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Abstract

We describe how to find the general solution of the matrix equation AX + X*B = 0,
where A € C™*™ and B € C"*™ are arbitrary matrices, X € C"*™ is the unknown, and X*
denotes either the transpose or the conjugate transpose of X. We first show that the solution
can be obtained in terms of the Kronecker canonical form of the matrix pencil A+ AB* and
the two nonsingular matrices which transform this pencil into its Kronecker canonical form.
We also give a complete description of the solution provided that these two matrices and
the Kronecker canonical form of A + AB* are known. As a consequence, we determine the
dimension of the solution space of the equation in terms of the sizes of the blocks appearing in
the Kronecker canonical form of A+ AB*. The general solution of the homogeneous equation
AX 4+ X*B = 0 is essential to finding the general solution of AX + X*B = C, which is related
to palindromic eigenvalue problems that have attracted considerable attention recently.

Keywords: Kronecker canonical form, matrix equations, matrix pencils, palindromic eigen-
value problems, Sylvester equation for *congruence

AMS subject classification: 15A21, 15A24, 65F15

1 Introduction

Given two arbitrary complex matrices A € C™*™ and B € C"*™, we are concerned with the
general solution of the matrix equation

AX + X*B =0, (1)

where X € C™*™ is the unknown and X* denotes either the transpose or the conjugate
transpose of X. Equation (1) is the homogeneous version of the Sylvester equation for
*congruence, AX +X*B = C, that has recently attracted the attention of several researchers
due to its relationship with palindromic eigenvalue problems (G+AG*) v = 0[16, 3, 14, 9], and
whose solution is related to block-antidiagonalization of block anti-triangular matrices via
*congruence. Several results are already available for the equation AX+X*B = C'": necessary
and sufficient conditions for solvability have been given in [20] in the spirit of Roth’s criterion
(see also [9]), necessary and sufficient conditions for the existence of a unique solution for
every right-hand side have been established in [3, 14], and, in this case, an efficient algorithm
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to numerically compute this unique solution has been presented in [9]. However, to the best
of our knowledge, the general solution of AX + X*B = C has not yet been studied; this
problem will be solved if a particular solution can be determined and the general solution
of AX + X*B =0 is found. The purpose of this work is to find the general solution to this
last equation.

Equation (1) looks similar to the homogeneous Sylvester equation

AX -XB=0, (2)

where A and B are square matrices, in general of different sizes. Equation (2) is related to
block-diagonalization of block-triangular matrices via similarity and its study is a classical
subject in matrix analysis that is considered in many standard references. In particular,
its general solution has been known for more than 50 years [11, Ch. VIII], [12, Ch. 4].
However, the classical techniques used in [11, Ch. VIII] to solve the homogeneous Sylvester
equation (2) are no longer applicable to equation (1). The (conjugate) transposition of
the unknown matrix in the second summand considerably complicates the analysis, and a
different approach is required.

In order to highlight the differences between equations (2) and (1), let us discuss the
strategies for solving both equations. The dimension of the solution space of (2) is invariant
under independent similarities of the coefficient matrices A and B, and there is a bijection
between the solutions of (2) and the solutions of AX — XB = 0, where A = SAS™! and
B =TBT! are any pair of matrices similar to A and B. As a consequence, the dimension
of the solution space of (2) depends only on the Jordan canonical forms (JCF) of A and B
(denoted by J4 = J{1 @ -+ @ JZ‘;‘ and Jg = JP @ --- @ J , respectively, where & denotes
the direct sum of matrices, that is, the block-diagonal matrlx whose diagonal blocks are
the summands). Moreover, the solution can be recovered from the solution of the equation
JaX — XJp = 0. If X is partitioned into blocks, X = [Xj;], according to the blocks in J4
and Jp, then the equation J4 X — X Jp = 0 is decoupled into smaller independent equations
JAX —Xij J] = 0 for each block X;;, 1 <¢ < pand 1 < j < gq. Thus, the problem of solving
(2) reduces to solving it when the coefficients are single Jordan blocks. The key advantage
of this approach is that the general solution of JZ-AXU — XiijB = 0 can be determined very
easily [11, Ch. VIII].

By contrast, a similarity transformation is not useful for solving equation (1), as the
dimension of the solution space of (1) is not necessarily preserved if we replace A and B
with similar matrices. However, we will see that the dimension of the solution space of (1)
is invariant under strict equivalence of the pencil A + AB*, and there is a bijection between
the solutions of (1) and the solutions of AX + X*B = 0, where A+ AB* = P(A+ AB*)Q
is any pencil strictly equivalent to A+ AB*. As a consequence, we can recover the solutions
of the original equation (1) from the solutions of AX + X*B = 0. Then, it is natural to
look for A and B such that A + AB* is a “canonical representative” under strict equivalence
of A+ AB* and ~AX + X*B = 0 is easier to solve than the original equation. The natural
choice for A + AB* is the Kronecker canonical form (KCF) of A+ AB* [11, Ch. XII], which
is a block diagonal form like the JCF, and is denoted by

E+AF*=(E\ @ - ®Eq) + \(Ff &--- @ F}).

Therefore, we may focus on the solution of (1) with the pencil A + AB* given in KCF, that
is, we focus on EX + X*F = 0 and consider X = [Xj;]| partitioned into blocks according to
the blocks in F and F. But at this point we find two relevant differences with the Sylvester
equation that make the analysis much more complicated. First, the KCF involves four
different types of blocks, instead of only one type as in the JCF, and second, the presence
of the (conjugate) transpose in equation (1) implies that EX + X*F = 0 does not decouple
into independent equations for each block X;;. More precisely, one gets decoupled equations
E; X + X} F; = 0 for the diagonal blocks, 1 < i < d, while for the off-diagonal blocks one



gets the following 2 x 2 systems of matrix equations for 1 <i < j < d:

EiXij+ X5 Fy =0,
E;jXj + X} Fy = 0.

This leads to 14 different types of matriz equations or systems of matriz equations, and the
main task of this paper is to solve all of them. As a consequence of the solution of these
equations/systems, we obtain a formula for the dimension of the solution space of (1) in
terms of the sizes of the blocks in the KCF of A + AB*. In this context, it is important to
notice that (1) is linear over C when x = T, but this is not the case when x = %. Nonetheless,
when * = #, equation (1) is linear over R. As a consequence, we will consider the solution
space of (1), with x = T, as a linear space over C, whereas the solution space for x = % will
be considered as a linear space over R. Therefore, we deal with dimensions over two different
fields (C and R). To avoid confusion, we will refer to the dimension of a vector space over C
simply as its dimension and to the dimension over R as its real dimension.

It is important to remark that the general solution of equation (1) has been determined
previously in the particular but important case A = B, which is related to orbits of matrices
and palindromic pencils under *congruence. See reference [7] for x = T and [8] for * = x*.
However, the approach followed in [7, 8] is different than the one presented here; the trans-
formation used in [7, 8] to reduce the original equation to a simpler form is *congruence,
more precisely, the reduction of A to its canonical form for *congruence (CF*C) [13]. This
approach is very natural, since *congruence preserves the structure of *palindromic pen-
cils A+ XA A* and *congruence is the transformation used in structure-preserving numerical
algorithms for computing eigenvalues of this type of pencils.

Unfortunately, for the general equation (1), *congruence fails to preserve the dimension
of the solution space, as similarity does. This fact establishes another striking difference
between equations (1) and the Sylvester equation (2), namely, equation (2) is solved using
the JCF both in the general case and in the particular case A = B [11, Ch. VIII], while
the CF*C is only useful to solve (1) when A = B. As we have discussed above, the general
solution of (1) can be obtained via the KCF of A+ AB*, which means that in the case A = B
the solution of (1) can be obtained in terms of the KCF of A + AA*. We will see that the
KCF of the *palindromic pencil A+ AA* is in one-to-one correspondence with the CF*C of A
(see [6] for the case x = T and Theorem 7 in this paper for the case x = *). This one-to-one
correspondence allows us to recover the general solution of AX + X*A = 01in [7, 8] from the
solution provided in the present paper for the general case of (1), as well as the dimension
of the solution space.

Equation (1) does not seem to have a history as long as the Sylvester equation (2), and
has not attracted the same attention either. In this paragraph we briefly discuss the most
relevant references that we know for equations related to (1). Matrix equations, over the
complex field, involving both the unknown and its transpose (or its conjugate transpose) can
be traced back to the 1960’s [18, 1]. More recently, the non-homogenous equation

AX +X*B=C (3)

has attracted the attention of several researchers. The particular case B = +A* of (3) was
solved in [15], later in [2] for » = T, and recently in [10] for linear bounded operators and A
of closed range (here (-)* stands for the adjoint operator). The general case of (3), for x = x,
was addressed in [20], where the author obtains necessary and sufficient conditions for the
solvability of (3) over C. This result has recently been extended in [9] to arbitrary fields with
characteristic not two, for both (-)* and (-)7. In [9], an efficient algorithm for the numerical
solution of (3) is also presented in the case where this solution is unique. Equation (3), with
* =T, has appeared also in [3] in connection with structured condition numbers of deflating
subspaces of regular palindromic matrix pencils G+ G”, and the same equation, with x = x,
arises in [14] in the context of structure-preserving QR-type algorithms for computing the
eigenvalues of regular palindromic pencils.



An additional consequence of the results in this paper is that they allow us to characterize
when the operator X — AX + X*B is invertible. This question was already solved in [3, 14],
but we provide another proof here, which is an immediate consequence of the dimension
count for the solution space of (1). We stress that this operator is linear over C if x =T and
linear over R if x = .

The paper is organized as follows. In Section 2 we recall the notion of strict equivalence
of pencils and we show its close relationship with the solution of (1). We also recall the
KCF of matrix pencils, which is the canonical form under strict equivalence. In Section 3 we
outline the procedure to solve (1) by taking advantage of the KCF of the pencil A+AB*, and
we display the main results of this paper, namely, the dimension of the solution space of (1)
in terms of the sizes of the blocks appearing in the KCF of A + AB* (Theorem 3 for x =T
and Theorem 4 for x = *). In Section 4 we prove Theorem 3 by solving the 14 equations or
systems of equations that we have mentioned above for the case x = T'. In particular, Section
4.1 is devoted to solving the equations for the individual blocks and Section 4.2 is devoted to
solving the 2 x 2 systems of equations involving pairs of blocks. We remark that the solutions
of these equations and systems of equations allow us to recover the solution of the original
equation (1) provided that the change matrices leading A + AB” to its KCF are known.
Section 5 is the counterpart of Section 4 for * = *. In Section 6 we derive some previously
known results from our main theorems stated in Section 3. More precisely, we obtain the
dimension of the solution space of (1) in the particular cases A = B and A = +B*, and we
obtain necessary and sufficient conditions for the operator X — AX + X*B to be invertible.
Finally, in Section 7 we summarize the main contributions of this paper and present some
lines of future research.

2 Strict equivalence of matrix pencils. The Kronecker
canonical form

Throughout this paper we will use I, and 0,,x, to denote the k x k identity matrix and the
m X n matrix of all zeros, respectively. Also, we denote the inverse of the transpose or the
conjugate transpose by (-)7*.

Definition 1 Two matriz pencils, A + \B* and A+ )\E*, are strictly equivalent if there
exist two non-singular (constant) matrices P and Q such that A+ AB = P(A+ \B)Q.

The strict equivalence transformation plays a crucial role in our approach to solve (1).
The key to our procedure is the following result.

Theorem 1 Let A+ \B* and A+ \B* be strictly equivalent matriz pencils, with A+A\B* =
P(A+ AB*)Q. Then 'Y is a solution of AY +Y*B = 0 if and only if X = QY P~ is a
solution of AX + X*B = 0. As a consequence, the solution spaces of both equations are
isomorphic via Y — QY P7* = X.

Proof. Given the conditions of the statement, we have A= PAQ and B* = PB*@Q, and by
applying the x operator we obtain B = Q*BP*. Then

AY 4+ Y*B = PAQY + Y*Q*BP* = P(AQYP~* + P~'Y*Q*B)P*
= P(AX + X*B)P*.

