Using Holder’s inequality |uT v|6
‖uT‖∞‖v‖∞ (with ‖

[
u1 . . . un

]
‖∞ = |u1|+ · · ·+ |un|)1, from (3.1) we get, up to first order, the inequalities:

|ak(A+E)−ak(A)|6 ‖∇ak(A)‖∞ · ‖vec(E)‖∞ 6 ε‖∇ak(A)‖∞ · ‖vec(A)‖∞ . (3.17)

It is straightforward to show that there exists a particular matrix E with ‖vec(E)‖∞ = ε‖vec(A)‖∞ such that |∇ak(A) ·
vec(E)|= ‖∇ak(A)‖∞‖vec(E)‖∞. For this matrix the bound in (3.17) is attained to first order in ε . With this in mind,
Proposition 3.7 immediately follows.

PROPOSITION 3.7 Let A ∈Cn×n and ak : Cn2 →C be the kth coefficient of the characteristic polynomial of X ∈Cn×n,
considered as a function of X . We define the condition numbers κ(ak,A) and κrel(ak,A) as

κ(ak,A) := lim
ε→0

sup
{
|ak(A+E)−ak(A)|

ε
: ‖vec(E)‖∞ 6 ε‖vec(A)‖∞

}
(3.18)

1Note that, according to the definition of ‖ · ‖∞ for m× n matrices, see (Higham, 2002, p. 108), the expressions for ‖u‖∞ and ‖uT ‖∞ are
different.
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and

κrel(ak,A) := lim
ε→0

sup
{
|ak(A+E)−ak(A)|

ε|ak(A)|
: ‖vec(E)‖∞ 6 ε‖vec(A)‖∞

}
. (3.19)

Then

κ(ak,A) = ‖∇ak(A)‖∞ · ‖vec(A)‖∞ and κrel(ak,A) =
‖∇ak(A)‖∞ · ‖vec(A)‖∞

|ak(A)|
.

The definition of condition number introduced in (3.18) and (3.19) may look non-standard, because of the inclusion
of vectorizations. However, the presence of vec(E) is motivated by (3.1). We have included also vec(A) in the
definition to make it more natural. Moreover, due to the identity

‖vec(Mσ )‖∞ = ‖p‖∞, (3.20)

valid for any Fiedler matrix Mσ , this choice will allow us to get a simpler formula for κ(ak,Mσ ) (see (3.22) below).
Now, Proposition 3.7, together with (3.11), give us the following formulas for κ(ak,A) and κrel(ak,A).

COROLLARY 3.3 Let A ∈Cn×n and let κ(ak,A) and κrel(ak,A) be the condition numbers defined in (3.18) and (3.19),
respectively. Then, for k = 0,1, . . . ,n−1,

κ(ak,A) = ‖vec(pn−k−1(A))‖1 · ‖vec(A)‖∞ and κrel(ak,A) =
‖vec(pn−k−1(A))‖1 · ‖vec(A)‖∞

|ak(A)|
, (3.21)

where pn−k−1(z) is the degree n− k−1 Horner shift of the polynomial p(z) := det(zI−A).

According to (3.21), the relative and absolute condition numbers depend on the norms of A and the degree n−k−1
Horner shift of the characteristic polynomial of A. This Horner shift depends in turn on the coefficients ak+1, . . . ,an−1
of the characteristic polynomial evaluated at A, namely: pn−k−1(A) = An−k−1 +an−1(A)An−k−2 + · · ·+ak+1(A)I.

In particular, when A = Mσ , formula (3.21) together with Theorem 3.3 and (3.20), give

κ(ak,Mσ ) = ‖p‖∞

n

∑
i, j=1
|p(σ ,k)

i j (a0,a1, . . . ,an−1)|, (3.22)

where p(σ ,k)
i j (a0,a1, . . . ,an−1) are given in Theorem 3.3, and they are polynomials of degree at most 2 in a0, . . . ,an−1.

By considering the maximum condition numbers of all coefficients ak we arrive to the following notion.

DEFINITION 3.8 Let A ∈ Cn×n and set p(z) = det(zI−A). Let κ(ak,A) and κrel(ak,A) be the condition numbers
defined in (3.18) and (3.19), respectively. We define the condition number and the relative condition number of the
characteristic polynomial of A with respect to perturbations of A as

κ(p,A) = max
k=0,1,...,n−1

κ(ak,A) and κrel(p,A) = max
k=0,1,...,n−1

κrel(ak,A). (3.23)

The following result provides bounds for the absolute and relative condition numbers of the characteristic polyno-
mial when A is a Fiedler matrix.

PROPOSITION 3.9 Let p(z) = zn +∑
n−1
k=0 akzk be a monic polynomial, and Mσ be a Fiedler companion matrix of p(z).

Let κ(p,Mσ ) and κrel(p,Mσ ) be as in (3.23). Then,

‖p‖2
∞ 6 κ(p,Mσ )6 n3‖p‖3

∞ and
‖p‖2

∞

max{|a0|, |a1|, . . . , |an−1|}
6 κrel(p,Mσ )6

n3‖p‖3
∞

min{|a0|, |a1|, . . . , |an−1|}
.

Moreover, if C =C1,C2 denotes both the first and second Frobenius companion matrices, then

‖p‖2
∞ 6 κ(p,C)6 n3‖p‖2

∞ and
‖p‖2

∞

max{|a0|, |a1|, . . . , |an−1|}
6 κrel(p,C)6

n3‖p‖2
∞

min{|a0|, |a1|, . . . , |an−1|}
.

Proof. The bound κ(ak,Mσ ) 6 n3‖p‖3
∞ follows immediately from (3.22) and the bound |p(σ ,k)

i j (a0,a1, . . . ,an−1)| 6
n‖p‖2

∞ (see Corollary 3.1), valid for all i, j = 1, . . . ,n.
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From (3.22) and Lemma 3.4, it follows that κ(ak,Mσ )> (k+1)|ak+1|·‖p‖∞, for k= 0,1, . . . ,n−1, and κ(a0,Mσ )>
|a0| · ‖p‖∞. Therefore

κ(p,Mσ ) = max
k=0,1,...,n−1

κ(ak,Mσ )> ‖p‖2
∞.

