Computing Matrix Symmetrizers, Part 2: new Methods using
Eigendata and Linear Means; a Comparison*

Froildn Dopico' and Frank Uhligt

Abstract

Over any field IF every square matrix A can be factored into the product of two symmetric matrices as A = S;-S2
with S; = ST € F™™ and either factor can be chosen nonsingular, as was discovered by Frobenius in 1910.
Frobenius’ symmetric matrix factorization has been lying almost dormant for a century. The first successful
method for computing matrix symmetrizers, i.e., symmetric matrices S such that S A is symmetric, was inspired
by an iterative linear systems algorithm of Huang and Nong (2010) in 2013 [29][30]. The resulting iterative algo-
rithm has solved this computational problem over R and C, but at high computational cost.

This paper develops and tests another linear equations solver, as well as eigen- and principal vector or Schur Nor-
mal Form based algorithms for solving the matrix symmetrizer problem numerically. Four new eigendata based
algorithms use, respectively, SVD based principal vector chain constructions, Gram-Schmidt orthogonalization
techniques, the Arnoldi method, or the Schur Normal Form of A in their formulations. They are helped by Datta’s
1973 method that symmetrizes unreduced Hessenberg matrices directly.

The eigendata based methods work well and quickly for generic matrices A and create well conditioned matrix
symmetrizers through eigenvector dyad accumulation. But all of the eigen based methods have differing defi-
ciencies with matrices A that have ill-conditioned or complicated eigen structures with nontrivial Jordan normal
forms. Our symmetrizer studies for matrices with ill-conditioned eigensystems lead to two open problems of
matrix optimization.

Keywords: symmetric matrix factorization, symmetrizer, symmetrizer computation, eigenvalue method, linear
equation, principal subspace computation, matrix optimization, numerical algorithm, MATLAB code

AMS : 65F10, 65J10, 15A23, 15B57

1 Introduction

105 years ago, F. G. Frobenius [11} p. 421] apparently was the first to discover that every square matrix A,, ,, over
a field IF can be written as the product of two symmetric matrices A = S; S, that one of the factors S; € F™" can
always be chosen nonsingular, that there always exist at least n linear independent symmetric matrices S = ST
that symmetrize A so that SA = (SA)T = ATST = AT S is symmetric, and that if Y7 and Y5 are two symmetric
symmetrizers of A, ,, then so are all linear combinations of Y7 and Y. This symmetric matrix factorization of
A= 8"1.(S - A) for a nonsingular symmetrizer S = ST of A then apparently lay dormant for a long time.
Matrix factorizations such as LR, QR, the polar factorization, the sign factorization or the SVD have become
immensely important in modern numerical computations, in part thanks to Alston Householder’s promotion of a
“decompositional approach to matrix computations” that was included in Jack Dongarra and Francis Sullivan’s
list [9], see also [5], as one of the “Top 10 Algorithms of the 20th Century”. Thus there has been a long desire
to compute symmetric factorizations A = S7.5; of square matrices as well. Frobenius’ matrix symmetrization
theorem is often called Taussky’s Theorem in the engineering literature where it occurs in systems theory such as
in modal analysis of non-conservative systems [4] and in asymmetric linear dynamical systems [1]], as well as in
control theory [38]]. [38] also contains an exact matrix symmetrizer algorithm that can be used for low dimensional
matrices A. Extensions of the symmetric matrix factorization to Hilbert spaces and self-adjoint operator factor-
izations for boundary value PDEs are treated in [17]. The symmetrizer equation appears naturally in Hamiltonian
dynamics, see [42, p. 272 bottom] e.g, and it is essential for finding compatible Poisson brackets in the theory
and applications of bi-Hamiltonian systems and Hamiltonian flows. In the theoretic realm, many relations between

*F. Dopico was partially supported by the Ministerio de Economia y Competitividad of Spain through the research grant MTM2012-32542.

1LDepartamento de Matematicas, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain
(dopico@math.uc3m.es)

iDepartment of Mathematics and Statistics, Auburn University, Auburn, AL 36849-5310 (uhligfd@auburn.edu)

Computing Matrix Symmetrizers, Part 2, new Methods 2

symmetrizers S and symmetrized matrices A are known, see the introduction of [29] and its bibliography, as well
as Taussky [26]. But all previous attempts to compute matrix symmetrizers numerically in the 1960s and early
1970s eventually proved unstable and were abandoned until the iterative method of [29,130] succeeded. For further
details of some of the computational history of this problem, again see [29].

The simplest idea to establish Frobenius’ result over C uses the Jordan normal form J,, , = diag(Jy, ..., Ji) =
X ~YAX of a given square matrix A. Each Jordan block .J; is symmetrized by the counterdiagonal unit matrix

o 0 1
1 0
FE;, =
0 1 . :
1 0 0

of conformal size. By accumulating the E; in a block diagonal matrix E, , = diag(Es, ..., E}) we see that
E = ET with EJ = JTET = JTE. Consequently (X " TEX1)T = X~ TEX~! and with A = XJX ! we
obtain

(X TEX A = X TEX'XJX'=XTEJX'= (I)
= X TJTETX ' =X"TXTATXTETX ' = AT (X TETX),

i.e., X "TEX~!is a nonsingular symmetrizer of A. We note for computational purposes that the condition of this
symmetrizer of A hinges on, but is generally not equal to, the square of the condition number for X in ().

How can the classical Jordan normal form from the 19th century (or any other matrix normal form) be used
today to compute matrix symmetrizers for square matrices?
The early unsuccessful attempts from before and around 1970 by Howland and his students [15], [8]], [6], [7] and
by Trapp [28]] started out by finding symmetrizers for matrix normal forms and lateron replaced the given matrix A
by a similar Hessenberg matrix H and tried to compute A’s symmetrizers in terms of symmetrizers for H, followed
by the obvious congruences a la (I) to get back to A. The idea to work on Hessenberg symmetrizers instead of
on A itself was seemingly inspired by the role of Hessenberg matrices in Francis’ and Kublanovskaya’s QR type
eigenvalue algorithms of 1960/1961. QR can find the whole ensemble of eigenvalues of any square matrix in a
backward stable manner for the first time and then the eigenvectors can be computed via additional methods in
such a way that each particular computed eigenpair is also stably compute The QR eigenvalue algorithm has
become one backbone of much of our modern computations and technologies, see [2, 15, 9]]. The success of QR for
generic, i.e., diagonalizable matrices then brought the more general defective matrix normal form problem to the
fore: how can one extract principal vectors for defective matrices and their principal vector subspaces in a stable
fashion? Given the eigenvalues of A, a number of stable algorithms have been developed by Kublanovskaya [20]],
Ruhe [21]], Wilkinson [41], Golub and Wilkinson [13]], Kagstrom and Ruhe [18] and others. A common feature
of these algorithms has to be emphasized: all of them assume that repeated or clustered eigenvalues have been
reliably identified beforehand. Such an identification, however, is only possible in particular situations. But, in
general, it has never been achieved numerically and may not even be possible.

This is the background of our paper and current work. The first three new eigendata based algorithms, num-
bered (3), (4), and (5) start with what Frobenius [11, p. 421 bottom] had discovered when studying matrix com-
mutators, i.e., essentially formula (I) above. First we try to find and resolve clusters of repeated eigenvalues as
they are computed in Francis’ algorithm on a circle rather than at its center, see [13} sect 3] e.g. Then we compute

'Once the whole set of eigenvalues of a matrix A has been computed by QR, each eigenvector ©; associated with each eigenvalue X can
be computed either with inverse iteration on a Hessenberg matrix or by solving a (quasi) triangular system associated with the Schur form of
A, followed in both cases by proper matrix multiplications [2} p. 42]. The Schur form procedure is the one used by default by LAPACK when
all the eigenvectors are desired. It can be proved that the whole ensemble of computed eigenvalues are the exact eigenvalues of a nearby matrix
A+ E, with ||E|| = O(u)||A|| and u the unit roundoff of the computer. However, for eigenvectors one can only prove (for both methods
mentioned above) that each computed eigenpair (X;, ;) is the exact eigenpair of A + E;, with || E;|| = O(u)|| A, but with differing E; for
each eigenpair (), 9;), see [2, p. 107].

Computing Matrix Symmetrizers, Part 2, new Methods 3

the principal vectors of A; via the SVD in method (3) for example as detailed by Wilkinson [41] and Golub and
Wilkinson [13] and by other methods in (4) and (5).

Our most straight forward eigen based algorithm (3), coded in rightsymmAfulljordan8l.m [32] uses for-
mula (1) directly: the eigenvectors are computed from QR and the principal vector chains for defective eigenvalues
are provided by the SVD following Golub and Wilkinson [[13]] via the standard recurrence formula for Jordan chains
from maximal principal vector grade on down.

Algorithm (4), coded in right symmAGSplusLinEqul .m [33] computes ONBs (orthonormal bases) via QR
factorizations for each principal subspace of A and represents the linear transform A on these subspaces by dense
lower dimensional matrices. The latter are then symmetrized by the linear equations method (2) Symmlinequatl.
[31]], to be described below, inside algorithm (4).

Our most sophisticated eigendata algorithm (5), coded in right symmA jordanArnoldill . m [34], starts from
principal vectors of maximal grade for each repeated eigenvalues of A and uses Arnoldi’s method [3] to find an
orthonormal basis for the associated principal vector subspace. It then constructs a partial symmetrizer from the
Arnoldi Hessenberg matrix representation of A as restricted to this principal vector subspace. To do so, we use its
computed ONB and Datta’s Hessenberg symmetrizer method [6], and then apply formula (/) appropriately.

We compare the new eigendata based symmetrizer algorithms with method (1), which is the iterative method
symmorthlongv.m [30] from [29] that is based on Jianguo Huang and Liwei Nong’s two stage algorithm [16]
for solving general linear equations of the form T'(x) = f.

We also consider a new method (2), coded in Symmlinequatl.m [31] to solve the linear symmetrizer equation
SA = ATS for the unknown entries s; ; of S directly and use partial sparsity methods for large dimensions n.

Finally we describe and test a new hybrid method (6), coded in rightsymmSchurplusLinEqu2l.m [35],
for the matrix symmetrizer problem that uses the Schur Normal Form of A to find invariant subspace bases for
A and the linear equations method (2) to symmetrize A’s restrictions to those subspaces, again combined with a
transformation of type (I).

Section 2 explains the computational matrix symmetrizer problem further, followed by Section 3 that describes
our new algorithms in more detail. This is followed by numerical tests and comparisons for various test matrices
of sizes n = 1 through n = 1,000 in Section 4. MATLAB codes of all six linear, eigen- and principal vector, and
Schur based symmetrizer algorithms are available at [36]]. In the last section, Section 5, we discuss a simple exam-
ple to illustrate the difficulties with computing nonsingular well-conditioned symmetrizers. We pose two related
non-convex matrix optimization problems whose solution would lead to improved methods for finding matrix sym-
metrizers in all cases quickly via eigen based methods.

