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Abstract

The standard way to solve polynomial eigenvalue problems P (λ)x = 0 is to convert
the matrix polynomial P (λ) into a matrix pencil that preserves its spectral information–
a process known as linearization. When P (λ) is palindromic, the eigenvalues, elemen-
tary divisors, and minimal indices of P (λ) have certain symmetries that can be lost
when using the classical first and second Frobenius companion linearizations for numer-
ical computations, since these linearizations do not preserve the palindromic structure.
Recently new families of pencils have been introduced with the goal of finding lineariza-
tions that retain whatever structure the original P (λ) might possess, with particular
attention to the preservation of palindromic structure. However, no general construc-
tion of palindromic linearizations valid for all palindromic polynomials has as yet been
achieved. In this paper we present a family of linearizations for odd degree polynomials
P (λ) which are palindromic whenever P (λ) is, and which are valid for all palindromic
polynomials of odd degree. We illustrate our construction with several examples. In
addition, we establish a simple way to recover the minimal indices of the polynomial
from those of the linearizations in the new family.

Key words. matrix polynomial, matrix pencil, Fiedler pencils, palindromic, companion form,
minimal indices, structured linearization
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1 Introduction

Consider an n× n matrix polynomial with degree k ≥ 2 over an arbitrary field F, i.e.,

P (λ) =
k∑

i=0

λiAi , A0, . . . , Ak ∈ Fn×n, Ak ̸= 0 . (1.1)
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Then P (λ) is said to be T -palindromic [22] if AT
i = Ak−i for i = 0, 1, . . . , k, or in other

words if
revP (λ) = P (λ)T ,

where revP (λ) := λkP (1/λ) =
∑k

i=0 λ
iAk−i denotes the reversal polynomial of P (λ).

For polynomials over the particular field F = C, one can also consider P (λ) that are ∗-
palindromic [18, 22], i.e., polynomials that satisfy A∗

i = Ak−i for i = 0, 1, . . . , k, or equiva-
lently revP (λ) = P (λ)∗, where ∗ denotes conjugate transpose. Since everything that we do
in this paper for T -palindromic polynomials works equally well for ∗-palindromic polynomi-
als, from now on we will just refer to “palindromic” polynomials for the sake of simplicity,
except in those few situations in this introduction where the distinction is significant. Poly-
nomials P (λ) satisfying revP (λ) = −P (λ)T or revP (λ) = −P (λ)∗, sometimes referred to
as anti-palindromic polynomials [22], are also of some interest, and can be handled in a
similar manner.

Palindromic polynomials arise in a number of application areas. For example, the math-
ematical modelling and numerical simulation of the behavior of periodic surface acoustic
wave filters [13, 26], as well as the analysis of rail track vibrations produced by high speed
trains [12, 14, 15, 22], each lead to a quadratic T -palindromic polynomial eigenvalue prob-
lem. Also, discrete-time optimal control problems can be formulated as ∗-palindromic
eigenproblems of degree 2 and higher [4].

The spectral structure of palindromic matrix polynomials enjoys certain symmetries. For
example, the elementary divisors of T -palindromic polynomials corresponding to eigenvalues
λ0 ̸= ±1 always come in pairs (λ−λ0)

s, (λ−1/λ0)
s [20, 22, 24]. For palindromic polynomials

P (λ) that are singular1, the minimal indices also are paired; if η1 ≤ η2 ≤ · · · ≤ ηℓ and
ε1 ≤ ε2 ≤ · · · ≤ εm are respectively the left and right minimal indices of P (λ), then ℓ = m
and ηj = εj for j = 1, . . . , ℓ [6, Thm. 3.6].

The usual way to numerically solve polynomial eigenproblems for regular polynomials
P (λ) is to first linearize P (λ) into a matrix pencil L(λ) = λX + Y with X,Y ∈ Fnk×nk,
then compute the eigenvalues and eigenvectors of L(λ) using well-known algorithms for
general matrix pencils. When P (λ) is singular, linearizations can also be used to compute
the minimal indices and bases of P (λ) [6, 7]. The classical approach uses the first or sec-
ond Frobenius companion forms of P (λ) as linearizations [7, 11]. However, these companion
forms are never palindromic, even when P (λ) is. Consequently, the rounding errors inherent
in numerical computations may destroy the symmetry of elementary divisors and minimal
indices of palindromic polynomials if such unstructured linearizations are employed. A nu-
merical procedure that preserves palindromic structure throughout the computation would
thus be more appropriate than employing some standard method designed for use on gen-
eral polynomials. In order to gain more accuracy and reliability in the numerical solution of
palindromic eigenvalue and minimal index problems by linearization, then, two steps should
be addressed:

(1) Design linearizations that share the palindromic structure of P (λ).

(2) Develop specific numerical methods for computing eigenvalues and minimal indices
of palindromic pencils, methods that preserve and exploit the palindromic structure
throughout the computation.

1Recall that an n× n polynomial P (λ) is singular if detP (λ) ≡ 0, i.e., if all the coefficients of the scalar
polynomial detP (λ) are zero, and it is regular otherwise.
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Step (2) has been addressed for the regular case in [23], where a structured Schur-like
form for T -palindromic pencils and an algorithm to compute it are presented. Additional
structure-preserving algorithms for T -palindromic pencils are developed in [17] and [25].
Step (1) has been addressed in [22], but again only for regular palindromic polynomials
P (λ); note also that the presence of eigenvalues at λ0 = ±1 was found to be problem-
atic in the T -palindromic case. In [22], necessary and sufficient conditions are given for
the existence of palindromic linearizations within certain special families of matrix pencils
associated with P (λ) that were introduced in [21]. A procedure to construct these struc-
tured linearizations, when they exist, is also given in [22]. However, the problem of finding
palindromic linearizations that are valid for all palindromic polynomials P (λ), regular and
singular, with no restrictions on the eigenvalues of P (λ), remained open.

In order to probe for intrinsic obstructions to the existence of palindromic linearizations,
the Smith forms of palindromic matrix polynomials were analyzed in [24], and necessary
conditions on the structure of the elementary divisors of such polynomials were obtained.
One striking feature that emerges from this analysis is a clear dichotomy between the be-
havior of even and odd degree T -palindromic polynomials; the elementary divisors of all odd
degree T -palindromic polynomials satisfy one common set of necessary conditions, while the
elementary divisors of all even degree T -palindromic polynomials satisfy a slightly different
set of necessary conditions. Thus it is possible for an even degree palindromic polynomial
P (λ) to have an elementary divisor structure that is incompatible with that of every palin-
dromic pencil; for such a P (λ) it is impossible to have any palindromic linearization at all.
For example, it is shown in [24] that no palindromic pencil can have the same elementary
divisor structure as that of the quadratic palindromic polynomial

Q(λ) =

[
λ2 + 1 2λ
2λ λ2 + 1

]
= λ2

[
1 0
0 1

]
+ λ

[
0 2
2 0

]
+

[
1 0
0 1

]
, (1.2)

and hence this Q(λ) has no palindromic linearization.
By contrast, the Smith form results of [24] reveal no elementary divisor incompatibility

between palindromic pencils and arbitrary odd degree palindromic polynomials. This sug-
gests not only that every odd degree palindromic polynomial has a palindromic linearization,
but even that it might be possible to construct companion-like palindromic linearizations
for odd degree palindromic polynomials, i.e., linearizations with the following desirable
properties.

Definition 1.1 (Companion Forms/Palindromic Companion Forms).
A companion form for general n × n matrix polynomials P (λ) =

∑k
i=0 λ

iAi of degree k is
an nk× nk matrix pencil CP (λ) = λX + Y such that if X and Y are viewed as block k× k
matrices with n× n blocks, then:

(a) each block of X and Y is either 0n or ±In or ±Ai for i = 0, 1, . . . , k, and

(b) CP (λ) is a strong linearization for every n × n polynomial P (λ) of degree k, regular
or singular, over an arbitrary field.

A palindromic companion form is a companion form with the additional property that CP (λ)
is a palindromic pencil whenever P (λ) is a palindromic polynomial.
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Remark 1.2. Note that the Fiedler pencils studied in [7] are all companion forms in the
sense of Definition 1.1, but none of them are palindromic companion forms. Although the
fact that Fiedler pencils are companion forms seems to be widely known, to the best of
our knowledge a formal proof of property (a) has never been presented. We present such a
proof in Section 3 as a simple consequence of some other results developed in this paper.

From the above discussion of (1.2), it is clear that palindromic companion forms cannot
exist for degree k = 2. Indeed, similar examples can be fashioned to show that palindromic
companion forms cannot exist for any even degree k. Thus we focus attention in this
paper on the odd degree case, showing how to explicitly construct families of palindromic
companion forms for each odd degree k. Our construction of these palindromic companion
forms is based on the Fiedler pencils, a family of linearizations introduced in [1] for regular
polynomials, and extended and further analyzed in [7] and [2] for both regular and singular
matrix polynomials. Because of the close connection between the family of linearizations
introduced in this work and the Fiedler companion pencils, it is not too surprising that
these new linearizations also turn out to be companion forms; what requires considerable
work is to prove that they are palindromic companion forms.

Another important advantage of the Fiedler linearizations is that they allow the recovery
of the minimal indices of a matrix polynomial from those of the linearization by means of
very simple formulas [2, 7]. We will see that this property is inherited by the palindromic
linearizations constructed in this paper. It is important to stress that minimal indices are
intrinsic quantities associated with any singular matrix polynomial, and are relevant in
many control problems [8, 16].