Finally, from
κ(ak,Mσ )

max{|a0|, |a1|, . . . , |an−1|}
6

κ(ak,Mσ )

|ak|
6

κ(ak,Mσ )

min{|a0|, |a1|, . . . , |an−1|}
we get the bounds for κrel(p,Mσ ) in the statement.

For the Frobenius companion matrices, Corollary 3.1 gives |p(σ ,k)
i j (a0,a1, . . . ,an−1)| 6 n‖p‖∞, where σ is the

permutation corresponding to either the first or the second Frobenius companion matrix. �

REMARK 3.4 The factor n3 appearing in all upper bounds in Proposition 3.9 usually overestimates the condition num-
bers. It is due to an n2 factor coming from the maximum possible number of nonzero polynomials p(σ ,k)

i j (a0,a1, . . . ,an−1)

in the sum of the right-hand side in (3.22). This number is usually much less than n2. For instance, it is equal to
(k + 1)(2n− 2k− 1) for the first and second Frobenius companion matrices, as can be seen from (3.14). It is also
(k+ 1)(2n− 2k− 1) for the coefficients ak with k = 2, . . . ,n− 1, equal to 3n− 4 for a1 and equal to n for a0, for the
Fiedler matrix F in Theorem 3.6, as can be seen by looking at the matrices pn−k−1(F) in Section 3.2.2.

3.4.1 Balancing and condition numbers. Though similar matrices have the same characteristic polynomial, the sen-
sitivity of its coefficients may be quite different. In other words, the condition numbers κ(ak,A) and κrel(ak,A) defined
in (3.18) and (3.19) are not invariant under diagonal similarity. Since q(SAS−1) = Sq(A)S−1, for any polynomial q(z)
and any invertible matrix S, formula (3.21) gives

κ(ak,SAS−1) = ‖vec(Spn−k−1(A)S−1)‖1‖vec(SAS−1)‖∞ (3.24)

and

κrel(ak,SAS−1) =
‖vec(Spn−k−1(A)S−1)‖1‖vec(SAS−1)‖∞

|ak(A)|
.

The norms of the vectors in the right hand side of the previous expression can be quite different for different matrices
S. The optimal balancing for a given A (or, equivalently, a given polynomial p(z) = det(zI−A)) from the point of
view of the sensitivity of the characteristic polynomial (or, equivalently, from the point of view of backward errors of
the root-finding problem via eigenvalue methods) would be given by some nonsingular diagonal matrix D such that
κrel(p,DAD−1) is minimal among all nonsingular diagonal matrices D (see Parlett & Reinsch (1969) for the eigenvalue
problem). In the case of Fiedler matrices, the following result provides a lower bound for this minimal conditioning.

PROPOSITION 3.10 . Let p(z) = zn +∑
n−1
k=0 akzk be a monic polynomial and set an = 1. Let σ : {0,1, . . . ,n− 1} →

{1, . . . ,n} be a bijection, let Mσ be the Fiedler companion matrix of p(z) associated with σ and let D ∈ Cn×n be a
diagonal and nonsingular matrix. Then, for k = 0,1, . . . ,n−1,

κ(ak,DMσ D−1)> (k+1)|an−1| · |ak+1| and κrel(ak,DMσ D−1)>
(k+1)|an−1| · |ak+1|

|ak|
.

Proof. We prove the result for κ(ak,DMσ D−1), since the bound for the relative condition number can be obtained just
dividing by |ak|. The result is a consequence of the fact that diagonal similarity does not change the diagonal entries
of a matrix. From (3.24),

κ(ak,DMσ D−1)> ‖diag(Dpn−k−1(Mσ )D−1)‖1 · ‖diag(DMσ D−1)‖∞ = ‖diag(pn−k−1(Mσ ))‖1 · ‖diag(Mσ )‖∞ .

Now we prove that diag(Mσ ) = (−an−1,0, . . . ,0) and diag(pn−k−1(Mσ )) = (0, . . . ,0,ak+1, . . . ,ak+1), where the coef-
ficient ak+1 appears (k+1) times.

For the diagonal of Mσ the proof proceeds by induction in n. The case n = 2 is immediate, since the only possible
Mσ are

[
−a1

1
−a0

0

]
and

[
−a1
−a0

1
0

]
. We assume that the identity is true for Fiedler matrices associated with polynomials of

degree n−1. For degree n, we assume that σ has a consecution at n−2 (the case where σ has an inversion at n−2 is
similar). Then, using MATLAB notation for columns and rows, Mσ may be written as,

Mσ =

[
−an−1 1 0
W (:,1) 0 W (:,2 : n−1)

]
,
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where W ∈C(n−1)×(n−1) is a Fiedler companion matrix of the polynomial zn−1+∑
n−2
k=0 akzk (see (De Terán et al., 2013,

p. 949)). Therefore, diag(Mσ ) = (−an−1,0,W (2,2),W (3,3), . . . ,W (n−1,n−1)) = (−an−1,0, . . . ,0), by induction.
From Lemma 3.4 and equation (3.11), the (i, i) entry of pn−k−1(Mσ ) is equal to p(σ ,k)

ii (a0,a1, . . . ,an−1) = ak+1, if
n−1> k > n− i (that is, i> n− k), and p(σ ,k)

ii (a0,a1, . . . ,an−1) = 0, otherwise. This concludes the proof. �

3.5 Backward stability for ‖p‖∞ moderate and coefficientwise backward stability

Corollary 3.2 indicates that computing the roots of scalar polynomials as the eigenvalues of an arbitrary Fiedler matrix
is not backward stable if ‖p‖∞ is large, even if we compute the eigenvalues using a backward stable algorithm. This
is revealed by the presence of the factor ‖p‖∞ in (3.7) and ‖p‖2