Hence, AX + X*B = 0 if and only if AY +Y*B = 0. The map Y ~— QY P~* is clearly linear
and invertible, so it is an isomorphism. O

Since we want to solve (1) for arbitrary A, B* € C™*™, in order to take advantage of
Theorem 1 we must look for a canonical representative under strict equivalence of the matrix
pencil A+ AB* and solve the equation associated with this representative (i.e. the one whose



coefficients are those corresponding to this canonical representative). The canonical form for
strict equivalence of matrix pencils is the Kronecker canonical form [11, Ch. XIIJ.

Theorem 2 (Kronecker canonical form) Each complex matriz pencil A + AB, with
A, B € C™*™ s strictly equivalent to a direct sum of blocks of the following types:

(1) Right singular blocks:

Al
A1
L. =
A 1 ex(e+1)
(2) Left singular blocks: Lz;, where Ly is a right singular block.
(3) Finite blocks: Ji(u) + Ak, where Ji(u) is a Jordan block of size k x k associated
with u € C,
w1
w1
Je(p) =
[T
K7 kxk

(4) Infinite blocks: N, = I, + AJ,(0).

This pencil is uniquely determined, up to permutation of blocks, and is known as the Kro-
necker canonical form (KCF) of A + AB.

We will denote the coefficient matrices of the right singular blocks by A. and B., that
is, L. = A. + A\B. where

0 1 10
0 1 1 0
A= ) ) and B =
0 1 ex(e+1) 1 0 ex(e+1)
We will say that —u € C is an eigenvalue of A + AB if there is some block Jg(u) + A,
with & > 0, in the KCF of A+ AB. The right (resp. left) minimal indices of A+ AB are

those values e (resp. 7)) such that L. (resp. Ll) is a right (resp. left) singular block in the
KCF of A+ AB.

3 Main results

Let the matrix pencil E + AF™* be given in block-diagonal form. Then E and F* are of the

form:
E; Fy

E = t. 3 s F* = . . ) (4)
E, F}
with E;, FF € C™i*™i_ In order to solve equation (1), let us partition X into blocks confor-
mally with the partition of E and F'*, that is, set X = [Xij]g,jﬂ with X;; € C**™J. Thus,
(1) becomes:
Ey X1 - Xua X Xo 3
. S 1 =0. (5
Eq Xa1 -+ Xaa Xig - Xia Fa



The original equation (1) can be decoupled into smaller equations after equating by blocks
in (5). In this way, we obtain two different kinds of equations. On one hand, equating the
(4,1) block in (5) we get a matrix equation of the form (1) but involving only the X;; block
of the unknown with the diagonal blocks F; and F; as coeflicients:

EiXu+ X5F =0,  i=1,...,d. (6)

On the other hand, if we equate both the (7, 7) and the (4, 7) blocks in (5) for i # j, then we
get a system of two linear matrix equations involving the unknown blocks X;; and Xj;, and
with the diagonal blocks E;, F;, E;, F; as coefficients:

EiXi; + X;F; =0

E;jX;i+X:F=0" I<i<j<d. (7)
3 17 7

The solution X of the original equation (1) with coeflicients E and F is obtained from the
solution of the equations (6) for each single block E; + AF}, and the solution of the systems
(7) for all pairs of blocks E; + AF and Ej + AF}, with ¢ < j. In particular, the dimension
of the solution space of (1) is equal to the sum of the dimensions of the solution spaces of all
these equations and systems of two equations.

When particularizing to the KCF of A+ AB*,

K1+ AK} = P(A+ \B")Q, (8)

the problem of solving (1) with K3 and K> as coefficient matrices reduces to solving (6) for
all single blocks in the KCF and (7) for all pairs of canonical blocks.

Summarizing the previous arguments, together with those of Section 2, the solution of
(1) can be obtained from the KCF of A + AB* and the nonsingular matrices P, @ in (8) in
the following way:

Step 1. Solve (6) and (7) for all blocks E; + AF}, E; + AF in the KCF of A + AB*
with ¢ < j. This gives Xy, X;;, and Xj; for 4,7 =1,...,d and i < j.
Step 2. Set X = [Xj;|, where X;; are the solutions obtained in Step 1.

Step 3. Recover the solution of (1) through the linear transformation X — QX P~*,
where X is the matrix in Step 2 and P, Q are as in (8).

Following this procedure, the dimension of the solution space of equation (1) depends
on the sizes of the blocks in the KCF of A + AB* as stated in the following two theorems,
where the cases x = T and x = * are addressed separately. For any ¢ € R, we will use the
standard notation |gq| (respectively, [¢]) for the largest (resp. smallest) integer that is less
(resp. greater) than or equal to ¢. In the statements, when no explicit bounds are given for
a sum, then these bounds are indicated in the subsequent text.

Theorem 3 (Breakdown of the dimension count for AX + X7B = 0) Let A € C™*"
and B € C™™™ be two complex matrices, and let the KCF of the pencil A+ ABT be

Ki+AK] =L, ®L.,® - ® L.,
oLl oL, & 0L
DNy ® Ny, @ - © N,
D Sy (1) + My @ iy (p2) + My @ -+ ® Ji, (11s) + M, -

Then the dimension of the solution space of the matriz equation
AX +X"B=0
depends only on Ky + AKX It can be computed as the sum
drotal = dright +dfin +dright right +dfin, fin + dright,left + dright,co + Aright, fin + oo, fin, (9)

whose summands are given by:



. The dimension due to equation (6) corresponding to the right singular blocks:

P
dright = Z Ei-

i=1
. The dimension due to equation (6) corresponding to the finite blocks:

dpin =Y _|ki/2] + Z(k‘j/ﬂ,

7

where the first sum is taken over all blocks in K1+ K1 of the form Ji, (1) +
My, and the second sum over all blocks of the form Jy, (—1) + Ay,

. The dimension due to the systems of equations (7) involving a pair of right

singular blocks:
P

d'r‘ight,m'ght = § (51' + 5]’) .
1,j=1
i<j

. The dimension due to the systems of equations (7) involving a pair of finite

blocks:
dfin,fin = Z min{ki, kj},
i,
where the sum is taken over all pairs Jy, (i) + My, , Ji,; (1tj) + My, of blocks
in K1+ AKT such thati < j and pip; = 1.
. The dimension due to the systems of equations (7) involving a right singular
block and a left singular block:

dright,left = Z (77] — &+ ]-) ’
2%
where the sum is taken over all pairs LE,”L% of blocks in K1 + AKZ such
that Ei < nj-

. The dimension due to the systems of equations (7) involving a right singular
block and an infinite block:

r
dright,oo =p E Ug -
=1

. The dimension due to the systems of equations (7) involving a right singular
block and a finite block:

s
dright,fin =p Z kz
=1

. The dimension due to the systems of equations (7) involving an infinite block
and a finite block:

doo,fin = Z min{ui, kj} s
1,7
where the sum is taken over all pairs Ny, , Ji,; (1;)+My, of blocks in Ky +AKT
with p; = 0.



Theorem 4 (Breakdown of the dimension count for AX + X*B =0) Let A € C™*"
and B € C"™ be two complex matrices, and let the KCF of the pencil A+ \B* be
Ki+MK; =L, ®L,d-- - L,

oLl oL, ® 0L

@Nul @NuQ @"'@Nur

D T, (1) + My, @ Jiy (2) + My, @ -+ @ Ty, (ps) + M, -
Then the real dimension of the solution space of the matriz equation

AX +X*B=0

depends only on K1+ AK5. It can be computed as the sum

d’?otal = d:ight + d}ln + d:ight,right + d;zn,fzn + d:ight,left + d:ight,oo + d:ight,fin + d;o,firm (10)
whose summands are given by:

1. The real dimension due to equation (6) corresponding to the right singular

blocks:
P
iight =2 Z &g
i=1
2. The real dimension due to equation (6) corresponding to the finite blocks:

where the sum is taken over all blocks in K1+ AK3 of the form Jy, (1) + M,
with |p| = 1.

3. The real dimension due to the systems of equations (7) involving a pair of
right singular blocks:

p
* f— . .
dm’ght,m’ght =2 E (57« + 5])'
,j=1
1<j

4. The real dimension due to the systems of equations (7) involving a pair of
finite blocks:
Qi pin =2 min{k;, kj},
4,J
where the sum is taken over all pairs Jy, (i) + My, , Jr; (1tj) + My, of blocks
in Ky + AK3 such that i < j and p;p; = 1.
5. The real dimension due to the systems of equations (7) involving a right
singular block and a left singular block:

drightiieft = 22 (nj —ei+1),
]

where the sum is taken over all pairs Lsi,ng of blocks in K1 + AK} such
that €; < ;.

6. The real dimension due to the systems of equations (7) involving a right
singular block and an infinite block:

r
* —
dright,oo =2p E Ui
=1



7. The real dimension due to the systems of equations (7) involving a right
singular block and a finite block:

s
d:ight,fin = 2p Z kl

=1

8. The real dimension due to the systems of equations (7) involving an infinite
block and a finite block:

:';o,fin =2 Z min{ui? kj}v
.7
where the sum is taken over all pairs Ny, Jy, (i) + My, of blocks in K1+MK;
with pu; = 0.

Remark 1 In theorems 3 and 4 we have referred to the KCF of A+ AB* as K; + \K3,
with the leading coefficient K3 transposed or conjugate-transposed, to highlight Theorem 1.
Howewver, all canonical blocks appear without transposing or conjugate-transposing the leading
coefficient, as in Theorem 2. Hence, and according to (4), the leading coefficient in the
canonical blocks will appear transposed or conjugate-transposed in the corresponding equations

(6) and (7).

Remark 2 It is worth noticing that, though we consider real dimension instead of complex
dimension in Theorem 4, the KCF of A+ AB* that we are using in this case is not the real,
but the complex KCF.

Remark 3 If the coefficient matrices A, B in equation (1) have real entries we may be
interested in real solutions X € R™ ™ and, in particular, we may ask about the dimension
of the solution space over R, that is, in the (real) dimension of

Sr(A+ABT) :={X eR"™™ : AX+X"B=0}.

To answer this last question we may see equation (1) as a linear equation of the form
Mvec(X) = 0, where vec(X) is a vector whose coordinates are the entries of X in cer-
tain order (see [12, Sec. 4.3]), and M is a square mn X mn matriz with real entries. The
dimension of the solution space of this equation is the same over both C and R, since this
dimension is equal to mn — rank M, and the rank has the same value when considered in
both R and C. Hence, the dimension over R of Sg(A + ABT) is evactly the one stated in
Theorem 3. However, the basis for the solution we provide in the present work may contain
complezx vectors, since we use the complex KCF of A+ ABT. It remains as an open problem
to find a real basis of the solution in this case.

In the dimension count of theorems 3 and 4 the reader will notice that there are summands
corresponding to the dimensions of the solution spaces of equations or systems of equations
for several canonical blocks in the KCF that appear to be missing. We will see that all these
dimensions are zero (lemmas 6, 7, 11, 12, 17, 18 for Theorem 3 and lemmas 22, 23, 26, 27,
32, 34 for Theorem 4). For the sake of brevity and clarity of the exposition, we have included
in (9) and (10) only those cases where the dimension is not necessarily zero. The remaining
cases are stated in the following two lemmas.

Lemma 1 Let Ky + AK{ be as in Theorem 3. The dimension due to the equations (6) and
systems of equations (7) involving the remaining blocks and pairs of blocks in Ky + A\KJ is
zero, that is,

dleft =do = dleft,left = doo,oo = dleft,oo = dleft,fin =0.
Lemma 2 Let K1 + AK} be as in Theorem 4. The dimension due to the equations (6) and

systems of equations (7) involving the remaining blocks and pairs of blocks in Ky + MK} is
zero, that is,

d;ceft = d:;o = d?eft,left = dioo,oo = d?‘eft,oo = dzkeft,fin =0.



In theorems 3 and 4 we have focused on the dimension of the solution space of (1). In
sections 4 and 5 we will prove these results along with those of lemmas 1 and 2 by computing
the dimension of the solution spaces of equations (6) and systems of equations (7) for all
blocks and pairs of blocks appearing in K + AKZ. Our procedure also provides a description
of the explicit solution of equation (1).

4 Solution space for canonical blocks: the transpose
case

In this section we will focus on the case x = T. As we have seen in sections 2 and 3,
the solution of (1) is closely related to the pencil A + ABT. In order to emphasize this
relationship, and for the sake of brevity, we will denote the (vector) space of solutions of the
equation (1) by S(A + ABT), that is

S(A+ABT):={XeC™™ : AX+X"B=0}.