2 The Matrix Symmetrizer Problem

Historically, a symmetric matrix S has been called a symmetrizer of A € F™"™ if S A is symmetric. Note that here
the symmetrizer S operates from the left on A. Eigenvalues are generally defined by right hand side matrix-vector
multiplication formulas as in Ax = Az. This leads to two interrelated types of symmetrizers.

Definition :
A symmetric matrix S for which S A is symmetric is called a left-side symmetrizer of A € F™",
A symmetric matrix S for which AS is symmetric is called a right-side symmetrizer of A € F™".

Some of the facts that now follow were a part of E. Desaultes master’s thesis [8] in 1968 which we repeat for
completeness here.

Proposition 1 :
If S is a left-side symmetrizer of A, then S is a right-side symmetrizer of AT and vice versa: if S is a
right-side symmetrizer of A, then S is a left-side symmetrizer of A7

The proof follows directly from SA = AT'S.

The transposition between left-sided symmetrizers and right-sided ones allows us to relate the matrix symmetrizer
problem to the eigenvalue problem as follows.

Computing Matrix Symmetrizers, Part 2, new Methods 4

Theorem 1 :
If A € F™" is diagonalizable for an eigenvector basis collected in the columns of V € F™", then VV 7T is a
nonsingular right symmetrizer of A.

Proof : If we assume that AV = V D for the diagonal eigenvalue matrix D then AV - V™ = VDV is symmetric,
as is the nonsingular matrix V'V, O

For our purposes we call any matrix of the form
S=VFVT,

a naive right symmetrizer of A, ,,, when V' is an n x n eigenvector matrix of A,, , and F' is any diagonal n x n
matrix. The fact that V FV7 is a right symmetrizer of A follows again from AV = V D with D diagonal, since this
implies that A(VFVT) = VDFVT is symmetric. For a diagonalizable matrix with non-repeated eigenvalues, it
is easy to see that all its right symmetrizers are of the form V F'VT for arbitrary diagonal matrices . However,
to find a symmetric factorization of A from A-S = S; with S = ST and S; = ST as A = S5~ we need
to compute right symmetrizers S of A with reasonably small condition numbers. It is not clear how to choose
a diagonal matrix F so that VFVT is well conditioned especially when the nonsingular eigenvector matrix V'
of A is ill conditioned; see the Open Problem # 1 at the end of Section 5. In this context, we emphasize that

condy(VFVT) < (condQ(VFl/ 2))2, where cond, stands for the spectral condition number of a matrix, and, in

fact, both numbers can be very different. The equality conds(VEVT) = (condy(V F/?)) ? can only be guaranteed
if V is real and F' is real, positive and diagonal. If in this case one chooses F' so that the 2-norms of the columns
of V F'/2 become equal, then condy(V FVT) is minimal for such F up to a factor of n. This is a consequence of
a classical result by van der Sluis [37]. However, to consider only positive diagonal matrices F' may dramatically
limit our chance of finding well conditioned symmetrizers VFVT. See our discussions in Example 1 of this
section and also the example and the symmetrizer in formula (T0) of Section[3]

As Frobenius [[L1] has noted, matrix symmetrizers always exist over the same base field as that of the given matrix
A. Real symmetrizers of a real matrix A € R™" with complex eigenvalues can be found from eigendata as follows.
If A is diagonalizable, then the two eigenvectors corresponding to a pair of complex conjugate eigenvalues of A
can be chosen as complex conjugates of each other. With this choice, the naive symmetrizer V'V built from such
an eigenvector basis V' of A as in Theorem 1 is real. For general real matrices A, the next proposition alleys this
conundrum further.

Proposition 2 :
If S = R+iU = ST € C»" with R,U € R™" is a right symmetrizer of A € R™", then both R and U are
real right symmetrizers of A.

Proof : If S = ST € C™" then clearly R = R and U = UT € R™". And AS = AR +iAU = SAT =
RAT +iUAT implies AR = RAT and AU = UAT. O

Theorem 2 below provides a rounding error analysis for computing naive symmetrizers V F'V7 with F diagonal
from an eigenvector basis matrix V' for A. Our results are stated for the spectral or 2-norm, but the Frobenius norm
can also be used for an equivalent result, see [[14, Chapter 6]. Since the right symmetrizer problem is equivalent
to finding symmetric solutions of the particular Sylvester equation AS — SA” = 0, we perform the error analysis
in terms of the relative residual as usually done in error analyses of algorithms for Sylvester equations [14} section
16.1]. At this point we emphasize that residual error bounds for Sylvester equations cannot be translated directly
into backward errors for the matrix coefficients, i.e., back to A in our case. This is well known and it is well
explained in [14} section 16.2]. Therefore tiny relative residual errors are the best to be expected when computing
symmetrizers. Theorem 2 provides such error bounds for naive symmetrizers computed from eigenvector bases
that were computed by LAPACK or MATLAB. Since these software libraries provide eigenvectors with 2-norms
equal to 1 we use unit norm eigenvectors in the proof of Theorem 2. Part (b) of Theorem 2 shows that the relative
residuals of any naive symmetrizer corresponding to real eigenvectors and positive diagonal matrices F' always are

Computing Matrix Symmetrizers, Part 2, new Methods 5

of order of the unit roundoff of the computer. From the point of view of rounding error analysis this is the best that
can be expected for a residual error. Since complex matrices (and many real matrices) have complex eigenvector
matrices V', Theorem 2(b) does not cover all possible situations. In addition, one might want to look beyond real
positive diagonal matrices F' that optimize the condition of V VT even when V is real. Therefore we will consider
general diagonal matrices F' € C™"™ and general V' € C™" in part (a) of Theorem 2. However, in this more general
case, a penalty factor creeps into the residual error estimates. This factor is quite natural, it should be expected
and it is the best in the following sense: it measures the cancellation rounding errors incurred when performing
the matrix multiplications of V FVT. Recall that |V | = \/n. Thus, this extra factor measures the sensitivity
of VFVT to tiny perturbations in V and in F. Although Theorem 2 shows the power of reliable eigenvalue
eigenvector algorithms for computing symmetrizers from the rounding errors point of view, these methods do not
and cannot guarantee any other desirable property for naively computed symmetrizers such as invertibility, full
rank or moderate condition number. Thus further efforts are needed to obtain matrix symmetrizers with additional
necessary or desirable properties through eigen-based algorithms. This will be further exemplified in Example 1
that follows Theorem 2, as well as in our numerical tests in Section 4 and it is the main topic of Section 5.

Theorem 2 :
Let A be an n x n real or complex matrix. Let V be a matrix whose columns accumulate the eigenvectors
of A computed by LAPACK or MATLAB from the eigenvalues provided by Francis’ QR algorithm in a
computer with unit roundoff u. Let F' = diag(fi,. .., f») be any n X n diagonal matrix. Then the following
statements hold up to first order in u.

(a) If Y is the computed version of VEVT, then there exists a polynomial g(n) of low degree such that

Z?:l |fz|)
1Y]2

| AV — VAT _

< g(n)u
I Al|2)1Y |2

(b) In addition, if V is a real matrix and F is a real and positive diagonal matrix, then

1AY — YA _

< ng(n)u.
1Al 1Y (|2

Proof : The proof involves standard error analysis. Therefore, we only sketch the main steps. Second order
terms in u are discarded in our analysis. Let 01, ..., 0, be the columns of V" and A4, ..., A, be the corresponding
eigenvalues as computed. Our starting point, see [2, p. 107], is that each eigenpair (9;, A;) is stably computed with

the residual X
||A1A]1—)\Z’f)l||2 §p(n)u|\A||2 for each izl,...,n. (1)

Here we use the 2-norm, both for vectors and matrices and p(n) is a low degree polynomial in 7. Let us denote
h; .= A0; —)\ v;. The exact matrix Y = VEFVT can be expressed dyadically as Y = Z 4 fit; 0 T Therefore

Zfl (Aiy) o] mewh)0} vaz +ZfH)

and
Zsz 0; D +Z fzvz . (3)

Combining (2) and (3), we obtain

AY —YAT = th 0 — o b, 4)

Computing Matrix Symmetrizers, Part 2, new Methods 6

Next, we can bound the spectral or 2-norm of the matrix difference in @) to the first order in u by taking into
account (I)) and that both LAPACK and MATLAB compute unit eigenvectors, i.e., ||0;]|2 = 1 + O(u). Thus

[AY — Yﬁﬂb<2§:UHMHﬂwh<2p UHMbE:U}- (5)

i=1

We note that the standard roundoff error bounds of matrix multiplication, see e.g. [14, p. 71], imply
Y=Y +E, (6)

with

IEllz < |EIr < 5m) w|VEIRIVT |7 < np(n) uy/ I[P+ + [fal? < ni(n u}:M- ©)

Here j(n) is a first degree polynomial in 7 and we have used that ||V||z = /n + O(u). Therefore
AY — VAT = AY —YAT + AE — EA”,
and
|AY =YV AT||y < [|AY =Y A" ||z + |[AE — EA"|
<|AY = Y AT (|2 + 2| All2[| Bl

< 2(p(n) +np(n MMME:M

from (3)), (6), and (7). This proves (a) with q(n) := 2 (p(n) + np(n)).
To prove part (b), note that for real matrices V and positive diagonal matrices F' equation (6 yields

1Yl = Y]]z + Ou) = [VEY?|5+ O(w) > [[VEVZ|% /n+ O(u) E:ﬂ/n+0 u),
where the last equality follows from the fact that the i-th column of V F'/2 has norm equal to fil/ 4 O(u). The

result follows from combining this lower bound with the bound in part (a). O

Even if a computed eigenvector matrix for A is real, Example 1 below will illustrate why considering diagonal
matrices F* with positive as well as negative and possibly different size entries may be advantageous for computing
naive symmetrizers Y = VEVT with desirable properties.

Example 1:

Let us consider that an eigenvector matrix V with normalized eigenvectors has been computed from

V =

—_ O =

1 1

1 1],

1 146

where § = 1073, In the next table, we display the condition numbers, the norms, and the penalty factors
27 LIfil/IIY ||2 that appear in Theorem 2(a) for the symmetrizers Y = VEVT computed with V' for
different choices of F'. All computations are performed using MATLAB.

