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Abstract

The complete eigenstructure, or structural data, of a rational matrix R(s) is
comprised by its invariant rational functions, both finite and at infinity, which
in turn determine its finite and infinite pole and zero structures, respectively,
and by the minimal indices of its left and right null spaces. These quantities
arise in many applications and have been thoroughly studied in numerous ref-
erences. However, other two fundamental subspaces of R(s) in contrast have
received much less attention: the column and row spaces, which also have their
associated minimal indices. This work solves the problems of finding necessary
and sufficient conditions for the existence of rational matrices in two scenarios:
(a) when the invariant rational functions and the minimal indices of the column
and row spaces are prescribed, and (b) when the complete eigenstructure to-
gether with the minimal indices of the column and row spaces are prescribed.
The particular, but extremely important, cases of these problems for polynomial
matrices are solved first and are the main tool for solving the general problems.
The results in this work complete and non-trivially extend the necessary and suf-
ficient conditions recently obtained for the existence of polynomial and rational
matrices when only the complete eigenstructure is prescribed.
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1 Introduction

Rational matrices are matrices whose entries are scalar rational functions in one vari-
able. If all the entries are polynomials, then rational matrices become polynomial
matrices. Rational matrices are classical objects in matrix analysis that arise in many
applications. For instance, the transfer function matrices of linear multivariable input-
output systems are rational matrices [22, 31]. Polynomial matrices in their own right
also arise in classical applications such as, for example, in the solution of systems of
differential equations with constant coefficients [20]. More recently, rational and poly-
nomial matrices have received a lot of attention in the search for numerical solutions
of nonlinear eigenvalue problems (see, for instance, [8, 21] and the references therein)
and in the related context of their linearizations (see, for instance, [17, 24, 25] and the
references therein).

In addition to their many applications, polynomial and rational matrices have a
very rich mathematical theory [20, 22, 31] on which there is currently a considerable
amount of research activity. A few examples of recent works solving relevant open
problems in the area are [4, 9, 16, 29]. In this work, we focus on the solution of several
inverse problems for polynomial and rational matrices that complete and non-trivially
extend the results in [1, 2, 5, 14]. These problems are described in the next paragraphs.
The definitions of the concepts mentioned in the rest of this introduction can be found
in Section 2 and the references therein.

We deal with rational functions in the variable s whose polynomial numerators and
denominators have coefficients in a field F. The set of these rational functions is a field
denoted by F(s). A rational matrix is regular if it is square and its determinant is not
identically zero. Otherwise, a rational matrix is said to be singular.

The eigenstructure of a regular rational matrix consists of its finite invariant ratio-
nal functions and its invariant rational functions at infinity. They are revealed by the
Smith-McMillan form and the Smith-McMillan form at infinity, respectively, and fully
determine the finite and infinite pole and zero structures of a rational matrix. Polyno-
mial matrices do not have finite poles and their finite zeros are often called eigenvalues
in the literature. For polynomial matrices, the invariant rational functions are polyno-
mials and are known as invariant factors, and the structure at infinity is traditionally
described by the so-called partial multiplicities of ∞. These partial multiplicities of ∞
together with the degree give the same information as the invariant rational functions
at infinity, but expressed in a different way.

Singular rational matrices have additional structural data related to the fact that
they have nontrivial left and/or right null spaces over the field F(s). The rich structures
of these spaces are determined by two sequences of nonnegative integers, called right
and left minimal indices, respectively, and are important in applications [22, Section
6.5.4]. This has motivated to define the structural data, sometimes called complete
eigenstructure or just eigenstructure [35], of a rational matrix as the set of the finite
invariant rational functions, the invariant rational functions at infinity, the minimal in-
dices of its right null space and the minimal indices of its left null space. The structural
data have been studied in depth in many references, including classical monographs
such as [22, 31, 38], and, due to their applications, their numerical computation has
received considerable attention since the 1970s [35, 36].
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It must be remarked that the four components of the complete eigenstructure of a
rational matrix are not simultaneously revealed by any known canonical form. This
makes it difficult to study problems related to it. For instance, the problem of finding
a necessary and sufficient condition for the existence of a rational matrix when a com-
plete eigenstructure is prescribed has been recently solved. It was solved in 2015 for
polynomial matrices when the field F is infinite [14], in 2019 for general rational ma-
trices with the same restriction over the field [5], and in 2024 and 2025 for polynomial
and rational matrices over arbitrary fields [1, 2], and the solutions to these problems
are notoriously involved, or rely on results with involved proofs. We must point out,
however, that the obtained necessary and sufficient condition is extremely simple and is
related to a fundamental result known as the index sum theorem [11, 39]. See Theorem
2.1 below and [5, Theorem 4.1].

Though the definition of the complete eigenstructure of a rational matrix is well
motivated and supported by the relevance in applications of its four components, it
can be considered “unbalanced” because one of the best known facts in matrix analysis
is that any matrix has four fundamental associated subspaces (its left and right null
spaces and its column and row spaces [32]). However, the complete eigenstructure only
involves the two null spaces. Moreover, the column and row spaces of a rational matrix
over the field F(s) also have their sequences of minimal indices and, therefore, it is
natural to wonder what is the relationship between the minimal indices of the column
space and of the row space with the complete eigenstructure.

Motivated by the discussion above, in this paper we first solve the following problem:

(P1) find necessary and sufficient conditions for the existence of a rational matrix
when the finite invariant rational functions and the invariant rational functions
at infinity are prescribed together with minimal bases (and not just minimal
indices) of the column and row spaces.

Then, on the basis of the solution of (P1) and of other results available in the literature,
we solve the following problems:

(P2) find necessary and sufficient conditions for the existence of a rational matrix when
the finite invariant rational functions, the invariant rational functions at infinity,
the minimal indices of the column space and the minimal indices of the row space
are prescribed.

(P3) find necessary and sufficient conditions for the existence of a rational matrix when
a complete eigenstructure and the minimal indices of the column space and the
minimal indices of the row space are prescribed.

Problem (P2) can be seen as the counterpart of the problem solved in [1, 5, 14] men-
tioned above when the minimal indices of the left and right null spaces are replaced
by the minimal indices of the column and row spaces in the prescribed data. Thus,
both problems involve four lists of prescribed data, whilst Problem (P3) involves the
minimal indices of the column and row spaces in addition to the complete eigenstruc-
ture, and thus a total of six lists of prescribed data, which is a considerable amount
of prescribed information. However, it should be noted that rational matrices have a
very rich structure and that these six lists are not the only data of interest associated
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with them. For instance, other indices of interest are the right and left Wiener–Hopf
factorization indices at infinity [19], which here are not going to be taken into account.

The solutions to the problems posed above are achieved in two steps. First, the
problems are solved for polynomial matrices, paying particular attention to the pre-
scription of the degree, and, then, are solved for general rational matrices using the
solutions of the polynomial cases. We remark that the obtained necessary and suffi-
cient conditions are rather simple, though not as simple as the constraint related to
the index sum theorem (which, as we will see, still plays a role), that a majorization
relation arises among the conditions, and that the sufficiency of such conditions only
holds when the field F is algebraically closed. An example will illustrate that such
restriction over the field is unavoidable.

The column and row spaces, and their minimal indices, of rational matrices have
received much less attention in the literature than the left and right null spaces and
their associated minimal indices. Despite this, they have appeared in some interesting
problems. For example, given a rational matrix G(s), the minimal indices of the column
space of the compound matrix

[
I

G(s)

]
are important in the study of controller canonical

realizations of transfer function matrices [18, Section 7]. In a different context, the
minimal bases of the column and row spaces of a polynomial matrix play a fundamental
role in the so-called minimal rank factorizations recently introduced in [15].

The rest of the paper is organized as follows. In Section 2 we summarize previously
known concepts and results needed throughout the paper and introduce the corre-
sponding notations. In Section 3 complete and rigorous formulations of the problems
(P1), (P2) and (P3) are introduced, considering for brevity only the case of polynomial
matrices. In Section 4, some results on factorizations of polynomial matrices are devel-
oped and are used to reformulate problem (P1) in a more appropriate form to achieve
a solution. Solutions to the problems (P1), (P2) and (P3) for polynomial matrices are
given in Theorems 5.1, 5.3 and 5.5 in Section 5, respectively. In Section 6 solutions
to the three problems for general rational matrices are presented in Theorems 6.2, 6.4
and 6.5. The conclusions and some open problems are discussed in Section 7. Finally,
the long proof of a technical determinantal lemma needed in the proof of one of the
main results is presented in Appendix A.

2 Preliminaries

Throughout this work F denotes a field and F its algebraic closure. Unless otherwise
indicated, the field F is arbitrary. F[s] stands for the ring of univariate polynomials
in the variable s with coefficients in F and F(s) for the field of fractions of F[s]. For
two scalar polynomials α1(s), α2(s) ∈ F[s], α1(s) | α2(s) denotes that α1(s) divides
α2(s). The elements of F(s) with the degree of the numerator at most the degree of the
denominator are called proper rational functions, and Fpr(s) denotes the ring of proper
rational functions over F; if the degree of the numerator is strictly less than that of the
denominator they are called strictly proper rational functions. Fractions in Fpr(s) with
numerator and denominator of equal degree are called biproper rational functions and
are the units of Fpr(s).

We denote by F(s)p the set of column vectors with p components in F(s), and
by Fp×m (F[s]p×m, F(s)p×m, Fpr(s)p×m) the set of p × m matrices with entries in F
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(respectively F[s], F(s), Fpr(s)). Matrices in F[s]p×m are called polynomial matrices or
matrix polynomials indistinctly. The degree of a polynomial matrix, denoted deg(·), is
the highest degree of its entries. We define the degree of the zero polynomial to be −∞
and take s−∞ ≡ 0. A non singular polynomial matrix is unimodular if its inverse is also
polynomial. Equivalently, unimodular matrices are square polynomial matrices whose
determinants are non zero elements of F. Matrices in F(s)p×m are known as rational
matrices, and matrices with entries in Fpr(s) are termed as proper rational matrices.
Invertible matrices in Fpr(s)p×p, that is, non singular proper rational matrices whose
inverses are also proper, are called biproper. Equivalently, biproper matrices are square
proper rational matrices whose determinants are non zero biproper rational functions.
The matrices in Fpr(s)p×m whose entries are strictly proper rational functions are called
strictly proper rational matrices.

The rank of a rational matrix R(s) over the field F(s), denoted rank(R(s)), is equal
to the largest order of the non identically zero minors of R(s). It is also known in the
literature as normal rank. A rational matrix R(s) can be uniquely decomposed as a
sum R(s) = P (s) +Rsp(s), where P (s) is a polynomial matrix and Rsp(s) is a strictly
proper rational matrix. P (s) and Rsp(s) are called the polynomial and the strictly
proper parts of R(s), respectively.

Since polynomial matrices are also rational matrices, concepts defined for rational
matrices can be applied to polynomial matrices. However, the literature on polynomial
matrices often uses a somewhat different nomenclature and slightly different definitions
for some notions, for instance the infinite structure. Therefore, in this section we will
pay particular attention to polynomial matrices. This is also connected to the fact that
the results of this paper are obtained first for polynomial matrices and then extended
to rational matrices.

Along the paper we use the notion of column proper or column reduced polynomial
matrix ([22, Section 6.3.2]; see also [38, Definition 1.10], [40, Definition 2.5.6]), which is
recalled in this paragraph. Let P (s) ∈ F[s]m×n be a polynomial matrix. For 1 ≤ i ≤ n,
we denote by di the degree of the i-th column of P (s), and d1, . . . , dn are called the
column degrees of P (s). The matrix P (s) can be written as

P (s) = Ph diag(s
d1 , . . . , sdn) + L(s),

where Ph ∈ Fm×n is the highest column degree coefficient matrix of P (s), i.e., a matrix
whose i-th column comprises the coefficients of sdi in the i-th column of P (s), and
L(s) ∈ F[s]m×n is a polynomial matrix collecting the remaining terms. For the non
zero columns of P (s), L(s) has lower column degrees than the corresponding ones in
P (s). The matrix P (s) is called column proper or column reduced if Ph has full rank,
i.e., rank(Ph) = min{m,n}. In the case that m = n, note that if P (s) is column
proper, then deg(det(P (s))) =

∑n
i=1 di. A polynomial matrix is called row proper or

row reduced if its transpose is column reduced.
In this work we frequently deal with sequences of integers. Let a1, . . . , am be a

sequence of integers. Whenever we write a = (a1, . . . , am), we understand that a1 ≥
· · · ≥ am. If am ≥ 0, then a = (a1, . . . , am) is called a partition.

Let a = (a1, . . . , am) and b = (b1, . . . , bm) be two sequences of integers. Following
[28], it is said that a is majorized by b (denoted by a ≺ b) if

∑k
i=1 ai ≤

∑k
i=1 bi for

1 ≤ k ≤ m− 1 and
∑m

i=1 ai =
∑m

i=1 bi.
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Given a sequence of integers a1, . . . , am, we agree that
∑q

i=p ai = 0 when p > q.