The paper is organized as follows. In Section 2 we introduce the basic definitions,
background facts, and notations used throughout the paper, including the Fiedler pen-
cils and their basic properties. Then in Section 3 certain block matrices closely related
to the Fiedler pencils, but with some factors deleted, are introduced and algorithmically
constructed. These block matrices will be the basis of our construction of palindromic
companion linearizations. These linearizations are then introduced in Section 4 and their
basic properties established. We also prove some useful structural properties of these lin-
earizations and provide a number of concrete examples. Section 5 then shows how any
of the palindromic companion forms constructed in Section 4 can be simply modified to
become an anti-palindromic companion form, i.e., a companion form that produces an anti-
palindromic linearization whenever the original polynomial is anti-palindromic. In Section 6
we show how the minimal indices of any singular odd degree matrix polynomial can be re-
covered in an extremely simple way from the minimal indices of any one of our palindromic
linearizations. Finally, some conclusions are discussed in Section 7.

2 Basic definitions and background

In this paper we follow the notation and definitions from [7]. In particular, F(λ) will denote
the field of rational functions with coefficients in the field F, and Iℓ is the ℓ × ℓ identity
matrix. Since the n× n identity appears frequently throughout the paper (n being the size
of P (λ) in (1.1)), for this particular size we drop the subscript and denote it simply by I.

The spectral structure of a regular matrix polynomial P (λ) is comprised of its finite and
infinite elementary divisors (see definition in [9]). For singular matrix polynomials P (λ),
there is an additional structure comprised of the minimal indices. Since minimal indices

4



are considered only in Section 6, the formal definition will be postponed until that section.
We just mention here that minimal indices are related to the existence of right and left null
vectors of P (λ), that is, nonzero vectors x(λ) ∈ F(λ)n×1 and y(λ)T ∈ F(λ)1×n such that
P (λ)x(λ) ≡ 0 and y(λ)TP (λ) ≡ 0. The existence of such null vectors leads us to introduce
the notion of right and left nullspaces of P (λ). These are the following vector subspaces
over F(λ):

Nr(P ) :=
{
x(λ) ∈ F(λ)n×1 : P (λ)x(λ) ≡ 0

}
,

Nℓ(P ) :=
{
y(λ)T ∈ F(λ)1×n : y(λ)TP (λ) ≡ 0T

}
.

Notice that, since P (λ) is square, we have dimNr(P ) = dimNℓ(P ).
Two matrix pencils L1(λ) and L2(λ) are strictly equivalent if there exist two invertible

constant matrices E,F such that

E · L1(λ) · F = L2(λ).

The notion of strict equivalence is also applicable to matrix polynomials with degree greater
than one, but in this paper we will only need it for matrix pencils. It is well known [9]
that two pencils of the same size are strictly equivalent if and only if they have the same
elementary divisors and minimal indices.

Now we recall the notion of linearization as introduced in [11], and also the related
notion of strong linearization introduced in [10] and named in [19]. Note that a unimodular
matrix is a square matrix polynomial whose determinant is a nonzero constant in F.

Definition 2.1. A matrix pencil L(λ) = λX + Y with X,Y ∈ Fnk×nk is a linearization of
an n×n matrix polynomial P (λ) of degree k if there exist two unimodular nk×nk matrices
U(λ) and V (λ) such that

U(λ)L(λ)V (λ) =

[
I(k−1)n 0

0 P (λ)

]
, (2.1)

or, in other words, if L(λ) is unimodularly equivalent to diag(I(k−1)n, P (λ)). A lineariza-
tion L(λ) is called a strong linearization if revL(λ) is also a linearization of revP (λ).

The relevance of linearizations (resp., strong linearizations) in the study of both regular
and singular matrix polynomials lies in the fact that these are the only matrix pencils
preserving the dimension of the left and right null spaces and the finite (resp., finite and
infinite) elementary divisors of the polynomial [6, Lemma 2.3].

Note that the size of linearizations in Definition 2.1 is assumed to be exactly nk × nk.
Linearizations with other sizes have been considered recently in [3], and their minimal
possible size has been determined in [5]. In particular, it is shown in [5] that every strong
linearization of a regular n × n matrix polynomial with degree k must have size exactly
nk×nk. Since we are interested in finding companion forms, i.e., strong linearizations valid
for all matrix polynomials of degree k (including regular ones), in this paper we consider
only linearizations of size nk × nk.

Our construction of palindromic linearizations is based on the Fiedler pencils, introduced
in [1] for regular matrix polynomials, and later extended in [7] to the singular case. To con-
struct these pencils for the polynomial P (λ) in (1.1) we need the following block-partitioned
matrices:

Mk :=

[
Ak

I(k−1)n

]
, M0 :=

[
I(k−1)n

−A0

]
, (2.2)
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and

Mi :=


I(k−i−1)n

−Ai I
I 0

I(i−1)n

 , i = 1, . . . , k − 1 . (2.3)

These kn × kn matrices are viewed as k × k block-matrices with blocks all of size n × n,
and are the basic factors used to build the Fiedler pencils [1, 7] of P (λ):

λMk −Mi0Mi1 · · ·Mik−1
, (2.4)

where (i0, i1, . . . , ik−1) is any possible permutation of the n-tuple (0, 1, . . . , k − 1). The
following fact is fundamental for the development in the rest of the paper.

Theorem 2.2 ([1, 7]). Let P (λ) be an n×n matrix polynomial (regular or singular ). Then
any Fiedler pencil of P (λ) is a strong linearization for P (λ).

This result was shown to hold for regular P (λ) over F = C in [1], while a proof valid
for arbitrary regular and singular polynomials over an arbitrary field F was given in [7].
As background for the work in this paper, this fact is crucial in guaranteeing that our
construction produces strong linearizations of P (λ).

We recall the commutativity relations

MiMj = MjMi for |i− j| ≠ 1 , (2.5)

that will be used later. Unless otherwise stated, the matrices Mi for i = 0, . . . , k are built
from the coefficients of the matrix polynomial P (λ) in (1.1). When necessary, we will
explicitly indicate the dependence on a certain matrix polynomial Q(λ) with the notation
Mi(Q). This convention will also be applied to other matrices appearing in this paper.

In the following example we exhibit a Fiedler pencil for polynomials of degree k = 5.

Example 2.3. Let k = 5 and (i0, i1, i2, i3, i4) = (3, 4, 0, 1, 2). Then the Fiedler pencil
associated with this permutation is

λM5 −M3M4M0M1M2 =


λA5 +A4 −I 0 0 0

A3 λI A2 −I 0
−I 0 λI 0 0
0 0 A1 λI −I
0 0 A0 0 λI

 .

Example 2.3 illustrates the general structure of the Fiedler pencils. The zero-degree
term contains all the coefficients of P (λ) except the leading one, i.e. Ak, together with k−1
identity blocks (with minus signs). The remaining blocks of this term are null blocks. The
first-degree coefficient contains the leading coefficient of P (λ) in the (1, 1) position together
with k − 1 identities in the remaining diagonal positions. Again, all other blocks are zero.

3 Fiedler-like block matrices with deleted factors

For further developments, we construct matrices analogous to the ones in the zero-degree
term of (2.4), but with some of the factors missing. For working effectively with this type
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of matrix we introduce the following notation: let s ≤ k be a positive integer, and let Cs :=
{j1, . . . , js} ⊆ {0, 1, . . . , k − 1} be a set of s distinct numbers. Also let τ : Cs → {1, 2, . . . , s}
be a bijection. Then we consider the matrix

IMτ := Mτ−1(1)Mτ−1(2) · · ·Mτ−1(s) . (3.1)

Notice that τ(j) for j ∈ Cs describes the position of the matrix Mj in the product defining
IMτ . Observe that IMτ can be obtained from the zero-degree term of one of the Fiedler
pencils (2.4) by removing k − s of the Mj factors.

Definition 3.1. Let τ : Cs → {1, 2, . . . , s} be a bijection. For j ∈ Cs we say that τ has
a consecution at j if j + 1 ∈ Cs and τ(j) < τ(j + 1), and that τ has an inversion at j if
j + 1 ∈ Cs and τ(j) > τ(j + 1).

The following theorem provides an algorithm to construct the matrix IMτ without per-
forming multiplications. Algorithm 1 in Theorem 3.2 will be used to establish certain
properties of the matrix IMτ that are needed in Section 4. We assume that all matrices
appearing in Algorithm 1 are block-partitioned matrices with n×n blocks, and that MAT-
LAB notation for submatrices is used on block indices. We will follow this convention in
the rest of the paper.

Theorem 3.2. Let P (λ) be the matrix polynomial in (1.1) with degree k ≥ 2, let Cs =
{j1, j2, . . . , js} ⊆ {0, 1, . . . , k − 1} be a set of s distinct numbers such that 0 ∈ Cs, let
τ : Cs → {1, 2, . . . , s} be a bijection, and let IMτ be the matrix defined in (3.1). Then
Algorithm 1 below computes IMτ .