∞ in (3.8). However, when ‖p‖∞ is moderate, (3.8)
guarantees backward stability. This fact is in accordance with results in (Van Dooren & Dewilde, 1983, p. 576),
where it is proven that solving matrix Polynomial Eigenvalue Problems by applying the QZ algorithm to the Frobenius
companion matrix is backward stable, provided that the original matrix polynomial has been previously scaled so that
all coefficients have norm less than or equal to 1. For scalar polynomials (not necessarily monic), this condition can
be always achieved by dividing all coefficients of the original polynomial p(z) by some sufficiently large number.
However, if we want to restrict ourselves to the set of monic polynomials to use the QR algorithm, this is not a valid
strategy any more, since we could get a non-monic polynomial after dividing the coefficients of p(z) (monic). To keep
the polynomial p(z) in (1.1) within the set of monic polynomials, we can consider another kind of scaling, like:

p̂(z) := α
n p(z/α) = zn +

n−1

∑
k=0

akα
n−kzk.

Now, α can be chosen so that |akαn−k|6 1, for all k = 0,1, . . . ,n−1. The roots of p(z) can be easily recovered from
those of p̂(z) just dividing by α . Once all coefficients of p̂(z) have absolute value less than or equal to 1, we can apply
the QR algorithm to any Fiedler companion matrix of p̂(z) to get its roots, and then recover the roots of p(z). However,
this does not guarantee that the method is backward stable. It is not difficult to find examples of quadratic polynomials
p(z) such that there is a polynomial q̂(z) with ‖p̂− q̂‖= O(u)‖ p̂‖, but ‖p−q‖/‖p‖ is O(1), with q(z) = (1/α2)q̂(αz).

We want to emphasize that we are not considering in this paper the backward errors of single roots of p, but the
backward error of the set of all roots of p. Backward errors of single roots has been considered in Tisseur (2000)
for the more general case of matrix Polynomial Eigenvalue Problems. In particular, the backward error of a single
computed root λ̃ considered in Tisseur (2000) is:

η(λ̃ ) = min
{

ε : (p+∆ p)(λ̃ ) = 0, |∆ai|6 ε|ai|, i = 0,1, . . . ,n
}
,

where p(z) = ∑
n
k=0 akzk, and ∆ p(z) = ∑

n
k=0(∆ak)zk are not necessarily monic. It is shown in (Tisseur, 2000, Theorem

7) that, for quadratic matrix polynomials whose coefficients have 2-norm equal to 1, computing the eigenvalues of its
companion pencil (defined in (Tisseur, 2000, p. 347)) with a backward stable algorithm gives a coefficientwise back-
ward stable method for the Quadratic Eigenvalue Problem. Though we are considering different notions of backward
error, this fact seems to be in accordance with Corollary 3.2 when ‖p‖∞ = 1 and with the discussion right below.

We also emphasize that the backward stability of polynomial root-finding when ‖p‖∞ = 1 does not guarantee small
relative backward errors in each coefficient. In other words, we can not guarantee that

max
k=0,1,...,n−1

|ãk−ak|
|ak|

= O(u) (3.25)

even in the case ‖p‖∞ = 1. In Section 4 we show some numerical experiments where ‖p‖∞ = 1 and (3.25) does not
hold. However, when |ak| is moderate, for all k = 0,1, . . . ,n−1, and not too close to zero (loosely speaking, of order
Θ(1)), then (3.7)–(3.8) imply that (3.25) holds, also in accordance with Tisseur (2000).

4. Numerical experiments

In this section we provide numerical experiments that support our theoretical results. Our goals are: (i) to show whether
or not the bounds in (3.7)–(3.8) correctly predicts the dependence on the norm of p(z) of the largest backward error
that may be obtained if the roots of p(z) are computed as the eigenvalues of a Fielder matrix with a backward stable
eigenvalue algorithm; (ii) to show that if the roots of a polynomial p(z), with moderate coefficients, are computed as
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the eigenvalues of a Fiedler matrix, then this process is normwise backward stable, regardless of the Fiedler matrix
that is used, which implies that, in this situation, any Fiedler matrix can be used for the root-finding problem with the
same reliability as the Frobenius companion matrices; (iii) to investigate, from the point of view of backward errors,
the effect of balancing Fiedler matrices; and (iv) following Edelman & Murakami (1995), to show that Theorem 3.3
may be used to predict the backward error when the roots of a monic polynomial are computed as the eigenvalues of
a Fiedler matrix. Along this section we denote by u = 2−52 the machine epsilon in IEEE double precision arithmetic.

Given a monic polynomial p(z) of degree n, we denote by {λ̃1, λ̃2, . . . , λ̃n} the roots of p(z) computed as eigen-
values of a Fiedler matrix Mσ using a backward stable eigenvalue algorithm. If p̃(z) denotes the monic polynomial of
degree n whose roots are {λ̃1, λ̃2, . . . , λ̃n}, namely, p̃(z) = ∏

n
k=0(z− λ̃k) = zn +∑

n−1
k=0 ãkzk, then we are interested in:

• the normwise backward error (NBE): ‖ p̃− p‖∞/‖p‖∞, and

• the coefficientwise backward error (CBE): maxk=0,1,...,n−1 (|ãk−ak|/|ak|).

In the numerical experiments, we consider monic polynomials of degree 20 and the following Fiedler companion
matrices associated with degree-20 polynomials:

(a) the second Frobenius companion matrix Mσ1 =C2,

(b) the Fiedler matrix Mσ2 with PCIS(σ2) = (1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1), which is a pentadiagonal
matrix,

(c) the Fiedler matrix Mσ3 with PCIS(σ3) = (0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1), and

(d) the Fiedler matrix Mσ4 with PCIS(σ4) = (1,1,1,0,0,1,0,0,1,1,0,0,0,1,1,0,1,1,1).