Computing Matrix Symmetrizers, Part 2, new Methods 7

F | condy (V) | IVIl2 | T2 [AI/IY]2
diag(l, 1, 1) 7.2048e + 07 | 2.0000 1.5000
diag(l, 1, —1) 4.2441e¢ 4+ 03 | 1.0000 3.0000
diag(l, 1000, —1000) 7.3407 1.1509 1.7386e + 03

The symmetrizer f’l in the first row of our table uses the most simple choice ' = I3. Therefore its con-
dition number is (condy(V))? and this is very large since the last two columns of V are almost parallel.
However, its residual error bound is nearly perfect, i.e., of order unit roundoff, by Theorem 2(b). The sym-
metrizer Y3 in the second row corresponding to F' = diag(1, 1, —1) with negative entries has a much smaller
condition number than Y; and likewise a near perfect residual error bound, again in fact and according
to Theorem 2(a). Therefore, Y2 should be preferred to Yi. Finally, the symmetrizer Y3 constructed from
F = diag(1, 1000, —1000) in the bottom row of our table is extremely well conditioned, but it looses three
digits in the residual error bound. Thus it is unclear whether Y; should be preferred over Ys.

This example shows that a near optimal selection of the entries of F' plays the key role for computing well-
conditioned symmetrizers with tiny residuals. However, this is an open problem, to design methods to find adequate
diagonal matrices F'. It is not even clear, in general, whether the condition number can be improved without wors-
ening the residual error bound significantly, as it happens in the symmetrizer Y, in Example 1. More on these
questions are in Section [5] where we solve a simple example algebraically and the solution indicates that to find
“good” matrices F' may be very difficult.

After the diagonalizable matrix case discussions in Theorem 2 and Example 1, we now proceed to the non-
diagonalizable defective matrix case for A with repeated eigenvalues and principal vectors of grades larger than
one. Such an A has the Jordan normal form J with AX = XJ for J = diag(.Jy, ..., Ji) that is composed of
Jordan blocks J; on its diagonal for a nonsingular matrix X with principal vector chains and eigenvectors of A in
its columns. As .J allows a ready right (and left) side symmetrizer E = diag(E};) as explained earlier, X - E - X T
will symmetrize A from the right since AX = X.J implies that A(XEX7T) = XJEXT is symmetric. And thus
XEXT is a nonsingular right-side symmetrizer of A, at least in theory.

However, a naive and straightforward implementation of this approach often leads to disaster. For truly defective
matrices A the symmetrizers X EX 7 are generally computed with high rank deficiencies and even if they happen
to have full rank, their condition numbers will often exceed those of the symmetrizers computed with Uhlig’s
iterative method [29] by many orders of magnitude, with multiplication factors in the 10° and much higher ranges
for defective A.

What goes wrong? Loosely speaking, the condition number of a symmetrizer of the form X EX ™ above is mostly
affected by the condition of X, square according to [24], as the condition of the interior factor £ = diag(E;)
equals 1. A simple visual inspection of principal vector chains computed from a top grade k principal vector py
on down for A and the respective eigenvalue A via the classical recursion p;_1 = (A — A)p; reveals that such
principal vector chains become quickly near stationary, see also [13} sect 12]. This can make X unacceptably ill
conditioned which in turn affects the conditioning of such a naively computed right-side symmetrizer X EX7 of
A. Rank deficiencies of symmetrizers computed via eigendata methods happen regularly in case A is defective.

3 The Six Symmetrizer Algorithms

The methods (1) and (2) compute matrix symmetrizers by linear means, such as through repeated matrix multipli-
cations or via solving a linear system of related equations.

Methods (3) through (5) are instead based on eigenanalyses and the Jordan normal form of the given A,, ,, whose
symmetrizers we seek to compute. In each of these eigendata based algorithms we start off by performing the same
first few steps as follows:

2 We emphasize that this statement should be understood as a “generic statement”, since conda(XEXT) < (conda(X))? and both
numbers can be very different, as can be easily checked via random tests in MATLAB. Note also that even conda (X X7T) < (conds (X))?
may happen for complex (nonreal) matrices X.

Computing Matrix Symmetrizers, Part 2, new Methods 8

Ist step : For the given A,, ,, compute the eigenvalues A via Francis QR and then the eigenvectors (accumulated
in the columns of V) by either solving a (quasi) triangular systems or by Hessenberg inverse iteration, followed in
both cases by appropriate matrix multiplications.

2nd step : FormY = V VT with V,, ,, from Step 1 and check its properties. If rank(Y") < n we check for clusters
of eigenvalues. Here we crudely judge eigenvalues to be repeated when they are relatively less than between .01
and .1 units apart. This threshold is adjustable inside the codes. We use the average of each 'repeated’ set of eigen-
values as one eigenvalue of A and assign it the cumulative multiplicity. Then we collect all j < n eigenvectors for
the non-repeated eigenvalues of A in a new V,, ; and replace Y by V/, ; * anj 4

3rd step : If there are repeated eigenvalues and rank(Y") < n, then for each repeated eigenvalue A :

We find the Jordan structure for A and A by computing a complete set of its principal vectors and collect
them in the columns of the matrix Py, ordered by decreasing grade. This is based on the SVD method of
Wilkinson [41, method 1] and implemented according to the extended version by Wilkinson and Golub in
section 9 of [13], p. 594]. It uses the SVD of B = A — Al and iterates upon the principal vector grades.

Our three eigen based symmetrizer algorithms (3), (4), and (5) differ only by how they use the Jordan structure
information of A obtained in step 3. For details in implementation and output, see below. Observe that according
to [I13] the principal vectors provided by the 3rd step above do not form Jordan chains and this is the reason why
further development is necessary. The joint complexity of the first two steps above is O(n?) flops. The complexity
of the 3rd step is also “almost always” O(n?) flops, but it may grow up to O(n*) flops in the rare cases when
O(n) clusters of eigenvalues have been identified for A in the 2nd step or when Jordan blocks of size O(n) occur
for A. The cost of the remaining steps of each of the eigen based algorithms (3) and (5) is O(n?) flops, so each
of them has “almost always” global complexity O(n?) and very rarely O(n?). For the eigen based algorithm (4),
the remaining steps may cost up to O(n*) flops, since it uses the linear symmetrizer method (2). However, again,
this only happens in the rare case when A has Jordan blocks of size O(n) and, therefore, we can also state that the
global cost of algorithm (4) is “almost always” O(n?) flops and very rarely O(n*).

Method (6) starts off with performing the 1st and 2nd steps above. But instead of the 3rd step, it then uses the Schur
Normal Form of A, already computed by Francis QR, and computes invariant subspace bases for each identified
cluster of eigenvalues of A. In method (6) - differing from methods (3), (4), and (5) - multiple Jordan chain spaces
for the same eigenvalue of A are combined and treated as one invariant subspace. Then A’s representation on each
distinct invariant subspace is computed and symmetrized by the direct linear symmetrizer algorithm (2). In this
way we find symmetrizers of A in a hybrid eigen-linear based fashion according to a formula similar to (7). The
joint cost of steps 1, 2, and the computation of the bases of invariant subspaces via the Schur Normal Form takes
O(n?) flops, but the use of algorithm (2) may increase the total cost of method (6) very rarely to O(n*) flops.

3.1 Method (1), a Linear two Stage Iterative Scheme

Method (1) is based on [[16]]. It uses an iterative linear two stage method as detailed by [29]. Its MATLAB code
is stored at [30]. The method uses two matrix multiplies and six matrix norm computations per iteration step.
Unfortunately it is slow to converge. In theory it must converge in at most n? steps for any n by n matrix A
due to the proven orthogonality of both of its code-internal iterates. In practice, however, orthogonality is soon
jeopardized and reorthogonalization is often required for swift convergence. In case of fast convergence in O(n?)
iteration steps without reorthogonalization, method (1) has a complexity of O(n®); with reorthogonalization its
complexity rises to O(n”). However this method always seems to find a well conditioned full rank symmetrizer
for any given A. And thus - except for its slowness - it is the standard against which all our other symmetrizer
algorithms will be measured. Uhlig [29,130] gives a full description and contains many tests of its qualities.

3.2 Method (2), the direct Linear Equations Approach to find S

Method (2) was developed to allow us to follow one referee’s suggestion to try Gram-Schmidt type orthogonaliza-
tions to find orthogonal principal vector subspace bases of A,, ,, instead of using Arnoldi’s method as in algorithm
(5) below. Here we specifically acknowledge the help of Luke Oeding of Auburn University who insisted that a
direct method can be coded and programmed to find the unknown entries s; j of S = ST with SA symmetric via

Computing Matrix Symmetrizers, Part 2, new Methods 9

a system of n(n — 1)/2 linear equations in the unknown entries of S.

For S, n = (si;) = ST with n(n + 1)/2 unknown entries 8;j = Sj,i, we now consider the matrix symmetrizer
problem as a linear equations problem given by SA = AT'S. Clearly

(SA)ivj = Z Si,kAk,j
k=1

%

n
= E Sik Q.5 + E 81,5 a1,5 ,

k=1 l=i+1

and
n

(SA)]‘J' = Z Sj,rQri

r=1
J n
= § Sj,rQrq + § Sr,jQrj
r=1 r=j+1

where both sum expressions on the respective second line use the symmetry of S to express the (,7) and (4, 1)
entries of SA only via the lower triangular entries s; ; with ¢ > j of S.

Sorting the lower triangular entries of S column wise into one vector

8 = (81,1, 52,15 vy Sn,15 52,25 +v, 81,25 0y iy ooy Sn,n)T € Frinth/2

of unknowns s; ; fori > j we obtain n(n — 1)/2 linear equations by equating (SA); ; and (SA);,; (= (ATS); ;)
for the n(n + 1)/2 lower triangular entries of S = ST. The diagonal entry equations (SA);; = (ATS);, are
tautologies and thus redundant. This gives us a seemingly sparse linear system whose zero - nonzero pattern we
exemplify below for n = 10.

0

10

15

20 -

25

30 -

35

40 -

45+
0

nz = 855
Figure 1 : Symmetrizer linear system’s sparsity structure for a random entry matrix A 10 :
55 unknowns and 45 linear equations with 855 nonzero entries

Obviously for a dense n by n matrix A, each row of the associated linear system contains at most 2n — 1 nonzero
entries that link its n(n + 1)/2 unknowns and it does so in n(n — 1)/2 equations. Thus for each n by n matrix A
there is an at least n dimensional subspace of symmetrizers, reproving one of Frobenius’ further results that there
are at least n linearly independent matrix symmetrizers for every square matrix A.

Computing Matrix Symmetrizers, Part 2, new Methods 10

In the MATLAB code Symmlinequatl.m [31] we use the built-in MATLAB nullspace function null.m
to solve the homogeneous system SA — AT'S = O for the lower triangular entries of S for sizes of A below the
break-even point n = 54. For larger n we use its sparse version nulls.m as coded by Sivan Toledo [27] in 2005.
We observe that a full basis for the symmetrizer space is obtained in either case. Any particular symmetrizer can
be constructed by picking one of the matrices in this basis or by computing a random linear combination of all
computed symmetrizers in the basis.