2.1 Equivalence relations on rational matrices

Two rational matrices R1(s), R2(s) ∈ F(s)m×n are unimodularly equivalent if there
exist unimodular matrices U(s) ∈ F[s]m×m and V (s) ∈ F[s]n×n such that R2(s) =
U(s)R1(s)V (s). A rational matrix R(s) ∈ F(s)m×n of rank(R(s)) = r is unimodulary
equivalent to its Smith–McMillan form [31, p. 109]

M(s) =

[
diag

(
ϵ1(s)
ψ1(s)

, . . . , ϵr(s)
ψr(s)

)
0

0 0

]
, (1)

where ϵ1(s) | · · · | ϵr(s) and ψr(s) | · · · | ψ1(s) are monic polynomials, and ϵ1(s)
ψ1(s)

, . . . , ϵr(s)
ψr(s)

are irreducible rational functions called the (finite) invariant rational functions of R(s).
The Smith-McMillan form is a canonical form for the unimodular equivalence.

Two rational matrices R1(s), R2(s) ∈ F(s)m×n are equivalent at infinity if there
exist biproper matrices B1(s) ∈ Fpr(s)m×m and B2(s) ∈ Fpr(s)n×n such that R2(s) =
B1(s)R1(s)B2(s). A canonical form for the equivalence at infinity of rational matrices
is the Smith-McMillan form at infinity (see [3, Section 5] or [38, Theorem 3.13]). That
is, a rational matrix R(s) ∈ F(s)m×n of rank(R(s)) = r is equivalent at infinity to[

diag (s−q1 , . . . , s−qr) 0
0 0

]
, (2)

where q1 ≤ · · · ≤ qr are integers called the invariant orders at infinity of R(s), and
s−q1 , . . . , s−qr are the invariant rational functions at infinity of R(s). Note that the
smallest invariant order at infinity q1 is minus the degree of the polynomial part of
R(s) if this polynomial part is non zero, and q1 is positive otherwise [38, p. 102].

If P (s) ∈ F[s]m×n is a polynomial matrix of rank(P (s)) = r, the denominators in
(1) are ψ1(s) = · · · = ψr(s) = 1, that is, its invariant rational functions are just the
numerators ϵ1(s) | · · · | ϵr(s), called the invariant factors of P (s), and M(s) reduces
to its Smith form [23, Section 7.5].

Let P (s) = Pds
d + · · · + P1s + P0 ∈ F[s]m×n be a polynomial matrix, where Pi ∈

Fm×n for i = 0, . . . , d and Pd ̸= 0. It is said that λ ∈ F ∪ {∞} is an eigenvalue of
P (s) if rank(P (λ)) < rank(P (s)), where we understand that P (∞) = Pd. The set of
eigenvalues of P (s) is denoted by Λ(P (s)). We define the reversal polynomial matrix
of P (s) as revP (t) = tdP (1/t). It turns out that ∞ is an eigenvalue of P (s) if and
only if 0 is an eigenvalue of revP (t), because revP (0) = Pd.

Let α1(s) | · · · | αr(s) be the invariant factors of the polynomial matrix P (s) ∈
F[s]m×n. Recall that (see, for instance, [23, p. 261])

α1(s) · · ·αk(s) = gcd{mk(s) : mk(s) = minor of order k of P (s)}, 1 ≤ k ≤ r, (3)

where gcd{·} stands for monic greatest common divisor. Factorizing the invariant
factors of P (s) as products of irreducible polynomials over F, we can write

αi(s) =
∏

λ∈Λ(P (s))\{∞}

(s− λ)ni(λ,P (s)), 1 ≤ i ≤ r.
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The factors (s − λ)ni(λ,P (s)) with ni(λ, P (s)) > 0 are the elementary divisors of
P (s) over F corresponding to λ, and the non negative integers n1(λ, P (s)) ≤ · · · ≤
nr(λ, P (s)) are the partial multiplicities of λ in P (s).

The infinite elementary divisors of P (s) and the partial multiplicities of ∞ in P (s)
are the elementary divisors of revP (t) corresponding to 0 and the partial multiplicities
of 0 in revP (t), respectively [20, pp. 184-185]. For simplicity, we will denote fi =
ni(0, revP (t)) for 1 ≤ i ≤ r.

Whenever λ ∈ F∪{∞} is not an eigenvalue of P (s) we define the partial multiplic-
ities of λ as n1(λ, P (s)) = · · · = nr(λ, P (s)) = 0.

For λ ∈ F, the polynomials (s − λ)ni(λ,P (s)) with ni(λ, P (s)) ≥ 0 are called the
local invariant rational functions at s− λ of the polynomial matrix P (s) [3, Section 4].
Observe that P (s) has r = rank(P (s)) local invariant rational functions for each λ ∈ F,
with (s − λ)ni(λ,P (s)) = 1 whenever ni(λ, P (s)) = 0. However, the elementary divisors
corresponding to an eigenvalue λ ∈ F are always different from 1 and, so, there may
be less than r.

The above definition can be extended to any rational matrix R(s) ∈ F(s)m×n as
follows. Let Ω(R(s)) be the set of roots in F of the numerators and the denominators
of the invariant rational functions of R(s) in (1). Then, we can write

ϵi(s)

ψi(s)
=

∏
λ∈Ω(R(s))

(s− λ)ni(λ,R(s)), 1 ≤ i ≤ r,

where the integers n1(λ,R(s)) ≤ · · · ≤ nr(λ,R(s)) can be negative, zero or positive.
Moreover, we define n1(λ,R(s)) = · · · = nr(λ,R(s)) = 0 for λ /∈ Ω(R(s)). Thus, for
any λ ∈ F, the rational functions (s − λ)ni(λ,R(s)) are defined and are called the local
invariant rational functions at s− λ of R(s). See [3, Section 4] for more details.

It is known [3, Proposition 6.14] that the partial multiplicities of∞, fi, the invariant
orders at infinity, qi, and the degree d of a polynomial matrix P (s) with r = rank(P (s))
are related as follows

fi = qi + d, 1 ≤ i ≤ r. (4)

Observe that the smallest partial multiplicity of ∞ in a polynomial matrix is always
f1 = 0 because q1 = −d. The equalities in (4) imply that two polynomial matrices are
equivalent at infinity if and only if they have the same degree and the same partial
multiplicities of ∞, since these quantities determine the invariant orders at infinity and
vice versa. We emphasize that the condition f1 = 0 must appear in all the results of
this work that involve the partial multiplicities of ∞ of a polynomial matrix.

For F = R, it was proved in [38, p. 102] that the invariant orders at infinity
q1 ≤ · · · ≤ qr of a polynomial matrix P (s) satisfy

k∑
i=1

qi = −Mk(P (s)), 1 ≤ k ≤ r, (5)

where

Mk(P (s)) = max{deg(mk(s)) : mk(s) = minor of order k of P (s)}. (6)
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This result can be trivially extended to any field. From (4) and (5) we obtain

Mk(P (s)) = kd−
k∑
i=1

fi, 1 ≤ k ≤ r. (7)

2.2 Rational subspaces and minimal indices associated to a
rational matrix

The definitions of the four sequences of minimal indices of a rational matrix are based
on the notions of minimal bases and indices of a rational subspace introduced in [18].
We recall first these notions. A subspace of F(s)p over the field of rational functions
F(s) is called a rational subspace. For any rational subspace V of F(s)p, it is possible
to find a polynomial basis, i.e., a basis consisting of polynomial vectors; it is enough
to take an arbitrary basis and multiply each vector by the least common multiple of
the denominators of its entries. The order of a polynomial basis of V is the sum of
the degrees of its vectors. A minimal basis of V is a polynomial basis with least order
among the polynomial bases of V . The decreasingly ordered list of degrees of the
polynomial vectors of any minimal basis of V is always the same [18, Main Theorem
p. 495]. These degrees are called the minimal indices of V .

We present now the null-space or singular structure of a rational matrix [22, Section
6.5.4]. Let R(s) ∈ F(s)m×n be a rational matrix. Denote by Nr(R(s)) and Nℓ(R(s))
the rational right and left null-spaces of R(s), respectively, i.e.,

Nr(R(s)) = {x(s) ∈ F(s)n : R(s)x(s) = 0},
Nℓ(R(s)) = {x(s) ∈ F(s)m : x(s)TR(s) = 0}.

A right (left) minimal basis of R(s) is a minimal basis of Nr(R(s)) (Nℓ(R(s))). The
right (left) minimal indices of R(s) are the minimal indices of Nr(R(s)) (Nℓ(R(s))).
We will work with the right (left) minimal indices ordered decreasingly. Notice that a
rational matrix R(s) ∈ F(s)m×n of rank(R(s)) = r has n− r right minimal indices and
m− r left minimal indices, by the rank-nullity theorem.

The sequences of right and left minimal indices of a rational matrix R(s) form the
null-space or singular structure of R(s). This structure has applications in different
problems arising in linear systems theory [22, Section 6.5.4].

The right (left) minimal indices of R(s) are also called in the literature column
(row) minimal indices of R(s) (see, for instance, [1]). We do not use this nomenclature
in this paper to avoid possible confusions with the minimal indices defined below.

Given a rational matrix R(s) ∈ F(s)m×n of rank r we denote byR(R(s)) (R(R(s)T ))
the rational subspace of F(s)m (F(s)n) spanned by the columns (rows) of R(s), which
is called the column (row) space of R(s). That is,

R(R(s)) = {R(s)x(s) : x(s) ∈ F(s)n},
R(R(s)T ) = {R(s)Tx(s) : x(s) ∈ F(s)m}.

The col-span (row-span) minimal indices of R(s) are the minimal indices of R(R(s))
(R(R(s)T )). Note that R(s) has r col-span minimal indices and r row-span minimal
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indices. We will work with the col-span (row-span) minimal indices ordered decreas-
ingly.

In contrast with the minimal indices and bases of Nr(R(s)) and Nℓ(R(s)), the
minimal indices and bases of the column and row spaces of rational matrices have not
received much attention in the literature, as far as we know. An exception is the recent
paper [15], where they have played a fundamental role for constructing rank revealing
factorizations of polynomial matrices with good properties.

2.3 Polynomial and rational matrices with prescribed eigen-
structure

The eigenstructure of a polynomial matrix is formed by the invariant factors, the
partial multiplicities of ∞, and the right and left minimal indices. The eigenstructure
of a rational matrix is formed by the finite invariant rational functions, the invariant
rational functions at infinity, and the right and left minimal indices. This name was
introduced in [35] and has been used in different papers as [14, 37]. Knowing the
eigenstructure of a polynomial matrix is equivalent to knowing its eigenstructure as a
rational matrix (see the comments after (4)). In [1], a characterization of the existence
of a polynomial matrix with prescribed eigenstructure is provided over arbitrary fields,
generalizing the result proved over infinite fields in [14]. This result is presented in the
next theorem.

Theorem 2.1 ([1, Theorem 3.1], [14, Theorem 3.3] for infinite fields) Let m, n, r ≤
min{m,n} be positive integers and d a non negative integer. Let α1(s) | · · · | αr(s)
be monic polynomials in F[s]. Let (fr, . . . , f1), (d1, . . . , dn−r), (v1, . . . , vm−r) be parti-
tions of non negative integers. Then, there exists P (s) ∈ F[s]m×n, rank(P (s)) = r,
deg(P (s)) = d, with invariant factors α1(s), . . . , αr(s), f1, . . . , fr as partial multiplici-
ties of ∞, and right and left minimal indices d1, . . . , dn−r and v1, . . . , vm−r, respectively,
if and only if f1 = 0 and

n−r∑
i=1

di +
m−r∑
i=1

vi +
r∑
i=1

fi +
r∑
i=1

deg(αi) = rd. (8)

An analogous result for the existence of a rational matrix with prescribed eigen-
structure was proved in [5, Theorem 4.1] over infinite fields, and in [2, Theorem 2.4]
for arbitrary fields.

Note that the necessity of condition (8) in Theorem 2.1 is the well-known index
sum theorem (see [11, Theorem 6.5] or [39, Theorem 3]). This motivates that condition
(8) is also known as the index sum theorem constraint [5].

This paper has two principal aims, both related to Theorem 2.1 and [5, Theorem
4.1]. First, to obtain characterizations of the existence of polynomial and rational ma-
trices as in Theorem 2.1, when the col-span and row-span minimal indices are prescribed
instead of the right and left minimal indices. Second, to obtain characterizations of the
existence of polynomial and rational matrices when the col-span and row-span minimal
indices are prescribed in addition to the right and left minimal indices.
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2.4 Properties of minimal bases and indices

In this paper, minimal bases of rational subspaces are often arranged as columns of
matrices. Therefore, for brevity, we abuse of the terminology and say that a polynomial
matrix N(s) ∈ F[s]m×r is a minimal basis if its columns form a minimal basis of
R(N(s)). A characterization of a minimal basis particularly useful in this work is
recalled in the next theorem.

Theorem 2.2 ([18, Main Theorem-2. p. 495]) A polynomial matrix N(s) ∈ F[s]m×r

is a minimal basis if and only if N(s0) has full column rank for all s0 ∈ F and N(s) is
column reduced.

Remark 2.3 Observe that N(s) ∈ F[s]m×r satisfies that N(s0) has full column rank
for all s0 ∈ F if and only if N(s) has r invariant factors equal to 1 or, equivalently, if and

only if the Smith form of N(s) is

[
Ir
0

]
, and this condition implies that N(s) ∈ F[s]m×r

has full column rank. In the square case m = r, N(s0) is non singular for all s0 ∈ F if
and only if N(s) is unimodular. 2

The next result relates two minimal bases of the same rational subspace.