In the following, we will use the standard entry-wise notation X = [z;;] and Y = [y;;] for
the matrices X and Y.

Given the KCF of the pencil A4+AB”, some of the minimal indices ¢; or n;, fori = 1,...,p
or j =1,...,q, may be equal to zero. Right minimal indices equal to zero correspond to
zero columns in the KCF, whereas zero left minimal indices correspond to zero rows. The
case of zero minimal indices in Theorem 3 deserves a separate analysis, because it leads to
matrix equations involving matrices with one of its dimensions equal to zero. In order to
address this particular case separately, we will isolate the zero minimal indices in the KCF
of A+ ABT. More precisely, if K; + AKJ denotes this KCF, then we may write

K1+ AKY = (E+ AFT) ® 0451, (11)

where the pencil £+ AF7 is in KCF and has neither left nor right minimal indices equal to
zero. We use the convention that g and h are allowed to be zero. If g is zero then the pencil
K + AKY takes the form of E + AFT with h columns of zeros appended on the right, while
if h is zero then K + MK takes the form of E 4+ AFT with g rows of zeros appended on the
bottom.

Lemma 3 Let A+ ABT be an m x n pencil whose KCF, K; + AKY | is of the form (11).
Then the dimension of the solution space of the matriz equation AX + XTB =0 is

dim S(A + ABT) = dim S(K; + AK3 ) = mh + dim S(E + AF7).

Proof. The equation
K\ X+XTK,=0

may be written as a block equation:

E 0 Xu X\, (XL X5 FO0) (00
0 0 Xo1 Xao xL XI o o) \o o)

Equating blocks, this is equivalent to the system of equations

EXy+XLF=0 (12)
FTX15=0 (13)
EX15 =0 (14)

As a consequence of (13) and (14), each column of X5 must lie in the kernel of both E and
FT so that if X1» is nonzero, then the right null-space of the pencil E + AFT contains a

10



constant vector. It follows that the pencil E + AFT has a right minimal index equal to zero
[11, Ch. XII, §5], contradicting our assumption about £ + AFT. We conclude that X, is
identically zero. Then, since X291 and Xs2 may be chosen freely, we get that the dimension
of S(A + ABT) is equal to mh + dim S(E + AF7T), from (12). O

Notice that the proof of Lemma 3 is still valid when g = 0 or h = 0, and that Lemma 3 is
in accordance with Theorem 3. More precisely, Lemma 3 states the same results as Theorem
3, even though it singles out left and right minimal indices equal to zero. In particular, if
Ki + AKZT is as in (11) then it contains h right and g left minimal indices equal to zero.
If we count the total dimension in Theorem 3 due to these blocks (items 1, 3, 5, 6 and 7)
we get a total of mh, which is precisely the quantity stated in Lemma 3 for the zero block
Ogxp corresponding to these minimal indices. Therefore, in order to prove Theorem 3, we
may consider only nonzero minimal indices (both left and right). In this way, in all the
statements and proofs in this section where left and right singular blocks appear, we will
implicitly assume that the sizes of all these blocks are nonzero.

We next introduce a lemma which will help us to determine when the solution space to
(6) or (7) is zero dimensional for a block in the KCF.

Lemma 4 If X € C™*" satisfies X = AXB, where either A € C™*™ or B € C"*" is a
nilpotent matriz, then X = 0.

Proof. Since A or B is a nilpotent matrix, there exists some integer v > 0 such that A¥ =0
or BY = 0. Then, iterating the identity X = AX B we get

X =AXB=A(AXB)B=A*XB*=...= AYXB" =0.

O

Another useful observation, that we will use for both x = T, % comes from the connection

between equation (1) and a Sylvester equation in the particular case where A and B are

nonsingular. More precisely, if A is nonsingular, then from (1) we get X = —A~'X*B and,

by applying the x operator, X* = —B*X A™*. Replacing this expression in the original
equation (1), we arrive at AX — B*XA~*B = 0, which is equivalent to

(B*A)X — X(A™*B) =0, (15)

provided that also B is nonsingular. Hence, if X is a solution of (1), then it is also a solution
of the Sylvester equation (15). Though the converse is not true in general, we will take
advantage of this approach (see the proof of Lemma 9 in the case pu # 0, £1).

4.1 Dimension of the solution space for single blocks

In this section we will prove all claims in Theorem 3 and Lemma 1 regarding the solution
space of equations involving single blocks in the KCF of A + ABT.

Lemma 5 (Right singular block) The dimension of the solution space of
AX+X"BI' =0 (16)
18
dim S(L;) =e.

Proof. First, notice that the unknown matrix X in (16) is of size (¢ + 1) x e. Equation (16)
is equivalent to

T21 T22 ce T2e T11 T21 o Tel
T31 T32 te T3¢ Ti2 T22 - Te2 0
+ . . . = Uexe-
LTet+1,1 Tet1,2 - Tefle Tle T2 - Tee

11



This is in turn equivalent to the system of equations
Tij = —xjp1,; for1<i,j<e. (17)
Iterating this once we obtain
Tij = —Tj41,4 = Tig1,j41 fori=1,...,6, 5=1,...,e =1

This implies that the matrix X is Toeplitz, and thus completely determined by its first row
and column. Now, setting ¢ = 1 in (17) we have

T1j = —Tj41,1 fOI‘j = 1,. oy &,

which means that the first column of X is determined by the first row. Thus z11, 12, ..., 21
completely determine X, so the general solution of (16) depends on at most ¢ free parameters.
On the other hand, by direct computation it is straightforward to see that every matrix X
of the following form satisfies (17):

C1 C2 o Ce—1 Ce
—C1 C1 C2 t Ce—1
—C2 - C1
X = . , (18)
—Co —C1 T Co
—Ce—1 ; c1
—Ce —Ce—1 —C2 —C
for all values ¢y, ¢a,...,ce € C. Thus, the general solution of (16) depends on exactly € free
parameters, and the result follows. Moreover, (18) is the general solution to (16). O
Lemma 6 (Left singular block) The dimension of the solution space of
AlX+X"B, =0 (19)

8
dim S(L]) = 0.
Proof. We first remark the identities
20
21

22
23

A AT =1,
BBl =1,,
AWB; = Jn(O),

(
(
(
ATB,) = Jy11(0)7, (

)
)
)
)
that will be used several times throughout the paper. Now, by multiplying (19) on the left
by A, and using (20), we obtain
X+ 4,X"B, =0, (24)

so X = —A,XTB,, and by transposing, X7 = —B?;XA;. Replacing this in (24) we get

X - A,BI XATB, =0,
which is equivalent, by (21) and (23), to

X = J(0)XJy2 (0)T.
Since both J,(0) and J,41(0)T are nilpotent matrices, Lemma 4 implies that X = 0, and

the result follows. O

12



Lemma 7 (Infinite block) The dimension of the solution space of
X+ X"J,07=0 (25)
18
dim S(N,) = 0.

Proof. From (25) we have X = —X7J,(0)T and, by transposition, X7 = —J,(0)X.
Replacing this in (25) we get

X = J,(0)X 1, (0)7,
and applying Lemma 4 we conclude that X = 0. O

In order to approach our most technical case, the case of a single Jordan block, we need
the following lemma.

Lemma 8 Let X,Y € CF*F be such that Y = RXT R, where
0 1

R :=
1 0

is the k x k reverse identity. Then X is a solution of Jp(u)X + XT =0 if and only if Y is
a solution of Y Ji(n) + YT = 0.

Proof. For simplicity, let us denote Ji(u) by J during this proof. Then, using that J =
RJTR and the hypothesis Y = RXT R, we have the following chain of identities:

YJ+YT =0& (RXTR)(RJTR) + RXR=0< RXTJ' + X)R=0

SsXTJIT4LX=0aJX+XT =0,
and the result follows. ]
Lemma 9 (Finite block) The dimension of the solution space of
T X +XT =0 (26)
18
0, ifp#+l,

dim S(Jg(p) + M) = Ui’/%, if u=1,
Tk/2], if = —1.

Proof. Let us consider separately the following cases:

» 1 # 0,+1: By transposing (26) we get X = —X7T J,(u)?, and replacing this expression
in (26) we get
() X" T ()" = X" = 0.

Since p # 0, the matrix Jy(u) is invertible, so this is equivalent to X7TJy(u)T —
Ji(p)~1XT = 0. This is a Sylvester equation, and since p # 1, the matrices Jy(u)7
and Ji (1) "' do not have common eigenvalues. Then the only solution of this equation
is X7 =0 [11, Ch. VIII, §1], so X = 0 is the only solution of (26).

» 1 = 0: By similar reasonings to the preceding case, we arrive at X7 = J;(0) X7 J(0).

Since J;(0) is a nilpotent matrix, Lemma 4 implies that X7 = 0. Hence X = 0 is again
the only solution of (26).

13



» i = +1: By Lemma 8, the solutions of
J(EDX +XT =0

and the solutions of
Y (£1) + YT =0

are related by the change of variables Y = RXT R. In particular, the dimension of the
solution space of both equations is the same. As a consequence, we may concentrate
on the equation X Ji, (1) +X7T = 0. The case i = (—1)* has already been solved in |7,
Appendix A]. The remaining case, i = (—1)**1, is rather technical and is addressed in
Appendix A.

O

4.2 Dimension of the solution space for pairs of blocks

In this section we will prove all claims in Theorem 3 and Lemma 1 regarding the solution
space of pairs of equations involving pairs of blocks in the KCF of A + AB”. We first
display the results for pairs of blocks of the same type and then those involving pairs of
blocks of different types. According to the notation used so far, given D, ET, F,GT € C™*",
we will denote by S(D + AET,F + AGT) the solution space of the system of equations
DX +YTG=0;FY + XTE =0, that is
S(D+AET, F+XGT):={(X,Y)eC"*": DX+YTG=0;FY + X"E=0}.

Lemma 10 (Two right singular blocks) The dimension of the solution space of the
system of matriz equations

AX+YTBY =0 (27)

AsY +XTBI =0, (28)
18

dim S(L., Ls) =&+ 0.

Proof. Note X and Y have sizes (¢ + 1) x § and (0 + 1) X & respectively. We can rewrite
equations (27) and (28) entry-wise in the form:

T21 Z22 €25 Y1 Y21 Ysi1
T31 Z32 €38 Y12 Y22 Ys2

. ) . + ) = Ocxs (29)
Le+1,1 Te41,2 Tet1,8 Yie Yze Yse
Y21 Y22 Y2e T11 T21 Te1
Y31 Y32 Yse T12 X22 Te2

. . . + = 06 XE- (30)
Ys+1,1  Ys+1,2 Ys+1,e T1s X26 Tes

We see in equations (29) and (30) that for any entry yq, of Y, there is an entry z;; of X
such that x;; + ya» = 0. We conclude that Y is completely determined by X.
Equations (29) and (30) are equivalent to the system of equations:

(a') Tb+1,a = —Yab
(b) @ij = —yj+14

for 1 <a <é,
for1 <i<e,

1<b<e¢,
1<j5<0.

14



From here we may conclude that X is a Toeplitz matrix. To see this, let x;; be any entry of
X such that x; 41 j41 is defined. Then we must have ¢ < e and j < § — 1, so we may apply
relation (b) to get

Tij = —Yj+1,i fOI'Z'SE, ]Sé—l

Since j + 1 < § and i < ¢, by relation (a) we have
—Yjt1i = Tip1,j41 for 1 <i<e, 1<5<6-1.

Hence x;j = 441,541 for 1 <i<e,and 1 < j < -1, so X is indeed a Toeplitz matrix.
This shows that X is of the following form:

di dy ds
C1 d1 dg d3

X = Co C1 d1 dg . (31)

c2 ¢ di

(e4+1)xé

Thus X is always determined by its first row and column, a total of € + § parameters.
Furthermore, it is straightforward to verify that any X of form (31) determines a unique
matrix, Y, of the form

—C1 —C2 —C3
—di —a —c2 —c
Y = —dy —di —c1 —co )
: —dg —d1 —C1

(6+1)xe

and the pair X,Y is a solution of the system of equations (29) and (30). It follows that the
dimension of the solution space to equations (27) and (28) is € + 4. O

Lemma 11 (Two left singular blocks) The dimension of the solution space of the system

of matrix equations
AFX+Y"B, =0 (32)

ATy + XTB, =0, (33)

18
dim S(L}, LT) = 0.