Algorithm 1: Computes IMτ for given P (λ), Cs and τ

if τ has a consecution at 0

W0 =

[
−A1 I
−A0 0

]
elseif τ has an inversion at 0

W0 =

[
−A1 −A0

I 0

]
else % this happens if 1 ̸∈ Cs

W0 =

[
I 0
0 −A0

]
endif

for i = 1 : k − 2
if τ has a consecution at i

Wi =

[
−Ai+1 I 0

Wi−1(:, 1) 0 Wi−1(:, 2 : i+ 1)

]
elseif τ has a inversion at i

Wi =

 −Ai+1 Wi−1(1, :)
I 0
0 Wi−1(2 : i+ 1, :)


elseif (i ̸∈ Cs and i+ 1 ∈ Cs)
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Wi =

 −Ai+1 I 0
I 0 0
0 0 Wi−1(2 : i+ 1, 2 : i+ 1)


else % this happens if i+ 1 ̸∈ Cs

Wi =

[
I 0
0 Wi−1

]
endif

endfor

IMτ = Wk−2

Proof. The proof proceeds by induction on the degree k. The result is obvious for k = 2
because in this case there are only three possibilities for IMτ , namely: IMτ = M0M1 if τ
has a consecution at 0, IMτ = M1M0 if τ has an inversion at 0 and IMτ = M0 if 1 ̸∈ Cs. A
direct computation shows that these three matrices correspond to the matrices computed
by Algorithm 1 for k = 2.

Assume now that the result is true for all matrix polynomials of degree k − 1 ≥ 2,
and let us prove it for the polynomial P (λ) =

∑k
i=0 λ

iAi of degree k and the bijection
τ : Cs → {1, 2, . . . , s}, where Cs = {j1, j2, . . . , js} is as specified in the statement of the
theorem. Notice first that the matrices Mi(P ) defined in (2.2) and (2.3) for P (λ) satisfy

Mi(P ) = diag(I,Mi(Q)) , for i = 0, . . . , k − 2 , (3.2)

where Mi(Q) are the n(k− 1)×n(k− 1) matrices corresponding to the polynomial Q(λ) =∑k−1
i=0 λiAi. In the proof, we distinguish four cases that correspond to the four possibilities

in the “if” statement inside the “for loop” of Algorithm 1 for i = k − 2.
Case 1. If τ has a consecution at k − 2 then the commutativity relations (2.5) imply

IMτ (P ) = Mi1(P ) · · ·Mis−1(P )Mk−1(P ) ,

where (i1, . . . , is−1) is a permutation of Cs \ {k − 1}. Notice that for i = 0, 1, . . . , k − 2,
i ∈ Cs \ {k − 1} if and only if i ∈ Cs. Now by using (3.2) we can write

IMτ (P ) = diag(I, IMτ̃ (Q))Mk−1(P ), (3.3)

where τ̃ : Cs \ {k − 1} → {1, 2, . . . , s− 1} is a bijection such that for i = 0, 1, . . . , k − 3,
the bijection τ̃ has a consecution (resp., inversion) at i if and only if τ has a consecution
(resp., inversion) at i. So Algorithm 1 applied to Q(λ), Cs \ {k − 1} and τ̃ produces the
same Wk−3 as Algorithm 1 applied to P (λ), Cs and τ . Therefore, the induction hypothesis
guarantees that IMτ̃ (Q) = Wk−3. Finally, we perform the simple block product in (3.3) as
follows

IMτ (P ) =

[
I 0 0
0 Wk−3(:, 1) Wk−3(:, 2 : k − 1)

] −Ak−1 I 0
I 0 0
0 0 I(k−2)n


=

[
−Ak−1 I 0

Wk−3(:, 1) 0 Wk−3(:, 2 : k − 1)

]
,
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which is precisely the matrix obtained for i = k− 2 in the “for loop” in Algorithm 1 when
τ has a consecution at k − 2.

Case 2. If τ has an inversion at k − 2 then the proof is similar to that of Case 1, but
with Mk−1(P ) placed on the left, that is,

IMτ (P ) = Mk−1(P )Mi1(P ) · · ·Mis−1(P ) = Mk−1(P ) diag(I, IMτ̃ (Q)) .

Case 3. If k − 2 ̸∈ Cs and k − 1 ∈ Cs, we can argue as in Case 1 and write again

IMτ (P ) = Mi1(P ) · · ·Mis−1(P )Mk−1(P ) = diag(I, IMτ̃ (Q))Mk−1(P ) . (3.4)

Then by the induction hypothesis,

IMτ̃ (Q) = Wk−3 =

[
I

Wk−4

]
,

where Wk−3 and Wk−4 are the matrices obtained for i = k − 3, k − 4 in the “for loop” of
Algorithm 1 applied to Q(λ), Cs \{k−1} and τ̃ ; these are the same as the Wk−3 and Wk−4

matrices obtained when Algorithm 1 is applied to P (λ), Cs and τ . Finally, performing the
block product in (3.4) we get

IMτ (P ) =

 I 0 0
0 I 0
0 0 Wk−3(2 : k − 1, 2 : k − 1)

 −Ak−1 I 0
I 0 0
0 0 I(k−2)n


=

 −Ak−1 I 0
I 0 0
0 0 Wk−3(2 : k − 1, 2 : k − 1)

 ,

which is precisely the matrix obtained for i = k− 2 in the “for loop” of Algorithm 1 when
k − 2 ̸∈ Cs and k − 1 ∈ Cs.

Case 4. If k − 1 ̸∈ Cs, we have that Cs \ {k − 1} = Cs, and so we can simply write

IMτ (P ) = diag(I, IMτ (Q)).

By the induction hypothesis, IMτ (Q) = Wk−3 withWk−3 the matrix obtained for i = k−3 in
the “for loop” in Algorithm 1. Therefore IMτ (P ) = Wk−2, and the proof is complete.

Observe that from Theorem 3.2 it is immediate that the n×n blocks of IMτ are 0n or In
or −Ai for i ∈ Cs. In addition, Theorem 3.2 can also be used to construct the zero degree
term of any Fiedler pencil (2.4). This fact can be combined with Theorem 2.2 to give a
rigorous proof of the following result.

Corollary 3.3. Any Fiedler pencil is a companion form for general square matrix polyno-
mials of degree k.

We finish this section by establishing a further simple corollary of Theorem 3.2 that will
be used in Section 4.

Corollary 3.4. Using the same notation and assumptions as in Theorem 3.2 (except
that here k ≥ 3), let W0,W1, . . . , Wk−2 = IMτ be the sequence of matrices computed by
Algorithm 1. Also recall that the MATLAB notation used here refers to block indices.
Then for i = 0, . . . , k − 3 we have
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(a) IMτ (k − i : k, k − i : k) = Wi (2 : i+ 2, 2 : i+ 2) , and

(b) The block row IMτ (j, :) is obtained from the block row Wi(j + 2 − k + i, :), for j =
k− i, . . . , k, by adding k− i−2 zero blocks of size n×n in certain positions. Similarly,
the block column IMτ (:, j) is obtained from Wi(:, j+2− k+ i), for j = k− i, . . . , k, by
adding k − i− 2 zero blocks of size n× n in certain positions.

Proof. Part (a): The result for i = k − 3 follows directly from the way Wk−2 is obtained
from Wk−3 in Algorithm 1, which implies that

IMτ (3 : k, 3 : k) = Wk−2 (3 : k, 3 : k) = Wk−3 (2 : k − 1, 2 : k − 1).

Now proceed by (downwards) induction: we assume that the result is true for an index
i + 1 such that 1 ≤ i + 1 ≤ k − 3, then prove that it is true for index i. By the induction
assumption IMτ (k − i − 1 : k, k − i − 1 : k) = Wi+1 (2 : i + 3, 2 : i + 3). On the other
hand, by the way Wi+1 is obtained from Wi in Algorithm 1, it is clear that Wi+1 (3 :
i + 3, 3 : i + 3) = Wi (2 : i + 2, 2 : i + 2). Combining the two identities above we get
IMτ (k − i : k, k − i : k) = Wi (2 : i+ 2, 2 : i+ 2), which is the desired result for part (a).

Part (b): We prove the result only for block rows; the argument for block columns is
completely analogous. The result for i = k − 3 follows directly from Algorithm 1. Again
we proceed by (downwards) induction: we assume that the result is true for an index i+ 1
such that 1 ≤ i+1 ≤ k− 3, then show that it holds for index i. This induction assumption
implies that

IMτ (j, :), for j = k − i− 1, . . . , k, is obtained from Wi+1(j + 3− k + i, :) (3.5)

by adding zero blocks. On the other hand, by the way Wi+1 is obtained from Wi in
Algorithm 1, it is clear that

Wi+1(j, :), for j = 3, . . . , i+ 3, is obtained from Wi(j − 1, :) (3.6)

by adding one zero block. Combining (3.5) and (3.6) gives the desired result.

4 Palindromic companion forms for odd degree

The technical results presented in Section 3 allow us in this section to achieve the main goal
of this paper: the construction of palindromic companion forms for any odd degree, i.e.,
strong linearizations λX + Y for any odd degree matrix polynomial P (λ) with coefficients
as in (1.1), such that λX + Y is palindromic whenever P (λ) is. For this purpose, we will
construct pencils that are strictly equivalent to certain Fiedler pencils, and that satisfy

XT = Y whenever Ak−i = AT
i for all i = 0, 1, . . . , k. (4.1)

Observe that Theorem 2.2 guarantees immediately that the pencils we construct are strong
linearizations for any odd degree P (λ).