Recall that Mσ2 is the Fiedler matrix considered in the last example of Section 3.2.2, and Mσ3 is the Fiedler matrix in
Theorem 3.6.

Given a monic polynomial p(z) of degree 20, to compute the polynomial p̃(z) we proceed as follows. First, we
compute the eigenvalues of Mσ using the function eig in MATLAB (with and/or without balancing, see comments
below); then, if {λ̃1, λ̃2, . . . , λ̃20} denote the computed eigenvalues, we compute the polynomial p̃(z) =∏

20
k=1(z− λ̃k) =

z20 +∑
19
k=0 ãkzk using the function vpa (variable precision arithmetic) followed by the command poly on a diagonal

matrix whose diagonal entries are {λ̃1, λ̃2, . . . , λ̃20}, in MATLAB with 32 decimal digits of accuracy.

4.1 Numerical experiments that show the dependence of the normwise backward error with ‖p‖∞

In this subsection, we perform numerical experiments to determine whether or not the largest normwise backward
errors that may be obtained if the roots of monic polynomials are computed as the eigenvalues of a Fiedler matrix Mσ

with a backward stable eigenvalue algorithm, behave like ‖p̃− p‖∞/‖p‖∞ = O(u)‖p‖2
∞, when Mσ is a Fiedler matrix

other than the Frobenius ones, or like ‖ p̃− p‖∞/‖p‖∞ = O(u)‖p‖∞, when Mσ is one of the Frobenius companion
matrices, as it is predicted by Corollary 3.2. We perform numerical experiments with and without balancing the Fiedler
matrices. Our results show that if we do not balance the Fiedler matrices the bound in Corollary 3.2, although in a
lot of cases is very pessimistic, predicts well the dependence with ‖p‖∞ of the largest backward errors. If the Fiedler
matrices are balanced, our results show that there is still a dependence with ‖p‖∞ of the largest normwise backward
errors, and that this dependence is similar for all Fiedler matrices. Also we show that the backward errors that are
usually obtained when the Fiedler matrices are balanced are almost independent of the norm of the polynomials, and
that polynomial root-finding algorithms using Fiedler matrices are usually normwise backward stable.

In order to see the dependence of the backward error with ‖p‖∞ we proceed as follows. For each k = 0,1, . . . ,10 we
generate 500 random degree-20 polynomials with coefficients of the form a ·10c, where a is drawn from the uniform
distribution on the interval [−1,1] and c is drawn from the uniform distribution on [−k,k]. We set a0 = 10k to fix the
infinity norm of the 500 random polynomials to be 10k. For each of these 11 samples of 500 random polynomials, we
compute the normwise backward errors, as it is explained at the beginning of Section 4, when their roots are computed
as the eigenvalues of the four Fiedler matrices Mσ1 ,Mσ2 ,Mσ3 ,Mσ4 , with and without balancing them.

In Figures 1 (a)–(d) we plot the decimal logarithms of the maximum and the minimum normwise backward errors
obtained for each of the 11 samples of 500 random polynomials against the logarithms of the norm of the polynomials,
when their roots are computed as the eigenvalues of Mσ1 ,Mσ2 ,Mσ3 ,Mσ4 , respectively, without balancing. We also plot
a linear fitting for the logarithms of the maximum normwise backward errors to get the dependence with ‖p‖∞. As
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FIG. 1. Decimal logarithms of the maximum and minimum normwise backward errors obtained for each of the 11 samples of 500 random degree-20
polynomials, for k = 0,1, . . . ,10, with a fixed infinite norm equal to 10k and with coefficients of the form a ·10c, where a is drawn from the uniform
distribution on [−1,1] and c is drawn from the uniform distribution on [−k,k], and where we set a0 = 10k , when their roots are computed as the
eigenvalues of the Fiedler matrices Mσ1 ,Mσ2 ,Mσ3 ,Mσ4 , without balancing them.

may be seen in Figures 1 (a)–(d), there is a dependence with ‖p‖∞ of the largest normwise backward errors of the form
‖p‖α

∞. From the linear fittings we obtain α = 0.85 for Mσ1 =C2, α = 1.9 for Mσ2 , α = 1.7 for Mσ3 , and α = 1.8 for
Mσ4 . This is consistent with the bound in Corollary 3.2, which predicts α = 1 for the Frobenius companion matrices
C1 and C2, and α = 2 for Fiedler matrices other than the Frobenius ones. Also note that in Figures 1 (a)–(d) it may be
seen that the bound in Corollary 3.2 is in some cases very pessimistic, since there are polynomials for which we get
small normwise backward errors, regardless of their norms.

Next, we investigate the effect of balancing the Fiedler matrices in the backward errors. In Figures 2 (a)–(d), we
plot the decimal logarithms of the maximum and the minimum normwise backward errors obtained for each of the
11 samples of 500 random polynomials against the logarithms of the norm of the polynomials, when their roots are
computed as the eigenvalues of Mσ1 ,Mσ2 ,Mσ3 ,Mσ4 , respectively, but in this case the Fiedler matrices are balanced
before we compute their eigenvalues. As in the previous experiment, we plot a linear fitting for the logarithms of
the maximum normwise backward errors in order to get the dependence with ‖p‖∞. We also plot the ninth decile of
the normwise backward error for each of the 11 samples. Figures 2 (a)–(d), show that there is a dependence of the
largest backward errors with the norm of the polynomials of the form ‖p‖α

∞, but this dependence is similar for all four
Fiedler matrices. In particular, from the linear fittings, we get α = 0.59 for Mσ1 = C2, α = 0.71 for Mσ2 , α = 0.67
for Mσ3 , and α = 0.71 for Mσ4 . Note that 90% of the backward errors obtained when the roots of the polynomials are
computed as the roots of Mσ1 ,Mσ2 ,Mσ3 ,Mσ4 are excellent, since they are more or less between 10−12 and 10−16, even
for polynomials with norms as large as 1010.