Note that to find the entries of S in this way requires us to solve a rectangular system of linear equations of size
n(n —1)/2 by n(n + 1)/2. Thus for n < 54 where we use null.m this requires an O(n%) effort, while using
sparse methods for larger n reduces the complexity to O(n*) under ideal conditions. This is clearly born out in
the runtime comparisons of the next section and besides, it limits method (2) to dimensions n < 200 due to the
necessary system matrix generation and their storage.

3.3 Method (3), an Eigendata and Jordan Normal Form Algorithm

Method (3) - as all eigendata based methods - has O(n?) complexity, except in very rare circumstances when its
complexity may be O(n*) as explained earlier. The method is based on the analysis preceding formula (1) in the
introduction. If AX = X J for a Jordan normal form matrix J = diag(J;) of A and if X is comprised of principal
vector chains in its columns, then S = Xdiag(FE;) X" is a right side symmetrizer of A for counterdiagonal unit
matrices F; that are conformal in size with the Jordan blocks .J;. Since in theory X is nonsingular, so is .S. For
constructing the principal vector chains for each repeated eigenvalue \ of A, method (3) computes the principal
vectors of highest grade in the 3rd step and uses the recursion p;_1 = (A — AI)p; to find full principal vector
chains as Jordan theory prescribes.

However, in this method nothing can be said about the conditioning of S or its numerical invertibility. When the
eigenvalues of A are ill conditioned and the eigenvector or principal vector basis for A leads to an ill conditioned X,
then S will very often be doubly ill conditioned since X appears twice in the formulation of S = Xdiag(E;) X7,
see Taussky [24] e.g. for the conditioning of matrix products and the earlier footnote at the end of Section 2.

This is one serious drawback for method (3). To remedy, we next try to represent the principal vector subspaces
for A differently so that the square of cond(X') does not mar the conditioning of a symmetrizer S of A in methods
(4) and (5) below.

3.4 Method (4), using Orthonormal Bases for Principal Subspaces and method (2)

To improve on method (3) at the same generic O(n3) complexity rate, here we first orthogonalize each complete
grade k principal vector chain for A4, ,, € R™" or C™" instead and then symmetrize A’s matrix representation
with respect to the principal vector subspace ONBs as follows.

Assume that a principal vector chain is stored in the columns of P, ;. We can compute a partial symmetrizer S of
A as follows from P. Note that A, ,, P, , = P, 1 Ji,; With P and a Jordan block J € Ck* for an eigenvalue A
of A. Assume further that P, , = @y, 1 - Ry i is the reduced QR factorization of P, whose computation requires
O(nk?) flops with k < n. With

P=1p - pi and Q= | a1 - @
n,k : : n,k

we have span{p;} = span{¢;} and Q*Q = Ij. Let M} ; = Q*AQ represent the linear transformation induced
by A with respect to the ONB {qx, ..., g } of the principal vector subspace under consideration. If Ly ; = LTisa
right side symmetrizer of M, found by applying Proposition 1 to M7 in method (2), for example, then

A-Q L-QF=Q-M-L-QF.

Thus S = QLQT is a right side symmetrizer for A of rank at most k& whose condition number equals that of
L. To obtain a symmetrizer of possibly full rank for A we accumulate these partial symmetrizers in Y = Y7,

Computing Matrix Symmetrizers, Part 2, new Methods 11

Since cond(Q) = 1 for each partial symmetrizer, in this method the possibly ill conditioned principal vector chain
matrices P do not appear twice in Y as they did in method (3) and therefore their condition numbers do not affect
the conditioning of Y as adversely. The total cost of the additional work of method (4) over the three first steps
described at the beginning of Section 3 is O(n?) flops, assuming that the size of each M is small and, so, the cost
of each application of method (2) is bounded by a moderate constant.

Note that method (4) tries to cure the “most inner” ill conditioning in the symmetrizer Y, i.e., that coming from
the potential ill conditioning of each particular principal vector chain. Method (5) below tries to remedy the same
source of ill conditioning differently. However, none of these two methods can remedy an ill conditioning in Y
that is caused by two (or more) principal subspaces of A that are almost parallel.

3.5 Method (5), using Arnoldi and Datta for A’s Principal Subspace Representations

As we have just seen, each Jordan block J; of size k by k for A represents the underlying linear transformation
A : F™ — F™ when restricted to the respective principal vector space. The Jordan block J; represents A with
respect to the principal vector chain basis py, ..., p1. Differing from method (4), one can find an orthonormal basis
of the principal vector subspace

span{pi, ...,p1} = span{py, pr—1 = (A — A)pg, ...,p1 = (A — /\I)kﬂpk}

for A very simply by viewing it as a Krylov subspace and using Arnoldi’s iterative method [3] while operating
with B = A — AI on each respective highest grade k principal vector py for k — 1 iteration steps. This approach
gives us an ONB W, for each principal vector subspace of dimension k together with a k& by & Hessenberg matrix
representation H; of A as restricted to the respective principal subspace. Here the Arnoldi process ends after
k — 1 steps, as we have ’lucky convergence’ by design, and the resulting Hessenberg matrix H; is unreduced
having exactly one Jordan block as its Jordan normal form, i.e., H; is non-decomposing. Thus AW, = W,;H;
for the n by k matrix W; whose columns are mutually orthonormal n-vectors. Appending all such W; blocks
in W = [Wy, Wa,...]n,n block-column wise and forming H,,, = diag(H;) with each H; a non-decomposing
Hessenberg matrix, we then have

AW =WH . ®)

W contains mutually orthonormal column vectors in each strip of vectors that form an ONB of a particular principal
vector subspace of A.

A simple algorithm to symmetrize each non-decomposing H; of size m by m was given by Datta [7]:

Let

hl,l
h271 *
T | | |
H= and ZH: 2 R Zk ... Zm
e | | |
0 o voi 0 hmmo1 Pmm

both be of size m by m where H is an unreduced upper Hessenberg matrix (h;;—1 # 0 for ¢ = 2,...,m) and
gy = Zfl is symmetric. Then the symmetrizer equation HZy = Zi H” has only symmetric solutions [23] and it
can be solved from any given last column (or row) z,,, of Zg by comparing the left and right hand side columns in
HZy=ZyHT, starting with m and going back. For m this amounts to solving H z,, = hyn m—12m—1+hm m2m
for z,,,—1. And for general m — 1 > k > 1 the kth column of Zy; then becomes

m
2 = | Hzpq1 — E hit1525 | /hkt1k -
j=k+1

Computing Matrix Symmetrizers, Part 2, new Methods 12

Note that according to [23] every solution Y of AY = Y AT is symmetric if and only if the square matrix A is
nonderogatory, which an unreduced Hessenberg matrix ., ,, is by default. This is so because all its eigenvalues
have geometric multiplicity 1 as rank(H — A\I,,,) > m — 1 forall A € C.

The right symmetrizers Zp, computed via Datta’s method for each non-decomposing Hessenberg matrix H; in
the block diagonal matrix H of (8] is accumulated in the block diagonal matrix Sy = diag(Zg,). From (8], we see
that AW SgW7T) = WHSgWT is symmetric and thus W-Sz- W7 is a nonsingular right-side symmetrizer of A.

By combining Arnoldi’s and Datta’s methods here, the potential ill-conditioning of symmetrizers that are com-
puted via the naive eigen- and principal vector chain based method (3) shifts from the generally ill-conditioned
principal vector chains to the individual symmetrizers of the associated Hessenberg matrices H;. In our tests the
symmetrizer condition numbers from the Arnoldi plus Datta based algorithm were often rather modest with corre-
sponding relative residuals of order unit roundoff despite the fact that Arnoldi’s method is not backward stable and
neither is Datta’s. Yet this method often gives full-rank symmetrizers with condition numbers similar to the ones of
the iterative method [29] when the conditioning of A’s eigenvalues is good, and even for some defective matrices
whose eigenvalue condition numbers may well exceed 10?° as long as A has relatively small Jordan blocks of sizes
below 10. For matrices A with Jordan block sizes above 12, Datta’s method shows signs of instability. But even
for A with simpler eigenstructures our new hybrid Arnoldi-Datta based method sometimes fails compared to the
iterative method of [29]. Reasons for this are unclear.

Here are further details of our eigenanalysis based symmetrizer algorithm (5).

The 1st, 2nd and the beginning of step 3 are as detailed at the start of this section.

Step 3 continued :

For each highest grade k principal vector in turn, we find an ONB for its respective principal subspace
via the Householder based Arnoldi method as described by Y. Saad [22, Algorithm 6.3, p.157], i.e., we
compute A’s Hessenberg matrix representation Hy, ;, with respect to an ONB V. This givesus AV = VH
for the matrix V,, ;, with orthonormal columns. Then we compute a symmetrizer (Z), for H by Datta’s
algorithm [7] from a random last column. We add the symmetric matrix V' - Zp - VT to the current
symmetrizer Y and append the orthonormal principal space basis, found in V, to the columns of a matrix
called V.

Then we decrease the principal vector grade levels until there is a larger number of principal vectors in
one grade m than in the grade above. In this case we find all principal vectors in Py, of grade m that
do not belong to the column space of Vi, through a QR decomposition of the augmented matrix [Vy/, Py,]
where P, consists of all grade m column vectors originally collected in Py . Taking the vectors in Py that
correspond to sizable non-zero diagonal entries r; ; in 12 from the QR decomposition gives us the top grade
principal vectors of a complete set of precisely m dimensional principal subspaces for A and \.

Then we proceed as above with Householder Arnoldi to find an ONB for all precisely m dimensional
principal subspaces and the corresponding Hessenberg matrix representations of A. We find their respective
symmetrizers, again with Datta’s method [7]], and update the symmetrizer Y as before. We repeat this
process for decreasing values of m until the partial symmetrizers for all principal subspaces have been
computed and added to Y, the desired symmetrizer of A.

3.6 Method (6), using the Schur Normal Form, invariant subspace bases and method (2)

This algorithm was inspired on section 7.6.2 of Golub and van Loan [12| p.396 - 397] which deals with invariant
subspace computations via reordering the eigenvalues in the Schur Normal Form that was computed by Francis’
QR algorithm. This procedure was originally introduced by Ruhe [21] and improved by Stewart [23].

Our algorithm uses the MATLAB built in Schur m-functions schur . m, which computes the Schur Normal Form
via Francis’ QR algorithm, and ordschur .m, which arranges the eigenvalues in the Schur form in any order
prescribed by the user. Our method reads the eigenvalues off the diagonal of the computed triangular Schur form
for A and checks for clusters or repeats as all our eigendata based methods (3) through (5) do. Then, for each
identified cluster with a repeated eigenvalue A\, we use ordschur .m to rewrite the Schur Normal Form for A

Computing Matrix Symmetrizers, Part 2, new Methods 13

as A = UT,\U™ so that the eigenvalue of the cluster appears at the top of the diagonal of 7T} with its proper
multiplicity m . An orthonormal subspace basis for the invariant subspace of A that is associated with this cluster
then appear in the first m columns of U, which we store in a matrix U;. From T’ we then select the top left m
by m block T} and symmetrize this generally much smaller matrix via the direct linear equations method (2) by
computing L = LT € C™ ™ so that T} - L is symmetric. Then AU; = U, T} gives us

A-(U-L-UNY=U-T,-L-UL.