The initial step in our strategy can be viewed as multiplying a selected Fiedler pencil
by the inverses of some of the Mi matrices in (2.3); these Mi are always invertible for
i = 1, . . . , k − 1, and have inverses given by

M−1
i =


I(k−i−1)n

0 I
I Ai

I(i−1)n

 . (4.2)
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So, starting with (2.4), we obtain a pencil λX ′+Y ′ where X ′ is a product of Mk times some
inverses M−1

i and −Y ′ is a product of those Mj matrices that have not been inverted (this
product always includes M0). An analogous strategy was introduced in [1, Corollary 2.4,
Theorem 3.1] to build self-adjoint linearizations of self-adjoint regular matrix polynomials.
However, for preserving palindromic structure two additional steps are needed: first we
reverse the order of the block rows of λX ′ + Y ′, then we change the signs of a selected
subset of block rows. Both steps can be performed via strict equivalences on λX ′ + Y ′.

One important choice in this construction strategy is to select which inverses M−1
i are

to be used in the formation of X ′, in order to achieve property (4.1). Note that a simple
necessary condition follows easily from (4.1): if for some j = 1, . . . , k−1 the factorMj is part
of Y , then X must contain the factor M−1

i with “complementary” index i = k−j. This key
fact forces the degree k to be odd, and plays a central role in our construction of palindromic
linearizations based on Fiedler pencils. Before addressing the general construction leading
to our main Theorem 4.8, we illustrate this initial discussion with Example 4.1.

Example 4.1. Let k = 5 and set

IM0 = M0M1M2, IM1 = M−1
3 M−1

4 M5 .

Then

λIM1 − IM0 =


−I λI 0 0 0
0 −I λI 0 0

λA5 λA4 λA3 +A2 −I 0
0 0 A1 λI −I
0 0 A0 0 λI

 . (4.3)

Note that (4.3) is strictly equivalent to the Fiedler pencil λM5−M4M3M0M1M2. Reversing
the order of the block rows in (4.3), we get the strictly equivalent pencil

0 0 A0 0 λI
0 0 A1 λI −I

λA5 λA4 λA3 +A2 −I 0
0 −I λI 0 0
−I λI 0 0 0

 .

Finally, if we change the sign of the fourth and fifth block rows, then we obtain the pencil

λX + Y =


0 0 A0 0 λI
0 0 A1 λI −I

λA5 λA4 λA3 +A2 −I 0
0 I −λI 0 0
I −λI 0 0 0

 ,

which satisfies (4.1). Observe that the block rows whose signs have been changed have only
±I, ±λI and 0 blocks.

Example 4.1 and the paragraphs preceding it sketch a procedure to construct palin-
dromic linearizations for odd degree matrix polynomials from Fiedler pencils, comprised of
the following three main steps:
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(S1) Build up a pencil λIM1 − IM0 that is strictly equivalent to a Fiedler pencil, where IM0

is a product of M0 and half of the Mi matrices for i = 1, . . . , k − 1, and IM1 is a
product of Mk and the matrices M−1

k−i with “complementary indices” to those in IM0.

(S2) Reverse the order of the block rows of λIM1 − IM0.

(S3) Change the sign of appropriate block rows in the pencil obtained in (S2).

In subsequent developments we adopt the following notation for simplicity. For the
matrices Mi introduced in (2.2) and (2.3), we define for j = 0, 1, . . . , k − 1

M̃k−j :=

{
Mk if j = 0 ,

M−1
k−j otherwise .

(4.4)

The ordering and the selection of the factors in the pencil λIM1 − IM0 in step (S1) above
will be crucial in our construction. This is established in Definition 4.2.

Definition 4.2 (Admissible index set and associated pencils).
Let P (λ) be the matrix polynomial (1.1), let the degree k be odd, and h := (k + 1)/2. Then
a subset C ⊂ {0, 1, . . . , k − 1} is said to be an admissible index set if

• 0 ∈ C,

• C =
{
j1, . . . , jh

}
has cardinality h, and

• C ∩
{
k − j1, . . . , k − jh

}
= ∅.

In addition, given any bijection τ : C → {1, 2, . . . , h}, the pencil of P (λ) associated with C
and τ is the nk × nk matrix pencil

Lτ (λ) := λM̃k−τ−1(h) · · · M̃k−τ−1(2)M̃k−τ−1(1) −Mτ−1(1)Mτ−1(2) · · ·Mτ−1(h). (4.5)

For brevity, we denote the coefficients of this pencil by

IM0 := Mτ−1(1)Mτ−1(2) · · ·Mτ−1(h) , IM1 := M̃k−τ−1(h) · · · M̃k−τ−1(2)M̃k−τ−1(1) . (4.6)

The construction of admissible index sets is simple; partitioning {1, 2, . . . , k − 1} as a

union ∪(k−1)/2
j=1 {j, k− j} of complementary pairs, any admissible index set can be formed by

taking exactly one element from {j, k−j} for each j = 1, 2, . . . , (k−1)/2, and then adding 0.
Given an admissible index set C there are many possible bijections τ , so for P (λ) there may
be several distinct pencils Lτ (λ) associated with the index set C. Nevertheless, every pencil
Lτ (λ) can be obtained by multiplying some Fiedler pencil of P (λ) on the left and/or on the
right by the inverses of the matrices Mk−j1 , . . . ,Mk−jh with jℓ ̸= 0. Therefore every pencil
Lτ (λ) is strictly equivalent to a Fiedler pencil, and hence is always a strong linearization of
P (λ) by Theorem 2.2. Finally, observe that any admissible index set C is a particular case
of the index sets Cs considered in Section 3, with s = h. Thus the matrix IM0 in (4.6) is a
special case of the matrix IMτ in (3.1), and all the results of Section 3 apply to IM0. Note
also that for the arguments in the next section 4.1, it will be helpful to bear in mind that
τ(j) for j ∈ C specifies the position of the factor Mj in the product defining IM0.

The above discussion together with Algorithm 1 makes it clear that IM0 satisfies prop-
erty (a) in Definition 1.1. The fact that IM1 also satisfies this property follows from
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Lemma 4.3 below. In this lemma and its proof, Mi(P ) denotes any of the matrices de-
fined in (2.2)-(2.3) for P (λ), while Mi(−revP ) denotes the corresponding matrices for the

matrix polynomial −revP (λ). An analogous notation is used for the matrices M̃k−j defined

in (4.4). For completeness, we consider in Lemma 4.3 an arbitrary number of M̃ factors,
not just products with exactly h = (k + 1)/2 factors. From now on, R ∈ Fnk×nk denotes
the k × k block reverse identity matrix with n× n blocks, that is

R :=

[
In

. .
.

In

]
,

with the property that R2 = Ink.

Lemma 4.3. Let P (λ) be the matrix polynomial in (1.1) with degree k ≥ 2, let Cs =
{j1, j2, . . . , js} ⊆ {0, 1, . . . , k − 1} be any set of s distinct numbers such that 0 ∈ Cs and
1 ≤ s ≤ k, and let τ : Cs → {1, 2, . . . , s} be a bijection. Then

M̃k−τ−1(s)(P ) · · · M̃k−τ−1(1)(P ) = R
(
Mτ−1(s)(−revP ) · · ·Mτ−1(1)(−revP )

)
R . (4.7)

Furthermore, the right-hand side of (4.7) may be constructed by first using Algorithm 1

to construct IMrevτ for the matrix polynomial −revP , where revτ : Cs → {1, 2, . . . , s} is
the bijection defined by revτ(j) := s + 1 − τ(j), and then reversing the order of the block
rows and block columns of IMrevτ (−revP ).

Proof. Use R2 = Ink to write

M̃k−τ−1(s)(P ) · · · M̃k−τ−1(1)(P ) = R
(
RM̃k−τ−1(s)(P )R

)
· · ·

(
RM̃k−τ−1(1)(P )R

)
R.

Next use (4.2), (4.4), (2.2)-(2.3), and the fact that the ith degree coefficient of revP (λ) is
Ak−i to see that

RM̃k−j(P )R = Mj(−revP ), for j = 0, . . . , k − 1,

and equation (4.7) follows. For the construction of the right-hand side of (4.7), simply note
that the order of the Mi matrices in IMrevτ is reversed with respect to their order in IMτ

in (3.1).

4.1 Technical lemmas

We gather in this subsection four technical lemmas that are used in the proof of the main
result of the paper, i.e., Theorem 4.8. These lemmas investigate the block structure of the
matrix IM0 ∈ Fnk×nk introduced in Definition 4.2, viewed as a k×k block matrix with n×n
blocks.

Lemma 4.4. Let IM0 be as in Definition 4.2. Then the following statements hold.

(a) If τ has a consecution at i for some 0 ≤ i ≤ k− 2, then the (k− i)th block-column of
IM0 contains exactly one identity block, and all of its remaining blocks are zero.

(b) If τ has an inversion at i for some 0 ≤ i ≤ k− 2, then the (k− i)th block-row of IM0

contains exactly one identity block, and all of its remaining blocks are zero.
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Proof. The result is an immediate consequence of Corollary 3.4 and Algorithm 1 in Theo-
rem 3.2. We only prove (a); the proof of (b) is analogous. For i = k − 2, the result follows
from Algorithm 1 and the fact that IM0 = Wk−2. For other i recall that, from Corollary
3.4 (b), we know that IM0(:, k − i) is obtained from Wi(:, 2) by adding zero blocks. But if
τ has a consecution at i, then Wi(:, 2) = [I 0]T by Algorithm 1.

Lemma 4.5. Let IM0 be as in Definition 4.2, and 0 ≤ i ≤ k−1. If i ̸∈ C, then the (k− i)th
block-row of IM0 contains exactly one identity block, and all of its remaining blocks are zero.
The same is true for the (k − i)th block-column of IM0.