4.2 Numerical experiments with polynomials of moderate coefficients

We have obtained numerical evidence that supports what we claim in Section 3.5, namely, that computing the roots
of a monic polynomial p(z) as in (1.1), with |ai| moderate, for i = 0,1, . . . ,n− 1, as the eigenvalues of a Fiedler
matrix using a backward stable eigenvalue algorithm is normwise backward stable, regardless of the Fiedler matrix
that is used. In addition, we show that to have |ai| moderate, for i = 0,1, . . . ,n− 1, it is not enough to guarantee
coefficientwise backward stability. Finally, we provide numerical evidence that supports the last sentence in Section
3.5, namely, that (3.25) holds when |ai| = Θ(1), for i = 0,1, . . . ,n− 1, regardless of the Fiedler matrix that is used.
For this, we have run two sets of numerical experiments. Each set consists of random samples of 1000 degree-20
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FIG. 2. Decimal logarithms of the maximum and minimum normwise backward errors obtained for the 11 samples of 500 random degree-20
polynomials with, for k = 0,1, . . . ,10, a fixed infinite norm equal to 10k and with coefficients of the form a ·10c, where a is drawn from the uniform
distribution on [−1,1] and c is drawn from the uniform distribution on [−k,k], and where we set a0 = 10k , when their roots are computed as the
eigenvalues of the Fiedler matrices Mσ1 ,Mσ2 ,Mσ3 ,Mσ4 , balancing them before computing their eigenvalues.

polynomials. In both cases, the coefficients of the polynomial have moderate norm (i. e., not too large). But in the
first one, we set a19 = 10−10, which is very close to zero. The numerical experiments in this case provide excellent
backward error, but poor coefficientwise backward error. In the second set all coefficients have moderate norm not
close to zero (their absolute value differ in at most four orders of magnitude). The experiments in this case give
excellent normwise backward error and very good coefficientwise backward error. For more information on this, we
refer the reader to De Terán et al. (2014b) (see, in particular, Tables 1 and 2).

4.3 Numerical experiments balancing Fiedler matrices

In this subsection we perform numerical experiments to study, from the point of view of backward errors, the effect
of balancing Fiedler matrices. We show that, when a Fiedler matrix Mσ is balanced before computing its eigenvalues,
the backward error obtained if we compute the roots of p(z) as the eigenvalues of Mσ may be much smaller than the
backward error that is obtained when Mσ is not balanced, regardless of the Fiedler matrix that is used. We show also
that balancing a Fiedler matrix is usually enough to guarantee that the process of computing the roots of a polynomial
as the eigenvalues of a Fiedler matrix is normwise backward stable, even if the polynomial has large coefficients.
Finally, we investigate the effect of the size of the coefficient an−1, since Proposition 3.10 suggests that it plays a
key role in getting or not backward stability after balancing Fiedler matrices. To be precise, Proposition 3.10 shows
that, for large values of |an−1|, the condition number of any coefficient of the characteristic polynomial of any Fiedler
matrix will be large, regardless of the balancing. This leads us to expect large backward errors when |an−1| is large.

We consider a random sample of 1000 degree-20 polynomials with coefficients of the form

a1 ·10c1 + ia2 ·10c2 , (4.1)

where i denotes the imaginary unit, a1,a2 are drawn from the uniform distribution on the interval [−1,1], and c1 and
c2 are drawn from the uniform distribution on [−10,10]. These polynomials, considered in Toh & Trefethen (1994),
allow us to measure the normwise backward errors with varying orders of magnitude in the coefficients of p(z). We
consider a second sample of 1000 degree-20 polynomials with coefficients of the form (4.1), but we fix a19 = 1.

For the first sample of random polynomials, in Tables 1-(a) and 1-(b) we give the mean, the maximum and
the minimum of the decimal logarithms of the normwise backward errors (Log-Mean NBE, Log-Maximum NBE,
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Log-Minimum NBE, respectively) obtained when the roots of the polynomials are computed as the eigenvalues of
Mσ1 ,Mσ2 ,Mσ3 ,Mσ4 , when these Fiedler matrices are not or are balanced, respectively.

(a) The Fiedler matrices are not balanced.

Mσ1 Mσ2 Mσ3 Mσ4

Log-Mean NBE -10.5 -2.4 -9.9 -3.0
Log-Maximum NBE -5.8 3.2 0.1 3.5
Log-Minimum NBE -14.7 -8.9 -14.7 -10.0

(b) The Fiedler matrices are balanced.

Mσ1 Mσ2 Mσ3 Mσ4

Log-Mean NBE -13.1 -13.1 -13.1 -12.9
Log-Maximum NBE -8.1 -7.5 -8.0 -7.8
Log-Minimum NBE -14.7 -14.9 -15.1 -14.8

Table 1. Mean, maximum, and minimum of the decimal logarithms of the normwise backward errors obtained for a sample of 1000 random degree-
20 polynomials, with coefficients of the form (4.1), when their roots are computed as the eigenvalues of the Fiedler matrices Mσ1 ,Mσ2 ,Mσ3 ,Mσ4 ,
without balancing and with balancing.

Several observations may be drawn from the data in Tables 1-(a) and 1-(b). First note, from the data in Log-
Maximum NBE in Table 1-(a), that if the Fiedler matrices are not balanced, the backward errors may be very large.
Note also that the largest of these backward errors is consistent with (3.7) for the Frobenius companion matrices, and
with (3.8) for Fiedler matrices other than the Frobenius ones. Second, note that the process of balancing the Fiedler
matrices makes that the backward errors after balancing may be much smaller than the backward errors obtained when
the Fiedler matrices are not balanced (this is especially evident for Mσ2 and Mσ3 ). Finally, note, from the data in Log-
Maximum NBE in Table 1-(b), that there are polynomials for which balancing the Fiedler matrices does not guarantee
that the process of computing their roots as the eigenvalues of Fiedler matrices is normwise backward stable.