Proposition 2.4 Let N1(s), N2(s) ∈ F[s]m×r be minimal bases. Then R(N1(s)) =
R(N2(s)) if and only if there exists a unimodular matrix U(s) ∈ F[s]r×r such that
N1(s)U(s) = N2(s).

Proof. If R(N1(s)) = R(N2(s)), there exists G(s) ∈ F(s)r×r of rank(G(s)) = r
such that N1(s)G(s) = N2(s). Moreover, G(s) is polynomial by [18, Main Theorem-4.
p. 495]. From Theorem 2.2, for every s0 ∈ F, rank(N1(s0)G(s0)) = rank(N2(s0)) = r,
which means that rank(G(s0)) = r. By Remark 2.3, the matrix G(s) is unimodular.
The converse is immediate. 2

The next proposition proves that there exist rational subspaces of F(s)p of dimension
r = 1, . . . , p−1 and arbitrary minimal indices. However, the p minimal indices of F(s)p
are all equal to zero.

Proposition 2.5 Given non negative integers d1, . . . , dr and q, there exists a minimal
basis M(s) ∈ F[s](r+q)×r with column degrees d1, . . . , dr if and only if

d1 = · · · = dr = 0 if q = 0.

Proof. Let M(s) ∈ F[s](r+q)×r be a minimal basis with column degrees d1, . . . , dr. If
q = 0, then the columns of M(s) form a minimal basis of F(s)r. The canonical basis,
i.e., the columns of the identity matrix Ir, is another minimal basis of F(s)r, because
its order takes the least possible value equal to zero. Therefore, d1 = · · · = dr = 0.
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Conversely, if q = 0, take M(s) = Ir; otherwise, if q > 0, take

M(s) =



sd1 0 0 . . . 0
1 sd2 0 . . . 0
0 1 sd3 . . . 0
...

...
...

. . .
...

0 0 0 . . . sdr

0 0 0 . . . 1
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0


∈ F[s](r+q)×r.

In both cases M(s) ∈ F[s](r+q)×r is a minimal basis with column degrees d1, . . . , dr by
Theorem 2.2. 2

Remark 2.6 Observe that if q > 0, a minimal basis with column degrees d1, . . . , dr
always exists, for instance the matrix M(s) in the proof. In fact, there are other
minimal bases with these column degrees because if P ∈ F(r+q)×(r+q) is any constant
non singular matrix, then PM(s) is a minimal basis by Theorem 2.2 and has the same
column degrees as M(s).

If R(s) ∈ F(s)m×n has rank equal to n (m), then its row-span (col-span) minimal
indices are all equal to zero, because R(R(s)T ) = F(s)n (R(R(s)) = F(s)m). Thus,
these conditions must appear in all the results of this work about the prescription of
the row-span and col-span minimal indices of rational matrices. 2

Next, we summarize some properties of dual minimal bases and some consequences
of these properties, which can be found in [13, 15, 18].

Definition 2.7 ([13, Definition 2.10]) Polynomial matrices M(s) ∈ F[s](r+q)×r and
N(s) ∈ F[s](r+q)×q are said to be dual minimal bases if they are minimal bases sat-
isfying M(s)TN(s) = 0.

Theorem 2.8 ([15, Theorem 2.9]) Let M(s) ∈ F[s](r+q)×r, N(s) ∈ F[s](r+q)×q be dual
minimal bases with column degrees d1, . . . , dr and d

′
1, . . . , d

′
q, respectively. Then

r∑
i=1

di =

q∑
i=1

d′i. (9)

Conversely, given two lists of non negative integers d1, . . . , dr and d′1, . . . , d
′
q, sat-

isfying (9), there exists a pair of dual minimal bases M(s) ∈ F[s](r+q)×r and N(s) ∈
F[s](r+q)×q with precisely these column degrees, respectively.

The next result is an immediate corollary of Theorem 2.8 and has been stated and
proved in [15, Corollary 2.10] for polynomial matrices. The proof in [15] remains valid
for rational matrices.
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Corollary 2.9 Let A(s) ∈ F(s)m×n, rank(A(s)) = r, with col-span minimal indices
k1, . . . , kr, row-span minimal indices ℓ1, . . . , ℓr, right minimal indices d1, . . . , dn−r, and
left minimal indices v1, . . . , vm−r. Then

m−r∑
i=1

vi =
r∑
i=1

ki and
n−r∑
i=1

di =
r∑
i=1

ℓi. (10)

The next result is specific for polynomial matrices. It is an immediate consequence
of Theorem 2.1 and Corollary 2.9.

Corollary 2.10 Let A(s) ∈ F[s]m×n, rank(A(s)) = r, deg(A(s)) = d, with col-
span minimal indices k1, . . . , kr, row-span minimal indices ℓ1, . . . , ℓr, invariant factors
α1(s) | · · · | αr(s), and f1, . . . , fr as partial multiplicities of ∞. Then, f1 = 0 and

r∑
i=1

ki +
r∑
i=1

ℓi +
r∑
i=1

fi +
r∑
i=1

deg(αi) = rd. (11)

3 Statement of the problems for polynomial matri-

ces

In this section, we present a formal statement of the problems studied in this paper for
polynomial matrices. They are solved in Section 5. For brevity, we avoid the statement
of the corresponding problems for rational matrices, which are solved in Section 6 as a
consequence of the results obtained for polynomial matrices.

Problem 3.1 Let m, n, r ≤ min{m,n} be positive integers and d a non negative inte-
ger. Let α1(s) | · · · | αr(s) be monic polynomials in F[s], (fr, . . . , f1) a partition of non
negative integers, and let K(s) ∈ F[s]m×r, L(s)T ∈ F[s]n×r be minimal bases. Find nec-
essary and sufficient conditions for the existence of a polynomial matrix A(s) ∈ F[s]m×n

of rank(A(s)) = r, deg(A(s)) = d, with α1(s), . . . , αr(s) as invariant factors, f1, . . . , fr
as partial multiplicities of ∞, R(A(s)) = R(K(s)) and R(A(s)T ) = R(L(s)T ).

Problem 3.2 Let m, n, r ≤ min{m,n} be positive integers and d a non negative inte-
ger. Let α1(s) | · · · | αr(s) be monic polynomials in F[s] and let (fr, . . . , f1), (k1, . . . , kr),
(ℓ1, . . . , ℓr) be partitions of non negative integers. Find necessary and sufficient con-
ditions for the existence of a polynomial matrix A(s) ∈ F[s]m×n of rank(A(s)) = r,
deg(A(s)) = d, with α1(s), . . . , αr(s) as invariant factors, f1, . . . , fr as partial multiplic-
ities of ∞, k1, . . . , kr as col-span minimal indices, and ℓ1, . . . , ℓr as row-span minimal
indices.

Problem 3.3 Let m, n, r ≤ min{m,n} be positive integers and d a non negative
integer. Let α1(s) | · · · | αr(s) be monic polynomials in F[s] and let (fr, . . . , f1),
(k1, . . . , kr), (ℓ1, . . . , ℓr), (d1, . . . , dn−r), (v1, . . . , vm−r) be partitions of non negative in-
tegers. Find necessary and sufficient conditions for the existence of a polynomial matrix
A(s) ∈ F[s]m×n of rank(A(s)) = r, deg(A(s)) = d, with α1(s), . . . , αr(s) as invariant
factors, f1, . . . , fr as partial multiplicities of ∞, k1, . . . , kr as col-span minimal indices,
ℓ1, . . . , ℓr as row-span minimal indices, and right and left minimal indices d1, . . . , dn−r
and v1, . . . , vm−r, respectively.
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Problems 3.1, 3.2, and 3.3 are solved in Theorems 5.1, 5.3, and 5.5, respectively.
We will see that the solution of Problem 3.2 follows immediately from combining that
of Problem 3.1 with Proposition 2.5. The solution of Problem 3.3 requires to combine
the solutions of Problems 3.1 and 3.2 with the non-trivial results stated in Theorem
2.8 and Corollary 2.9. Thus, the key original contribution of this manuscript is the
solution of Problem 3.1.

The counterparts of Problems 3.1, 3.2, and 3.3 for rational matrices are solved in
Theorems 6.2, 6.4, and 6.5, respectively.

4 Factorizations of polynomial matrices and a re-

formulation of Problem 3.1

The goal of this section is to establish Theorem 4.5, which plays a key role in the
solution of Problem 3.1. Theorem 4.5 shows that Problem 3.1 is equivalent to an
existence problem involving only the invariant factors of a regular polynomial matrix
and the partial multiplicities of ∞ of a two-sided diagonal scaling of it. The proof of
Theorem 4.5 requires the development of several results on factorizations of polynomial
matrices. The first one of them proves that column proper polynomial matrices with
full column rank admit the factorization given in Theorem 4.1.

Theorem 4.1 Let K(s) ∈ F[s]m×r, rank(K(s)) = r, be column proper with column
degrees k′1, . . . , k

′
r. Then, there exists a biproper matrix B(s) ∈ Fpr(s)m×m such that

K(s) = B(s)

[
diag(sk

′
1 , . . . , sk

′
r)

0

]
.

Proof. Let us express K(s) as

K(s) = Kh diag(s
k′1 , . . . , sk

′
r) + L(s),

where Kh ∈ Fm×r is the highest column degree coefficient matrix of K(s) and has rank
equal to r, and the degree of the i-th column of L(s) ∈ F[s]m×r is strictly less than k′i
for i = 1, . . . , r. Therefore,

K(s) = (Kh + L̂(s)) diag(sk
′
1 , . . . , sk

′
r),

with L̂(s) = L(s) (diag(sk
′
1 , . . . , sk

′
r))−1 strictly proper. Let K̃h ∈ Fm×(m−r) be any

constant matrix such that
[
Kh K̃h

]
∈ Fm×m is invertible. Note that

K(s) =
[
Kh + L̂(s) K̃h

] [
diag(sk

′
1 , . . . , sk

′
r)

0

]
.

We prove that B(s) =
[
Kh + L̂(s) K̃h

]
is biproper by proving that det(B(s)) is

a non zero biproper rational scalar function. Since the determinant of a matrix is a
multilinear function of its columns, we can express det(B(s)) as

det(B(s)) = det
([

Kh K̃h

])
+ g(s),
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where g(s) is a sum of 2r−1 determinants each containing at least one column of L̂(s).
Therefore, each one of these determinants is a strictly proper rational function (use

a cofactor expansion through a column of L̂(s)). Hence, det(B(s)) = c + g(s) where
0 ̸= c ∈ F and g(s) is strictly proper. This implies that det(B(s)) is biproper. 2

The second result of this section deals with polynomial matrices which are products
of three factors, the first and the third ones satisfying certain properties which, in
particular, are fulfilled by minimal bases.

Lemma 4.2 Let K(s) ∈ F[s]m×r and L(s) ∈ F[s]r×n be polynomial matrices with
rank(K(s)) = rank(L(s)) = r, and let k′1, . . . , k

′
r be the column degrees of K(s) and

ℓ′1, . . . , ℓ
′
r be the row degrees of L(s). Let Ê(s) ∈ F[s]r×r and A(s) = K(s)Ê(s)L(s).

(i) If the invariant factors of K(s) and L(s) are equal to 1, then A(s) and Ê(s) have
the same invariant factors.

(ii) If K(s) and L(s)T are column proper, then

F (s) = diag(sk
′
1 , . . . , sk

′
r)Ê(s) diag(sℓ

′
1 , . . . , sℓ

′
r)

has the same degree and partial multiplicities of ∞ as A(s).

Proof. To prove part (i) note that, by Remark 2.3, rankK(s0) = r and rankL(s0) =
r for all s0 ∈ F. Then, by [14, Lemma 2.16-(b)] there exist K ′(s) ∈ F[s]m×(m−r) and

L′(s) ∈ F[s](n−r)×n such that U(s) =
[
K(s) K ′(s)

]
∈ F[s]m×m and V (s) =

[
L(s)
L′(s)

]
∈

F[s]n×n are unimodular. Let Ê ′(s) =

[
Ê(s) 0
0 0

]
∈ F[s]m×n. Then Ê ′(s) has the same

invariant factors as Ê(s) and U(s)Ê ′(s)V (s) = A(s); hence A(s) and Ê(s) have the
same invariant factors.

To prove part (ii), we use Theorem 4.1 to express

K(s) = B1(s)

[
diag(sk

′
1 , . . . , sk

′
r)

0

]
, L(s) =

[
diag(sℓ

′
1 , . . . , sℓ

′
r) 0

]
B2(s),

where B1(s) ∈ Fpr(s)m×m, B2(s) ∈ Fpr(s)n×n are biproper matrices. Then,

A(s) = B1(s)

[
diag(sk

′
1 , . . . , sk

′
r)

0

]
Ê(s)

[
diag(sℓ

′
1 , . . . , sℓ

′
r) 0

]
B2(s)

= B1(s)

[
F (s) 0
0 0

]
B2(s).