Proof. Recall that k ≥ 3 and that i > 0 since i ̸∈ C. We prove the result for block-
rows; the argument for block-columns is analogous. If i = k − 1, then Algorithm 1 gives
IM0 = Wk−2 = diag(I,Wk−3) and the result is proven. If 0 < i ≤ k − 2, then IM0(k − i, :)
has the same nonzero blocks as Wi(2, :). This follows from Corollary 3.4(b) for i < k − 2,
and from IM0 = Wk−2 for i = k − 2. Therefore in the rest of the proof we focus on proving
that Wi(2, :) has only one nonzero block equal to I. Algorithm 1 provides two possibilities
for Wi when i ̸∈ C:

Wi =

 −Ai+1 I
I 0

Wi−1(2 : i+ 1, 2 : i+ 1)

 if i+ 1 ∈ C,

orWi = diag(I,Wi−1) if i+1 ̸∈ C. But i ̸∈ C in Algorithm 1 implies thatWi−1(1, :) = [I 0].
So in any case Wi(2, :) contains exactly one identity block and its remaining blocks are
zero.

Lemma 4.6. Let IM0 be as in Definition 4.2. Then the following statements hold.

(a) The matrix IM0 contains exactly k − 1 identity blocks.

(b) If the (i, j) block-entry of IM0, with i ̸= j, is equal to I, then a block −Ad, for some
0 ≤ d ≤ k − 1, is in the ith block-row or in the jth block-column of IM0.

Proof. Part (a) follows from Algorithm 1, that constructs IM0 in k−1 steps. Observe that
in each step exactly one identity block is added. This is evident in all cases except when
i /∈ C and i + 1 ∈ C, for i ≥ 1. In this case Wi is obtained by adding as nonzero blocks
−Ai+1 and two I blocks, while at the same time removing the first block-row and the first
block-column of Wi−1. But i /∈ C implies Wi−1(1, :) = [I 0] and Wi−1(:, 1) = [I 0]T , so the
net result is that exactly one I is added.

Part (b): We will prove by induction that the result is true for every matrix W0,W1, . . . ,
Wk−2 = IM0 computed by Algorithm 1. The result is obviously true forW0. Assume that it
is true for Wi−1 with i− 1 ≥ 0, and let us prove it for Wi. Getting Wi from Wi−1 according
to Algorithm 1, a simple inspection shows that those off-diagonal identity blocks of Wi

that are not in Wi−1 satisfy the condition of the statement. For those off-diagonal identity
blocks of Wi that are in Wi−1, note that:

(1) off-diagonal blocks of Wi−1 remain as off-diagonal blocks of Wi ,

(2) the block-rows and block-columns of Wi−1 corresponding to off-diagonal identity
blocks are contained in Wi.
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The result of part (b) then follows from (1) and (2).

Lemma 4.7. Let IM0 be as in Definition 4.2, 0 ≤ i ≤ k − 1, and recall that h = (k + 1)/2.
Then the (k − i, k − i) block-entry of IM0 is equal to I if and only if i ̸∈ C and i+ 1 ̸∈ C.
In particular, the (h, h) block-entry of IM0 is never equal to I.

Proof. Recall that k ≥ 3. Consider first the case i = k − 1, i.e., k − i = 1. Then according
to Algorithm 1, IM0(1, 1) = Wk−2(1, 1) = I if and only if k− 1 ̸∈ C. This proves the result
for i = k − 1 because k ̸∈ C by definition.

Now we consider i = k− 2, i.e., k− i = 2. Then according to Algorithm 1, IM0(2, 2) =
Wk−2(2, 2) = I if and only if k − 1 ̸∈ C and Wk−3(1, 1) = I. Use again Algorithm 1 to see
that Wk−3(1, 1) = I if and only if k − 2 ̸∈ C. This proves the result for i = k − 2.

Finally consider i ≤ k−3, and use Corollary 3.4(a) to establish that IM0(k− i, k− i) = I
if and only if Wi(2, 2) = I. This never happens for i = 0 ∈ C because W0(2, 2) ̸= I. For
i ≥ 1, Algorithm 1 says that Wi(2, 2) = I if and only if i + 1 ̸∈ C and Wi−1(1, 1) = I,
which is equivalent to i+ 1 ̸∈ C and i ̸∈ C.

Observe that h − 1 and h are “complementary indices”, since h = k − (h − 1). Thus
IM0(h, h) ̸= I, since Definition 4.2 for admissible index sets C does not allow h− 1 ̸∈ C and
h ̸∈ C. Note that 2 ≤ h ≤ k − 1.

4.2 Main result, consequences and examples

Now we can state and prove the most important result in this work, Theorem 4.8, which
presents a simple procedure to construct a family of palindromic companion forms for odd
degree matrix polynomials.

Theorem 4.8 (Palindromic companion forms for odd degree polynomials).
Let P (λ) =

∑k
i=0 λ

iAi , with Ai ∈ Fn×n and Ak ̸= 0, be a (regular or singular ) matrix
polynomial of odd degree k ≥ 3, let h = (k + 1)/2, and let C ⊂ {0, 1, . . . , k − 1} be an
admissible index set. Let τ : C → {1, 2, . . . , h} be a bijection, and let Lτ (λ) be the pencil
of P (λ) associated with C and τ , as defined in (4.5). Define Sτ ∈ Fnk×nk as the k × k
block-diagonal matrix whose n× n diagonal block Sτ (i, i) is given for i = 1, . . . , k by

Sτ (i, i) :=


−I if


τ has an inversion at i− 1, or
τ has a consecution at k − i, or
i ∈ C and i− 1 ̸∈ C

I otherwise

. (4.8)

Then the pencil Sτ ·R · Lτ (λ) is a palindromic companion form for all square matrix poly-
nomials of odd degree k.

Remark 4.9. The reader is invited to check that the number of −I blocks in Sτ is always
(k − 1)/2. For this purpose, prove first that the three conditions “τ has an inversion at
i − 1”, “τ has a consecution at k − i”, and “i ∈ C and i − 1 ̸∈ C” are mutually exclusive,
that is, if any of them holds, then the other two do not hold. After this, note that the
number of inversions of τ plus the number of consecutions of τ plus the number of indices
i such that “i ∈ C and i− 1 ̸∈ C” is exactly h− 1 = (k − 1)/2.

15



Proof of Theorem 4.8. Since Sτ · R · Lτ (λ) is strictly equivalent to a Fiedler pencil for
P (λ), we know from Theorem 2.2 that it satisfies property (b) in Definition 1.1. Moreover,
Algorithm 1, Lemma 4.3, together with the block structure of Sτ and R guarantee that
Sτ · R · Lτ (λ) satisfies property (a) in Definition 1.1. Thus the only remaining task is to
prove that Sτ ·R ·Lτ (λ) is palindromic whenever P (λ) is. For this, we will use the following
notation: IM0(P ) and IM1(P ) are the matrices defined in (4.6) for P (λ), while IM0(−P ) and
IM1(−P ) are the corresponding matrices for −P (λ). The proof will be carried out in two
steps:

Step 1. We will prove that, if P (λ) is palindromic, then(
R · IM1(P )

)T
= R · IM0(−P ). (4.9)

Step 2. We will prove that

R · IM0(−P ) · Sτ = −Sτ ·R · IM0(P ). (4.10)

Observe that (4.9) and (4.10) easily imply that Sτ · R · Lτ (λ) is palindromic whenever
P (λ) is. From (4.5) we have Lτ (λ) := λIM1(P )− IM0(P ), so that Sτ ·R · Lτ (λ) = λX + Y ,
where X = SτR IM1(P ) and Y = −SτR IM0(P ). But

XT = (R · IM1(P ))T · ST
τ = R · IM0(−P ) · Sτ = −Sτ ·R · IM0(P ) = Y ,

which means that Sτ ·R · Lτ (λ) is palindromic. Note that in (4.9) we are assuming that P
is palindromic, whereas (4.10) is true for an arbitrary n× n polynomial P of odd degree k.

Step 1. From Lemma 4.3 and R2 = Ink we get that

R IM1(P ) = Mτ−1(h)(−revP ) · · ·Mτ−1(1)(−revP ) ·R .

Therefore, if P is palindromic, i.e., revP (λ) = P (λ)T , then

R IM1(P ) = Mτ−1(h)(−P T ) · · ·Mτ−1(1)(−P T ) ·R . (4.11)

Finally, from (4.11) and the fact that (Mi(−P T ) )T = Mi(−P ) for i = 0, . . . , k, we obtain
(4.9) by transposition:(

R IM1(P )
)T

= R ·Mτ−1(1)(−P ) · · ·Mτ−1(h)(−P )

= R · IM0(−P ).

Step 2. Now we address the proof of (4.10). We will use the matrix S̃τ := RSτR ∈ Fnk×nk.
Viewed as a k×k block matrix with n×n blocks, S̃τ is block diagonal with diagonal blocks

S̃τ (i, i) = Sτ (k + 1− i, k + 1− i) for i = 1, . . . , k.

Observe that if Sτ (i, i) = −I and H ∈ Fnk×nk is an arbitrary matrix viewed as a k×k block
matrix with n× n blocks, then the ith block-column of HSτ is minus the ith block-column
of H, whereas the ith block-row of SτH is minus the ith block-row of H.