In Tables 2-(a) and 2-(b) we display the mean, the maximum and the minimum of the decimal logarithms of
the normwise backward errors (Log-Mean NBE, Log-Maximum NBE, Log-Minimum NBE, respectively) that are
obtained when the roots of the polynomials of the second sample are computed as the eigenvalues of the four Fiedler
matrices Mσ1 ,Mσ2 ,Mσ3 ,Mσ4 , when the Fiedler matrices are not or are balanced, respectively. Recall that for this
sample of degree-20 random polynomials we set a19 = 1.

(a) The Fiedler matrices are not balanced.

Mσ1 Mσ2 Mσ3 Mσ4

Log-Mean NBE -6.9 -3.2 -6.9 -3.4
Log-Maximum NBE -5.6 3.0 -3.4 3.0
Log-Minimum NBE -9.8 -10.6 -9.9 -11.1

(b) The Fiedler matrices are balanced.

Mσ1 Mσ2 Mσ3 Mσ4

Log-Mean NBE -13.9 -13.9 -13.9 -13.7
Log-Maximum NBE -11.6 -11.1 -11.6 -10.4
Log-Minimum NBE -15.1 -14.8 -15.0 -15.0

Table 2. Mean, maximum, and minimum of the decimal logarithms of the normwise backward errors obtained when the roots of the polynomials of
the second sample of random polynomials (i. e., coefficients from (4.1) and a19 = 1) are computed as the eigenvalues of the four Fiedler matrices
Mσ1 ,Mσ2 ,Mσ3 ,Mσ4 , without balancing and with balancing.

As in the first sample of random polynomials, we may see in Tables 2-(a) and 2-(b) that the backward errors
obtained when the Fiedler matrices are not balanced may be very large. Also, we may see that the backward errors
may be much smaller after balancing the Fiedler matrices. Finally note that for this second sample the largest backward
errors obtained when the Fiedler matrices are balanced are smaller than the largest ones obtained for the first sample.
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4.4 Using Theorem 3.3 to predict the coefficientwise backward error

Theorem 3.3 can be used to predict the coefficientwise backward error, without computing explicitly the polynomial
p̃(z) (something that may not be possible for high degree polynomials, since using vpa makes this process very slow),
and to show that this backward error is usually small for all Fiedler matrices if balancing is used. Of course, the
normwise backward error can be also predicted from Theorem 3.3, but we omit it for brevity. We have checked this
by exploring the same eight degree-20 polynomials as in Edelman & Murakami (1995) and Toh & Trefethen (1994).

As in Edelman & Murakami (1995), we first compute the coefficients exactly or with high precision using Math-
ematica. We then read these coefficients into MATLAB and take the rounded coefficients stored in MATLAB as our
official test cases. Also, we consider again the four Fiedler companion matrices associated with degree-20 polynomials
introduced at the beginning of Section 4, namely Mσ1 ,Mσ2 ,Mσ3 ,Mσ4 .

We repeat the numerical experiments in Edelman & Murakami (1995). Our results show that Theorem 3.3 always
predicts a small coefficientwise backward error, regardless of the Fiedler matrix that is used, and that this predicted
backward error is usually pessimistic by at most one, two or three orders of magnitude, except for the monic poly-
nomial with zeros 2−10,2−9, . . . ,28,29, where the predicted backward error is pessimistic by 6 orders of magnitude.
Note that in this case the ratio (|a19| · |a1|)/|a0| is of order 219, so Proposition 3.10 ensures that the condition number
for the coefficient a0 is large. However, the perturbations in the numerical experiments does not seem to affect this
coefficient in such a severe way.

For more details on this example, we refer the reader to De Terán et al. (2014b) (see, in particular, Table 5).

5. The Sylvester space of Fiedler matrices

The study of the geometry of matrix spaces sheds light on the explanation of numerical processes involving matrices
or matrix pencils. In particular, the theory of orbits has been used in the analysis of errors of the algorithms for com-
puting eigenvalues and canonical forms (see Arnold (1971), Edelman et al. (1997, 1999) and Edelman & Murakami
(1995)). In this section, and inspired by the motivating paper by Edelman & Murakami (1995), we analyze from a ge-
ometrical point of view the polynomial root-finding problem solved as an eigenvalue problem with Fiedler companion
matrices. Our main result is Theorem 5.3, where we prove that the space of Sylvester matrices associated with a given
Fiedler matrix Mσ is transversal to the similarity orbit of Mσ . This result extends the corresponding one for Frobenius
companion matrices (Edelman & Murakami, 1995, Prop. 2.1).

Let p(z) be a monic polynomial as in (1.1) and let Mσ be a Fiedler matrix of p(z). Let us consider the Euclidean
matrix space Cn×n with the usual Frobenius inner product (A,B) = tr(AB∗), where M∗ denotes the conjugate transpose
of M ∈Cn×n. In this space, the set of matrices similar to a given matrix A ∈Cn×n is a differentiable manifold in Cn×n.
This manifold is the orbit of A under the action of similarity: O(A) := {SAS−1 : det(S) 6= 0}.

We will refer to the elements of a manifold as points, even though all manifolds considered in this paper are
manifolds whose points are matrices.

It is known that the tangent space of O(A) at A is the set

TAO(A) := {AX−XA for some X ∈ Cn×n}.

The normal space of O(A) at A, denoted by NAO(A), is the set of matrices orthogonal to any matrix in TAO(A):

NAO(A) := {Y ∈ Cn×n such that (Y,V ) = 0, for all V ∈ TAO(A)},

and the centralizer of A is the set of matrices commuting with A:

C(A) := {X ∈ Cn×n such that AX−XA = 0}

The following facts are already known:

(a) C(A∗) = NAO(A) (see (Arnold, 1971, Lemma, p. 34)).