Thus, A(s) and

[
F (s) 0
0 0

]
are equivalent at infinity; hence they have the same degree

and the same partial multiplicities of ∞ (see the discussion after equation (4)). 2

Minimal rank factorizations of polynomial matrices were introduced in [15, Defi-
nition 3.12, Theorem 3.11]. Some properties of minimal rank factorizations into three
factors are presented in the next theorem. Observe that Theorem 4.3-(iii) proves a new
property.
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Theorem 4.3 Every polynomial matrix A(s) ∈ F[s]m×n of rank r can be factorized as

A(s) = K(s)Ê(s)L(s), K(s) ∈ F[s]m×r, Ê(s) ∈ F[s]r×r, L(s) ∈ F[s]r×n,

where

(i) the columns of K(s) form a minimal basis of R(A(s)), the columns of L(s)T form
a minimal basis of R(A(s)T ),

(ii) Ê(s) has the same invariant factors as A(s), and

(iii) if the column degrees of K(s) are k′1, . . . , k
′
r and the column degrees of L(s)T are

ℓ′1, . . . , ℓ
′
r, then

F (s) = diag(sk
′
1 , . . . , sk

′
r) Ê(s) diag(sℓ

′
1 , . . . , sℓ

′
r)

has the same degree and the same partial multiplicities of ∞ as A(s).

Proof. The existence of the factorization and parts (i) and (ii) are in [15, Theorem
3.11-(i)]. Part (iii) follows from Lemma 4.2-(ii). 2

Remark 4.4 (On the minimal bases of Theorem 4.3)
The minimal bases of R(A(s)) and R(A(s)T ) can be arbitrarily chosen in Theorem

4.3. Let the columns of K ′(s) ∈ F[s]m×r and L′(s)T ∈ F[s]n×r form minimal bases
of R(A(s)) and R(A(s)T ), respectively. By Proposition 2.4, there exist unimodular
matrices U(s), V (s) ∈ F[s]r×r such that K(s) = K ′(s)U(s) and L(s) = V (s)L′(s).
Then

A(s) = K(s)Ê(s)L(s) = K ′(s)Ê ′(s)L′(s),

where Ê ′(s) = U(s)Ê(s)V (s) has the same invariant factors as Ê(s), and the matrix

F ′(s) defined from the factorization A(s) = K ′(s)Ê ′(s)L′(s) as in Theorem 4.3-(iii) has
the same degree and the same partial multiplicities of ∞ as A(s) by Lemma 4.2-(ii).

In particular, the columns of K(s) and the rows of L(s) can be arbitrarily ordered.
2

Next, we prove the announced reformulation of Problem 3.1.

Theorem 4.5 Let m, n, r ≤ min{m,n} be positive integers and d a non negative
integer. Let α1(s) | · · · | αr(s) be monic polynomials in F[s], let (fr, . . . , f1) be a
partition of non negative integers, and let K(s) ∈ F[s]m×r, L(s)T ∈ F[s]n×r be minimal
bases with column degrees k1 ≥ · · · ≥ kr and ℓ1 ≥ · · · ≥ ℓr, respectively. The following
statements are equivalent:

(i) There exists a polynomial matrix A(s) ∈ F[s]m×n with rank(A(s)) = r, deg(A(s)) =
d, α1(s), . . . , αr(s) as invariant factors, f1, . . . , fr as partial multiplicities of ∞,
R(A(s)) = R(K(s)), and R(A(s)T ) = R(L(s)T ).

(ii) There exists E(s) ∈ F[s]r×r with α1(s), . . . , αr(s) as invariant factors, such that
the polynomial matrix

F (s) = diag(sk1 , . . . , skr)E(s) diag(sℓ1 , . . . , sℓr) (12)

has f1, . . . , fr as partial multiplicities of ∞ and deg(F (s)) = d.
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Proof.
(i) ⇒ (ii). It follows from Theorem 4.3 and Remark 4.4.

(ii) ⇒ (i). Let us assume that (ii) holds. Let A(s) = K(s)E(s)L(s) ∈ F[s]m×n. By
Remark 2.3 and Lemma 4.2-(i), the invariant factors of A(s) are α1(s), . . . , αr(s). This
implies that rank(A(s)) = r. Moreover, we have R(A(s)) ⊆ R(K(s)) and R(A(s)T ) ⊆
R(L(s)T ). Since each of these four subspaces has dimension r, we get R(A(s)) =
R(K(s)) and R(A(s)T ) = R(L(s)T ). By Lemma 4.2-(ii), deg(A(s)) = d and A(s) has
f1, . . . , fr as partial multiplicities of ∞. 2

Remark 4.6 In item (ii) of Theorem 4.5, the indices k1, . . . , kr and ℓ1, . . . , ℓr can
be arbitrarily ordered. That is to say, if k′1, . . . , k

′
r and ℓ′1, . . . , ℓ

′
r are reorderings of

k1, . . . , kr and ℓ1, . . . , ℓr, respectively, then item (ii) of Theorem 4.5 holds if and only
if there exists E ′(s) ∈ F[s]r×r with invariant factors α1(s), . . . , αr(s), such that the
matrix

F ′(s) = diag(sk
′
1 , . . . , sk

′
r)E ′(s) diag(sℓ

′
1 , . . . , sℓ

′
r)

has f1, . . . , fr as partial multiplicities of ∞ and deg(F ′(s)) = d.
To prove it, assume that item (ii) of Theorem 4.5 holds and take P,Q ∈ Fr×r

permutation matrices such that

P diag(sk1 , . . . , skr)P T = diag(sk
′
1 , . . . , sk

′
r),

Q diag(sℓ1 , . . . , sℓr)QT = diag(sℓ
′
1 , . . . , sℓ

′
r),

and let E ′(s) = PE(s)QT . Then the invariant factors of E ′(s) are α1(s), . . . , αr(s) and

PF (s)QT = diag(sk
′
1 , . . . , sk

′
r)E ′(s) diag(sℓ

′
1 , . . . , sℓ

′
r) = F ′(s).

Therefore, F (s) and F ′(s) are equivalent at ∞; hence they have the same degree and
the same partial multiplicities of ∞. The proof of the converse is analogous.

5 Solution to the problems for polynomial matrices

In this section we provide necessary and sufficient conditions for the existence problems
posed in Section 3. We emphasize that the conditions found are sufficient only if the
underlying field is algebraically closed; Example 5.4 illustrates that this constraint is
essential. In contrast, they are necessary over arbitrary fields. Theorem 5.1 solves
Problem 3.1.

Theorem 5.1 Let m, n, r ≤ min{m,n} be positive integers and d a non negative
integer. Let α1(s) | · · · | αr(s) be monic polynomials in F[s], (fr, . . . , f1) a partition
of non negative integers and K(s) ∈ F[s]m×r, L(s)T ∈ F[s]n×r minimal bases, with
column degrees k1 ≥ · · · ≥ kr and ℓ1 ≥ · · · ≥ ℓr, respectively. Let g1 ≥ · · · ≥ gr be the
decreasing reordering of kr + ℓ1, . . . , k1 + ℓr.

If A(s) ∈ F[s]m×n is a polynomial matrix with rank(A(s)) = r, deg(A(s)) = d,
α1(s), . . . , αr(s) as invariant factors, f1, . . . , fr as partial multiplicities of ∞, R(A(s)) =
R(K(s)) and R(A(s)T ) = R(L(s)T ), then

f1 = 0 (13)
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and
(d− gr, . . . , d− g1) ≺ (deg(αr) + fr, . . . , deg(α1) + f1). (14)

Conversely, if F is algebraically closed, conditions (13) and (14) are sufficient for
the existence of a polynomial matrix A(s) ∈ F[s]m×n with rank(A(s)) = r, deg(A(s)) =
d, α1(s), . . . , αr(s) as invariant factors, f1, . . . , fr as partial multiplicities of ∞, R(A(s))
= R(K(s)) and R(A(s)T ) = R(L(s)T ).

Despite the simplicity of the statement, the proof of Theorem 5.1 is long and in-
volved, and is postponed. The proof of the necessity of this theorem is given in Sub-
section 5.1, while the sufficiency is proved in Subsection 5.2. The proof of the necessity
uses a determinantal lemma, Lemma A.1, which is presented together with its long
proof in Appendix A.

Remark 5.2 (On the conditions (13) and (14) in Theorem 5.1).

1. The strong, non trivial condition in Theorem 5.1 is (14), because condition (13)
was expected (recall the discussion after (4)).

2. Condition (14) amounts to r conditions due to the definition of majorization.
The last of such conditions, i.e., the equality of the sums of the terms of the two
sequences involved in (14), is precisely (11), which in turn is equivalent to the
condition (8), i.e., to the index sum theorem constraint.

3. Using the observation above, condition (14) is equivalent to conditions (11) and

k∑
i=1

(gi + deg(αi) + fi) ≤ kd, 1 ≤ k ≤ r − 1.

4. For k = 1, the inequality above yields deg(α1) + f1 ≤ d − g1. This implies that
if (14) holds, then all the terms of the sequence in the left hand side of (14) are
non negative.

5. Theorem 5.1 can be used to determine the existence of a polynomial matrix
without eigenvalues (neither finite nor infinite) and prescribed degree, rank and
column and row spaces. For this purpose, we must take α1(s) = · · · = αr(s) = 1
and f1 = · · · = fr = 0. In this case, (14) reduces to

ℓi + kr−i+1 = d, 1 ≤ i ≤ r.

This condition is related to [15, Theorem 3.19]. 2

In Theorems 5.3 and 5.5 we give solutions to Problems 3.2 and 3.3, respectively.
The proofs of both theorems are based on Theorem 5.1. Theorem 5.3 is the counterpart
of Theorem 2.1 when the col-span and row-span minimal indices are prescribed instead
of the right and left minimal indices. Observe that this change in the prescribed data
leads to a considerable increase in the complexity of the required conditions. The key
condition in Theorem 5.3 is (14), while (15) and (16) simply take into account that
if the rank of an m × n polynomial matrix A(s) is n (m), then R(A(s)T ) = F(s)n
(R(A(s)) = F(s)m) and the minimal indices of F(s)n (F(s)m) are zero.
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Theorem 5.3 Let m, n, r ≤ min{m,n} be positive integers and d a non negative in-
teger. Let α1(s) | · · · | αr(s) be monic polynomials in F[s] and (fr, . . . , f1), (k1, . . . , kr),
(ℓ1, . . . , ℓr) partitions of non negative integers. Let g1 ≥ · · · ≥ gr be the decreasing
reordering of kr + ℓ1, . . . , k1 + ℓr.

If A(s) ∈ F[s]m×n is a polynomial matrix with rank(A(s)) = r, deg(A(s)) = d,
α1(s), . . . , αr(s) as invariant factors, f1, . . . , fr as partial multiplicities of ∞, k1, . . . , kr
as col-span minimal indices, and ℓ1, . . . , ℓr as row-span minimal indices, then (13), (14),

ℓ1 = · · · = ℓr = 0 if r = n, (15)

and
k1 = · · · = kr = 0 if r = m. (16)

Conversely, if F is algebraically closed, conditions (13), (14), (15) and (16) are
sufficient for the existence of a polynomial matrix A(s) ∈ F[s]m×n with rank(A(s)) = r,
deg(A(s)) = d, α1(s), . . . , αr(s) as invariant factors, f1, . . . , fr as partial multiplici-
ties of ∞, k1, . . . , kr as col-span minimal indices, and ℓ1, . . . , ℓr as row-span minimal
indices.

Proof. By Proposition 2.5, there exist minimal bases K(s) ∈ F[s]m×r, L(s)T ∈
F[s]n×r, with column degrees k1, . . . , kr, and ℓ1, . . . , ℓr, respectively, if and only if (15)
and (16) hold. Then, the result follows from Theorem 5.1. 2

If F is not algebraically closed, conditions (13), (14), (15) and (16) of Theorem 5.3
are not sufficient, as we can see in the following example. The same happens with the
conditions in Theorems 5.1 and 5.5.

Example 5.4 Let F = R, m = n = 3, r = 2, d = 7, α1(s) = 1, α2(s) = (s2 +1)2, f1 =
f2 = 0, k1 = 5, k2 = 0, ℓ1 = 4, ℓ2 = 1. Then r < m, r < n, (g1, g2) = (k1+ℓ2, k2+ℓ1) =
(6, 4) and (d−g2, d−g1) = (3, 1) ≺ (4, 0) = (deg(α2)+f2, deg(α1)+f1). Thus, (13), (14),
(15) and (16) hold. If there exists A(s) ∈ R[s]3×3, with rank(A(s)) = 2, deg(A(s)) = 7,
α1(s) = 1, α2(s) = (s2 + 1)2 as invariant factors, f1 = f2 = 0 as partial multiplicities
of ∞, 5, 0 as col-span minimal indices, and 4, 1 as row-span minimal indices, then, by

Theorem 4.5, there exists a polynomial matrix E(s) =

[
e1,1(s) e1,2(s)
e2,1(s) e2,2(s)

]
∈ R[s]2×2 with

invariant factors α1(s) = 1, α2(s) = (s2 + 1)2 and such that

F (s) = diag(s5, s0)E(s) diag(s4, s1) =

[
s9e1,1(s) s6e1,2(s)
s4e2,1(s) se2,2(s)

]
has degree 7 and f1 = f2 = 0 as partial multiplicities of ∞. Then,

e1,1(s) = 0, deg(e1,2(s)) ≤ 1, deg(e2,1(s)) ≤ 3, deg(e2,2(s)) ≤ 6.

Consequently, α2(s) = (s2+1)2 = c e1,2(s) e2,1(s), where deg(e1,2(s)) = 1, deg(e2,1(s)) =
3, and c ̸= 0 is a real number. This is a contradiction because (s2 +1)2 has no divisors
of degree 1 over R[s].
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Our last result in this section, Theorem 5.5, combines all the data that are pre-
scribed in Theorems 2.1 and 5.3, since, in addition to the invariant factors and the
partial multiplicities of ∞, the four sequences of minimal indices are prescribed. Ob-
serve that Theorem 5.5 requires the extra condition (10) with respect to Theorem 5.3
and that (10) implies (15) and (16).