The identities SτR = RS̃τ and S2
τ = I allow us to show that (4.10) is equivalent to

S̃τ · IM0(−P ) · Sτ = −IM0(P ) . (4.12)
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Therefore we focus on proving (4.12) in the remainder of the argument, which relies on
Lemmas 4.4, 4.5, 4.6 and 4.7, and is somewhat messy, although elementary. In what follows
all matrices are viewed as k×k block matrices with n×n blocks, and we often use MATLAB
notation on block indices. For brevity we use expressions like H(i, :) = [0 · · · 0 I 0 · · · 0] to
indicate that the ith block-row of H has only one nonzero block equal to I that can be in
any block-entry, including the first and the last ones.

From Algorithm 1 for constructing IM0(P ) and IM0(−P ) and Lemma 4.6, it is easy
to see that: (1) IM0(P ) has k − 1 blocks equal to I, h blocks −Aj1 , . . . ,−Ajh , where
C = {j1, . . . , jh}, and the remaining blocks are zero; and, (2) if the blocks −Aj1 , . . . ,−Ajh

in IM0(P ) are replaced by Aj1 , . . . , Ajh , then IM0(−P ) is obtained. Therefore, as Sτ and S̃τ

are block diagonal with diagonal blocks ±I, proving (4.12) is equivalent to proving that the
only effect of S̃τ and Sτ in the product S̃τ · IM0(−P ) · Sτ is transforming all k − 1 identity
blocks of IM0(−P ) into minus identities or, equivalently in terms of block-entries, that

IM0(−P ) (i, j) = −
(
S̃τ · IM0(−P ) · Sτ

)
(i, j), whenever IM0(−P )(i, j) = I, (4.13)

IM0(−P ) (i, j) =
(
S̃τ · IM0(−P ) · Sτ

)
(i, j), otherwise, (4.14)

for 1 ≤ i, j ≤ k. We will prove (4.13)-(4.14) through the following three steps:

(a) We will prove that if Sτ (j, j) = −I, 1 ≤ j ≤ k, then IM0(−P ) (:, j) = [0 · · · 0 I 0 · · · 0]T .

(b) We will prove that if S̃τ (i, i) = −I, 1 ≤ i ≤ k, then IM0(−P ) (i, :) = [0 · · · 0 I 0 · · · 0].

(c) We will prove that if IM0(−P ) (i, j) = I, then S̃τ (i, i) ̸= −I or Sτ (j, j) ̸= −I.

Observe that (a), (b) and (c) imply that each −I block in Sτ and S̃τ has only the effect of
transforming one identity block of IM0(−P ) into a minus identity block of S̃τ · IM0(−P ) ·Sτ .
But this means that all identity blocks of IM0(−P ) are transformed into minus identity
blocks of S̃τ · IM0(−P ) · Sτ , because the total number of −I blocks in Sτ and S̃τ is k − 1.

Proof of (a): Sτ (j, j) = −I implies that “τ has an inversion at j − 1”, or “τ has a
consecution at k − j”, or “j ∈ C and j − 1 ̸∈ C”. Let us analyze separately these three
possibilities. If “τ has an inversion at j − 1”, then j ∈ C, which is equivalent to k − j ̸∈ C,
and Lemma 4.5 implies the result. If “τ has a consecution at k − j”, then Lemma 4.4(a)
implies the result. Finally, if “j ∈ C and j−1 ̸∈ C”, then k− j ̸∈ C and Lemma 4.5 implies
the result.

Proof of (b): S̃τ (i, i) = Sτ (k + 1 − i, k + 1 − i) = −I implies that “τ has an inversion
at k − i”, or “τ has a consecution at i − 1”, or “k + 1 − i ∈ C and k − i ̸∈ C”. Let us
analyze separately these three possibilities. If “τ has an inversion at k − i”, then Lemma
4.4(b) implies the result. If “τ has a consecution at i− 1”, then i ∈ C, which is equivalent
to k − i ̸∈ C, and Lemma 4.5 implies the result. Finally, if “k + 1− i ∈ C and k − i ̸∈ C”,
then Lemma 4.5 again implies the result.

Proof of (c): For i ̸= j proceed by contradiction: assume S̃τ (i, i) = −I and Sτ (j, j) =
−I. Therefore, from (b) and (a), IM0(−P ) (i, :) = [0 · · · 0 I 0 · · · 0] and IM0(−P ) (:, j) =
[0 · · · 0 I 0 · · · 0]T . This implies IM0(−P ) (i, j) ̸= I by Lemma 4.6(b).

For i = j, we give a direct argument. IM0(−P ) (i, i) = I implies k−i ̸∈ C and k−i+1 ̸∈ C
by Lemma 4.7. This is equivalent to i ∈ C and i − 1 ∈ C, by Definition 4.2. So in this
situation the definition of Sτ implies that Sτ (i, i) = −I holds only if “τ has an inversion at
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i− 1”, and that S̃τ (i, i) = Sτ (k + 1− i, k + 1− i) = −I holds only if “τ has a consecution
at i− 1”. Therefore Sτ (i, i) ̸= −I or S̃τ (i, i) ̸= −I.

Theorem 4.8 provides many strong linearizations Sτ ·R ·Lτ (λ) for P (λ) that are palin-
dromic whenever P (λ) is. Note first of all that there are 2(k−1)/2 different2 admissible
index sets C, and that for each of these sets C there exist many different bijections
τ : C → {1, 2, . . . , h}. In this context, it is important to note that different bijections
of the same C may produce the same linearization due to the commutativity relations (2.5);
as a consequence, we see that different index sets C may produce quite different numbers
of distinct linearizations. This can be readily observed in Table 4.1. However, if C1 ̸= C2

are distinct admissible index sets, then a linearization associated with C1 is never equal to
any linearization associated with C2, because the set of coefficients of P (λ) appearing in
the zero-degree terms of these two linearizations must be different.

We present next some concrete examples of the various palindromic companion forms
provided by Theorem 4.8, both to emphasize the ease of construction of these palindromic
linearizations from the coefficients of the polynomial, as well as to highlight how certain
selections of the index set C and the bijection τ can produce some particularly simple
patterns.

Example 4.10. Let k ≥ 3 be an odd integer. Consider the admissible index set

C = {2j : j = 0, 1, . . . , (k − 1)/2} = {0, 2, 4, . . . , k − 1} ,

and the bijection τ : C → {1, 2, . . . , h} defined by τ(2j) = j + 1 , for j = 0, 1, . . . , (k− 1)/2.
Then the pencil (4.5) associated with C and τ is

Lτ (λ) = λM−1
1 M−1

3 · · ·M−1
k−2Mk − M0M2 · · ·Mk−3Mk−1 , (4.15)

and the matrix Sτ in (4.8) satisfies Sτ (i, i) = I for odd i, and Sτ (i, i) = −I for even i. For
Lτ (λ) in (4.15), denote by Lk(λ) := Sτ ·R ·Lτ (λ) the pencil in the statement of Theorem 4.8
associated with P (λ); then we have

L3(λ) = λ

 I A1

0 −I
A3

+

 A0

I 0
A2 −I

 ,

L5(λ) = λ


I A1

0 −I
I A3

0 −I
A5

+


A0

I 0
A2 −I

I 0
A4 −I

 ,

2Recall that j ∈ C, 1 ≤ j ≤ k − 1, if and only if k − j ̸∈ C and that {1, . . . , k − 1} =
∪(k−1)/2

j=1 {j, k − j},
so there are 2(k−1)/2 ways of selecting the elements of C.
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and a direct inductive argument gives

Lk(λ) =



λI λA1 +A0

I 0 −λI
λI λA3 +A2 −I

. .
.

. .
.

. .
.

I 0 −λI
λI λAk−2 +Ak−3 −I

I 0 −λI
λAk +Ak−1 −I


,

which has a reverse block-tridiagonal pattern. Note that by the commutativity relations
(2.5) and the analogous relations for the inverses of the matrices Mi’s, every bijection
τ : {0, 2, 4, . . . , k − 1} → {1, 2, . . . , h} yields the same pencil Lk(λ).

Example 4.11. In this example we show (for polynomials of degree k = 5) several of
the palindromic linearizations from Theorem 4.8 having special patterns. The reader can
easily generalize these patterns to arbitrary odd degrees. First, we illustrate that there exist
other “reverse” block-tridiagonal patterns in addition to the one in Example 4.10. For this
purpose, choose the admissible index set C1 = {0, 1, 3} and the bijection τ1 : C1 → {1, 2, 3}
defined by τ1(0) = 1, τ1(1) = 2, τ1(3) = 3. Then

Lτ1(λ) = λM−1
2 M−1

4 M5 −M0M1M3 .

The blocks of Sτ1 in (4.8) are Sτ1(i, i) = I for i = 1, 2, 4 and Sτ1(i, i) = −I for i = 3, 5.
Then

Sτ1 ·R · Lτ1(λ) = λ


I

I A2

0 −I
A5 A4

0 −I

+


A0 0
A1 −I

I 0
A3 −I

I


is a palindromic companion form for degree 5 matrix polynomials.
Next, for the admissible index set C2 = {0, 1, 2}, we present two palindromic linearizations
with maximum block-bandwidth about the anti-diagonal. Let τ2 : C2 → {1, 2, 3} be defined
by τ2(0) = 3 , τ2(1) = 2 , τ2(2) = 1, then

Lτ2(λ) = λM5M
−1
4 M−1

3 −M2M1M0 .