Thus Uy - L - UF is a partial right side symmetrizer of A of rank m,, if L is nonsingular. The global right sym-
metrizer of A is obtained by adding all the partial symmetrizers for all clustered eigenvalues to the symmetrizer
Y derived from the non-repeated (or non-clustered) eigenvalues that have been computed in the 2nd step, see the
beginning of Section 3.

Method (6) differs from the eigen-principal vectors based methods (3) through (5) in using the Schur Normal Form
of A to compute bases of invariant subspaces. This allows us to avoid the use of principal subspaces and avoids
a detailed Jordan analysis of A. The operations count for algorithm (6) is again O(n?) in the generic case and
O(n%) in exceptional cases, due to the possible expense of the linear equation method (2) to find L in case of large
clustered eigenvalue sets for A.

4 Numerical Results and Comparisons

Here we compare the results of the iterative symmetrizer algorithm (1), the direct linear equations method (2),
our three new eigen-principal vectors based algorithms (3), (4), and (5), and the Schur based method (6). Note
that several of the algorithms rely on randomization. The iterative code [30] for method (1) starts with a random
start-up matrix, method (5) computes each Hessenberg matrix symmetrizer from a random last column, method
(2) computes symmetrizers via a random linear combination of the basis it computes for the symmetrizer matrix
space and this randomization is inherited by methods (4) and (6). Thus the algorithms (1), (2), and (4) through (6)
compute different symmetrizers for the same matrix A in separate calls. To compare all methods we average their
output over a number of runs.

First we repeat the tests for the matrices used in [29].
The first test there involved the modification M = K + 3K 7 for the Kahan matrix K of dimension 35 and our
test averages over 5 or 10 runs. Here and in what follows, all named matrices are taken from the gallery set of
matrices in MATLAB.

My max eig | symm. error | cond(Y) rank(Y") runtime # of

35 by 35 cond no average average average average runs
method (1) 5.7952e-10 | 2.3358e+06 35 7.7128e-01 5

(without orthog)

method (2) 2.8921e-15 | 3.7900e+04 35 2.5151e-01 10
method (3) 29 3.6121e-15 | 2.8107e+04 35 4.5725e-03 | 10
method (4) 29 3.6121e-15 | 2.8107e+04 35 4.5093e-03 | 10
method (5) 29 3.6121e-15 | 2.8107e+04 35 3.5759e-03 | 10
method (6) 2.8789%¢-15 | 2.8102e+04 35 5.4104e-03 | 10

Clearly My has well conditioned eigenvalues and all algorithms perform near equally well. Note also that the
eigenvalue-principal vector and Schur based methods (3) through (6) are up to 130 times faster here than the linear
methods (1) and (2).

In our tables, the ’symmetrizer error’ entries always refer to | A+ Y —Y % AT||5/||A* Y || where Y is a computed
right side symmetrizer of A. This is more stringent than the |4 * Y — Y x AT |5 /(|| A|l2 * ||Y]|2) relative error
measure that is more commonly used to check the quality of computed solutions of matrix equations. The cond(Y)
and rank(Y) or rank(V) entries in our tables use the respective built-in MATLAB functions (see MATLAB online
documentation for more details) and the specified data is the average value for the respective numbers of runs.

Now we repeat the same test for the Kahan matrix K35 35 itself, again with averaging over five or ten runs.

Computing Matrix Symmetrizers, Part 2, new Methods 14
K max eig | symm. error | cond(Y) | rank(Y) runtime # of
35 by 35 cond no average average average average runs
method (1) 1.0193e-09 | 1.3277e+09 35 5.0713e+00 | 5
(with orthog)
method (2) 5.3056e-15 | 1.3516e+10 35 2.6672¢-01 10
method (3) 2.6e+8 | 1.4002e-12 | 9.2693e+15 32 6.9770e-03 | 10
method (4) 2.6e+8 | 1.4002e-12 | 9.2693e+15 32 4.3004e-03 | 10
method (5) 2.6e+8 | 1.4002e-12 | 9.2693e+15 32 3.6281e-03 | 10
method (6) 1.4002e-12 | 9.2693e+15 32 3.9125e-03 | 10

Here all eigen-principal vectors and Schur based methods (3) through (6) fail to find full rank symmetrizers of
K. The culprit might be the somewhat elevated eigenvalue condition number of some of the eigenvalues of the
Kahan matrix. We have used [30]] with re-orthogonalization here since the non orthogonalized iterative method (1)
converges very slowly and needs over 40,000 iterations to succeed in this example.

Our next example involves the modified Frank matrix F of size 35 by 35 with its parameter & set to 20.

F (k=20) || maxeig | symm. error | cond(Y) | rank(Y) runtime # of
35 by 35 cond no average average average average runs
method (1) 4.0164e-10 | 2.9527e¢+09 35 6.8527e+00 5
(with orthog)
method (2) 1.1927e-15 | 2.1622e+15 34 2.5491e-01 10
method (3) 4.6e+8 | 2.2213e-10 | 2.7215e+17 26 7.7943e-03 10
method (4) 4.6e+8 | 2.2213e-10 | 2.7215e+17 26 7.4105e-03 10
method (5) 4.6e+8 | 2.2213e-10 | 2.7215e+17 26 6.4398e-03 10
method (6) 4.2376e-15 | 9.9170e+17 20 5.9974e-03 10

In this example all eigen-principal vectors and Schur based symmetrizer methods (3) through (6) again suffer fa-
tally in all categories except for speed. And even the direct linear equations method (2) suffers from rank deficiency.

The last gallery matrix example in [29] involves the Hanowa matrix H of size 36 by 36. It has perfectly
conditioned eigenvalues. And all six methods perform very similarly and equally well here. Note, however, that
the eigendata and Schur based methods are again much faster, between 30 and 80 times, than the non eigenbased

methods (1) and (2).

H max eig | symm. error | cond(Y) | rank(Y) runtime # of

36 by 36 cond no average average average average runs
method (1) 3.2518e-10 | 4.6952e+00 36 8.7459¢-02 5

(without orthog)

method (2) 2.0894e-15 | 1.0101e+01 36 2.2584e-01 10
method (3) 1 3.9414e-16 | 1.0000e+00 36 3.3107e-03 | 10
method (4) 1 3.9414e-16 | 1.0000e+00 36 2.6154e-03 | 10
method (5) 1 3.9414e-16 | 1.0000e+00 36 2.1424e-03 10
method (6) 3.9414e-16 | 1.0000e+00 36 5.6850e-03 | 10

Note that for the first four examples the eigen-principal vector based algorithms (3) through (5) compute exactly
the same symmetrizer since they never reach their differing repeated eigenvalues, defective matrix stages for M,

K, F, or H. This will change below.

Next we test our six algorithms on dense matrices with known Jordan structure. For this purpose a block di-
agonal matrix A is constructed with blocks made up of upper triangular random entry matrices, except for two
assigned eigenvalues that alternate down their diagonals. Such an A is also tested when transformed via a random
complex unitary similarity to become a dense complex matrix C.,,,q With the same Jordan structure.

Our first dense example matrix B of this construction has size 27 by 27 and Jordan blocks of sizes 4, 4, 3, 3, 1,
1 for the eigenvalue 7, as well as Jordan blocks of sizes 3, 3, 3, 2 for the eigenvalue e.

Computing Matrix Symmetrizers, Part 2, new Methods

B max eig | symm. error | cond(Y) | rank(Y) runtime # of
27 by 27 cond no average average average average runs
method (1) 1.7727e-09 | 6.8907e+08 27 2.8787e+00 5
(with orthog)
method (2) 5.5284e-15 | 1.0110e+10 27 5.0232e-02 10
method (3) 1.6e+45 | 4.1865e-16 | 9.3515e+18 24 5.6763e-03 10
method (4) 1.6e+45 | 1.8857e-11 | 1.1225e+21 23.7 1.1943e-02 10
method (5) 1.6e+45 | 7.9316e-09 | 4.2267e+10 25 1.0573e-02 10
method (6) 9.6874e-15 | 1.4322e+12 27 1.4155e-02 10

Cut max eig | symm. error | cond(Y) | rank(Y) runtime # of
23 by 23 cond no average average average average runs
method (1) 9.1618e-08 | 2.3985e+10 23 1.5451e+00 5
(with orthog)
method (2) 3.0685e-14 | 1.0515e+14 22.9 3.2153e-02 10
method (3) 3e+60 1.2017e-10 | 2.4372e+19 22 4.9113e-03 10
method (4) 3e+60 2.8395e-07 | 3.1620e+18 22.9 1.4870e-02 10
method (5) 3e+60 8.6875e-13 | 3.3969e+15 21 1.0437e-02 10
method (6) 8.6396e-12 | 8.1691e+11 23 9.8288e-03 10

15

The next example of this kind involves an upper triangular matrix (C;)23 23 with eigenvalues 1 and —10 and
Jordan blocks of sizes 5, 4 and 3 for A = 1, as well as Jordan blocks of sizes 5, 4 and 2 for A = —10.

This matrix C,,; has extremely ill-conditioned eigenvalues and only methods (1) and (6) succeeds in computing
always full rank symmetrizers.

Repeating with a complex unitarily similar dense version Cyppgq € C23:23 of C,,;, method (3) fails to find full
rank symmetrizers while all other methods perform just as well as or better than they did on C;.

Ceomd max eig | symm. error cond(Y) rank(Y") runtime # of
23 by 23 cond no average average average average runs
method (1) 1.0436e-06 | 2.1885e+06 23 2.2187e+00 5
(with orthog)
method (2) 3.3918e-14 | 1.2436e+11 23 5.9782e-02 10
method (3) 1.7e+11 | 8.3683e-12 | 6.1584e+17 15 5.6568e-03 10
method (4) 1.7e+11 | 4.2505e-01 | 4.2133e+04 23 1.7365e-02 10
method (5) 1.7e+11 | 8.5060e-02 | 8.0431e+05 23 1.2191e-02 10
method (6) 3.3190e-14 | 7.2333e+10 23 1.3997e-02 10

We conclude from these tests that the eigen-principal vectors and Schur based methods (3) through (6) are
much faster than the linear means methods (1) and (2) if they succeed to find a nonsingular symmetrizer. Yet the
iterative method (1) (with or without re-orthogonalization) always seems to succeed and converge to a full rank
and low condition number symmetrizer. In particular, the eigen-principal vectors and Schur based methods (3)
through (6) often fail, especially when the eigenvalues of A are ill conditioned.