Theorem 5.5 Let m, n, r ≤ min{m,n} be positive integers and d a non nega-
tive integer. Let α1(s) | · · · | αr(s) be monic polynomials in F[s] and (fr, . . . , f1),
(k1, . . . , kr), (ℓ1, . . . , ℓr), (d1, . . . , dn−r), (v1, . . . , vm−r) partitions of non negative inte-
gers. Let g1 ≥ · · · ≥ gr be the decreasing reordering of kr + ℓ1, . . . , k1 + ℓr.

If A(s) ∈ F[s]m×n is a polynomial matrix with rank(A(s)) = r, deg(A(s)) = d,
α1(s), . . . , αr(s) as invariant factors, f1, . . . , fr as partial multiplicities of ∞, k1, . . . , kr
as col-span minimal indices, ℓ1, . . . , ℓr as row-span minimal indices, and d1, . . . , dn−r
and v1, . . . , vm−r as right and left minimal indices, respectively, then (10), (13) and
(14) hold.

Conversely, if F is algebraically closed, conditions (10), (13) and (14) are suffi-
cient for the existence of a polynomial matrix A(s) ∈ F[s]m×n, with rank(A(s)) = r,
deg(A(s)) = d, α1(s), . . . , αr(s) as invariant factors, f1, . . . , fr as partial multiplicities
of ∞, k1, . . . , kr as col-span minimal indices, ℓ1, . . . , ℓr as row-span minimal indices,
and d1, . . . , dn−r and v1, . . . , vm−r as right and left minimal indices, respectively.

Proof. The necessity follows from Corollary 2.9 and Theorem 5.3.
Assume now that F is algebraically closed and conditions (10), (13) and (14) hold.

If m = r, then from (10) we obtain
∑r

i=1 ki =
∑0

i=1 vi = 0, i.e., k1 = · · · = kr = 0,
and by Proposition 2.5 there exists a minimal basis K(s) ∈ F[s]m×r with column
degrees k1, . . . , kr. If m > r, from (10), by Theorem 2.8 there exist minimal bases
K(s) ∈ F[s]m×r, NK(s) ∈ F[s]m×(m−r) with column degrees k1, . . . , kr and v1, . . . , vm−r,
respectively, such that NK(s)

TK(s) = 0. Analogously, using (10), Proposition 2.5
and Theorem 2.8, there exists a minimal basis L(s)T ∈ F[s]n×r with column degrees
ℓ1, . . . , ℓr, and if n > r there exists a minimal basis NL(s) ∈ F[s]n×(n−r) with column
degrees d1, . . . dn−r such that L(s)TNL(s) = 0.

By Theorem 5.1, from (13) and (14), there exists a polynomial matrix A(s) ∈
F[s]m×n, with rank(A(s)) = r, deg(A(s)) = d, α1(s), . . . , αr(s) as invariant factors,
f1, . . . , fr as partial multiplicities of∞,R(A(s)) = R(K(s)) andR(A(s)T ) = R(L(s)T ),
and therefore with k1, . . . , kr as col-span minimal indices and ℓ1, . . . , ℓr as row-span
minimal indices.

If m > r, since NK(s)
TK(s) = 0, the matrix NK(s) is a minimal basis of Nℓ(A(s)),

therefore the left minimal indices of A(s) are v1, . . . , vm−r. Analogously, if n > r,
d1, . . . , dn−r are the right minimal indices of A(s). 2

5.1 Proof of Theorem 5.1: necessity of the conditions

In this subsection we prove the necessity part of Theorem 5.1. The proof requires to
select some minors of a polynomial matrix satisfying certain properties. To do it, we
need to introduce some notation and a technical lemma. In order not to pause the
proof of the theorem, the proof of the technical lemma is postponed to Appendix A
(in a more general setting).
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The required notation reads as follows: if p and m are positive integers, 0 < p ≤ m,

Qp,m = {[i1, . . . , ip] : 1 ≤ i1 < · · · < ip ≤ m, i1, . . . , ip ∈ Z}.

For P (s) ∈ F[s]m×n, I ∈ Qp,m and J ∈ Qq,n, we denote by P (s)(I, J) the p×q submatrix
of P (s) of entries that lie in the rows indexed by I and the columns indexed by J .

Given I = [i1, . . . , ip] ∈ Qp,m, let I
∗ = [m − ip + 1, . . . ,m − i1 + 1] ∈ Qp,m, and if

I ′ = [i′1, . . . , i
′
p] ∈ Qp,m, we write I ′ ≤ I whenever i′j ≤ ij, 1 ≤ j ≤ p.

The following lemma is an immediate consequence of Lemma A.1.

Lemma 5.6 Let E(s) = [ei,j(s)]1≤i,j≤r ∈ F[s]r×r with rank(E(s)) = r. Let k ∈
{1, . . . , r} and Z ∈ Qk,r. Then, there exist I, J ∈ Qk,r, J ≤ Z, I ≤ Z∗, such that
det(E(s)(I, J)) ̸= 0.

Proof of the necessity of Theorem 5.1. Let K(s) ∈ F[s]m×r, L(s)T ∈ F[s]n×r
be minimal bases with column degrees k1 ≥ · · · ≥ kr and ℓ1 ≥ · · · ≥ ℓr, respectively.
Assume that there exists A(s) ∈ F[s]m×n of rank(A(s)) = r, deg(A(s)) = d, with
α1(s) | · · · | αr(s) as invariant factors, f1 ≤ · · · ≤ fr as partial multiplicities of ∞,
R(A(s)) = R(K(s)), and R(A(s)T ) = R(L(s)T ). Let g1 ≥ · · · ≥ gr be the decreasing
reordering of ℓ1 + kr, . . . , ℓr + k1.

By Corollary 2.10, (13) holds. It only remains to prove (14). By Theorem 4.5, there
exists E(s) ∈ F[s]r×r with invariant factors α1(s), . . . , αr(s), such that the matrix F (s)
defined as in (12) has degree d and f1, . . . , fr as partial multiplicities of ∞. Then, F (s)
satisfies condition (7) substituting P (s) by F (s), and where Mk(F (s)) is defined as in
(6).

Take k ∈ {1, . . . r − 1} and Z ∈ Qk,r. By Lemma 5.6, there exist I, J ∈ Qk,r such
that J ≤ Z, I ≤ Z∗ and det(E(s)(I, J)) ̸= 0. Then,

det(F (s)(I, J)) = s
∑

j∈J ℓj+
∑

i∈I ki det(E(s)(I, J)),

hence
deg(det(F (s)(I, J))) =

∑
j∈J

ℓj +
∑
i∈I

ki + deg(det(E(s)(I, J))).

As Mk(F (s)) ≥ deg(det(F (s)(I, J))),
∑

j∈J ℓj +
∑

i∈I ki ≥
∑

j∈Z ℓj +
∑

i∈Z∗ ki, and
α1(s) · · ·αk(s) | det(E(s)(I, J)) ̸= 0 (see (3)), we obtain

Mk(F (s))−
k∑
i=1

deg(αi) ≥
∑
j∈Z

ℓj +
∑
i∈Z∗

ki,

therefore,

Mk(F (s))−
k∑
i=1

deg(αi) ≥ max{
∑
j∈Z

ℓj +
∑
i∈Z∗

ki : Z ∈ Qk,r} =
k∑
i=1

gi.

From (7) we obtain that kd−
∑k

i=1 fi −
∑k

i=1 deg(αi) ≥
∑k

i=1 gi, hence,

k∑
i=1

(d− gi) ≥
k∑
i=1

deg(αi) +
k∑
i=1

fi, 1 ≤ k ≤ r − 1. (17)
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By Corollary 2.10, we get
r∑
i=1

(d− gi) =
r∑
i=1

deg(αi) +
r∑
i=1

fi. (18)

Conditions (17) and (18) are equivalent to (14).
2

5.2 Proof of Theorem 5.1: sufficiency of the conditions

The proof has two parts. First, in Section 5.2.1, we prove the sufficiency when the
prescribed partial multiplicities at ∞ are all equal to zero, or, equivalently, when it is
prescribed that infinity is not an eigenvalue of the polynomial matrix whose existence
we wish to establish. Second, in Section 5.2.2, we prove the sufficiency in general.
To achieve it, we use an argument based on Möbius transformations (see, [3, Section
6] and [26]). A Möbius transformation is applied to the prescribed data to remove
infinity as an eigenvalue. The transformed problem is solved by using the main result
in Section 5.2.1 ( i.e., Proposition 5.9). Finally, the polynomial matrix obtained in the
previous step is transformed back with the inverse of the Möbius transformation used
in the first step. Strategies that use Möbius transformations to avoid the eigenvalues at
infinity have been used for solving other problems related to the existence of polynomial
matrices with prescribed properties. See, for instance, [33, 34] and [14].

5.2.1 Sufficiency when the prescribed partial multiplicities of ∞ are equal
to 0

The proof of the sufficiency in the case f1 = · · · = fr = 0 follows from combining
Theorem 4.5 with previous results on the existence of triangular regular polynomial
matrices with prescribed invariant factors and diagonal entries. We recall first such
previous results.

Theorem 5.7 [27, p. 208] Let α1(s) | · · · | αr(s) and δ1(s), . . . , δr(s) be monic poly-
nomials with coefficients in an arbitrary field F. Then, there exists an r× r triangular
polynomial matrix with diagonal (δ1(s), . . . , δr(s)) and α1(s), . . . , αr(s) as invariant fac-
tors if and only if

α1(s) · · ·αk(s) | gcd{δi1(s) · · · δik(s) : 1 ≤ i1 < · · · < ik ≤ r}, 1 ≤ k ≤ r − 1, (19)

α1(s) · · ·αr(s) = δ1(s) · · · δr(s). (20)

We will also need the following lemma, whose proof can be found within that of
[41, Corollary 4.3]. A result more general than Lemma 5.8, together with a detailed
proof, can be found in [33, Lemma 4.6].

Lemma 5.8 [6, Lemma 4.3] Let F be algebraically closed and let h1, . . . , hr and α1(s) |
· · · | αr(s) be non negative integers and monic polynomials with coefficients in F, re-
spectively. Let g1 ≥ · · · ≥ gr be the decreasing reordering of h1, . . . , hr. If

(g1, . . . , gr) ≺ (deg(αr), . . . , deg(α1)),

then, there exist monic polynomials δ1(s), . . . , δr(s) such that deg(δi) = hi, 1 ≤ i ≤ r,
and (19) and (20) hold.
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In the next proposition we prove the sufficiency part of Theorem 5.1 when we
prescribe f1 = · · · = fr = 0.

Proposition 5.9 Let F be algebraically closed, m, n, r ≤ min{m,n} be positive in-
tegers and d a non negative integer. Let α1(s) | · · · | αr(s) be monic polynomials in
F[s] and let K(s) ∈ F[s]m×r, L(s)T ∈ F[s]n×r be minimal bases with column degrees
k1 ≥ · · · ≥ kr and ℓ1 ≥ · · · ≥ ℓr, respectively. Let g1 ≥ · · · ≥ gr be the decreasing
reordering of kr + ℓ1, . . . , k1 + ℓr. If

(d− gr, . . . , d− g1) ≺ (deg(αr), . . . , deg(α1)),

then, there exists a polynomial matrix A(s) ∈ F[s]m×n with rank(A(s)) = r, deg(A(s)) =
d, α1(s), . . . , αr(s) as invariant factors, f1 = · · · = fr = 0 as partial multiplicities of
∞, R(A(s)) = R(K(s)) and R(A(s)T ) = R(L(s)T ).

Proof. By Lemma 5.8 and Theorem 5.7, there exist monic polynomials e1,1(s), . . . ,
er,r(s) such that

deg(ei,i) = d− (kr−i+1 + ℓi), 1 ≤ i ≤ r,

and an upper triangular matrix E ′(s) ∈ F[s]r×r with diagonal (e1,1(s), . . . , er,r(s)) and
α1(s), . . . , αr(s) as invariant factors. Next, inspired by [34, Lemma 2.4], we prove that
there exists a unimodular upper triangular polynomial matrix U(s) ∈ F[s]r×r with
diagonal entries all equal to one and such that

E(s) = E ′(s)U(s) = [ei,j(s)]1≤i,j≤r

satisfies
deg(ei,j) < d− (kr−i+1 + ℓi), 1 ≤ i < j ≤ r.

The matrix U(s) can be constructed by applying first to E ′(s) a sequence of elementary
column replacement operations described with two nested “for” loops as follows: for
i = r − 1, r − 2, . . . , 1 and for j = i+ 1, i+ 2, . . . r, replace the jth column by the j-th
column minus the i-th column times the Euclidean quotient of the (i, j)-entry divided
by the (i, i)-entry. Then, U(s) is obtained by applying to Ir the same sequence of
elementary column replacement operations that has been applied to E ′(s).

Let
F (s) = diag(skr , . . . , sk1)E(s) diag(sℓ1 , . . . , sℓr).

Then, F (s) is upper triangular and if F (s) = [fi,j(s)]1≤i,j≤r,

deg(fi,i) = d, 1 ≤ i ≤ r,
deg(fi,j) < d− (ℓi + kr−i+1) + (ℓj + kr−i+1) ≤ d, 1 ≤ i < j ≤ r.