In this case Sτ2(i, i) = I for i = 3, 4, 5 and Sτ2(i, i) = −I for i = 1, 2, so

Sτ2 ·R · Lτ2(λ) = λ


−I

−I
0 I A3

I 0 A4

0 0 A5

+


0 I 0
I 0 0
A2 A1 A0

−I
−I


is another palindromic companion form. Observe that the zero and the first degree terms
each contain three factors with consecutive indices, which causes the structure of the 3× 3
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block matrix in the upper-right (resp., lower-left) corner in the zero (resp., first) degree
term. Other 3 × 3 structures of this type can be produced by taking different orders of
the M0,M1 and M2 factors in the zero degree term. For instance, with τ3 : C2 → {1, 2, 3}
defined by τ3(0) = 1 , τ3(1) = 3 , τ3(2) = 2, then

Lτ3(λ) = λM−1
4 M−1

3 M5 −M0M2M1 .

Now Sτ3(i, i) = I for i = 1, 3, 4 and Sτ3(i, i) = −I for i = 2, 5, yielding the palindromic
companion form

Sτ3 ·R · Lτ3(λ) = λ


I

−I
0 I A3

A5 0 A4

0 0 −I

+


0 A0 0
I 0 0
A2 A1 −I

−I
I

 .

Table 4.1 displays all the distinct pencils that may be constructed for degree k = 5 using
the procedure of Theorem 4.8, including the examples above.

If we look carefully at the patterns of blocks in the pencils Sτ · R · Lτ (λ) in Table 4.1,
we find that, up to the signs of the identity blocks, these pencils are paired up by block
symmetry through the main block anti-diagonal. In particular, the first one is paired with
the third one, the second one with the fourth one, the fifth one with the sixth one and
the seventh one with the eighth one. The ninth one is self-paired, because, up to signs, it
is block symmetric through the main block anti-diagonal. Lemma 4.12 below shows that
this is not just a coincidence. Before stating this lemma, let us first recall the concept of
reversal bijection, used previously in Lemma 4.3. If C is an admissible index set and τ :
C → {1, 2, . . . , h} is a bijection, then the reversal bijection of τ is revτ : C → {1, 2, . . . , h},
defined by revτ(j) := h + 1 − τ(j). In plain words, the Mj factors of IMrevτ are the same
as the factors of IMτ in (3.1), but placed in reverse order. Then Lemma 4.12 shows how
each pencil Sτ · R · Lτ (λ) constructed in Theorem 4.8 can be naturally paired up with the
pencil Srevτ ·R · Lrevτ (λ). We will also need the block-transpose operation: Let A = (Aij)
be a block r × s matrix with m× n blocks Aij . The block transpose of A is the block s× r
matrix AB with m× n blocks defined by

(
AB)

ij
= Aji.

Lemma 4.12. Let τ and Lτ (λ) be as in the statement of Theorem 4.8, and let revτ be the
reversal bijection of τ . Then

R
(
R · Lτ (λ)

)B
R = R · Lrevτ (λ) .

Proof. We first recall [20, Chapter 3] that if A and C are block partitioned matrices with
n × n blocks Aij and Cij such that AijCjp = CjpAij , for all i, j, p, then (AC)B = CBAB.
This property implies that

R
(
R · Lτ (λ)

)B
R = R ·

(
Lτ (λ)

)B ·RBR = R ·
(
Lτ (λ)

)B
.

Next, it can be proved that
(
Lτ (λ)

)B
= Lrevτ (λ) with some care. We only sketch the

proof. For the zero degree terms
(
IMτ (P )

)B
and IMrevτ (P ), first note that revτ has a
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C τ Sτ Sτ ·R · Lτ (λ)

{0, 1, 2} (1, 2, 3) diag(I, I, I,−I,−I)


0 0 A0 0 λI
0 0 A1 λI −I

λA5 λA4 λA3 +A2 −I 0
0 I −λI 0 0
I −λI 0 0 0



{0, 1, 2} (3, 1, 2) diag(−I, I, I,−I, I)


0 0 I 0 −λI
0 0 A1 λI A0

λI λA4 λA3 +A2 −I 0
0 I −λI 0 0
−I λA5 0 0 0



{0, 1, 2} (3, 2, 1) diag(−I,−I, I, I, I)


0 0 0 I −λI
0 0 I −λI 0
0 λI λA3 +A2 A1 A0

λI −I λA4 0 0
−I 0 λA5 0 0



{0, 1, 2} (1, 3, 2) diag(I,−I, I, I,−I)


0 0 0 A0 λI
0 0 I −λI 0
0 λI λA3 +A2 A1 −I

λA5 −I λA4 0 0
I 0 −λI 0 0



{0, 1, 3} (1, 2, 3) diag(I, I,−I, I,−I)


0 0 0 A0 λI
0 0 λI λA2 +A1 −I
0 I 0 −λI 0

λA5 λA4 +A3 −I 0 0
I −λI 0 0 0



{0, 1, 3} (3, 2, 1) diag(−I, I,−I, I, I)


0 0 0 I −λI
0 0 λI λA2 +A1 A0

0 I 0 −λI 0
λI λA4 +A3 −I 0 0
−I λA5 0 0 0



{0, 3, 4} (1, 2, 3) diag(I,−I,−I, I, I)


0 0 λI λA2 λA1 +A0

0 0 0 I −λI
I 0 0 −λI 0
A3 λI −I 0 0

λA5 +A4 −I 0 0 0



{0, 3, 4} (3, 2, 1) diag(I, I,−I,−I, I)


0 0 0 λI λA1 +A0

0 0 λI −I λA2

0 I 0 0 −λI
I −λI 0 0 0

λA5 +A4 A3 −I 0 0



{0, 2, 4} (1, 2, 3) diag(I,−I, I,−I, I)


0 0 0 λI λA1 +A0

0 0 I 0 −λI
0 λI λA3 +A2 −I 0
I 0 −λI 0 0

λA5 +A4 −I 0 0 0



Table 4.1: This table shows all of the nine distinct palindromic companion forms for poly-
nomials of degree 5 that are constructible using Theorem 4.8. For each admissible index
set C = {j1, j2, j3}, the bijections τ : C → {1, 2, 3} are described as (τ(j1), τ(j2), τ(j3)).

21



consecution (resp. inversion) at j if and only if τ has an inversion (resp. consecution) at j.

Then Algorithm 1 can be used to prove that
(
IMτ (P )

)B
= IMrevτ (P ) via induction on the

sequence of matrices W0,W1, . . . ,Wk−2 produced by Algorithm 1. This result for the zero
degree terms can then be combined with the relationships proved in Lemma 4.3 to deduce

the analogous result for the first degree terms of the pencils
(
Lτ (λ)

)B
and Lrevτ (λ).

Lemma 4.12 tells us that, up to the change of signs given by the matrices Sτ and Srevτ ,
the pencils constructed in Theorem 4.8 are paired up by the operation R (·)B R, which can
be viewed as a “block anti-transpose”, i.e., a block transpose across the main block anti-
diagonal. Notice that when C = {2j : j = 0, 1, . . . , (k − 1)/2}, due to the commutativity
relations (2.5), the pencils Lτ (λ) are equal for all bijections τ : C → {1, 2, . . . , h}. In
particular, we have Lτ (λ) = Lrevτ (λ) for this index set C. Consequently this unique pencil

satisfies the identity R
(
R · Lτ (λ)

)B · R = R · Lτ (λ), that is, R · Lτ (λ) is block symmetric
through the main block anti-diagonal, and hence is self-paired by the operation R (·)B R.
For k = 5 this corresponds to the pencil at the bottom of Table 4.1. As a consequence,
given any k odd, the number of different pencils constructed in Theorem 4.8 will always be
odd.

Theorem 4.8 asserts, in particular, that each palindromic polynomial with odd degree
has a palindromic strong linearization. It is worthwhile stating this as a separate fact.

Corollary 4.13. Let k be an odd number and P (λ) be an n × n palindromic matrix poly-
nomial of degree k. Then there exists an nk× nk palindromic strong linearization of P (λ).

We want to stress that Corollary 4.13 is simply not true for palindromic polynomials of
even degree, as illustrated by the example in (1.2) discussed in Section 1.

5 Anti-palindromic companion forms for odd degree

We remarked in Section 1 that anti-palindromic matrix polynomials, i.e., those satisfying
revP (λ) = −P (λ)T , have some interest in applications. Therefore, it is also natural to look
for anti-palindromic linearizations of anti-palindromic polynomials. We show in this section
that for polynomials with odd degree, any method for constructing palindromic linearizations
of palindromic matrix polynomials can be very easily adapted to construct anti-palindromic
linearizations of anti-palindromic polynomials. This is the content of Theorem 5.3, which
can be applied to the linearizations introduced in Theorem 4.8 to provide a whole family of
anti-palindromic companion forms. First we prove several simple preliminary lemmas.

Lemma 5.1. Let P (λ) be any n×n matrix polynomial and define Q(λ) := P (−λ). If L(λ)
is a linearization (resp., strong linearization) of P (λ), then L̃(λ) := L(−λ) is a linearization
(resp., strong linearization) of Q(λ).

Proof. Assume that the degree of P (λ) is k. If L(λ) is a linearization of P (λ), then by defini-
tion there exist unimodular U(λ) and V (λ) such that U(λ)L(λ)V (λ) = diag(I(k−1)n, P (λ)).