We conclude our tests with real random entry matrices R50,50, f2100,100, 200,200, £2300,300, 500,500 and
R1000,1000 and our methods as long as they do not take more than a few seconds of CPU time.
Specifically we create 5 such matrices for each dimension n = 50, 100, 200, 300, 500, 1000 using MATLAB’s
randn . m function for the table below. There we record the averages of their relative symmetrizing errors, of the
condition numbers of their computed symmetrizers, of their ranks, as well as of the CPU times for each matrix set
in each dimension. Note that for non defective matrices R, randomization effects occur only in our linear methods
(1) and (2), but not at all in the eigen-principal vectors or Schur based methods (3) through (6).

Computing Matrix Symmetrizers, Part 2, new Methods

16

random entry matrix || range of eig cond | symm. error cond(Y) rank(Y") runtime # of test
R 50by 50 nos for the set of R average average average average matrices
method (1) 2.1247e-10 | 1.4421e+03 50 7.4510e-01 5
(without orthog)
method (2) 2.9846e-15 | 1.6910e+03 50 1.9221e+00 5
method (3) 12 to 32 6.3114e-15 | 3.5308e+03 50 1.2582e-02 5
method (4) 12 to 32 6.3114e-15 | 3.5308e+03 50 8.4248e-03 5
method (5) 12 to 32 6.3114e-15 | 3.5308e+03 50 1.4551e-02 5
method (6) 6.2200e-15 | 2.9624e+03 50 1.3444e-02 5
R 100 by 100
method (1) 2.0876e-10 | 8.4251e+03 100 1.1775e+01 5
(without orthog)
method (2) 8.8165e-14 | 7.4259%e+04 100 2.2242e+01 5
method (3) 9 to 40 9.3032e-15 | 7.6748e+03 100 3.0089e-02 5
method (4) 9 to 40 9.3032e-15 | 7.6748e+03 100 3.2975e-02 5
method (5) 9 to 40 9.3032e-15 | 7.6748e+03 100 2.8666e-02 5
method (6) 8.1411e-15 | 6.9116e+03 100 5.8637e-02 5
R 200 by 200
method (1) 1.7520e-10 | 3.6727e+04 200 2.6469e+02 5
(without orthog)
method (3) 22 to 68 1.1745e-14 | 1.7961e+04 200 1.8043e-01 5
method (4) 22 to 68 1.1745e-14 | 1.7961e+04 200 1.8913e-01 5
method (5) 22 to 68 1.1745e-14 | 1.7961e+04 200 1.6873e-01 5
method (6) 1.0682e-14 | 2.2990e+04 200 4.9192e-01 5
R 300 by 300
method (3) 23 to 157 1.3146e-14 | 9.4047e+04 300 4.1324e-01 5
method (4) 23 to 157 1.3146e-14 | 9.4047e+04 300 4.6076e-01 5
method (5) 23 to 157 1.3146e-14 | 9.4047e+04 300 3.7754e-01 5
method (6) 1.2226e-14 | 9.2929e+04 300 1.6173e+00 5
R 500 by 500
method (3) 71t091 1.5967e-14 | 6.6757e+04 500 1.5002e+00 5
method (4) 71 to 91 1.5967e-14 | 6.6757e+04 500 1.7679e+00 5
method (5) 71t091 1.5967e-14 | 6.6757e+04 500 1.5570e+00 5
method (6) 1.4498e-14 | 7.8587e+04 500 8.7191e+00 5
R 1000 by 1000
method (3) 79 to 497 1.6896e-14 | 1.0361e+06 1000 1.0834e+01 5
method (4) 79 to 497 1.6896e-14 | 1.0361e+06 1000 1.3191e+01 5
method (5) 70 to 497 1.6896e-14 | 1.0361e+06 1000 1.0861e+01 5
method (6) 1.6678e-14 | 9.6336e+05 1000 7.1673e+01 5

For generic non-defective matrices with moderate eigenvalue condition numbers, all our eigen-principal vectors
methods (3), (4), (5) and the Schur method (6) perform near equally well and, besides, the eigen based methods (3)
through (5) compute the same symmetrizer, since clusters of eigenvalues are rarely encountered for random entry
matrices and thus only the 1st and 2nd steps at the beginning of Section 3 are executed in most generic cases. Their
average run times are very similar and they are each many times faster for large dimensional non defective matrices
A,, », than our linear based algorithms (1) and (2) which should essentially not be used whenever n >> 120.

Unfortunately, when eigenvalues repeat or the eigenvector system is badly conditioned for A, the new eigen-
principal vectors and Schur based symmetrizer algorithms (3) through (6) often fail to find nonsingular and well
conditioned symmetrizers as illustrated above.

Computing Matrix Symmetrizers, Part 2, new Methods 17

Finally we note that the zero matrix O,, is a symmetrizer for every n by n matrix A, but it carries no informa-
tion of A and is utterly useless for factoring A = 571,55 into the product of two symmetric matrices 5;. Likewise
rank deficient symmetrizers do not help to factor a given matrix A as the product of two symmetric ones. For low
dimensional defective matrices or low dimensional matrices with ill conditioned eigensystems the more cumber-
some iterative method (1) and method (2) have a decisive edge over our new eigen-principal vectors and Schur
based algorithms.

We have also tested two potential pre-conditioners for the matrix symmetrizer problem and our three eigen-
principal vectors based methods, but unfortunately to little avail. One preconditioner is used successfully in the
iterative method (1) which starts off with replacing A,, ,, by A — trace(A)/n - I,,. This, however, had no ben-
eficial effect in our eigen-principal vectors based methods. Another potential preconditioner was suggested by
one referee, namely to try David Watkins’ idea of not balancing the matrix before applying the QR algorithm for
eigenvalues, see [39]. While this helps in some different cases to reduce the eigencondition numbers by around
one order of magnitude, it gives equal or worse rank symmetrizers for our eigen-principal vectors based methods
(3), (4), and (5) and our test matrices. Therefore we have currently abandoned preconditioning for the eigen based
approach to finding symmetrizers.

S Acknowledgements, Assessment and Open Optimization Problems

Matrix symmetrizers and the iterative algorithm (1) of Uhlig [29] were the subject of the second author’s talk at
the LAA editors’ conference upon 40 years of Linear Algebra and its Applications (LAA) and Hans Schneider’s
retirement as editor-in-chief of LAA for 36 years, held in Wisconsin in October 2012. Immediately after the talk
a debate ensued between the two authors of this paper and Paul Van Dooren on the value of stable methods for
computing Jordan normal forms and applying them to the symmetrizer problem in light of formula (I).

This made us reconsider the problem in a different light and led to the first naive version of an eigen based sym-
metrizer method in method (3) using classical principal vector chains. However, the results were often rather poor,
symmetrizer conditioning and rank wise. Golub and Wilkinson [13} sect. 12] may have anticipated this problem
when they said on p. 604 "... since the vectors in the [principal vector] chains may be arbitrarily near to linear
dependence’ and then asked for further discussions in the community. Golub and Wilkinson then continue in [13}
sect 13] to discuss the Frank matrix eigenvalue behavior under QR in great detail and in [13} sect. 14] on how
to calculate ONBs of invariant subspaces. Unfortunately, we can not apply these ideas efficiently to our problem.
However, [13] has inspired our Method (6) which is based on the very expensive linear equations method (2).
Eventually we struck upon Arnoldi’s method, that is now mainly used for large sparse matrix problems, and we
applied it to our small dense ones. Arnoldi is used by us to find an ONB of a principal vector space for one eigen-
value starting from a maximal grade principal vector. It gives us a representation of the matrix action on that space
in Hessenberg form. This approach (5) turns out to work modestly well, being many orders of magnitude better
than the first naive principal vector chains only based symmetrizer algorithm (3). But while fast, it is not perfect.
One of the referees suggested that we ought to consider and work with ONBs for each principal vector subspace
of A instead. This has led us to develop the eigen based method (4) and to discover the linear equations method
(2) as needed to implement (4), as well as to the Schur Normal Form approach (6) which essentially combines all
separate principal vector subspaces for the same eigenvalue of A into one invariant subspace and performs simi-
larly else wise.

The work ahead consists of trying to overcome several compounded problems in this realm: for one we need
to reconfigure and rethink how to approach defective matrix eigenvalue computations, such as how to overcome
the circular smearing of repeated eigenvalues computed by QR (or by any other backward stable algorithm) and
how to distill the actual eigenvalues if circles of them are discovered in QR. This circular smearing comes from
the combination of two effects: that QR computes the exact eigenvalues of a nearby perturbed matrix and that
perturbations of defective (or of almost defective) matrices lead to perturbed eigenvalues arranged approximately
on the vertices on regular polygons, according to classical well-known results in eigenvalue perturbation theory
(see [19L Ch. 2] or [40, p. 77 f]). In fact, if the input data of defective matrix is not stored exactly in the computer,
perturbation theory implies that circular smearing of eigenvalues already occurs for the exact eigenvalues of the
stored nearby matrix on which QR works. This is one intrinsic bottleneck for computing well conditioned sym-

Computing Matrix Symmetrizers, Part 2, new Methods 18

metrizers via eigenanalysis based methods, and this is a long standing and well known open problem in Numerical
Linear Algebra.

For another, we need to learn how to find well conditioned symmetrizers via speedy eigen- and principal vectors
or Schur based algorithms, not only when A has Jordan blocks of size larger than 1 x 1, but also when A is diag-
onalizable, i.e. non-defective, and when its eigenvector matrix is highly ill conditioned. Example 1 in Section 2
shows that to reach this goal may be possible but nontrivial.

If these two bottlenecks were removed, then thirdly a further set of open problems involves finding optimization
strategies on how to add newly computed partial symmetrizers to an earlier compounded symmetrizing matrix ¥
of A in such a way as to maximize the rank of the resulting Y. As the space of symmetrizers of any given matrix
is linear, one might add or subtract any multiple of a partial symmetrizer of A to Y, but which multiple?

We now illustrate the second complication that can arise when computing symmetrizers from eigen-data. Here
we study a diagonalizable matrix with ill conditioned eigenvalues such as the original, unmodified Frank matrix
F35 of size 35 by 35.

The original Frank matrix F;, of [10] is an integer upper Hessenberg matrix of the form

n n—1 3 2 1
n—1 n-—1 3 2 1
0 n—2 . 3 2 1

0 3 3 21

: 0 2 21
0 e ... 011

n,n

According to [[10]] and [13]], the eigenvalues of Frank matrices are all real and positive, they are distinct and come
in reciprocal pairs, and the largest [n/2] eigenvalues are rather well conditioned while the smaller ones less than
1 become increasingly ill conditioned. Its worst conditioned eigenvalue has a condition number of 6.8e+09 for
n = 35. Although Francis’ QR algorithm is perfectly backward stable, the large condition numbers of the smallest
eigenvalues of F35 imply that QR may compute these eigenvalues with large forward errors. This is confirmed by
numerical tests, since QR computes the small eigenvalues of F35 as lying on a circle with a diameter of around 6
units and, besides, it misses F’s central eigenvalue 1 altogether, see Figure 2.