Proof. By multiplying (32) by A, on the left and using (20) we get X = —A4,Y7B,, and
by transposition, X7 = fBZYAg. Substituting this in (33) we achieve

ATY - BIYAI'B, =0,
and multiplying on the left by A, and using (20) this implies
Y —ABIYAI'B, =0,
which in turn implies, using (21) and (23),
Y — J,(0)Y J,41(0)" =0.
Now, Lemma 4 gives Y = 0, which implies X = 0 as well, so the only solution of (32) and

(33) is the trivial solution. O
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Lemma 12 (Two infinite blocks) The dimension of the solution space of the system of
matrixz equations

X+YT7,07 =0 (34)
Y + X" 100" =0, (35)
18
dim S(N,, N;) = 0.
Proof. From (34) we obtain X = —Y7J,(0)T, and transposing, X7 = —J,(0)Y. Substi-

tuting this into (35) we get

Y = J,(0)YJ,(0)T,
which implies Y = 0 by Lemma 4, so X = 0 as well. Then the only solution of (34) and (35)
is the trivial solution, and the result follows. O

Lemma 13 (Two finite blocks) The dimension of the solution space of the system of
matrix equations
J(WX+YT =0 (36)
J()Y +XT =0, (37)
18
min{k, £}, if pr=1,

dim S(Jx () + My, Je(v) + Mp) = { 0 otherwise.

Proof. First, notice that X has size k x £ and Y has size £ x k. We begin by solving for X
in (37):
X=-Y"5w?T. (38)

Substituting back into (36), we have
Je()YT T, ()T —YT =0. (39)

It is clear by (38) that Y determines X and that the pair X,Y satisfies (36) and (37) if and
only if they satisfy (38) and (39).
Now we consider the following two cases:

» 1 # 0 or v # 0: First suppose p # 0. In this case Ji(u) is invertible, so we may rewrite
(39) in the form
YT 1) = Je(w) YT =0, (40)

which is a Sylvester equation in the variable Y7'. The space of solutions to (40) has dimension
min{k, ¢} if v = 1/ and 0 otherwise, and an explicit description of the solutions is available
[11, Ch. VIII, §1]. The case of v # 0 is similar and yields the same results.

» 1 =v =0: In this case (39) reads
J0O)YT 1,007 —vT =o0.
Since Jy(0) and Ji(0) are nilpotent, it follows immediately from Lemma 4 that Y7, and

hence Y, must be the zero matrix. By (38) X = 0 as well. Thus, in this case, the dimension
of the solution space is zero. O

Lemma 14 (Right singular and left singular blocks) The dimension of the solution
space of the system of matriz equations

AX+Y'B,=0 (41)
Ay + XTBI =0, (42)
8
0, ifn <e,

. T
dlmS(LE’L”)_{ n—e+1, ife<n.
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Proof. The sizes of X and Y are (¢ 4+ 1) x (n+ 1) and 5 x € respectively. The system of
equations (41) and (42) is equivalent to

Tor v Toy Tam+1 yir o Ygp O
T3 - T3y T3m+1 Yyiz 0 Y2 O
= 05><(77+1)7 (43)
Tet+1,1 " Ted+lmn Tetln+l Yie ° Yne 0
O 0 PR 0 l‘ll 1121 PR xEl
Y11 Y12 e Yie T12 T22 o Te2
. + . . . . = 0(n+1)><5~ (44)
Yn1 Yn2 0 Yne Tim+1 T2m+l -0 Teptl

This immediately implies that Y is completely determined by X. Also, (43) and (44) are
equivalent to the system of equations

(8) Tam+1 =Tz 41 = = Tet1941 = 0,
(b) yij:_xj—i-l,i forizl,...,n, j=1,...,6‘,
(C) T11 = To1 = -+ = T = 0,

(d) Yij = —Tji4+1 fOTiZL...,’I], j:L...,E.
Combining (b) and (d), we obtain

Tij = Tj41,5—1 fori=1,...,e, j=2,...,n+1,

which shows that any entries of X lying on the same anti-diagonal, £, = {z;; : i + j = s},
are equal. Now, observe that (a) and (c¢) mean that every entry in the first and (n + 1)th
columns of X are zero except for x1 ,11 and x.41,1. If n < €, every anti-diagonal will contain
one of these entries equal to zero. This in turn implies X = 0 =Y, so the trivial solution is
the only solution if n < e.

If e < n, then there are anti-diagonals of X which do not contain any of these zero entries
from the first and (1 + 1)th columns. More precisely, these anti-diagonals are those which
have an entry in both the first and last row. Since there are n — e+ 1 of these anti-diagonals,
X will depend on at most 7 — € + 1 free variables. On the other hand, it is immediate to
realize that if

0o --- 0 C1 - Cp—e+t1

[ R g 0 (45)
0 . . . * . ° .
1 o Cp—ep1 0 s 0 (e4+1)x (n+1)

and Y is defined by condition (b) above, then both X and Y satisfy (a—d) for all values

of the parameters ci,...,¢,—c41. As a consequence, the general solution of (41) and (42)
depends on exactly n — € + 1 free variables. Moreover, (45) gives the general solution for X
from which (b) gives the corresponding matrix Y. O

Lemma 15 (Right singular and infinite blocks) The dimension of the solution space
of the system of matriz equations

AX+YTJ0)T =0 (46)
Y +X'BI =0, (47)

18
dim S(L., N,) = u.
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Proof. Note that the dimensions of X and Y are (¢ + 1) X u and u x € respectively. Now,
from equation (46), we obtain the following:

To1 vt Tou—1 T2y Y21 0 Yu1 O
r31 v T3u—1 T3y Y2 0 Yu2 O
+ . . . . = Ogxas-
zs—&-l,l tee xs—i—l,u—l xs—i-l,u Yoe tee Yue O
This implies xo, = ... = Te41,4 = 0 and
Tij = —Yj+1,i—1 fori:2,...,5—|—1,jzl,...,u—l. (48)

By equation (47) we also have

Y11 Y2 o Yie 11 T21 - Tel
Y21 Y22 o Y2 Ti2 T22 - Te2

. + . . . . = 0’LL><E7
Yul Yu2 °° Yue Tiu T2u - Teu

from which we obtain
Ty =—yj fori=1,...,e, j=1,...,u (49)

This shows that Y is completely determined by X. Now, using (48) and (49) we reach a
third relation, which is

Tij = Ti—1,5+1 fori=2,...,e+1, j=1,...,u—1.

The last relation shows that any entries of X which lie on the same anti-diagonal are equal.
It follows that the anti-diagonals below the main anti-diagonal in X are equal to zero since
we have already shown z3, = ... = £.41,, = 0. Thus we know that X depends on no more
than u free parameters which correspond to x11,Z12,- - ,z1, and that it takes one of the
following two forms:

C1 C2 C3 -+ Cy
co c3 - ¢, O
C3
X = Doy - : , ifu<e+1

cu 0 o o 0
0 0 0
0 O 0

cl c2 PR c€+1 PR cu

C2 DR CE+1 DRI cu O

X = . . . L , ife+1<u.
C€+1 PR Cu 0 PR O

Moreover, given any matrix X which takes one of the above forms and setting Y as in (49),
we have that the pair X,Y is a solution of (46) and (47). Then, it follows that the general
solution depends on exactly u free parameters. Furthermore, the formulas above, together
with (49), give the general solution of (46) and (47). O
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Lemma 16 (Right singular and finite blocks) The dimension of the solution space of
the system of matrix equations

AX+YT =0 (50)
Je(n)Y + XTBT =0, (51)
8
dim S(LE, Jk(,u) + )\Ik) = k.

Proof. Note X has size (¢4 1) x k, and Y has size k X ¢. Let us rewrite equations (50) and
(51) entry-wise as

T21 T22 T L2k Yir Y21 o Ykl
31 T32 T T3k Y12 Y22 o Yk2
+ . = Oaxka (52)
Tet11 Tet1,2 0 Tetlk Yie Y2e - Yke
Y1 Y1z 0 Yie Y21 Y22 0 Y2e Ti1 T2l Tel
Y21 Y22 o Y2e : : . . Tia Tag o+ Teo
H . C . + : : B + . . . = Op xe.
: : Y1 Yk2 o Yke : : . :
Ykl Yk2 0 Yke o o - 0 Tig  Tok o Tek
(53)
By isolating columns in (53) we obtain the following identity for 1 < j < e:
Yij Y25 Zj1 0
1 : + . + . — .
Yk—1,5 Yk Tj k-1 0
Ykj 0 Tk 0

We then use (52) to rewrite this identity as follows:

Tj+1,1 Tj+1,2 Zj1
1 : + . —
Tj+1,k—1 Tj+1.k Zjk—1
Tjt1k 0 Tk

This is a recursion relation. It allows us to determine the (j + 1)th row of X in terms of the
jth row or viceversa. Hence, we can let the x.11,1,...,2.41 1 be free parameters, and then
the matrix X will be uniquely determined. Furthermore, by equation (52), Y is completely
determined by X.
Moreover, if we set
Cj = Teglj, forj=1,...,k, (54)

then the explicit solution, X, is:

ESY et (eT 1=
Tip= Y M ; Cjtls (55)

where we use the convention that ¢;4; = 0 for j +1 > k. To prove (55), we can proceed
by induction on ¢ = ¢ + 1,...,1 (downwards). The initial case, i = ¢ + 1, is just (54).
Now, let us assume that (55) is true for some ¢ with 1 < i < e+ 1,and all j = 1,...,k.
Proving (55) for ¢ — 1 (and all j = 1,...,k) reduces to showing that the recursion formula
Ti—1,j = U&i; + x; j41 satisfies (55). The right hand side of this formula becomes:

R i fe+1—i R i fe+1—i
M Z Maﬂzl( ! )Cjﬂ + Z Mﬁlll( ! >Cj+1+lv

=0 =0
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which is equal to

e+1—1 . e+2—1 .
e+ 1—1 _ife+1—1
> ot l( ; )Cj+z + >t l( I_1 >0j+z- (56)

=0 =1

Now, using the binomial identity

(o)== ()

valid for all integers m,n > 1, (56) is equal to:

e+1—1 . e+2—1 .
e+2—i eto—imi(EH2 -0 ) o eto—ici(EF2—10)
H ¢+ § H I Cjtl + Cjpet2—i = § K I Cj+1s
=1 1=0

which correspond to the left hand side of the recursion formula, and thus completes the proof
of (55). O

Lemma 17 (Left singular and infinite blocks) The dimension of the solution space of
the system of matriz equations

T T T _
ATX +YTJ,0)7 =0 (57)

Y +Xx7B, =0, (58)
8
dim S(L}, N,) = 0.

Proof. By transposing in equation (58) we get YT = —B,?X7 and replacing this in equation
(57) we achieve AT X — BI'XJ,,(0)" = 0. Now, multiplying on the left by A, and using (20)
and (22) we reach

X — J,(0)XJ, (00" =0,

and Lemma 4 implies X = 0. From this, it follows that ¥ = 0 and then the only solution of
(57) and (58) is the null solution. O

Lemma 18 (Left singular and finite blocks) The dimension of the solution space of the

system of matriz equations
AlX+y" =0 (59)

J(p)Y +X"'B, =0, (60)
18
dim S(L], Ji () + Mg) = 0.
Proof. By transposing in equation (59) we get Y = —XT A, , and replacing this in equation
(60) we obtain Ji(u)XT A, — X" B, = 0. Multiplying on the right by B and using (22)

and (21) we reach Jy,(u)X T J,,(0) — X7 = 0. Now Lemma 4 implies X7 = 0, which in turn
gives X = 0 and, from this, Y = 0. The result follows. O

Lemma 19 (Infinite and finite blocks) The dimension of the solution space of the system
of matrix equations
X+v'=0 (61)
Je(R)Y + X7 7,007 =0, (62)
18
min{u,k}, if p=0,

dim S(Ny, Ji(p) + M) = { 0 if p # 0.
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Proof. By transposing in equation (61) we find X7 = —Y, and replacing this in (62) we
get the Sylvester equation Ji ()Y — Y J,(0)T = 0.

If i # 0 then Jy(p) and J,(0)T have no common eigenvalues so that Y = 0 [11, Ch. VIII,
§1]. From this we get X = 0.