As a consequence, deg(F (s)) = d and, according to (6),

Mk(F (s)) = kd, 1 ≤ k ≤ r.

Therefore, by (7), the partial multiplicities of ∞ of F (s) are f1 = · · · = fr = 0. The
proposition follows from Theorem 4.5 and Remark 4.6. 2
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5.2.2 Sufficiency in the general case

Our aim in this section is to prove the sufficiency of Theorem 5.1 in the general case,
that is, when there may be non zero partial multiplicities of ∞.

Proof of the sufficiency of Theorem 5.1. Assume that F is an algebraically
closed field and that conditions (13) and (14) hold. Let a ∈ F be a scalar that is not a
root of αr(s), i.e., gcd(αi(s), s− a) = 1 for i = 1, . . . , r. Let

K(s) = K

(
1

s
+ a

)
diag(sk1 , . . . , skr), L(s)T = L

(
1

s
+ a

)T

diag(sℓ1 , . . . , sℓr).

By [26, Theorem 7.4], K(s) and L(s)T are minimal bases with column degrees k1, . . . , kr
and ℓ1, . . . , ℓr, respectively. This can also be proved directly by combining Theorem
2.2 with some algebraic manipulations.

Write αi(s) in the basis {1, s− a, (s− a)2, . . .}, say,

αi(s) = (s− a)deg(αi) + · · ·+ αi,1(s− a) + αi,0, 1 ≤ i ≤ r.

Notice that αi,0 ̸= 0, 1 ≤ i ≤ r. Then

α̃i(s) = sdeg(αi)αi

(
1

s
+ a

)
= 1 + · · ·+ αi,1s

deg(αi)−1 + αi,0s
deg(αi), 1 ≤ i ≤ r, (21)

is a polynomial of the same degree as αi(s) and such that gcd(α̃i(s), s) = 1. Define

βi(s) =
1

αi,0
α̃i(s)s

fi , 1 ≤ i ≤ r. (22)

These are monic polynomials of degree deg(αi) + fi and β1(s) | · · · | βr(s).
Condition (14) is equivalent to

(d− gr, . . . , d− g1) ≺ (deg(βr), . . . , deg(β1)).

By Proposition 5.9 there exists B(s) ∈ F[s]m×n, with rank(B(s)) = r, deg(B(s)) = d,
β1(s), . . . , βr(s) as invariant factors, e1 = · · · = er = 0 as partial multiplicities of ∞,
R(B(s)) = R(K(s)) and R(B(s)T ) = R(L(s)T ).

Assume that B(s) = Bds
d + Bd−1s

d−1 + · · · + B0. Notice that B0 ̸= 0, because
gcd(α̃1(s), s) = 1, condition (13) holds, and, therefore, gcd(β1(s), s) = 1. Set

A(s) = (s− a)dB

(
1

s− a

)
= Bd +Bd−1(s− a) + · · ·+B0(s− a)d. (23)

It is clear that A(s) ∈ F[s]m×n, rank(A(s)) = r, and deg(A(s)) = d. Furthermore,

K

(
1

s− a

)
diag

(
(s− a)k1 , . . . , (s− a)kr

)
= K(s),

L

(
1

s− a

)T

diag
(
(s− a)ℓ1 , . . . , (s− a)ℓr

)
= L(s)T .
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Next, observe thatR(A(s)) = R(B( 1
s−a)) because (s−a)

d is a scalar in F(s). Moreover,

B(s) = K(s)C(s), where C(s) ∈ F[s]r×n is the matrix whose i-th column contains the
coordinates of the i-th column of B(s) in the minimal basis K(s) for 1 ≤ i ≤ n (C(s)
is polynomial by [18, p. 495]). Thus, B( 1

s−a) = K( 1
s−a)C(

1
s−a), which implies that

R(A(s)) = R(B( 1
s−a)) ⊆ R(K( 1

s−a)) = R(K(s)). The previous inclusion combined
with dimR(A(s)) = dimR(K(s)) = r implies that R(A(s)) = R(K(s)). A similar
argument proves that R(A(s)T ) = R(L(s)T ).

Let b1, . . . , bh be the non zero finite eigenvalues of B(s). Write

βi(s) =
h∏
j=1

(s− bj)
tijsfi , 1 ≤ i ≤ r. (24)

By taking α = 0, β = 1, γ = 1, and δ = −a in [3, Proposition 6.16] (see also [26,
Theorem 5.3]) we deduce:

(i) For any c ∈ F \ {0}, if (s − c)t1 , . . . , (s − c)tr are the local invariant rational

functions at s − c of B(s) then
(
s− a− 1

c

)t1 , . . . , (s− a− 1
c

)tr
are the local in-

variant rational functions at s−a− 1
c
of A(s). More precisely,

(
s− a− 1

bj

)t1j
, . . . ,(

s− a− 1
bj

)trj
are the local invariant rational functions at s− a− 1

bj
of A(s), for

j = 1, . . . , h, and for any other scalar c′ ̸= a, i.e., c′ ∈ F \ {a, a + 1
b1
, . . . , a + 1

bh
}

the local invariant rational functions at s− c′ of A(s) are 1, . . . , 1.

(ii) As f1, . . . , fr are the partial multiplicities of 0 in B(s), the partial multiplicities
of ∞ in A(s) are 0, f2 − f1, . . . , fr − f1. As condition (13) holds, the partial
multiplicities of ∞ in A(s) are f1, . . . , fr.

(iii) Since e1 = · · · = er = 0 are the partial multiplicities of ∞ in B(s), the local
invariant rational functions at s − a of A(s) are 1, . . . , 1, which means that the
partial multiplicities of a in A(s) are 0, . . . , 0.

By (i) and (iii) the invariant factors of A(s) are
∏h

j=1

(
s− a− 1

bj

)tij
, 1 ≤ i ≤ r. It

only remains to prove that they are equal to α1(s), . . . , αr(s).
From (22) and (24) we obtain 1

αi,0
α̃i(s) =

∏h
j=1(s− bj)

tij and, therefore, deg(α̃i) =∑h
j=1 tij and 1 = α̃i(0) = αi,0

∏h
j=1(−bj)tij , 1 ≤ i ≤ r. Now, from (21),

α̃i

(
1

s− a

)
=

(
1

s− a

)deg(αi)

αi(s), 1 ≤ i ≤ r.

Thus,

αi(s) = (s− a)deg(αi)α̃i
(

1
s−a

)
= (s− a)deg(αi)αi,0

∏h
j=1

(
1
s−a − bj

)tij
= αi,0(s− a)deg(αi)

∏h
j=1

(
−bj
s−a

)tij (
s− a− 1

bj

)tij
, 1 ≤ i ≤ r.

Since deg(αi) = deg(α̃i) =
∑h

j=1 tij and 1 = αi,0
∏h

j=1(−bj)tij ,

αi(s) =
h∏
j=1

(
s− a− 1

bj

)tij

, 1 ≤ i ≤ r.
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Summing up, the polynomial matrix A(s) defined in (23) satisfies A(s) ∈ F[s]m×n,
rank(A(s)) = r, deg(A(s)) = d, α1(s), . . . , αr(s) are its invariant factors, f1, . . . , fr are
its partial multiplicities of∞ (see (ii)),R(A(s)) = R(K(s)) andR(A(s)T ) = R(L(s)T ).
2

6 Results for rational matrices

In this section, we solve problems for rational matrices similar to those stated for
polynomial matrices in Section 3. In Theorem 6.2, we solve the rational counterpart of
Problem 3.1 by combining the polynomial result in Theorem 5.1 with the simple fact
that if q(s) is the least common denominator of the entries of a rational matrix R(s),
then q(s)R(s) is a polynomial matrix. It allows us to “transform” the rational problem
of prescribed data into a polynomial problem with “related” prescribed data. We
then solve the resulting polynomial problem using Theorem 5.1, and finally transform
its solution into the solution of the original rational problem. The properties of the
involved “transformations” rely on the auxiliary Lemma 6.1. A similar strategy was
used in [5, Theorem 4.1] to prove the rational counterpart of Theorem 2.1. The solutions
of the rational counterparts of Problems 3.2 and 3.3 follow easily from Theorem 6.2
and are given in Theorems 6.4 and 6.5, respectively.

In Lemma 6.1, we relate the finite and infinite invariant rational functions, the right
and left null spaces, and the column and row spaces of a rational matrix with those of
a polynomial matrix related to it. In the rest of this section, it is convenient to bear in
mind that the denominator ψ1(s) of the first invariant rational function of a rational
matrix R(s) is precisely the (monic) least common denominator of the entries of R(s).
See [22, p. 444].

Lemma 6.1 Let R(s) ∈ F(s)m×n be a rational matrix and let p(s) ∈ F(s) be a monic
polynomial multiple of the least common denominator of the entries of R(s). Then,
p(s)R(s) ∈ F[s]m×n is a polynomial matrix with the same rank as R(s) and:

(i) ϵ1(s)
ψ1(s)

, . . . , ϵr(s)
ψr(s)

are the invariant rational functions of R(s) if and only if p(s)ϵ1(s)
ψ1(s)

, . . . ,
p(s)ϵr(s)
ψr(s)

are the invariant factors of p(s)R(s).

(ii) The integers q1, . . . , qr are the invariant orders at infinity of R(s) if and only if
deg(p(s)R(s)) = deg(p(s))− q1 and 0 = q1− q1, q2− q1, . . . , qr− q1 are the partial
multiplicities of ∞ in p(s)R(s).

(iii) Nr(R(s)) = Nr(p(s)R(s)), Nℓ(R(s)) = Nℓ(p(s)R(s)), and therefore the right
(left) minimal indices of p(s)R(s) and of R(s) are equal.

(iv) R(p(s)R(s)) = R(R(s)), R((p(s)R(s))T ) = R(R(s)T ), and therefore the col-span
(row-span) minimal indices of p(s)R(s) and of R(s) are equal.

Proof. The proof is straightforward. So, we just provide some hints and prove with
some detail only item (ii). It is obvious that p(s)R(s) is a polynomial matrix. The
equality rank(R(s)) = rank(p(s)R(s)) and items (iii) and (iv) follow from the facts
that p(s) is a scalar in F(s) and that multiplication by non zero scalars in the field
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does not change the null spaces and the column and row spaces of a matrix. Item
(i) follows from the Smith–McMillan form (1). To prove (ii), note that p(s)R(s) =(

p(s)

sdeg(p)
Im

)
(sdeg(p)R(s)) and that the matrix

(
p(s)

sdeg(p)
Im

)
is biproper. Thus, the Smith-

McMillan form at infinity of p(s)R(s) is equal to the Smith-McMillan form at infinity of
sdeg(p)R(s), which is the Smith-McMillan form at infinity of R(s) multiplied by sdeg(p).
Therefore, taking into account (2), q1, . . . , qr are the invariant orders at infinity of R(s)
if and only if q1−deg(p), . . . , qr−deg(p) are the invariant orders at infinity of p(s)R(s).
Then deg(p(s)R(s)) = deg(p(s)) − q1 and, by (4), 0 = q1 − q1, q2 − q1, . . . , qr − q1 are
the partial multiplicities of ∞ in p(s)R(s). The converse also follows from (4). 2

Theorem 6.2 Let m, n, r ≤ min{m,n} be positive integers. Let ϵ1(s) | · · · | ϵr(s) and
ψr(s) | · · · | ψ1(s) be monic polynomials in F[s] such that ϵi(s)

ψi(s)
are irreducible rational

functions for i = 1, . . . , r. Let q1 ≤ · · · ≤ qr be integers and let K(s) ∈ F[s]m×r and
L(s)T ∈ F[s]n×r be minimal bases with column degrees k1 ≥ · · · ≥ kr and ℓ1 ≥ · · · ≥ ℓr,
respectively. Let g1 ≥ · · · ≥ gr be the decreasing reordering of kr + ℓ1, . . . , k1 + ℓr.

If R(s) ∈ F(s)m×n is a rational matrix with rank(R(s)) = r, ϵ1(s)
ψ1(s)

, . . . , ϵr(s)
ψr(s)

as

invariant rational functions, q1, . . . , qr as invariant orders at ∞, R(R(s)) = R(K(s))
and R(R(s)T ) = R(L(s)T ), then

(−gr, . . . ,−g1) ≺ (deg(ϵr)− deg(ψr) + qr, . . . , deg(ϵ1)− deg(ψ1) + q1). (25)

Conversely, if F is algebraically closed, condition (25) is sufficient for the existence

of a rational matrix R(s) ∈ F(s)m×n with rank(R(s)) = r, ϵ1(s)
ψ1(s)

, . . . , ϵr(s)
ψr(s)

as invari-

ant rational functions, q1, . . . , qr as invariant orders at ∞, R(R(s)) = R(K(s)) and
R(R(s)T ) = R(L(s)T ).

Remark 6.3 (Comparing Theorems 6.2 and 5.1).

1. Clearly, when the rational matrix R(s) is polynomial, the majorization (25) re-
duces to condition (14). Namely, ψi(s) = 1 for i = 1, . . . , r, ϵ1(s), . . . , ϵr(s) are
the invariant factors of R(s), deg(R(s)) = −q1 and the partial multiplicities of
∞ in R(s) are q1 − q1, . . . , qr − q1 by (4).