6,
4_
* %
) * *
* *
*
*
% *
ok . *ok * * +]
*
« *
G *
* %
4
_6,
I I I I I I I I
-2 0 2 4 6 8 10 12

Figure 2: Small eigenvalues of F35 are smeared around a circle in C by Francis QR method for Fssx = Ax.

Computing Matrix Symmetrizers, Part 2, new Methods 19

To compute more accurate eigenvalues and eigenvectors for F35, we rely on both Frank’s and Golub’s and Wilkin-
son’s work, see [[10} [13]]: they suggested an equivalent generalized eigenvalue problem formulation Az = ABzx
that can find the eigenvalues of Frank matrices F;, with smaller forward errors, because the eigenvalue condition
numbers for this generalized eigenvalue problem are much smaller than those of F,,. Here A = B - F}, for

1 -1 0 ... O
0
B = 0
1
0 0 1

n,n

Since this generalized eigenvalue problem Ax = ABux is exactly constructed (i.e., without rounding errors) and
MATLAB’s QZ algorithm eig (A, B) is backward stable, it finds a set of more accurate real eigenvalues that
exceed 1 for F35 than QR does, because as mentioned above, the eigenvalue condition numbers of Az = ABz
are smaller than those of F35. But it also misplaces the small real eigenvalues onto a circle in C, yet with a
smaller diameter of around 1 unit than QR as a consequence of the better conditioning of the eigenvalues of
Ax = ABx. Moreover QZ for A and B computes the central eigenvalue A = 1 reasonably well as 1.00097 with
0.1% inaccuracy, see Figure 3.

0.8r

0.6f
(0]

0.4} o

0.2r

-0.8f

-0.2 0 0.2 0.4 0.6 0.8 1 12

Figure 3: Small eigenvalues of F35 are located on a small circle in C by the QZ method for Az = ABzx.

The table below shows the results for the naive symmetrizer Y = V - V7 that is obtained from the eigenvectors
V' computed by MATLAB for the eigenvalues provided by the Francis QR and the QZ algorithms, as well as by
an extended QZ algorithm where the reciprocals of the computed eigenvalues above 1 are used for the under 1
eigenvalues of F35, the central eigenvalue of F' is set by hand to 1 and all respective eigenvectors are computed by
inverse iteration. Our results below are ordered by increasing symmetrizer rank, with the computed results from
our methods (1) through (6) interspersed where they fit.

Computing Matrix Symmetrizers, Part 2, new Methods 20

original Frank matrix max eigenvalue | relative symm. | cond(V) | cond(Y) | rank(Y)
from [10]], 35 by 35 condition number error
QZ with reciprocals 4e-16 6.7e+16 | 1.5e+18 23
and inverse iteration
QZ only 4.1e-15 6.1e+17 | 3.6e+18 25
Schur method (6) 1.4e-10 3.6e+17 28
Francis QR, without clustering 6.9e+9 2.7e-11 3.5e+10 | 6.5¢+16 31
eigendata method (3) 6.9e+9 1.0e-10 3.17e+16 32
with cluster radius = 0.1
eigendata method (4) 6.9e+9 1.8e-10 4.29e+16 32
with cluster radius = 0.1
eigendata method (5) 6.9¢+9 3.6e-08 5.68e+16 33
with cluster radius = 0.1
linear equations method (2) 2.7e-15 5.4e+14 34
iterative method (1) 9.1e-11 4.3e+10 35
(with orthog)

It is perplexing that the extended QZ algorithm that is combined with inverse iteration for the first entry line in the
above table uses the most precise eigenvalue and eigenvector data available for this matrix, but it turns out to be
most unreliable with regards to rank and finding an invertible symmetrizer. The eigen- and principal vector based
symmetrizer algorithms and Francis QR, on the other hand, are almost good enough but have the most sloppily
computed eigenvalues, see Figure 2 again. And even the direct linear equations solver (2) misses to compute a full
rank symmetrizer. And only the iterative scheme (1) computes an invertible symmetrizer for the original Frank ma-
trix. Therefore we now state a related open problem, namely: fourthly why and how is the iterative method (1) of
[30] seemingly impervious to eigenvalue conditioning issues of A and how does it generally compute symmetrizers
with low condition numbers, often lower by orders of magnitude than our current best eigen- and principal vector
or Schur based algorithms.

Given that our computed naive eigenvector based symmetrizers all have the form Y = V - V7 for an eigen-
vector matrix V' of F35, but suffer eigenvalue ill-conditioning or rank deficiencies, one way to solve this problem
might be to replace Y judiciously by Yp = V - D - V7T and try to minimize the condition number of Y, over all
nonsingular diagonal D, see the discussion in Example 1 and the first Open Problem below.

We wrap up this study of symmetrizer and eigenstructure computations with two open problems in matrix
optimization, the first of which will be exemplified through a simple 2 by 2 matrix example that can be solved
algebraically and complements and extends the discussion in Example 1. We use the Frobenius norm here instead
of the spectral norm to keep the developments as simple as possible. Note that for 2 by 2 matrices || A2 < ||A]|r <
V2 ||Al|2 and, therefore, the differences between these norms are slight.

Consider the matrix
0 1
4= [O 5] ©)
where § > 0 is a small real parameter. The column and row eigenvectors x_ and y.. for A’s eigenvalues A\g = 0
and A5 = J on the right side and left side, respectively, are
for Ao =0, xo=1[1,0]", yo=][-061],
for As = 57 Is = [175}71’ Ys = [03 1] .
The near singularity of A is unessential here since one can shift A to A + bls and this does not change the
eigenvectors, nor the set of right (or left) symmetrizers. Of course, each specific pair Sy, S2 of symmetrizers for
A = 5155 is changed by shifting.
The Wilkinson condition numbers for the eigenvalues of A are

V14462

cond(0) = cond(d) = 3

Computing Matrix Symmetrizers, Part 2, new Methods 21

These are huge if § < 1. A right side eigenvector matrix of A is

11
V= {0 5] :
Its condition number is huge if 6 < 1. As A is diagonalizable and non derogatory, all right side symmetrizers of
A have the form ()
o ldi 0|, [(di+d2) dib
Yv{o dz]v [S dod? (10)
for arbitrary parameters d;. The norm of the general symmetrizer Y is
1Y llr = V/ldy + da? + 2|d2[26 + |d2[267 . (11)
Its inverse is))
da0 —dad
-1 2 2
_ 12
a0 {—dzis (d + dz)} (12
and therefore its condition number in the Frobenius norm is
_ di+do 1 |dof |da|
condp(Y) = |Y||e|lY |F = L4444444,4,4+‘44,52 + 2= (13)
PV = IVl Ml = e + g+ 2

This formula implies that for § < 1 and our A, well conditioned right side symmetrizers of the form V - D - V7
must use a matrix D = diag(dy, dy) with a small value for |d; + da| or with d; = —da, i.e., matrices D with
entries of opposite signs and near equal magnitude. This implies that well conditioned right symmetrizers are very
particular and would be found very rarely by a random assignment of d; and ds. In addition, according to Theorem
2(a), in order to guarantee a tiny residual error bound for floating point computationsﬂ the ratio

|d1| + |da] |d1| + |da] AR 1

— = , (14)
Yile /ldi + dof? +2[d2[262 + [do[26% [di + d2] \/1 2|d3|262 + |da|254

|dy + dal?

should be moderate. But, if § < 1, then (I4) is moderate if and only if (|d1| + |dz2|)/|d1 + da2| is moderate.
Equations (T3) and (T4) show that, in this example, it is not possible to minimize the condition number and the
residual error bound simultaneously. A compromise must be reached between these two goals to achieve an optimal
symmetrizer. The following relation involving the coefficient of the first term in gives a clue on how to get
this compromise

dy +da| = fdi+do| |d1+d2|2.
|dy| |dz|

To make the discussion more concrete, we now compare the results for three different choices of d; and ds in (T0):
first we consider the symmetrizer Y; for the standard naive choice d; = do = 1, then the symmetrizer Y5 for the
compromise choice dy = 1+ 1/ Ve, dy = —1 / /4, and finally Y3 for the well conditioned choice d; = —1 /4 and
do = 1/4. These symmetrizes are

Yl{z 5], YQ[l —\/S]’ and YS{O 1],

|da| +[do| _ 2¢/|d]|ds] 2

5 52 V5 532 14

respectively, and we summarize the results for them assuming § < 1 and according to (TI)-(T3)-(T4) in the next
table

3Recall that Theorem 2 was proved with eigenvectors of norm 1 as they are computed by MATLAB and LAPACK. The second column norm
of V for the symmetrizer Y in (T0) is /1 + 62 # 1. But for 62 < 1 this is very close to one. For simplicity we have avoided normalizing the
second column of V" as it does not lead to any difference in our discussion.

Computing Matrix Symmetrizers, Part 2, new Methods 22

[d1, do] | condp(Y) | [[Y]lr | (da] +|d2)/NY ||
1, 1] ~ 4/6° ~ 2 ~ 1
L4+ 1/V8, —1/V3] | ~1/6 ~ 1 ~2/V6
[—1/6, 1/6] ~ 2 ~ V2 ~V2/6

If we use § = 10~® and the unit roundoff u ~ 1071, then in floating point arithmetic according to Theorem
2 and the table above, the standard naive symmetrizer Y; yields a perfect residual error bound of order u but it
is numerically singular since condr (Y1) = 4 * 1015; the near perfectly conditioned symmetrizer Y3 has a small
condition number of 2 with a residual error bound ~ 108, as given by the last column of the table times u; and
the compromise symmetrizer Y> achieves condp(Y3) ~ 108 with a medium sized residual error bound ~ 10712,
The 62 dependence of condr(Y") in this example makes the naive symmetrizer Y7 useless, while both Y5 and Y3
retain moderately small residuals with almost reasonable conditioning.

We make two remarks on the example for symmetrizers (I0) as discussed above. First, the reader should not
draw the conclusion that to compute symmetrizers with a much smaller condition number than the “standard naive
symmetrizer V'V 1 for any diagonalizable matrix A implies residual error bounds significantively larger than u.
This is generally false as illustrated by Example 1 in Section 2 for the choice diag(1,1,—1). Secondly, gener-
alizing from to the n by n case, it might be that in some instances only very particular choices of the d; in
D = diag(d;) can give well conditioned naive symmetrizers of the form V - D - VT € F™". This indicates that
simply adding freshly computed partial symmetrizers to our current best symmetrizer ¥ — as we currently do for
lack of a better method — might be one reason that our eigendata methods (3) to (6) often compute rank deficient
symmetrizers. How can this be remedied?