If = 0 then the solution Y of the Sylvester equation depends on min{u, k} free param-
eters and an expression for this solution is available [11, Ch. VIII, §1]. From Y the matrix
X is completely determined by X = —Y7, and then the result follows. ]

5 Solution space for canonical blocks: the conjugate
transpose case

This section is the counterpart of Section 4 for x = x. According to the notation used in
Section 4, given A, B*, D, E*, F,G* € C"™*™, we introduce the notation:

S*(A+AB*):={X €eC™™ : AX +X*B=0}, and
S*(D + AE*,F +AG*) == {(X,Y) € C"™®" . DX +Y*G =0;FY + X*E =0}.

We begin with the counterpart of Lemma 3, whose proof is nearly identical.
Lemma 20 Let A+ AB* be an m x n pencil whose KCF is of the form
K1+ AK5 = (E + AF") ® 0gxh,
Then the real dimension of the solution space of the matriz equation K1 X + X* Ky =0 is

dimz S*(A + AB*) = dimg S* (K1 + AK}) = 2mh + dimg S*(E + AF*).

5.1 Dimension of the solution space for single blocks

In this section we will prove all claims in Theorem 4 and Lemma 2 regarding the solution
space of equations involving single blocks in the KCF of A + AB*.

Lemma 21 (Right singular block) The real dimension of the solution space of
AX+X*BF =0 (63)
18
dimg S*(L.) = 2e.
Proof. Equation (63) is equivalent to the system
Tij = —Tj41,; for 1<4,5<e.
Iterating once yields
Tij = —Tj41,1 = Tit1,j+41 for 1<i<e, 1<j<e—-1

From here we proceed in a matter similar to the proof of Lemma 5 to conclude that X is a
solution to (63) if and only if X is a Toeplitz matrix of the form

C1 C2 o Ce1 Ce
—C1 C1 ) Ce—1
—Co —C1 c1
X = } ;
—C2 —C " C2
—Ce_1 : . T, C1
—C —C—1 '+ —C —C

which is determined by its first row, a total of € complex parameters. We conclude that the
real dimension of the solution space to (63) is 2e. O
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Lemma 22 (Left singular block) The real dimension of the solution space of
T * T
A, X+ X"By=0
18
dimp S*(L;)) = 0.

Proof. Notice that A} = A; and By = B; . Using this fact and an argument identical to
that of Lemma 6, the result follows. (I

Lemma 23 (Infinite block) The real dimension of the solution space of
X+X*J,(00=0

18

Proof. Observe that J,(0)* = J,(0)”. The proof proceeds as the proof of Lemma 7. O
Lemma 24 (Finite block) The real dimension of the solution space of
J(W)X +X*=0 (64)

18
: . _ R iflel =1,
dimg S (i () + M) = { 0, otherwise.
Proof. From equation (64) we have X* = —J(u)X, which implies X = —X*J;(u)*.
Substituting this back into equation (64), we obtain

Je(p)X*Ju()* = X* = 0. (65)

If 1 = 0, the result follows by Lemma 4. If u # 0, we know that Ji(p) is invertible. Then
(65) is equivalent to

Je(p) X — X" T ()" = 0. (66)
If X is a solution of (64), then X is also a solution of (66). Since (66) is a Sylvester equation,

we know from [11, Ch. VIII, §1] that a nontrivial solution exists if and only if u = 1/f, i.e.,
if |u| = 1. Tt follows that the dimension of the solution space of (64) is again zero if u # 0

and |u| # 1.
All that remains to consider is the case |u| = 1. Since the proof is rather technical, we

will see in Appendix B that the solution depends on exactly k free variables and we will give
an algorithm to obtain this solution. O

5.2 Dimension of the solution space for pairs of blocks

In this section we will prove all claims in Theorem 4 and Lemma 2 regarding the solution
space of pairs of equations involving pairs of blocks in the KCF of A + AB*. As in Section
4.2, we first display the results for pairs of blocks of the same type and then we address the
cases of pairs of blocks with different type.

Lemma 25 (Two right singular blocks) The real dimension of the solution space of the
system of matriz equations

AX+Y*B; =0 (67)
AsY + X*B* =0, (68)

8
dimg §*(L, Ls) = 2(e + 0).
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Proof.Equations (67) and (68) are equivalent to the system of equations
(a) Tpt1,0=—Tg forl<a<dandl<b<e,
(b) ®ij = Y11, for1<i<eand1<j<9,
from which it follows by an argument similar to that of the proof of Lemma 10 that X is an

arbitrary Toeplitz matrix. (Il

Lemma 26 (Two left singular blocks) The real dimension of the solution space of the
system of matriz equations o

AIX+Y*B, =0

ATY + X*B, =0,
18

dimg S*(L}, LT) = 0.

Proof. Observe that Ev = B, and En = B,,. The proof follows as in the proof of Lemma
11. g

Lemma 27 (Two infinite blocks) The real dimension of the solution space of the system
of matrix equations

X+Y*J, (00 =0

Y + X*J.(0)* =0,
18

dimg S*(Ny, N¢) =0

Proof. Notice J,(0)* = J,(0)T and J;(0)* = J;(0)T. The proof proceeds as the proof of
Lemma 12. ([

Lemma 28 (Two finite blocks) The real dimension of the solution space of the system
of matrix equations

Je(p)X +Y* =0 (69)
Je(W)Y + X* =0, (70)
18 L
. ” 2mi A, if pv =1,
dimg S*(J (1) + M, Je(v) + \y) = { mindk, &, a7 =1,
Proof. We first solve for X in (70):
X =-Y*J,(v)". (71)
And substitute in (69):
Je(W) X Je(v)* =Y* =0. (72)

It is clear that the system of equations (71) and (72) is equivalent to the system (69) and
(70). There are now three cases to consider, just as in the proof of Lemma 13, namely, the
cases p # 0, v # 0, and p = v = 0. We conclude via the same processes used in Lemma 13
that the set of solutions to (71) and (72) is parametrized by min{k, ¢} complex parameters
if uv = 1, and zero otherwise. The result follows. O

Lemma 29 (Right singular and left singular blocks) The real dimension of the solu-
tion space of the system of matrixz equations

AX+Y*B,=0 (73)
Al'Y + X*B? =0, (74)
18
2(n—e+1), ife<n,

dimg §*(Le, Ly) = { 0 ifn<e.
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Proof. The system (73) and (74) is equivalent to the relations

(a) Top41 = T3p41 = voo = Tep1pt1 = 0,
(b) yij = —Tj414 for1<i<n 1<j<e,
(¢) x11 =221 = ... =2 =0,

(d) yij:_fj,z#»l fOI‘lSZS’f}, ].S]SE

First, notice that Y is completely determined by X, and that, by combining relations (b)
and (d) we achieve:

() wyj =xiq1,5—1 for1<i<e 2<ji<n+1

The result follows in the same way as in the proof of Lemma 14. (I

Lemma 30 (Right singular and infinite blocks) The real dimension of the solution
space of the system of matrixz equations

A X +Y*J,(0)*=0 (75)
Y+ X*B =0, (76)
18
dimg S*(Le, Ny,) = 2u.
Proof. The system(75) and (76) is equivalent to the relations
(a) Toy =3y = ... = Teq1,04 =0,
(b) @ij = —"Yj11,-1 for2<i<e+1, 1<j<u—1,
(¢) zij=—7;; for1<i<e, 1<j<u
We find Y is completely determined by X, and if we combine (b) and (c) we get:
(d) Tij = Ti—1,5+1 for1<i<e 2<j5j<n+1
The result follows in the same way as in the proof of Lemma 15. O

Lemma 31 (Right singular and finite blocks) The real dimension of the solution space

of the system of matriz equations
AX+Y* =0 (77)

J(p)Y + X*B: =0, (78)
8

Proof. By isolating columns in equation (78) we obtain the following identity for 1 < j < e:

Y1j Y2; Zj1 0

1 . + : + B . — :
Yk—1,5 Ykj Tjk—1 0

Ykj 0 Tk 0

Then we use equation (77) and conjugate to rewrite this as:

Tj+1,1 Tj+1,2 Tj1
Tj+1,k—1 Tj+1,k Lj,k—1
Tj41,k 0 Tk

This is a recursion relation. It allows us to determine the (j + 1)th column of X in terms
of the jth column or vice versa. Hence, we can let the z.y1,1,...,Zc41,% be free complex
parameters, and then the matrix X will be uniquely determined. If we set

Cj = Te41,5 fOI‘jZl,...,]{}7
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then the explicit solution, X, is:

E+1_i76+17i7l e+1—1
vi= Y 0 I Cjtls (79)

=0

Furthermore, by equation (77), Y is completely determined by X. The proof of (79) proceeds
in the same way as in the proof of (55). O

Lemma 32 (Left singular and infinite blocks) The real dimension of the solution space
of the system of matrixz equations

T * *
ATX +Y* 7, (0)* =0

Y + X*B, =0, (80)
18
dimp S*(L}, N,) = 0.

Proof. Note that J,(0)* = J,(0)" and Y* = —BI'X by (80). The proof follows as in
Lemma 17. .

Lemma 33 (Left singular and finite blocks) The real dimension of the solution space
of the system of matriz equations

T *
ATX +Y =0 (81)
J (WY + X*B, =0,
18
dimp S*(L), Je(p) + AIx) = 0.

Proof. Notice that B,, = B, and Y = —X*4, = —X*A, by (81). The proof proceeds as in
the proof of Lemma 18. a

Lemma 34 (Infinite and finite blocks) The real dimension of the solution space of the
system of matriz equations

X+Y* =0 (82)
Te()Y + X*Ju(0)* =0,
18
2min{u, k}, if p=0,
0, if p# 0.

Proof. Since (82) becomes X* = —Y by taking the conjugate transpose and J,(0)* =
J.(0)T, the result follows as in the proof of Lemma 19. O

6 Corollaries of the main results

The particular cases of equation (1) with A = £B* were solved in [15]. Also, the particular
case A = B was solved in [7] for x = T and in [8] for x = *. In [3] and [14] the authors
provided necessary and sufficient conditions for the operator X — AX+X*B to be invertible.
We show in this section how the main results contained in these papers can be derived from
our approach for the general equation (1).
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6.1 The particular case A =B

6.1.1 The transpose case

In [7] the authors solved the particular case of equation (1) with A = B, that is
AX +XTA=0. (83)

In that case, the solution was given in terms of the canonical form for congruence (CFC) of
A [13]. In this subsection we will show how to derive the dimension of the solution space of
(83) from the dimension of the solution space of (1) given in Theorem 3 when particularizing
to A = B. For the sake of completeness, we first recall the CFC of complex square matrices.
This form consists of three types of blocks: type 0 blocks are Jordan blocks associated with
0, while type I and type II blocks (denoted by I'y and Hog (), respectively), are defined as

) (_1)k+1 7]
(—1)F
Fk = -1 (Fl = [1})7
1 1
-1 -1
1 1 0

and

) = | 0 o] (meo=]5 5 ])-

Theorem 5 (Canonical form for congruence) [13, Theorem 1.1] Each square complex
matriz is congruent to a direct sum, uniquely determined up to permutation of summands,
of canonical matrices of the three types:

Type I L
Hor (i), 0# p# (—1)FTT
Type 11 w is determined up to replacement by p=!

At first sight, it seems surprising that we are using the strict equivalence transforma-
tion and the KCF of the pencil A + ABT to solve equation (1) instead of the congruence
transformation used in [7] to reduce the original equation (83) to the case involving CFC
of A. Following this approach, when particularizing to B = A, we would obtain the solu-
tion of (83) in terms of the KCF of the palindromic pencil A + AAT. This suggests that
there is some hidden connection between the CFC of A and the KCF of A + AAT. There is
actually a one-to-one correspondence between these two canonical forms and it is based on
the non-trivial fact that two matrices A and B are congruent if and only if the associated
palindromic pencils A + AAT and B + AB” are strictly equivalent [6, Lemma 1]. In order
to establish this one-to-one correspondence between the (blocks in the) CFC of A and the
(blocks in the) KCF of A+ AT, we have to take into account that the KCF of a palindromic
pencil A+ AAT is subject to the following restrictions (see Theorem 1 in [6]):

(i) The number and the values of the left and right minimal indices of A + AAT coincide,
that is, if € is a right minimal index of A+ AA” then it is also a left minimal index and
vice versa.

(ii) Each finite block with odd size associated with the eigenvalue ;1 = 1 occurs an even
number of times.