2. Observe also that (25) is equivalent to

k∑
i=1

gi +
k∑
i=1

deg(ϵi)−
k∑
i=1

deg(ψi) +
k∑
i=1

qi ≤ 0, 1 ≤ k ≤ r − 1, (26)

r∑
i=1

ki +
r∑
i=1

ℓi +
r∑
i=1

deg(ϵi)−
r∑
i=1

deg(ψi) +
r∑
i=1

qi = 0.

Taking into account (10), the above equality is the index sum theorem constraint
for rational matrices (see [5, Remark 3.4] and [2, Theorem 2.4]). Altogether, this
remark can be seen as the “rational” counterpart of Remark 5.2-3.

3. It is interesting to point out that the only condition involved in Theorem 6.2 is
(25) in contrast with the two conditions (13) and (14) involved in Theorem 5.1.
The reason of this difference is that there exist rational matrices with arbitary
values of the smallest invariant order at infinity, while f1 = 0 always holds for
polynomial matrices. 2
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Proof of Theorem 6.2. Assume that there exists a rational matrix R(s) ∈
F(s)m×n with rank(R(s)) = r, ϵ1(s)

ψ1(s)
, . . . , ϵr(s)

ψr(s)
as invariant rational functions, q1, . . . , qr

as invariant orders at ∞, R(R(s)) = R(K(s)) and R(R(s)T ) = R(L(s)T ). By Lemma
6.1, ψ1(s)R(s) is a polynomial matrix with rank(ψ1(s)R(s)) = r, deg(ψ1(s)R(s)) =

deg(ψ1(s))−q1, ψ1(s)ϵ1(s)
ψ1(s)

, . . . , ψ1(s)ϵr(s)
ψr(s)

as invariant factors, q1−q1, q2−q1, . . . , qr−q1 as
partial multiplicities of∞,R(ψ1(s)R(s)) = R(R(s)) = R(K(s)) andR((ψ1(s)R(s))

T ) =
R(R(s)T ) = R(L(s)T ). By Theorem 5.1 applied to ψ1(s)R(s), we have

(deg(ψ1)− q1 − gr, . . . , deg(ψ1)− q1 − g1)
≺ (deg(ψ1) + deg(ϵr)− deg(ψr) + qr − q1, . . . ,

deg(ψ1) + deg(ϵ1)− deg(ψ1) + q1 − q1),
(27)

which is equivalent to condition (25).
Conversely, assume that F is algebraically closed and (25) holds. From (26) for

k = 1, we obtain g1 + deg(ϵ1) ≤ deg(ψ1) − q1, therefore, deg(ψ1) − q1 ≥ 0. Moreover,

notice that αi(s) =
ψ1(s)ϵi(s)
ψi(s)

, i = 1 . . . , r, are monic polynomials such that α1(s) | · · · |
αr(s) and deg(αi) = deg(ψ1) + deg(ϵi) − deg(ψi). Note also that (qr − q1, . . . , q1 −
q1) is a partition of non negative integers. As already seen in the necessity part,
condition (25) is equivalent to (27). By Theorem 5.1, there exists A(s) ∈ F[s]m×n

with rank(A(s)) = r, deg(A(s)) = deg(ψ1) − q1, α1(s), . . . , αr(s) as invariant factors,
q1− q1, . . . , qr− q1 as partial multiplicities of ∞, R(A(s)) = R(K(s)) and R(A(s)T ) =

R(L(s)T ). Take R(s) = A(s)
ψ1(s)

. Then, rank(R(s)) = rank(A(s)) = r, and by Lemma

6.1, ϵ1(s)
ψ1(s)

, . . . , ϵr(s)
ψr(s)

are the invariant rational functions of R(s), q1, . . . , qr its invariant

orders at ∞, R(R(s)) = R(K(s)) and R(R(s)T ) = R(L(s)T ). 2

Theorem 6.4 Let m, n, r ≤ min{m,n} be positive integers. Let ϵ1(s) | · · · | ϵr(s) and
ψr(s) | · · · | ψ1(s) be monic polynomials in F[s] such that ϵi(s)

ψi(s)
are irreducible rational

functions for i = 1, . . . , r. Let q1 ≤ · · · ≤ qr be integers and (k1, . . . , kr), (ℓ1, . . . , ℓr)
partitions of non negative integers. Let g1 ≥ · · · ≥ gr be the decreasing reordering of
kr + ℓ1, . . . , k1 + ℓr.

If R(s) ∈ F(s)m×n is a rational matrix with rank(R(s)) = r, ϵ1(s)
ψ1(s)

, . . . , ϵr(s)
ψr(s)

as
invariant rational functions, q1, . . . , qr as invariant orders at ∞, k1, . . . , kr as col-span
minimal indices, and ℓ1, . . . , ℓr as row-span minimal indices, then (15), (16) and (25)
hold.

Conversely, if F is algebraically closed, conditions (15), (16) and (25) are suffi-
cient for the existence of a rational matrix R(s) ∈ F(s)m×n with rank(R(s)) = r,
ϵ1(s)
ψ1(s)

, . . . , ϵr(s)
ψr(s)

as invariant rational functions, q1, . . . , qr as invariant orders at ∞,
k1, . . . , kr as col-span minimal indices and ℓ1, . . . , ℓr as row-span minimal indices.

Proof. The proof follows from Proposition 2.5 and Theorem 6.2 analogously as
the proof of Theorem 5.3, i.e, the polynomial case, follows from Proposition 2.5 and
Theorem 5.1. 2

Theorem 6.5 Let m, n, r ≤ min{m,n} be positive integers. Let ϵ1(s) | · · · | ϵr(s) and
ψr(s) | · · · | ψ1(s) be monic polynomials in F[s] such that ϵi(s)

ψi(s)
are irreducible rational

functions for i = 1, . . . , r. Let q1 ≤ · · · ≤ qr be integers. Let (k1, . . . , kr), (ℓ1, . . . , ℓr),
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(d1, . . . , dn−r), (v1, . . . , vm−r) be partitions of non negative integers. Let g1 ≥ · · · ≥ gr
be the decreasing reordering of kr + ℓ1, . . . , k1 + ℓr.

If R(s) ∈ F(s)m×n is a rational matrix with rank(R(s)) = r, ϵ1(s)
ψ1(s)

, . . . , ϵr(s)
ψr(s)

as
invariant rational functions, q1, . . . , qr as invariant orders at ∞, k1, . . . , kr as col-
span minimal indices, ℓ1, . . . , ℓr as row-span minimal indices, and d1, . . . , dn−r and
v1, . . . , vm−r as right and left minimal indices, respectively, then (10) and (25) hold.

Conversely, if F is algebraically closed, conditions (10) and (25) are sufficient for

the existence of a rational matrix R(s) ∈ F(s)m×n with rank(R(s)) = r, ϵ1(s)
ψ1(s)

, . . . , ϵr(s)
ψr(s)

as invariant rational functions, q1, . . . , qr as invariant orders at ∞, k1, . . . , kr as col-
span minimal indices, ℓ1, . . . , ℓr as row-span minimal indices, and d1, . . . , dn−r and
v1, . . . , vm−r as right and left minimal indices, respectively.

Proof. The proof is analogous to that of the polynomial case in Theorem 5.5.
Simply, one has to replace the use of Theorems 5.1 and 5.3 in that proof by Theorems
6.2 and 6.4, respectively. 2

7 Conclusions and open problems

In this paper, we have provided necessary and sufficient conditions for the existence
of polynomial and rational matrices when the minimal indices of the column and row
spaces, together with other structural data, are prescribed. As far as we know, these
are the first results available in the literature that provide complete information about
how the minimal indices of the column and row spaces are related to other relevant
magnitudes of rational and polynomial matrices, as the invariant rational functions,
the invariant rational functions at infinity, and the minimal indices of the left and right
null spaces.

It is well known that polynomial and rational matrices arising in applications often
possess particular structures as, for instance, symmetric, skew-symmetric, Hermitian,
palindromic or alternating structures [24]. Therefore, it would be of interest to study
how the necessary and sufficient conditions obtained in this paper should be modified
when the polynomial or rational matrix whose existence is to be established is required
to have some particular structure. This is, in general, a very challenging problem,
since extensions of the result in [1, 14] about the existence of polynomial matrices with
prescribed complete eigenstructure (i.e., without considering the minimal indices of the
column and row spaces) to structured scenarios have been obtained only in some cases
and under some strong constraints as imposing regularity [7], or simple eigenvalues [10,
Theorem 4.1], or the degree to be at most two [12, 30]. However, these constraints are
significant in applications and may make it possible to obtain structured analogues of
the results in this paper.

Appendix A A determinantal lemma

Let R be an integral domain, Rm×n the set of m × n matrices with entries in R and
F the field of fractions of R. As in Section 5.1, for P ∈ Rm×n, I ∈ Qp,m and J ∈ Qq,n,
we denote by P (I, J) the p× q submatrix of P of entries that lie in the rows indexed
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by I and the columns indexed by J , and P (I, :) ∈ Rp×n and P (:, J) ∈ Rm×q are the
submatrices of P formed by the rows indexed by I and the columns indexed by J ,
respectively. Moreover, we also use the following notation: given two positive integers
i and j, such that i < j, i : j = [i, i+ 1, . . . , j].

Lemma A.1 Let E = [ei,j]1≤i,j≤r ∈ Rr×r with rank(E) = r. Let k ∈ {1, . . . , r} and
Z ∈ Qk,r. Then, there exist I, J ∈ Qk,r, J ≤ Z, I ≤ Z∗, such that det(E(I, J)) ̸= 0.

Lemma A.1 is proven by induction on r. First, we illustrate the proof with an
example.

Example A.2 Let E = [ei,j]1≤i,j≤5 ∈ R5×5 with rank(E) = 5.

Assume that if Ê ∈ R4×4 has rank(Ê) = 4, then for k ∈ {1, . . . , 4} and Ẑ ∈ Qk,4

there exist Î , Ĵ ∈ Qk,4, Ĵ ≤ Ẑ, Î ≤ Ẑ∗, such that det(Ê(Î , Ĵ)) ̸= 0.
If X =

[
c1 · · · c5

]
∈ R4×5 is the matrix formed by the 4 first rows of E,

then rank(X) = 4. Thus, at least one of the columns of X depends linearly on
the others. Suppose that the columns c1, c2 are linearly independent and c3 de-
pends linearly on c1, c2. Then, there exists g ∈ F2×1 such that c3 =

[
c1 c2

]
g. As

rank(

[
c1 c2 c3
e5,1 e5,2 e5,3

]
) = rank(E(:, 1 : 3)) = 3, we conclude that e5,3 ̸=

[
e5,1 e5,2

]
g.

Take Ê = [êi,j]1≤i,j≤4 =
[
c1 c2 c4 c5

]
∈ R4×4; i.e., Ê is the submatrix obtained

from E by deleting the last row and the third column. We have rank(Ê) = 4, and

Ê =


ê1,1 ê1,2 ê1,3 ê1,4
ê2,1 ê2,2 ê2,3 ê2,4
ê3,1 ê3,2 ê3,3 ê3,4
ê4,1 ê4,2 ê4,3 ê4,4

 =


e1,1 e1,2 e1,4 e1,5
e2,1 e2,2 e2,4 e2,5
e3,1 e3,2 e3,4 e3,5
e4,1 e4,2 e4,4 e4,5

 .
Let k ∈ {1, . . . , 5} and Z = [z1, . . . , zk] ∈ Qk,5.
If k = 5, then Q5,5 = {[1, . . . , 5]} and Z = Z∗ = [1, . . . , 5]. Taking I = J = Z we

have E(I, J) = E and det(E) ̸= 0.
Assume that k ∈ {1, . . . , 4}. We show how to proceed in two examples for k = 3.

• Let Z = [z1, z2, z3] = [1, 3, 4] ∈ Q3,5 (Z∗ = [2, 3, 5]). Here we take Ẑ =

[ẑ1, ẑ2, ẑ3] = [1, 2, 3] ∈ Q3,4 (Ẑ∗ = [2, 3, 4]). As we will see in the proof of Lemma
A.1, the choice corresponds to ẑ1 = z1, ẑ2 = z2− 1, ẑ3 = z3− 1. By the induction
hypothesis, there exist Î = [̂i1, î2, î3], Ĵ = [ĵ1, ĵ2, ĵ3] ∈ Q3,4 such that

î1 ≤ 2, î2 ≤ 3, î3 ≤ 4, ĵ1 = 1, ĵ2 = 2, ĵ3 = 3,

and det(Ê(Î , Ĵ)) ̸= 0. If we take I = Î and J = [1, 2, 4], then I, J ∈ Q3,5, I ≤ Z∗,
J ≤ Z, and

E(I, J) =

ei1,1 ei1,2 ei1,4
ei2,1 ei2,2 ei2,4
ei3,1 ei3,2 ei3,4

 =

êî1,1 êî1,2 êî1,3
êî2,1 êî2,2 êî2,3
êî3,1 êî3,2 êî3,3

 ,
i.e., E(I, J) = Ê(Î , Ĵ); hence det(E(I, J)) ̸= 0.
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• Let Z = [z1, z2, z3] = [1, 2, 3] ∈ Q3,5 (Z∗ = [3, 4, 5]). Now we take Ẑ = [ẑ1, ẑ2] =

[1, 2] ∈ Q2,4 (Ẑ∗ = [3, 4]). Again, as we will see in the proof of Lemma A.1, Ẑ
belongs to Qk−1,4 and is defined as ẑ1 = z1, ẑ2 = z2. By the induction hypothesis,

there exist Î = [̂i1, î2], Ĵ = [ĵ1, ĵ2] ∈ Q2,4 such that

î1 ≤ 3, î2 ≤ 4, ĵ1 = 1, ĵ2 = 2,

and det(Ê(Î , Ĵ)) ̸= 0. Define I = [̂i1, î2, 5] and J = [1, 2, 3]. Then I, J ∈ Q3,5,
I ≤ Z∗, J ≤ Z, and

E(I, J) =

ei1,1 ei1,2 ei1,3
ei2,1 ei2,2 ei2,3
e5,1 e5,2 e5,3

 =

êî1,1 êî1,2 ei1,3
êî2,1 êî2,2 ei2,3
e5,1 e5,2 e5,3

 .
We have

E(I, J)

[
I2 −g
0 1

]
=

êî1,1 êî1,2 0
êî2,1 êî2,2 0
e5,1 e5,2 e′5,3

 ,
where e′5,3 = e5,3 −

[
e5,1 e5,2

]
g ̸= 0; hence det(E(I, J)) = e′5,3 det(Ê(Î , Ĵ)) ̸= 0.