So U(−λ)L(−λ)V (−λ) = diag(I(k−1)n, P (−λ)), which shows that L̃(λ) is a linearization
of Q(λ), because U(−λ) and V (−λ) are unimodular.

The result for strong linearizations requires more attention. Observe that

(revQ) (λ) = λkQ(1/λ) = λkP (−1/λ) = (−1)k
(
(−λ)kP (−1/λ)

)
= (−1)k (revP ) (−λ). (5.1)
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If L(λ) is a strong linearization of P (λ), then we also have that Y (λ) (revL)(λ)Z(λ) =
diag(I(k−1)n, (revP )(λ)) for some unimodular matrices Y (λ) and Z(λ). As a consequence,
Y (−λ) (revL)(−λ)Z(−λ) = diag(I(k−1)n, (revP )(−λ)), and from (5.1)

Y (−λ)
(
−(rev L̃)(λ)

)
Z(−λ) =

[
I(k−1)n 0

0 (−1)k (revQ) (λ)

]
.

This implies

E(λ) (rev L̃)(λ)Z(−λ) =

[
I(k−1)n 0

0 (revQ) (λ)

]
,

with E(λ) = −diag(I(k−1)n, (−1)kI)Y (−λ). Note that E(λ) and Z(−λ) are unimodular

matrices, and therefore (rev L̃)(λ) is a linearization of (revQ) (λ).

Lemma 5.2. Let P (λ) be any n×n matrix polynomial with odd degree and define Q(λ) :=
P (−λ). Then P (λ) is anti-palindromic if and only if Q(λ) is palindromic. Also, P (λ) is
palindromic if and only if Q(λ) is anti-palindromic.

Proof. This follows directly from (5.1).

Next we state Theorem 5.3, the main result of this section. It is an immediate conse-
quence of Lemmas 5.1 and 5.2, so its proof is omitted. Note that Lemma 5.2 has to be
applied here both to polynomials and to linearizations.

Theorem 5.3. Let P (λ) be any n×n anti-palindromic matrix polynomial with odd degree
and define Q(λ) := P (−λ). Let L̃(λ) be any strong palindromic linearization of the palin-
dromic polynomial Q(λ). Then L(λ) := L̃(−λ) is a strong anti-palindromic linearization of
P (λ).

6 The recovery of minimal indices

We noted in Section 1 that minimal indices are intrinsic quantities associated with singular
matrix polynomials that are relevant in many control problems [8, 16]. In this section we
show how to easily recover the minimal indices of a polynomial from those of any of the
linearizations introduced in Theorem 4.8. The results in this section are consequences of
results in [7].

Let us recall very briefly the concept of minimal indices (see [6, Section 2] or [7, Section 2]
for more complete summaries). A vector polynomial is a vector whose entries are polynomials
in the variable λ, and its degree is the greatest degree of its components. For any subspace
V of F(λ)n it is always possible to find a basis consisting entirely of vector polynomials.
Then the order of a polynomial basis of V is the sum of the degrees of its vectors [8, p.
494], and a minimal basis of V is any polynomial basis of V with least order among all
polynomial bases of V. It can be shown [8] that for any subspace V of F(λ)n, the ordered
list of degrees of the vector polynomials in any two minimal bases of V are always the same.
These degrees are then called the minimal indices of V. The left (resp., right) minimal
indices of a singular matrix polynomial P (λ) are the minimal indices of its left (resp., right)
null spaces (see Section 2). Observe that any square matrix polynomial P (λ) has the same
number of left and right minimal indices; recall also that if P (λ) is palindromic, then its
left minimal indices are equal to its right minimal indices [6, Theorem 3.6].
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As mentioned in Section 2, strong linearizations preserve the elementary divisors of a
polynomial P (λ) and also the number of left and right minimal indices, but they do not in
general preserve the values of the minimal indices. Therefore the recovery of the minimal
indices of P (λ) from those of one of its linearization is, in general, a non-trivial task [6, 7].
However, Theorem 6.1 shows that this recovery is very simple from any of the linearizations
constructed in Theorem 4.8.

Theorem 6.1. Let P (λ) be an n × n singular matrix polynomial with odd degree k ≥ 3,
and let Sτ ·R ·Lτ (λ) be one of the strong linearizations of P (λ) introduced in Theorem 4.8.
Let 0 ≤ η1 ≤ η2 ≤ · · · ≤ ηp and 0 ≤ ε1 ≤ ε2 ≤ · · · ≤ εp be, respectively, the left and right
minimal indices of P (λ). Then the following statements hold.

(a) The left and right minimal indices of Sτ ·R · Lτ (λ) are, respectively,

η1 +
k − 1

2
≤ η2 +

k − 1

2
≤ · · · ≤ ηp +

k − 1

2
and

ε1 +
k − 1

2
≤ ε2 +

k − 1

2
≤ · · · ≤ εp +

k − 1

2
.

(b) If P (λ) is palindromic, then ηi = εi for i = 1, . . . , p, and the left and right minimal
indices of Sτ ·R · Lτ (λ) are both equal to ε1 +

k−1
2 ≤ ε2 +

k−1
2 ≤ · · · ≤ εp +

k−1
2 .

Proof. As discussed in Section 4, recall that every pencil Sτ ·R ·Lτ (λ) is strictly equivalent
to some Fiedler pencil of P (λ). We denote this Fiedler pencil by Fσ(P ), following the
notation in [7]. In this proof we also denote Sτ ·R ·Lτ (λ) by Sτ ·R ·Lτ (P ), in order to make
explicit the dependence on P (λ), dropping the dependence on λ for brevity. Since minimal
indices are preserved by strict equivalence, therefore the minimal indices of Sτ · R · Lτ (P )
are equal to those of Fσ(P ).

The pencil Fσ(P ) is a function of P (λ), and can be considered for any other n×n matrix
polynomial Q(λ) with degree k; we denote that pencil by Fσ(Q). If 0 ≤ η′1 ≤ η′2 ≤ · · · ≤ η′q
and 0 ≤ ε′1 ≤ ε′2 ≤ · · · ≤ ε′q are, respectively, the left and right minimal indices of Q(λ),
then the left and right minimal indices of Fσ(Q) are given [7, Corollaries 5.8 and 5.11],
respectively, by

η′1 + c(σ) ≤ η′2 + c(σ) ≤ · · · ≤ η′q + c(σ) and (6.1)

ε′1 + i(σ) ≤ ε′2 + i(σ) ≤ · · · ≤ ε′q + i(σ) . (6.2)

The quantities c(σ) and i(σ) are defined in [7], but only two properties of them are of interest
here: (1) c(σ)+ i(σ) = k− 1; and, (2) they are the same for any n×n singular polynomial
Q(λ) of degree k. Therefore we can determine c(σ) and i(σ) by applying (6.1) and (6.2)
to any particular matrix polynomial Q(λ). Let us then assume that Q(λ) is singular and
palindromic, so that η′i = ε′i for i = 1, . . . , q [6, Theorem 3.6]. Moreover, the minimal indices
of Fσ(Q) are equal to those of Sτ · R · Lτ (Q); but this linearization of Q(λ) is palindromic
by Theorem 4.8, so η′i+ c(σ) = ε′i+ i(σ) for i = 1, . . . , q. Thus c(σ) = i(σ) = (k− 1)/2, and
Theorem 6.1 follows from applying (6.1) and (6.2) to P (λ).

Our last result is a corollary of Theorem 6.1 that asserts that all pencils constructed in
Theorem 4.8 are strictly equivalent.
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Corollary 6.2. Let P (λ) be an n × n matrix polynomial with odd degree k ≥ 3. Then all
pencils constructed in Theorem 4.8 for P (λ) are strictly equivalent.

Proof. By Theorem 6.1, all pencils constructed in Theorem 4.8 for P (λ) have the same
minimal indices. On the other hand, all these pencils are strong linearizations of P (λ), so
they all have the same finite and infinite elementary divisors. Since two matrix pencils are
strictly equivalent if and only if they have the same elementary divisors and minimal indices
[9], the result follows.

Remark 6.3. As a further consequence of results in [7], it can be shown that if P (λ) is
singular, then none of the pencils constructed in Theorem 4.8 for P (λ) are ever strictly
equivalent to either the classical first or second Frobenius companion form of P (λ).

We finally mention that the recovery of eigenvectors and minimal bases of an odd degree
matrix polynomial from those of the linearizations constructed in Theorem 4.8 can be
obtained as a consequence of the general results presented in [2].

7 Conclusions and future work

We have presented a symbolic procedure to construct a large family of palindromic com-
panion forms for odd degree matrix polynomials. These companion forms provide uniform
templates for producing strong linearizations of square matrix polynomials, which are valid
for all polynomials of odd degree k ≥ 3 over an arbitrary field, and are palindromic whenever
the polynomial is palindromic. These linearizations are easily constructible from the coeffi-
cients of the polynomial, and can be simply modified to obtain anti-palindromic companion
forms for each odd degree. Finally, for singular polynomials P (λ) we have shown that the
minimal indices of these linearizations are very simply related to the minimal indices of
P (λ).

The results in this paper are in sharp contrast with the situation for even degree palin-
dromic polynomials, as described in Section 1 of this paper. Since there are palindromic
matrix polynomials of even degree that have no palindromic linearizations of any kind,
palindromic companion forms cannot exist for any even degree. Thus the natural contin-
uation of the present paper is to address the even degree case in more detail, and try to
obtain necessary and sufficient conditions for the existence of palindromic linearizations.
This topic will be the subject of future work.
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