(b) If A is a non-derogatory matrix, then:

(b1) C(A) = {q(A) : q is a polynomial} (see (Horn & Johnson, 1985, Th. 3.2.4.2)).

(b2) dimC(A) = n (see (Arnold, 1971, Corollary, p. 35)).

(c) Mσ is a non-derogatory matrix, for all σ .
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For claim (c), just recall that Mσ is similar to C1, and that C1 is non-derogatory (see (Horn & Johnson, 1985, p. 147)).
As a consequence of claims (a)–(c) above, we have that dimNMσ

O(Mσ ) = n, for all σ , so there is a basis of
NMσ

O(Mσ ) consisting of n matrices which are polynomials in M∗σ . This is stated in Proposition 5.1.

PROPOSITION 5.1 Let p(z) = zn +∑
n−1
k=0 akzk be a monic polynomial, σ : {0,1, . . . ,n−1}→ {1, . . . ,n} be a bijection,

Mσ be the Fiedler matrix of p(z) associated with the bijection σ , and let pd(z) be the dth Horner shift of p(z), for
d = 0,1, . . . ,n. Set p0(Mσ ) = In and

pn−k(Mσ ) = Mn−k
σ +an−1Mn−k−1

σ + · · ·+ak+1Mσ +akI, for k = 1, . . . ,n−1.

Then {pk(Mσ )
∗}n−1

k=0 is a basis for NMσ
O(Mσ ).

Note that the set {pk(Mσ )
∗}n−1

k=0 is linearly independent because, since Mσ is non-derogatory, its minimal poly-
nomial coincides with its characteristic polynomial. Any n linearly independent polynomials in M∗σ would serve as a
basis for NMσ

O(Mσ ), but in Section 3.2.1 we have seen that the matrices pk(Mσ ) play an important role in determining
how the coefficients of the characteristic polynomial of Mσ change when the matrix is perturbed (see (3.11)).

First order perturbations of the coefficients of p(z), with p(z) = det(zI−C1), have been studied in Edelman &
Murakami (1995). To do so, the authors decompose the perturbation matrix E as

E = E tan +Esyl, (5.1)

where E tan belongs to the tangent space to O(C1) at C1 and Esyl is of the form

Esyl =


E11 . . . E1n
0 . . . 0
...

. . .
...

0 . . . 0

 .
The matrix Esyl belongs to the tangent space (at any point) to the Sylvester space of C1. We recall that the (affine)
Sylvester space of C1 is the set of all matrices of the form

E11 E12 . . . E1n
1 0 . . . 0

. . . . . .
...

1 0

 ,
that is, the set of “all first Frobenius companion matrices”2. It may be proved that, to first order in E, the matrix E tan

does not affect the coefficients of p(z). Below, we prove an equivalent result for any Fiedler matrix Mσ . For this, we
first define the Sylvester space of any Fiedler matrix, which is a natural generalization of the Sylvester space of C1.

DEFINITION 5.2 (Sylvester space of a Fiedler matrix) Let σ : {0,1, . . . ,n−1} → {1, . . . ,n} be a bijection. Then, the
(affine) Sylvester space associated with the bijection σ , denoted by Syl(σ), is the set of Fiedler matrices associated
with σ , that is,

Syl(σ) :=

{
Mσ (p) : p(z) = zn +

n−1

∑
k=0

ckzk, ck ∈ C

}
,

where Mσ (p) is the matrix in (2.2).

For example, the Sylvester space associated with the bijection σ , such that PCIS(σ) = (1,1,1,0,0,0), is the set of
matrices of the form 

c6 c5 c4 c3 1 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 c2 0 1 0
0 0 0 c1 0 0 1
0 0 0 c0 0 0 0


,

2We note that the companion matrix considered in Edelman & Murakami (1995) is not exactly C1, but the companion matrix obtained from C1
in (1.2) after performing a symmetry through the main anti-diagonal, and accordingly with the Sylvester space.



28 of 30 F. DE TERÁN, F. M. DOPICO & J. PÉREZ

where ck ∈ C, for k = 0,1, . . . ,6, may take any value. The tangent space of Syl(σ) at a given point, denoted by
TSyl(σ), is the set of matrices that we get if we remove the entries identically equal to 1 in the matrix above. In
other words, the underlying vector space to the affine space. Observe that the tangent space of Syl(σ) in any matrix
M ∈ Syl(σ) is independent of M. This is the reason why we just write TSyl(σ) without specifying the base point.

In order to extend the transversality identity (5.1) to the Sylvester space of any Fiedler matrix, we first need the
following result, which is in turn an extension of (Edelman & Murakami, 1995, Eq. (5), p. 768).

LEMMA 5.1 Let Esyl be a matrix in TSyl(σ) with nonzero entries equal to Esyl
0 ,Esyl

1 , . . . ,Esyl
n−1, where the entry Esyl

k ,
for k = 0,1, . . . ,n−1, is in the same position as the coefficient −ak in Mσ . Then, for k = 0,1, . . . ,n−1,

tr(Esyl pn−k−1(Mσ )) =−Esyl
k . (5.2)

Proof. Let p̃(z) = zn+∑
n−1
k=0 ãkzk be the characteristic polynomial of Mσ +Esyl. We know, by Propositions 3.1 and 3.4,

that ãk = ak− tr(Esyl pn−k−1(Mσ ))+O(‖Esyl‖2). But Mσ +Esyl is a Fiedler matrix of the polynomial zn +∑
n−1
k=0(ak +

Esyl
k )zk, therefore we have ãk = ak +Esyl

k . From these two formulas we get

tr(Esyl pn−k−1(Mσ ))+O(‖Esyl‖2) =−Esyl
k .