Proof of Lemma A.1. If k = r, the result is trivial. Indeed, Qr,r = {[1, . . . , r]};
therefore, Z = Z∗ = [1, . . . , r], and for I = J = Z we have det(E(I, J)) = det(E) ̸= 0.

If k = 1, then Z = [z1] and Z∗ = [r − z1 + 1]. Since rank(E) = r, we have
rank(E(1 : r − z1 + 1, 1 : z1) ≥ 1, therefore, there exist i ≤ r − z1 + 1 and j ≤ z1 such
that ei,j ̸= 0. This means that Lemma A.1 holds for k = 1. Thus, we can assume from
now on that k ≥ 2 and, consequently, r ≥ 2.

We prove the lemma for r ≥ 2 by induction on r.
If r = 2, then k = r = 2 and, as mentioned above, the lemma is trivially satisfied.
Let r − 1 ≥ 2. Assume that the lemma is satisfied for Ê ∈ R(r−1)×(r−1) with

rank(Ê) = r − 1, and let E ∈ Rr×r with rank(E) = r.
Let X = E(1 : (r − 1), :), i.e., X ∈ R(r−1)×r is the matrix formed by the r − 1 first

rows of E, and let c1, . . . , cr ∈ R(r−1)×1 be the columns of X. As rank(E) = r, we have
rank(X) = r − 1.

If c1 = 0, take u = 1. Otherwise, let cu be the first column in X that depends
linearly on the preceding columns, i.e.,

u = min{i : rank
([
c1 · · · ci

])
= i− 1}.

Hence, 1 ≤ u ≤ r, and if u > 1 there exists g ∈ F (u−1)×1 such that[
c1 · · · cu−1

]
g = cu. (28)

As rank

([
c1 · · · cu
er,1 · · · er,u

])
= rank(E(:, 1 : u)) = u, we have

0 ̸= er,u, if u = 1,[
er,1 . . . er,u−1

]
g ̸= er,u, if u > 1.

(29)
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Let Ê = [êi,j]1≤i,j≤r−1 =
[
c1 . . . cu−1 cu+1 . . . cr

]
∈ R(r−1)×(r−1), i.e., Ê is

the submatrix obtained from E by deleting the last row and the column u. Then
rank(Ê) = r − 1, and

êi,j = ei,j, 1 ≤ i ≤ r − 1, 1 ≤ j ≤ u− 1,
êi,j = ei,j+1, 1 ≤ i ≤ r − 1, u ≤ j ≤ r − 1.

Let k ∈ {2, . . . , r} and Z = [z1, . . . , zk] ∈ Qk,r. Set z0 = 0. Notice that zi ≥ i,
0 ≤ i ≤ k, and let w = max{i ≥ 0 : zi = i}. Observe that 0 ≤ w ≤ k.

• If w < u, take ẑ0 = 0 and Ẑ = [ẑ1, . . . , ẑk], where

ẑi = zi = i, 1 ≤ i ≤ w,
ẑi = zi − 1, w + 1 ≤ i ≤ k.

If w = k, then 1 = ẑ1 < ẑk = k = w ≤ u − 1 ≤ r − 1. If w = 0, then
0 < z1 − 1 = ẑ1 < · · · < ẑk = zk − 1 ≤ r − 1. If 0 < w < k, then 0 < 1 = z1 =
ẑ1 ≤ w = ẑw = w+ 1− 1 < zw+1 − 1 = ẑw+1 ≤ · · · ≤ ẑk = zk − 1 ≤ r− 1. Hence,
Ẑ ∈ Qk,r−1. Let Z

∗ = [z∗1 , . . . , z
∗
k] and Ẑ

∗ = [ẑ∗1 , . . . , ẑ
∗
k]. Then

ẑ∗i = r − ẑk−i+1 = r − zk−i+1 + 1 = z∗i , 1 ≤ i ≤ k − w,
ẑ∗i = r − ẑk−i+1 = r − zk−i+1 = z∗i − 1, k − w + 1 ≤ i ≤ k.

By the induction hypothesis, there exist Î = [̂i1, . . . , îk], Ĵ = [ĵ1, . . . , ĵk] ∈ Qk,r−1 ⊂
Qk,r such that Î ≤ Ẑ∗, Ĵ ≤ Ẑ, and det(Ê(Î , Ĵ)) ̸= 0. Taking I = Î, we have

I ∈ Qk,r and I ≤ Ẑ∗ ≤ Z∗. Define J = [j1, . . . , jk] as

ji = ĵi, if ĵi < u,

ji = ĵi + 1, if ĵi ≥ u.

Then, 1 ≤ ĵ1 ≤ j1 < · · · < jk ≤ ĵk + 1 ≤ r, hence J ∈ Qk,r. By the definition

of Ê, E(I, J) = Ê(Î , Ĵ), therefore det(E(I, J)) ̸= 0. Moreover, if ĵi < u, then
ji ≤ ẑi ≤ zi. If ĵi ≥ u, then ẑi ≥ ĵi ≥ u > w = ẑw; hence, i ≥ w + 1 and
ji = ĵi + 1 ≤ ẑi + 1 = zi. It means that J ≤ Z.

• If w ≥ u, then 1 ≤ u ≤ w ≤ k. Take ẑ0 = 0 and define Ẑ = [ẑ1, . . . , ẑk−1] as

ẑi = zi = i, 1 ≤ i ≤ u− 1,
ẑi = zi+1 − 1, u ≤ i ≤ k − 1.

If u = k, then 1 = ẑ1 ≤ ẑu−1 = ẑk−1 = u − 1 ≤ r − 1. If 1 < u < k, then
1 = ẑ1 ≤ ẑu−1 = u− 1 = zu−1 < zu ≤ zu+1 − 1 = ẑu ≤ ẑk−1 = zk − 1 ≤ r − 1. If
u = 1, then 0 < ẑ1 = z2 − 1 ≤ ẑk−1 = zk − 1 ≤ r − 1. Therefore, Ẑ ∈ Qk−1,r−1 .

Let Z∗ = [z∗1 , . . . , z
∗
k] and Ẑ

∗ = [ẑ∗1 , . . . , ẑ
∗
k−1]. Then,

ẑ∗i = r − ẑk−i = r − zk−i+1 + 1 = z∗i , 1 ≤ i ≤ k − u,
ẑ∗i = r − ẑk−i = r − k + i = r + 1− zk−i+1 = z∗i , k − u+ 1 ≤ i ≤ k − 1.
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By the induction hypothesis, there exist Î = [̂i1, . . . , îk−1], Ĵ = [ĵ1, . . . , ĵk−1] ∈
Qk−1,r−1 such that Î ≤ Ẑ∗, Ĵ ≤ Ẑ, and det(Ê(Î , Ĵ)) ̸= 0. Note that ĵi = ẑi = i,
for 1 ≤ i ≤ u− 1. Define I = [i1, . . . , ik] as

ih = îh, 1 ≤ h ≤ k − 1,
ik = r.

Then, I ∈ Qk,r and ih = îh ≤ ẑ∗h = z∗h for 1 ≤ h ≤ k − 1. Since 1 ≤ w, we have
z1 = 1 and z∗k = r; hence ik = z∗k and I ≤ Z∗.

Define also J = [j1, . . . , jk] as

ji = i, 1 ≤ i ≤ u,

ji = ĵi−1 + 1, u+ 1 ≤ i ≤ k.

As ju = u ≤ ĵu < ĵu + 1 = ju+1, we have 1 = j1 < · · · < jk ≤ r. Therefore,
J ∈ Qk,r and

E(I, J) =


ei1,1 . . . ei1,u ei1,ju+1 . . . ei1,jk
...

. . .
...

...
. . .

...
eik−1,1 . . . eik−1,u eik−1,ju+1 . . . eik−1,jk

er,1 . . . er,u er,ju+1 . . . er,jk

 .
Thus, taking into account (28),

E(I, J)

Iu−1 −g 0
0 1 0
0 0 Ik−u



=


ei1,1 . . . ei1,u−1 0 ei1,ju+1 . . . ei1,jk
...

. . .
...

...
...

. . .
...

eik−1,1 . . . eik−1,u−1 0 eik−1,ju+1 . . . eik−1,jk

er,1 . . . er,u−1 e′r,u er,ju+1 . . . er,jk

 ,
where e′r,u = er,u −

[
er,1 . . . er,u−1

]
g if u > 1, and e′r,u = er,u if u = 1. From

(29) we obtain e′r,u ̸= 0. Moreover, ei1,1 . . . ei1,u−1 ei1,ju+1 . . . ei1,jk
...

. . .
...

...
. . .

...
eik−1,1 . . . eik−1,u−1 eik−1,ju+1 . . . eik−1,jk



=

 eî1,ĵ1 . . . eî1,ĵu−1
eî1,ĵu+1 . . . eî1,ĵk−1+1

...
. . .

...
...

. . .
...

eîk−1,ĵ1
. . . eîk−1,ĵu−1

eîk−1,ĵu+1 . . . eîk−1,ĵk−1+1



=

 êî1,ĵ1 . . . êî1,ĵu−1
êî1,ĵu . . . êî1,ĵk−1

...
. . .

...
...

. . .
...

êîk−1,ĵ1
. . . êîk−1,ĵu−1

êîk−1,ĵu
. . . êîk−1,ĵk−1


= Ê(Î , Ĵ).
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Hence det(E(I, J)) = (−1)k+ue′r,u det(Ê(Î , Ĵ)) ̸= 0. Moreover, ji = i = zi for

1 ≤ i ≤ u, and ji = ĵi−1 + 1 ≤ ẑi−1 + 1 = zi for u+ 1 ≤ i ≤ k. Thus, J ≤ Z.

2
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Geometry of matrix polynomial spaces. Found. Comput. Math. 20 (2020), 423–
450.

[17] Dopico, F. M., Marcaida, S., Quintana, M. C., and Van Dooren, P. Lo-
cal linearizations of rational matrices with application to rational approximations
of nonlinear eigenvalue problems. Linear Algebra Appl. 604 (2020), 441–475.

[18] Forney, G. D. Minimal bases of rational vector spaces, with applications to
multivariable linear systems. SIAM J. Control 13, 3 (1975), 493–520.

[19] Fuhrmann, P., and Willems, J. Factorization indices at infinity for rational
matrix functions. Integral Equations Operator Theory 2, 3 (1979), 287–301.

[20] Gohberg, I., Lancaster, P., and Rodman, L. Matrix Polynomials, vol. 58 of
Classics in Applied Mathematics. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 2009. Reprint of the 1982 original.
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[30] Perović, V., and Mackey, D. S. Quadratic realizability of palindromic matrix
polynomials: the real case. Linear Multilinear Algebra 71, 5 (2023), 797–841.

[31] Rosenbrock, H. H. State-space and Multivariable Theory. Thomas Nelson and
Sons, London, 1970.

[32] Strang, G. The fundamental theorem of linear algebra. Amer. Math. Monthly
100, 9 (1993), 848–855.

[33] Taslaman, L., Tisseur, F., and Zaballa, I. Triangularizing matrix polyno-
mials. Linear Algebra Appl. 439, 7 (2013), 1679–1699.

[34] Tisseur, F., and Zaballa, I. Triangularizing quadratic matrix polynomials.
SIAM J. Matrix Anal. Appl. 34, 2 (2013), 312–337.

[35] Van Dooren, P. The Generalized Eigenstructure Problem: Applications in Lin-
ear System Theory. Ph.D. dissertation, Kath. Univ. Leuven, Belgium, 1979.

[36] Van Dooren, P. The generalized eigenstructure problem in linear system theory.
IEEE Trans. Automat. Control 26, 1 (1981), 111–129.

[37] Van Dooren, P., and Dewilde, P. The eigenstructure of an arbitrary poly-
nomial matrix: computational aspects. Linear Algebra Appl. 50 (1983), 545–579.

[38] Vardulakis, A. I. G. Linear Multivariable Control. John Wiley and Sons, New
York, 1991.

[39] Verghese, G., Van Dooren, P., and Kailath, T. Properties of the system
matrix of a generalized state-space system. Internat. J. Control 30, 2 (1979),
235–243.

[40] Wolovich, W. Linear Multivariable Systems. Springer, New York-Heidelberg,
1974.

[41] Zaballa, I. Controllability and Hermite indices of matrix pairs. Int. J. Control
68, 1 (1997), 61–86.

35