(iii) Each finite block with even size associated with the eigenvalue y = —1 occurs an even
number of times.
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(iv) The finite blocks associated with eigenvalues p # +1 occur in pairs: Jx(—p) + Mg,
Ji(=1/p) + A (here we understand that the blocks associated with 0 are paired up
with infinite blocks).

With these restrictions in mind, the one-to-one correspondence between the blocks of the
CFC of A and the blocks of the KCF of A + MAT is the following (see Theorem 4 in [6]):

(i) Each type 0 block with even size, Jor(0), corresponds to a pair of blocks associated
with the zero and the infinite eigenvalues, (Jx(0) + M) & N.

(ii) Each type 0 block with odd size, Jag+1(0), corresponds to a pair of left and right
singular blocks, Lj ® LE.

(iii) Each type I block, T'y, corresponds to a finite block associated with the eigenvalue
(=D*, Je((=1)F 1) + M.

(iv) Each type II block, Hay(p), corresponds to a pair of finite blocks associated with inverse
eigenvalues, (Ji (1) + M) & (Jo(1/p) + Alx) (n# 0, (1))

Now, by direct comparison of the dimension count stated in Theorem 3 and the corre-
sponding result stated in [7, Theorem 2|, and taking into account the previous correspon-
dence, it is possible to obtain the main result in [7] (Theorem 2 in that reference) as a
particular case of Theorem 3. In the following tables we display the correspondence between
the canonical blocks in the KCF of A+ AA” and the canonical blocks in the CFC of A (first
column in each table), and we relate the dimension of the solution spaces associated with
these blocks (second column of each table). For instance, in the first table we are considering
the dimension due to the presence of a pair of finite blocks, in the KCF of A + AAT, of
the form Ji(p) + A and J(1/p) + Ay, with g # 0, +£1. By Theorem 3, the contribution
in the final dimension corresponding to this pair of blocks comes from five sources: (1) the
interaction between Ji (1) + Al and Ji(1/p) + M) (part 4 in Theorem 3); (2) the interaction
between Ji (1) + Al and each right singular block L. (part 7 in Theorem 3); (3) the interac-
tion between J(1/p) + Al and each right singular block L. (part 7 in Theorem 3); (4) the
interaction between Ji(u) + Al and the remaining blocks of the form J,(1/v) + Al,, with
v = p (part 4 in Theorem 3); and (5) the interaction between Ji(1/u) + Al and the remain-
ing blocks of the form Jy(v) 4+ A, with v = u (part 4 of Theorem 3). This is the information
displayed in the first box of the second column. Similarly, from [7, Theorem 2], the contribu-
tion of Hay(p) (which is the block corresponding to the pair (Jx(p) + M) ® (Jx(1/p) + Ax)
in the CFC of A) to the dimension of the solution space of AX + XTA = 0 comes from
three sources: (1) the codimension of Hor(p); (2) the interaction between Hop (1) and each
type 0 block with odd size, Joc11(0); and (3) the interaction between Hsy(p) and the re-
maining type II blocks of the form Hop(v), with v = p. This is the information shown in
the second box of the second column. As can be seen in the table, in both boxes we get the
same total dimension (equal to 3k + 2min{k, ¢}), so the contribution to the solution space
of AX + XTA =0 of the corresponding blocks is indeed the same.

For brevity, we only display the nonzero dimensions and, to avoid repetition, we only
write each dimension once, referring to previous appearances when repetitions occur. The
dimensions in the case of equation (83) and the CFC of A are stated in terms of the codi-
mension of individual blocks or interaction between pairs of blocks, as in [7, Theorem 2].
The labels for each case refer to the KCF of A + \AT.
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Pair of finite blocks (eigenvalues # 0, £1) ‘

Block

Dimension

KCF of A+ \AT:

(Ji(p) + Mi) © (Je(1/p) + Aly)

dimS(Jk(,u) + A, Jk(l/,u) + /\Ik-) =k
dim S(Jg(p) + Mg, L) =k
dim S(Jp(1/p) + My, Le) =k
For v = pu:
dim S(Jg (1) + Mg, Jo(1/v) + Alp) = min{k, £}
dim S(Ji(1/p) + My, Je(v) + M) = min{k, ¢}

CFC of A:

Hoy (1)

codim Hoy(p) = k
inter (Hgk(,u), J25+1(0)) =2k
For v = u:
inter (Hog (1), Hoe(v)) = 2min{k, £}

Pair of finite block (eigenvalue 0) and infinite block ‘

Block

Dimension

dim S (Jx(0) + M, Ni) = k
KCF of A+ \AT: dim S(Jx(0) + Ay, L) = k
dim S(Ng, L) = k

(Je(0) + ML) @ N | dimS(J(0) + A, No) = min{k, ¢}
dim S(Ng, Jo(0) + AIp) = min{k, ¢}

CFC of A: codim (Jax(0)) = k
inter (Jzk(O), J2€+1<0)) =2k
Jar(0) inter (Jax(0), J2¢(0)) = 2 min{k, ¢}

Pair of finite blocks with odd size (eigenvalue 1)

Block

Dimension

KCF of A + \AT:

2dim S (Jy(—1) + L) = 2[k/2]
dim S(J(—1) + Mg, Jp(—1) + A\p) = k
2dim S(Jg(—1) + My, L) = 2k

For ¢ odd:
(=1 + AR © (k=) +Me) |y gin 97 (1) + My, Je(=1) + ALy) = 4min{k, £}
(k odd) For ¢ even:
2dim S(J(—1) + My, Jo(—1) + AI;) = 2min{k, £}
codim Hoy(—1) = k + 2[k/2]
CFC of A: inter (Hax(—1), Joc+1(0)) = 2k
For ¢ odd:
Hyp(—1) inter (Hog(—1), Hoe(—1)) = 4 min{k, ¢}
(k odd) For ¢ even:

inter (Hog(—1),T¢) = 2min{k, ¢}
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Pair of finite blocks with even size (eigenvalue —1)

Block

Dimension

KCF of A+ \AT:

2dim S (Ji(1) + Alx) = 2k/2
2dim S(Ji (1) + My, L) = 2k

For ¢ even:
(Je(D) + ALe) © (Je() + Ak) g i S( (1) 4+ Al Jo(1) + ML) = 4 min{k, £}
(k even)
For ¢ odd:
2dim S(Ji (1) + My, Jo(1) + Ap) = 2min{k, (}
codim Har (1) = k + 2k/2
CFC of A: inter (Hgk(l), J25+1(0)) =2k
For ¢ even:
Hy(1) inter (Hog (1), Hoe(1)) = 4 min{k, ¢}
(k even) For ¢ odd:

inter (Hax(1),T¢) = 2min{k, £}

Single finite block with even size (eigenvalue 1) ‘

Block

Dimension

KCF of A+ M\AT:

dim S (Jy(=1) + M) = k/2
dim S(Ji(—1) + My, L) = k

For ¢ even:
Je(—=1) + Ay, dim S(Ji(—1) + Ak, Jo(—1) + Al;) = min{k, ¢}
(k even) For ¢ odd:
2dim S(J(—1) + Alg, Jo(—1) + ;) = stated above
codimT'y = k/2

CFC of A: inter (T'y, J2:+1(0)) = k
For ¢ even:

Iy inter (T', T'¢) = min{k, ¢}
(k even) For ¢ odd:

inter (T'y,, Hop(—1)) = stated above

Single finite block with odd size (eigenvalue —1)

Block

Dimension

KCF of A+ \AT:

dim S (Ji (1) + M) = | k/2]
dimS(Ji(1) + My, Le) = k

For ¢ odd:
Jk(l) + Mg dimS(Jk(l) + A, Je(l) + M) = min{k’,(}
(k odd) For ¢ even:
2dim S(Jx (1) + Alg, Jo(1) + Alp) = stated above
codimT'y, = | k/2]

CFC of A: inter (T'g, J2c4+1(0)) = k
For ¢ odd:

Ty inter (I'g, T'y) = min{k, ¢}
(k odd) For ¢ even:

inter (T'y, Ha¢(1)) = stated above
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Pair of left /right singular blocks

Block Dimension

dim S (L.) =
dimS(L.,LT)

dim 8(Le, L) + dim S(Le, L)
Lo LT +dimS(LT, L) = { max{2e + 1,27+ 1}, ifn#e

g
KCF of A + \AT: =1

2e 4 2, ifn=c¢
The remaining cases have been stated above

codim Jo41(0) = [(2e +1)/2] = e+ 1

CFC of A: |
inter (Jaes1(0), Joys1(0)) = { max{2 + 1,29+ 1}, ifn#e

2% + 2, ifn=e

J2e41(0) The remaining cases have been stated above

As we can see, in all cases the total dimension obtained from both the KCF and the CFC
coincide.

6.1.2 The conjugate transpose case

The equation
AX+X*A=0 (84)

has recently been solved in [8]. This section is devoted to deriving the dimension of the
solution space of (84) from Theorem 4 when particularized to A = B. As shown in [8], the
real dimension of the solution space of (84) depends on the canonical form for * congruence
(CF*C) of A. For the sake of completeness, we first recall this canonical form.

Theorem 6 (Canonical form for *congruence) [13, Theorem 1.1 (b)] Each square com-
plex matriz is *congruent to a direct sum, uniquely determined up to permutation of sum-
mands, of canonical matrices of the three types:

Type 0 Ji(0)
Type I | al'y, o) =1
Type II | Hap(p), |pl>1

In order to establish this one-to-one correspondence between the (blocks in the) CF*C
of A and the (blocks in the) KCF of A+ AA*, we have to take into account that the KCF of
a *palindromic pencil A + AA* is subject to the following restrictions:

(i) The number and the values of the left and right minimal indices of A + AA*
coincide, that is, if € is a right minimal index of A+ AA* then it is also a left
minimal index and vice versa.

(ii) The finite blocks associated with eigenvalues |p| # 1 occur in pairs:
Ji (=) + Mg, Jp(=1/1) + M), (here we understand that the blocks associated
with 0 are paired up with infinite blocks).

With these restrictions in mind, the relationship between the CF*C of A and the KCF
of A+ AA* is given in following theorem.

Theorem 7 The CF*C of A is related to the KCF of the *palindromic pencil A + NA* by
the following one-to-ome correspondence between canonical blocks:

(i) The CF*C of A contains a type 0 block with even size, Jor(0), if and only if
the KCF of A+ AA* contains a pair consisting of an infinite block and finite
block associated with 0, (Ji(0) + Alg) & Ny.
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(ii) The CF*C of A contains a type 0 block with odd size, Jax+1(0), if and only if
the KCF of A+ AA* contains a pair consisting of a right singular block and
a left singular block, Ly, & L.

(iii) The CF*C of A contains a type 1 block, al'y with || = 1, if and only if
the KCF of A+ AA* contains a finite block associated with the eigenvalue
(—1)’“042, Jk((—l)k+1()é2) + )\Ik.

(iv) The CF*C of A contains a type 2 block, Hay () with |p| > 1, if and only
if the KCF of A+ AA* contains a pair of finite blocks associated with the
eigenvalues —p and —1/f, (Jp(p) + M) @ (Ju(1/R1) + My).

Proof. The proof mimics that of Theorem 4 in [6]. More precisely, for claims (i) and (ii) we
simply note that Jay(0) is *congruent to Hox(0) [17, p. 493] and Jax41(0) is *congruent to
(5 A’“] [17, p. 492]. For claim (iii) we use the identity

B O
(—1)F+1a? 2 A
(al'k) ™" ((alk) + AM(al'k)*) = S ) + M,
0 . (71)k+1a2

where the symbol A denotes entries with no relevance to the argument. Now (iii) follows from
the uniqueness of the KCF. Claim (iv) is also an immediate consequence of the uniqueness
of the KCF. (]

In the following tables we show the correspondence between the quantities in the main
result of [8] (Theorem 3.3 in that reference) and the ones obtained from Theorem 4 for the
particular case A = B. We follow the same conventions as the transpose case in 6.1.1. We
will use the notation i := /—1.