Since this last equation is true regardless of the value of Esyl
0 ,Esyl

1 , . . . ,Esyl
n−1, (5.2) follows. �

THEOREM 5.3 Let p(z) = zn +∑
n−1
k=0 akzk be a monic polynomial, σ : {0,1, . . . ,n−1}→ {1, . . . ,n} be a bijection, and

let Mσ be the Fiedler matrix of p(z) associated to the bijection σ . Then Syl(σ) is transversal to O(Mσ ) at Mσ , i.e.,
every matrix E ∈ Cn×n can be expressed as

E = E tan +Esyl, (5.3)

where Esyl ∈ TSyl(σ) and E tan ∈ TMσ
O(Mσ ).

Proof. Let Esyl be a matrix in TSyl(σ) with nonzero entries Esyl
k :=−tr(E pn−k−1(Mσ )), for k = 0,1, . . . ,n−1, where

the entry Esyl
k is in the same position as −ak in Mσ . We may write the matrix E as Esyl +E tan, where E tan = E−Esyl.

We have to check that E tan ∈ TMσ
O(Mσ ). Indeed, using Lemma 5.1,

tr(E pn−k−1(Mσ )) = tr(Esyl pn−k−1(Mσ ))+ tr(E tan pn−k−1(Mσ )) = tr(E pn−k−1(Mσ ))+ tr(E tan pn−k−1(Mσ )).

From this, we deduce that tr(E tan pn−k−1(Mσ )) = 0, for k = 0,1,2, . . . ,n−1. But, from Proposition 5.1, we have that
{pk(Mσ )

∗}n−1
k=0 is a basis for NMσ

O(Mσ ), therefore E tan ∈ TMσ
O(Mσ ). �

Theorem 5.3 and (5.2) show us that the component E tan of the perturbation matrix E does not contribute to the first
order term of ak(Mσ +E), so that only the “transversal complement” Esyl contributes to first order. In other words:

ak(Mσ +E) = ak− tr(pn−k−1(Mσ )E)+O(‖E‖2) = ak− tr(pn−k−1(Mσ )Esyl)+O(‖E‖2) = ak(Mσ +Esyl)+O(‖E‖2).

Also, from the considerations above, if Esyl
k denotes, as in Lemma 5.1, the entry of Esyl which is located in the same

position as the coefficient −ak in Mσ , then we have, up to first order in E,

Esyl
k = ak(Mσ +E)−ak =−

n

∑
i, j=1

p(σ ,k)
i j (a0,a1, . . . ,an−1)Ei j, (5.4)

as in (3.6), with p(σ ,k)
i j (a0,a1, . . . ,an−1) given by Theorem 3.3. The remaining entries of Esyl are zero. Hence, from

(5.3) and (5.4) we may get explicit expressions for the entries of E tan = E −Esyl in terms of the entries of E and
a0,a1, . . . ,an−1.

In the approach followed by Edelman & Murakami (1995), the fact that Esyl is transversal to TC1O(C1) is key
to get the first order expression for ak(C1 +E). More precisely: using this transversality (namely, equation (5.3)
with Esyl being the Sylvester space for C1), together with the identity tr(pn−k(C1)E tan) = 0, and the explicit expression
−Esyl

k−1 = tr(pn−k(C1)E), both valid for k = 1, . . . ,n, they get an explicit expression for tr(pn−k(C1)E), which is the first
order term of ak−1(C1 +E). This can be done because the matrices pn−k(C1), for k = 1, . . . ,n, have a simple structure
that allows to compute tr(pn−k(C1)Esyl) easily and explicitly, for all k = 1, . . . ,n. Unfortunately, for arbitrary Fiedler
matrices, to get explicit expressions of tr(pn−k(Mσ )E) by hand is quite involved. Hence, we have obtained the first-
order term of ak(Mσ +E) directly from adj(zI−Mσ ). This approach is completely independent of the transversality of
Esyl and the tangent space, though, as we have seen in Theorem 5.3, this fact is still true for arbitrary Fiedler matrices.
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6. Conclusions and future work

In this paper, we have analyzed some numerical features of the polynomial root-finding problem when considered as a
standard eigenvalue problem by means of Fiedler companion matrices. In particular, we have described the first-order
change of the characteristic polynomial of any Fiedler matrix under small perturbations of the matrix. This description
has led us to conclude that polynomial root-finding algorithms based on backward stable eigenvalue algorithms using
Fiedler companion matrices, are backward stable only if ‖p‖∞ is moderate. More precisely, given a monic polynomial
p(z), if p̃(z) denotes the monic polynomial whose roots are the computed eigenvalues of a Fiedler companion matrix
of p(z), obtained with a backward stable eigenvalue algorithm, then it is not possible to guarantee, in general, that

‖ p̃− p‖∞

‖p‖∞

= O(u),

where u is the machine epsilon of the computer. Namely, the computed roots of p(z) are not necessarily the roots of a
nearby polynomial. We have seen, however, that

‖ p̃− p‖∞

‖p‖∞

= O(u)‖p‖2
∞,

for any Fiedler companion matrix other than the first and second Frobenius companion matrices, and that

‖ p̃− p‖∞

‖p‖∞

= O(u)‖p‖∞,

for the first and second Frobenius companion matrices (which are particular cases of Fiedler matrices). Extensive
numerical experiments have been included to illustrate these theoretical results.

One way to circumvent the inaccuracies due to the occurrence of large polynomial coefficients is to shift from com-
panion matrices to companion pencils where normalization can be applied (see Jónsson & Vavasis (2004)). Though
exactly the same techniques used in Jónsson & Vavasis (2004) for the Frobenius companion pencils can not be directly
applied to other Fiedler companion pencils, some further analysis in this direction is still to be done, and will be the
subject of future work.
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EDELMAN, A., ELMROTH, E. & KÅGSTRÖM, B. (1997) A geometric approach to perturbation theory of matrices and matrix
pencils. I. Versal deformations. SIAM J. Matrix Anal. Appl., 18, 653–692.
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