’ Pair of finite blocks (eigenvalues —u, —1/7 with || > 1)

Block Dimension

dimpg S*(Jk(u) + )\[k,Jk(l/ﬂ) + )\]k) =2k
dimg S* (J (1) + My, Le) = 2k
dimg 8* (Jx(1/7) + Ay, L) = 2k
(Ji(1) + ML) @ (Ji(1/7) + M) For v = i:
s k FEH k dimp S* (Ji(11) + My, Jo(1/7) + ML) = 2min{k, £}
dimg S*(Ji(1/) + My, Je(v) + AIy) = 2min{k, (}

KCF of A + \A*:

codim Hog(p) = 2k

3 .
CF*C of A: inter (Hap (1), J2e+1(0)) = 4k
For v = u:
Hop (1) inter (Hoy, (1), Ha¢(v)) = 4min{k, £}

Pair of finite block (eigenvalue 0) and infinite block ‘

Block Dimension
dimRS (Nk, )—Qk‘
KCF of A+ M\A*: dimg S*(Jx(0) + Ay, L) = 2k

dimg S*(Jk(()) + Mg, Nk) =2k
(Jk(O) + )\Ik) ©® Nk dimR S*(Jk(O) + )\Ik, Ne) = 2m1n{k,€}
dimpg S*(Nk, Jg(O) + )\I@) = 2min{k,£}

CF*C of A: codim Jo1, (0) = 2k
inter (Jax(0), Jo+1(0)) = 4k
Jok (O) inter (JQk (O)a J2€(0)) = 4m1n{kj> E}
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Single finite block (eigenvalue (—1)*a? with [a] = 1)

Block

Dimension

KCF of A+ AA™:

(Je((=D)F1a?) + \Iy)

dimR S*(Jk((f].)kJrlOR) + )\Ik) =k
dimg S*(Jp((—=1)**1a?) + Ay, L.) = 2k
For k,{ with the same parity and 8 = +a:
dimg S*(Ji((—=1)FT1a2) + Ay, Jo((=1)+162) + M) = 2min{k, £}
For k,{ with different parity and 8 = +ia:
dimg S*(Ji (=) T1a2) + Ay, Jo((=1)+162) + \Ip) = 2min{k, £}

codimaly, =k
inter (OéFk-, J25+1(0)) =2k

* .
CF*C of A: For k, ¢ with the same parity and § = +a:
ol inter (al'y, fT) = 2min{k, ¢}
k For k,{ with different parity and 8 = +ia:
inter (al'y, T¢) = 2min{k, £}
Pair of right/left singular blocks
Block Dimension

KCF of A+ AA*:

dimg S*(L.) = 2¢
dimg S* (L., L) =2
dimg S*(L., N,,) = 2u
dimg 8*(Le, J,(0) + A\,) = 2u
dimg S*(Le, Jo((—1)*1a?) + ;) = 2¢

L.oLT dimg S*(L., Jo(pt) + M) + dimp S*(Le, Jo(1/7) + M) =220 =44
dimg 8*(Le, Ly) + dimg S* (L, L))
: 2max{2e + 1,2n+ 1}, ifn#e,
* T _ 9
+dimg & (LE’L")_{ de 44, if n=ce.
codim Joe41(0) =2 [ 2] =2 + 2
* . inter (J25+1(0)7 Jgu(O)) = 4U
CFFC of A: inter (J2c41(0), al'y) = 2¢
inter (Jae41(0), Hae(p)) = 4¢
J2e+1(0)

2max{2 +1,2n+ 1}, if n#e,
4e + 4, ifn=e.

inter (J2e41(0), J2y41(0)) = {

Notice that the restrictions /3

= t+a and 8 = +ia in the third table above arise in the following

way: in order for dimg S*(Ji((—1)**1a2) + A, Jo((—=1)*T132) +\I}) to be nonzero, we need

(—1)* a2 (71)“152 -1

This holds if and only if a? = (—=1)*+32, so that 3 = +a if k and ¢ have the same parity
while 8 = +ia if k and ¢ have different parity.

6.2 The particular cases A = +B*

The procedure described in S
where B = +A*, because in

ection 2 to solve equation (1) simplifies considerably in the case
this case the pencil A + AB* becomes (1 £ M)A, so its KCF is

just (1 £ A) times the canonical form for strict equivalence of A € C™*™. This canonical

form reduces to

PAQ = I ® 01y x (n—r)» (85)
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where r = rank A and P € C™*™ Q € C™*™ are nonsingular matrices. As a consequence,
the original equation AX 4+ X*A* = 0 can be reduced, by strict equivalence, to
(I’!‘ S2] O(mfr)x(nfr))y + Y*(IT D O(nfr)x(mfr)) =0,

with Y = Q7 'XP*. If we partition the unknown Y = [21 22] conformally with the
partition of the coefficient matrices, that is Yi; € C"™*7, Y, € C™*(m=7) Yy, € Cr—m)xr
and Yy € C(»=7)*(m=7) "then we see that Ya; and Yas can be chosen freely, and we get the
following system of equations

Yo £Y5 =0

Y12 =0,

In the case B = A* the first equation is Y11 + Y4 = 0, so Y37 is an arbitrary r x r skew-
symmetric matrix if x = T or an arbitrary skew-hermitian matrix if *x = %, whereas in the
case B = —A* we get Y11 — Y] = 0, so that Y7; is an arbitrary r x r symmetric matrix
if ¥ = T or an arbitrary hermitian matrix when x = *. As a consequence, we achieve the
following results.

Theorem 8 Let A € C™*" be a matriz with rank r. Then the dimension of the solution
space of the equation AX + XTAT =0 is equal to m(n —r) + w, and the dimension of
the solution space of AX — XT AT =0 is equal to m(n —r) + @

Theorem 9 Let A € C™*™ be a matriz with rank r. Then the real dimension of the solution
space of the equation AX + X*A* =0 is equal to 2m(n —r) + r2.

Notice that the previous arguments also provide a simple procedure to obtain the explicit
solution of both equations in terms of the change matrices P and ). More precisely, the
solution of AX + X*A* = 0 (respectively, AX — X*A* =0) is

B Yi; 0 —x
X_Q[Ym YQ2]P ’

where P and @ are as in (85), Y7 is an arbitrary skew-symmetric (respectively, symmetric)
matrix if x = T and skew-hermitian (resp. hermitian) if x = %, and Y; € C»~"*" and
Yss € C=7)x(m=7) are arbitrary.

The approach followed here for AX + X*A* = 0 is similar to the one in [15] and, actually,
theorems 8 and 9 were already stated in that paper [15, theorems 3, 5 and 6]. The equations
AX + XT AT = 0 were solved also in [2] using projectors and generalized inverses of A.

6.3 The operator X — AX + X*B

First, notice that, in order for this operator to be well-defined, A and B* must have the same
dimension. But, if A, B* € C™*"  then the matrix X is of size n x m, whereas the matrix
AX 4+ X*B is m x m. Then, we must have m = n in order for the dimension of the domain
to match the dimension of the range. As a consequence, the pencil A+ AB* must be square.

Notice, also, that the operator is linear over C only if x = T, whereas if x = * then it is
linear over R. We consider separately these cases and state, in theorems 10 and 11, necessary
and sufficient conditions for these operators to be invertible.

Theorem 10 (Lemma 8 in [14]) Let A, B € C™*™ be given. Then the linear operator in

Cmxm
X—AX+X"B
is invertible if and only if the following conditions hold:
(1) The pencil A+ ABT is regular,

(2) if p; # —1 is an eigenvalue of A+ ABT, then 1/u; is not an eigenvalue of A+ A\BT,
and
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(3) if —1 is an eigenvalue of A+ ABT, then it has algebraic multiplicity 1.

Note that, in particular, 1 can not be an eigenvalue of A+ A\BT.

Proof. Let us first prove that conditions (1-3) are necessary. The linear operator X —
AX + X7 B is injective if and only if the only solution to

AX+XTB=0

is the null matrix.

Now, looking at the dimension count in Theorem 3, in order for the dimension of the
solution space of AX + XT B = 0 to be zero, the KCF of A+ ABT must fulfill the following
restrictions:

(a) It cannot contain right singular blocks.

(b) p =1 cannot be an eigenvalue of A + A\BT.

(c) The finite blocks associated with the eigenvalue —1, if present, must be of size 1 x 1.
)

(d) If u # +1 is an eigenvalue of A + ABT then 1/u cannot be an eigenvalue (here we
understand that if g = 0 then 1/ is the infinite eigenvalue).

Notice that, since A + AB7 is square, the number of right minimal indices equals the
number of left minimal indices so, by (a), left singular blocks can not appear either. Hence,
conditions (1-3) are necessary in order for the operator X — AX 4+ X7 B to be invertible.
Conversely, notice that if (a—d) hold, then the dimension of the solution space of (1) is zero,
so they are also sufficient. O

Theorem 11 (Lemma 8 in [14]) Let A, B € C™*™ be given. Then the R-linear operator in

Cmxm
X—AX+ X"B
1s invertible if and only if the following conditions hold:
(1) The pencil A+ AB* is regular,
(2) if py is an eigenvalue of A+ AB*, then 1/fi; is not an eigenvalue of A+ AB*.

Note that, in particular, A + AB* can not contain eigenvalues on the unit circle.

Proof. The proof is similar to that of Theorem 10, but it is based on the dimension count
stated in Theorem 4. We simply remark that, in order for this dimension to be zero, the
KCF of A+ AB* can not contain neither right singular blocks nor eigenvalues p;, pt; with

Hifh; = L. U

7 Conclusions and future work

We have presented a method to find the general solution of the homogeneous Sylvester
equations for *congruence AX + X*B = 0 over C in terms of the Kronecker canonical form
of the matrix pencil A + X\ B*. In this way, this paper completes the work presented by the
authors in references [7] and [8] for the equations AX + X*A = 0, where the canonical form
for congruence of A was used as the main tool, and also the results in references [3, 9, 14, 20]
for the nonhomogeneous equation AX + X*B = C. Several problems still remain open
in this area. Among them we cite: the development of a numerical algorithm to find the
general solution of AX + X*B = 0, that is, a basis of the solution space, as well as numerical
algorithms for determining when AX + X*B = C' is consistent and for computing its general
solution in this case. These problems will probably require the use of stable algorithms to
compute the GUPTRI form of the matrix pencil A + A B* as those presented in [4, 5, 19].

Acknowledgments. This work has been partially supported by NSF grant DMS-0852065
(Fernando De Teran, Nathan Guillery, Daniel Montealegre and Nicolds Reyes) and by the

34



Ministerio de Ciencia e Innovacién of Spain through grant MTM-2009-09281 (Fernando De
Terén and Froildn M. Dopico). The work has been done while the first and the last three
authors were participating at the UCSB REU program during the summer of 2011. These
authors wish to thank the UCSB Mathematics Department for their hospitality and the
director of the REU program, Prof. Maria I. Bueno, for making this meeting possible. They
are also grateful to Rachel Spratt for some help during the writing of the manuscript.

A Appendix: The solution of X J,((—1)*!) = —x7

This appendix is devoted to proving that the general solution of XJi((—1)¥*1) = —X7T
depends on |k/2]| free parameters, a result that was used in the proof of Lemma 9. The
proof of this result is just a slight modification of the one given in [7, Appendix A] for the
equation X Ji((—1)¥) = — X7, though we include the proof here for the sake of completeness.
We will present the case k odd in detail, which is similar to the case k even in [7, Appendix
A], while we only state the main results for k even. We want to point out that our proof
also provides an algorithm to obtain the explicit solution of the equation (Lemma 36 for k
odd and Lemma 38 for k even).

A.1 Solution for £ odd

We present first necessary and sufficient conditions in terms of entries for a matrix X to be
a solution of X Ji(1) = —XT.

Lemma 35 Let k > 0 be an odd number. A matriz X = [xij]szl € Ck** s a solution of

XJp(1) = =X7T if and only if X satisfies the following three conditions

Tij + Xj; = —T45-1 Zf k‘+2§l—|—j§2k‘and2§j§l§k‘, (87)
Tij—1 = Tji—1 if k+2<i+j—-1<2k—1and2<j<i<k. (88)

Note, in particular, that every solution of X Jy(1) = —X7T is lower anti-triangular by (86).

Proof. The arguments in the proof of Lemma 11 in [7], which are valid for both k even and
odd, show that X is a solution of X.J(1) = —X7 if and only if the following conditions on
X hold

Tr1 + L1k :O, (90)
Tij + Tji = —T4 51 if k+1<i+j<2kand2<j<i<k, (91)
Tij—1 = Tji-1 if k+1<i4+j—1<2k—land2<j<i<k. (92)

In the present case (k odd) we can further show that z;; = 0 for i + j = k + 1. To see this,
first notice that Tep e =0 by (91) with ¢ = j = (k+ 1)/2 and the fact that Tipa a1 =0
derived from (89). Now, from (92) we have

Proceeding recursively in this way, applying both (92) and (91), and also (89) for i + j = k,
we obtain:
0= I% k=3 — [Ek—37k+5 = ... =Tk-12 = T2 k-1 = Tk1-
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Finally, using (90) we also get x1; = 0.
As a consequence, the system of equations (89-92) is equivalent to (86-88), and the result
follows. O

Observe that (86) amounts to (k% + k)/2 equations on the entries of X, (87) amounts
to 2. (14+2+4---+(k—1)/2) = (k* — 1)/4 equations, and finally (88) amounts to 2 -
(1+2+---+(k—=3)/2) = (k® — 4k + 3)/4 equations. This makes a total number of
k* — (k — 1)/2 equations in (86-88). Therefore, the general solution of XJi(1) = —X7T
depends on at least (k —1)/2 free parameters (it might depend on more than (k — 1)/2 free
parameters if equations (86-88) are linearly dependent). We will show in Lemma 36 that the
general solution of X Ji(1) = —X7 depends precisely on (k — 1)/2 free parameters, because
if equations (86-88) are arranged in an appropriate order, then it is evident that certain
(k — 1)/2 entries of X determine uniquely the remaining ones. This appropriate order con-
sists in ordering equations (87-88) by anti-diagonals in such a way that every anti-diagonal
Ls={x;j : i+ j=s} is obtained from L;_;.

Lemma 36 If k > 0 is an odd number, then the general solution X of XJ,(1) = —XT
depends on (k —1)/2 free variables. In particular, the entries

T k+3 kt+l, LTk+5 k+3, T k+7
’ 2 T2 2

kt5, .0 vy Thk—1,
2 2 2

3

can be taken as free variables and then the remaining entries of X are uniquely determined
by the following algorithm:

setx;; =01f2<i4+j<k
fors=k+2:2k

if s is odd
_ s+1
h B 2 . .
ZThh—1 @5 a free variable
Th—1,h = —Th,h—1 — Th,h—2
else
— s
h=3
Thh = —(Th,n-1)/2
endif

fori=h+1:k
Tis—i = Ls—(i—1),i—1
Ls—iji = —Lis—i — Lis—i—1

endfor

endfor

For simplicity, in this algorithm we define xixg = 0 and it is understood that the inner loop
“fori=h+1:k” is not performed if h +1 > k.

Proof. Note that the algorithm arranges all the equations in (86-88) in an order that
allows each entry to be computed from entries that are already known. We only remark
that Th,h = *(xh,h—l)/2 is (87) with ¢ = j = h, that Th—1,h = —Th,h—1 — Th,h—2 and
Ts—ii = —Tis—i — Tis—i—1 are special cases of (87) with appropriate indices, and that
Tis—i = Ts_(i—1),i—1 1S a particular case of (88). Since we have already established that the
general solution of XJ;(1) = —X7T depends on at least (k — 1)/2 free parameters, and all
the equations in (86-88) are satisfied in the algorithm in a unique way for any selection of
arbitrary values of the (k —1)/2 entries xp p—1, for h = (k+3)/2,(k+5)/2,(k+7)/2,...,k,
then the number of free variables is precisely (k —1)/2. O
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A.2 Solution for k even
We state without proofs counterparts of Lemmas 35 and 36. The proofs are similar to those
of Lemmas 35 and 36 with the corresponding variations.

Lemma 37 Let k > 0 be an even number. A matriz X = [xij]szl € C*** s a solution of

XJp(=1) = —XT if and only if X satisfies the following four conditions

x5 =0 if 2<i+j<k+1,
ziio1=0 ifi=%+254+3,.. .k
Tij — Tji = Tij—1 if k+2<i+j<2k—1and2<j<i<k,
Tij—1 = —Tji-1 if k+2<i+j—-1<2k—1and2<j<i<k.

Note, in particular, that every solution of X Ji(—1) = —X7 is lower anti-triangular.

A similar count to the one for Lemma 35 gives that the total amount of equations in the
statement of Lemma 37 is

<k(k;1)>+<§—1>+(2-(1+2+-~-+§—1)>+(2-(1+2+---+§—2)+§—1>

+k ok Kk k2 , k
=ty lt gt okt l=E -

Then the solution of XJi(—1) = —X7 depends on at most k/2 free variables for k even.
The following lemma shows that it actually depends on exactly k/2 variables, and provides
these variables.

Lemma 38 Let k > 0 be an even number, then the general solution X of X Ji(—1) = —X7T
depends on k/2 free variables. In particular, the entries

LT k+2 k+2y, T k+4 k+dy, T k+6 k+6,..., Tk k,
2 02 2 02 2 02 ’

can be taken as free variables and then the remaining entries of X are uniquely determined
by the following algorithm:

setx;; =01f2<i4+j<k
fors=k+2:2k

if s is odd
_ s+1
h=2%5
Tph—1 =0
Th—1,h = Thh—1 — Th,h—2
else
— s
h=5 |
Thhy 1S a free variable
endif
fori=h+1:k
Tjs—i = —Ts—(i—1),i—1
Ls—iji = Lis—i — Li,s—i—1
endfor
endfor

For simplicity, in this algorithm we define xio = 0 and it is understood that the inner loop
“fori =h+1:k” is not performed if h +1 > k.
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B Appendix: The solution to J,(u)X = —X* with |u| =1

This appendix is devoted to proving that the general solution of Ji ()X = —X* for |u| =1
depends on k free parameters, a result that was used in the proof of Lemma 24. This is
proved using techniques similar to those used in Appendix A; we present the case k even in
detail, while we only state the main results for k£ odd.

B.1 Solution for k& even

Lemma 39 Let k > 0 be an even number. A matriz X = [xij]é‘;j:l € C*** s a solution of

Je(u)X = =X* for |u| =1 if and only if X satisfies the following three conditions:

pi; + Ty = —wiy1;  if 2<i+j<k+1 for 1<i<j<Ek, (94)
Titl,j = UTj41,5 if 3<i+j<k for 1<i<j<k-—1. (95)

Note, in particular, that every solution of Ji(u)X = —X* for |u| = 1 is upper anti-triangular
by (93).

Proof. When written entry-wise, (64) is equivalent to the system of equations

UTij +Tip1;+Tj=0 for1<i<k—-1,1<j5<k, (96)
Uxg; +Tj =0 for 1 <j<k. (97)

We first show that (96) and (97) imply (93). This is proven by induction on the nth row
and column starting from the kth pair and moving downwards. Multiplying (97) by & and
taking conjugates, we get that (97) is equivalent to px ;i +Tk; = 0. Now, by setting j = k in
(96) and adding these equations, it follows that z;41, =0fori=1,...,k—1,ie, 244 =0
for i = 2,...,k, which also gives xy; = 0 for i = 2,...,k by (97). This proves the base case.
Suppose the claim holds for some n < k, that is, z;, = ,; = 0 when k+1 <i+n < 2k.
If we set £ = k — n + 2, then this means x;, = x,; = 0 for « = ¢,... k. Now, by setting
i=n—1and j =n — 1 separately in (96), we obtain

HTn—1,5 + Tnj +Ej,n71 =0 forl S] < k, (98)
and HTipn—1 + Ti41,n—1 +En—1,i =0 forl S ) § k—1. (99)

By the inductive hypothesis, (98) implies pa,—1; + ZTjn—1 = 0 for j = ¢,..., k, which is in
turn equivalent to px;,—1 + Tp—1,; = 0 (multiply by % and take conjugates). Subtracting
this from (99), we have x;41,—1 =0fori=4¢,...,k—1,ie, 2,1 =0fori=0+1,... k.
This implies z,,—1,;, =0 for i = ¢+ 1,...,k as well by (98) and the inductive hypothesis.
Therefore (96) and (97) imply z;; = 0 for £+ 1 < i+ j < 2k, and an elementary argument
allows us to conclude that (96) and (97) are in fact equivalent to

2i; =0 if k+1<i+j<2k (100)
UZij + Tji = —Tip1,j if 2<i+j<k+1 for 1<i<k-1,1<j<k.  (101)
Now, consider any pair i, j with ¢ # j. By the two equations from (101) involving this pair
we have ;41 j = fiZj41,,. Thus (100) and (101) imply (93-95).
On the other hand, to see that (93-95) are actually equivalent to (100) and (101) (and
consequently (96) and (97)), notice that we only need to show that (93-95) imply (101)
when j < ¢. Since j < 4, by (94) and (95) we have
/J.’Eji —‘y—fij = —(EjJrLi and ijrl,i = ,U/fﬂ,l’j.

Combining these equalities, then multiplying by & and taking conjugates, it follows that
(101) holds. This completes the proof. O
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Observe that (93) amounts to (k? — k)/2 equations on the entries of X, (94) amounts to
(k?/4) + (k/2) equations, and (95) amounts to (k?/4) — (k/2). This gives a total number
of k? — (k/2) equations in (93-95). Therefore, the general solution of Ji(u)X = —X* for
|| = 1 depends on at least k free real parameters (it may depend on more than k free
parameters if equations (93-95) are linearly dependent). We will show in Lemma 40 that the
general solution of J ()X = —X* for |u| = 1 depends on precisely k free real parameters,
since if equations (93-95) are arranged in an appropriate order, then it is evident that (k/2)
particular entries of X uniquely determine the remaining ones. Each of these (k/2) entries
gives 2 free real variables. At each step we take a diagonal entry x;; as a free variable,
starting from Thk, and we set the entries in the ¢th row and the ¢th column above the main
anti-diagonal as linear combinations of x, ..., x Ek. We state Lemma 40 without proof since

the proof is nearly identical to that of Lemma 12 in [7].

Lemma 40 If k > 0 is an even number, then the general solution of Ji(u)X = —X* for
|p| = 1 depends on k free real variables. In particular, the real and imaginary parts of the
entries

T11,222,...,%

k
537

(ME

can be taken as free variables and then the remaining entries of X are uniquely determined
by the following algorithm:

set x5 =0 fork+2 <i+4+j5 <2k
fors:l:%

h= g —s5+1

Thh = app + ibpy is a free variable
Thyrn = — (UThh + Thi)

Thh1 = =2 (Thyt,n + Thythi1)

fori=2:2s—-1

Thtih = HTh+1,h+i—1

Thohti = — 0 (Thtih + Tht1 hti)
endfor

endfor

B.2 Solution for k& odd

The following two lemmas are the counterparts of lemmas 39 and 40. The proofs are nearly
identical to those of lemmas 39 and 40 with the corresponding variations.

Lemma 41 Let k > 0 be an odd number. A matriz X = [xij]ﬁjzl € Ck** s a solution of
T ()X = —=X* for |u| =1 if and only if X satisfies the following five conditions:

z; =0 if k+1<i+j <2k,

UTij + Tji = —Tit1,j if 2<i+j<k for 1<i<j<k,
Tip1;=pT41:  of 3<i+j<k for 1<i<j<k-—1,
wri; + 25 =0 if i+j=k+1, i<y,

UL Et1 k1 + Thrr k1 = 0.
2 0 2 2 0 2
Note, in particular, that every solution of Ji(u)X = —X* for |u| = 1 is upper anti-triangular.

Lemma 42 If k > 0 is an odd number, then the general solution of Ji(u)X = —X* for
|| = 1 depends on k free real variables. In particular, the real and imaginary parts of the
entries

L11,2225-+ -, LT k=1 k—1,
2 02
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can be taken as free variables while the entry Thin ki contributes one free real variable, so
that the remaining entries of X are uniquely determmed by the following algorithm:

setxy; =0 fork+2 <i+j <2k

Ifp#1,

ak+1
bk+1
2

else

k;—l is a free variable (real),
_ et

S

L _ 541

Tph = app + by is a free variable

Th+1,h =
Th,h+1 =

fori=2:

—(uxnn + Tha)
—0(Tht1,n + That,ht1)
2s

Thtih = BTh+1,hti—1
Thhti = —@(Thtih + Tht,hti)

endfor

endfor

Proof. The only difference with the case “k even” is in lines 2-9, in the definition of EEgEp

If we set Trt1 rt1 = Q41 kt1
2 02 2 02

(k+1)a

2

Notice that, because || = 1, the quotient
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