The iterative method (1) of [29] computes a nonsingular symmetrizer for our example matrix A o in Q) with

& = eps, the machine constant, as
Voo — 0.7437.. 1.2563..
tter =\ 1.2563.. 0 :

Its 2-norm condition number is 1.771.. , which is excellent. The direct linear solver (2) obtains the nonsingular

symmetrizer
Vi — 0.8485.. 0.7336..
in =\ 0.7336.. 1.629-16

with 2-condition number 14.12. However, our general eigen- and principal vector based algorithms (3) through (5)
all compute the same numerically singular symmetrizer for A and 6 = eps as

v _(40000 4.4409-16
€9 =\ 4.4409-16 9.8608e-32

with condition number 8.11 - 103!. And the Schur based method (6) obtains the nonsingular symmetrizer

v [1.2213.. 1.6617..
Schur =\ 1 .6617.. 0

with condition number 5.205. The relative symmetrizing errors for each of these methods are all at or below the
machine constant eps.

This example and our analysis lead to the following open and intriguing matrix optimization problem:

Computing Matrix Symmetrizers, Part 2, new Methods 23

First Open Matrix Optimization Problem {# 1}:

Given a nonsingular n by n matrix V, find a set of nonzero parameters d; so that for D = diag(d;) the
matrix condition number of
S=V«DxVT

is minimal.
Besides, find lower and upper bounds for

Mp(V) = Minp giagonal {cond(V * D x VT)}
from V' in any suitable matrix norm.

Motivated by Theorem 2, these problems should be contemplated in floating point computational settings with the
following constrained matrix optimization problem: find a set of nonzero parameters d; so that for D = diag(d;)
the matrix condition number of

S=Vx«DxV"

is minimal under the constraint | V[|? (-1, |d;]/||S]|) < a, where « is a fixed constant that determines the ad-
missable residual error bound.

To rephrase these problems, we are looking for, with or without constraints, the best conditioned matrix inside the
subspace of matrices spanned by the column vector dyads {v1-v{, ..., v, -v1'} of a given matrix V' with columns ;.

The linear equations based symmetrizer algorithm (2) differs from our other methods by the fact that it com-
putes a full basis of the linear subspace of matrix symmetrizers for A through the use of the null.mand nulls.m
m-files. This leads us to pose a second and related open matrix optimization problem:

Second Open Matrix Optimization Problem {# 2}:

Given a basis for a subspace of n by n matrices, how can one determine a nonsingular matrix in the subspace,
and how can one find one with a small condition number, if such exists?

Afterthoughts

The eigen- and principal vector and Schur based methods are titillating with their speed, accuracy and well
conditioned symmetrizer computations for the generic and the well conditioned matrix eigenvalue case, but
they are near useless should the matrix A have repeated or ill conditioned eigenvalues, let alone an involved
Jordan structure. For relatively small n < 120, the iterative method (1) serves us well in all cases with well
conditioned symmetrizers, but it has a huge computational cost.

Can matrix optimization techniques help at all for eigen- and principal vector and Schur based symmetrizer
algorithms and how? What is going on with matrix symmetrizers, geometrically, numerically and computa-
tionally?

Acknowledgements. We are grateful for the support of and suggestions from referees and members of the mathe-
matics communities in many places, in England, China, Germany, Hong Kong, Korea, Malaysia, Spain, the USA
and elsewhere, as well as for the advice and critique of all who have helped us shape and expand this study.

References

[1] S. ADHIKARI, On symmertrizable systems of second kind, J. of Applied Mechanics, 67 (2000), p. 797-802.

[2] E. ANDERSON, Z. BAI, C. BISCHOF, S. BLACKFORD, J. DEMMEL, J. DONGARRA, J. DU CROZ, A. GREENBAUM,
S. HAMMARLING, A. MCKENNEY, AND D. SORENSEN, LAPACK Users’ Guide, 3rd ed., STAM (1999).

Computing Matrix Symmetrizers, Part 2, new Methods 24

(3]

(4]

[5]

[6]

[7]
(8]

[9]
[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

(18]

[19]
[20]

(21]

[22]
(23]

[24]

WALTER EDWIN ARNOLDI, The principle of minimized iterations in the solution of the matrix eigenvalue problem,
Quarterly of Appl. Math, 9 (1951). p. 17 - 29.

ATUL BHASKAR, Taussky’s theorem, symmetrizability and modal analysis revisited, Proc. R. Soc. London A, 457 (2001),
p- 2455-2480.

BARRY A. CIPRA, The best of the 20th century: Editors name top 10 algorithms, SIAM News, 33, no. 4 (2000),
http://www.siam.org/news/news.php?id=637|.

B1SWA NATH DATTA, Quadratic forms, matrix equations and the matrix eigenvalue problem, Ph.D. thesis, University of
Ottawa, 1972.

BiSWA NATH DATTA, An algorithm for computing a symmetrizer of a Hessenberg matrix, manuscript, (1973), 2 p.

E. J. DESAUTELS, Symmetrizing matrices, MS thesis, University of Ottawa, 1968, 42 p;
http://www.ruor.uottawa.ca/bitstream/10393/10879/1/EC52206.PDF

JACK DONGARRA AND FRANCIS SULLIVAN, The top 10 algorithms, Comput. Sc. Eng., 2 (2000), p. 22 - 23.

WERNER L. FRANK, Computing eigenvalues of complex matrices by determinant evaluation and by methods of
Danilewski and Wielandt, J. SIAM, 6 (1958), p. 378 - 392.

FERDINAND GEORG FROBENIUS, Uber die mit einer Matrix vertauschbaren Matrizen, Sitzungsberichte der Koniglich
PreuBischen Akademie der Wissenschaften zu Berlin (1910), p. 3 - 15; also in Gesammelte Abhandlungen, Band 3,
Springer 1968, p. 415 - 427.

GENE H. GOLUB AND CHARLES F. VAN LOAN, Matrix Computations, 4th ed., Johns Hopkins University Press (2013),
756 p.

GENE H. GOLUB AND JAMES H. WILKINSON, [ll-conditioned eigensystems and the computation of the Jordan canoni-
cal form, SIAM Review, 18 (1976), p. 578 - 619.

NICHOLAS J. HIGHAM, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM (2002).

JAMES LUCIEN HOWLAND AND F. J. FARREL, Matrix symmetrizing methods for the algebraic eigenvalue problem,
A.C.M Nat. Conference, Colorado, 1963.

JIANGUO HUANG AND LIWEI NONG, An iterative algorithm for solving finite-dimensional linear operator equations
T (z) = f with applications, Linear Algebra Appl, 432 (2010), p.1176 - 1188.

D. J. INMAN AND C. L. OLSEN, Dynamics of symmetrizable nonconservative systems, ASME J. of Applied Mechanics,
55 (1988), p. 206-212.

B0 KAGSTROM AND AXEL RUHE, An algorithm for numerical computation of the Jordan normal form of a complex
matrix. ACM Trans. Math. Software, 6 (1980), p. 398 - 419.

Tos10 KATO, Perturbation Theory for Linear Operators, corrected 2nd ed., Springer-Verlag, Berlin (1980).

VERA KUBLANOVSKAYA, A method for solving the complete problem of eigenvalues of a degenerate matrix (Russian),
Z. Vycisl. Mat. i Mat. Fiz., 6 (1966), p. 611 - 620; translated in USSR Comp. Math. and Math. Phys., 6 (1968), p. 1 - 14.

AXEL RUHE, An algorithm for numerical determination of the structure of a general matrix, Nordisk Tidskr. Informa-
tionsbehandling (BIT), 10 (1970), p. 196 - 216.

YOUSEF SAAD, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM (2003).

G. W. STEWART, Algorithm 406: HQR3 and EXCHNG: Fortran subroutines for calculating and ordering the eigenvalues
of a real upper Hessenberg matrix, ACM Trans. Math. Softw., 2 (1976), p. 275-280.

OLGA TAUSSKY, Notes on numerical analysis. II. Note on the condition of matrices, Math. Tables and Other Aids to
Computation 4, (1950), p. 111 - 112.

http://www.siam.org/news/news.php?id=637
http://www.ruor.uottawa.ca/bitstream/10393/10879/1/EC52206.PDF

Computing Matrix Symmetrizers, Part 2, new Methods 25

[25]

(26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

[34]

[35]

[36]

[37]
(38]

(39]
[40]
[41]

[42]

OLGA TAUSSKY AND HANS ZASSENHAUS, On the similarity transformation between a matrix and its transpose, Pacific
J Math, 9 (1959), p. 893 - 896.

OLGA TAUSSKY, The role of symmetric matrices in the study of general matrices, Linear Algebra Appl., 5 (1972), p. 147
- 154.

SIVAN TOLEDO, MATLAB code of nulls.m, available at www.tau.ac.il/~stoledo/Tools/nulls.m ,
(2005).

LOTHAR TRAPP, Ein Algorithmus zur Berechnung der Symmetrizer einer beliebigen reellen Matrix und einige Anwen-
dungen, Diplomarbeit, Uni Wiirzburg, Germany, 1975, 149 p.

FRANK UHLIG, Computing matrix symmetrizers, finally possible via the Huang and Nong algorithm, Linear and Multi-
linear Algebra, 61 (2013), p. 954 - 969, http://dx.doi.org/10.1080/03081087.2012.716427

FRANK UHLIG, Method (1) MATLAB m-file symmorthlongv.m, available at
http://www.auburn.edu/~uhligfd/m_files/MatrixSymm/symmorthlongv.m ,(2012).

FRANK UHLIG, Method (2) MATLAB m-file Symmlinequatl.m, available at
http://www.auburn.edu/~-uhligfd/m_files/MatrixSymm/Symmlinequatl.m/, (2014).

FRANK UHLIG, Method (3) MATLAB m-file rightsymmAfulljordan8l.m, available at
http://www.auburn.edu/~uhligfd/m_files/MatrixSymm/rightsymmAfulljordan8l.m, (2014).

FRANK UHLIG, Method (4) MATLAB m-file rightsymmAGSplusLinEqul .m, available at
http://www.auburn.edu/~uhligfd/m_files/MatrixSymm/rightsymmAGSplusLinEqul .m s
(2014).

FRANK UHLIG, Method (5) MATLAB m-file rightsymmAjordanArnoldill.m, available at
http://www.auburn.edu/~uhligfd/m _files/MatrixSymm/rightsymmAjordanArnoldill.m ,
(2013).

FRANK UHLIG, Method (6) MATLAB m-file rightsymmSchurplusLinEqu2l.m, available at
http://www.auburn.edu/~uhligfd/m_files/MatrixSymm/rightsymmSchurplusLinEqu2l.m ,
(2014).

FRANK UHLIG, Matrix Symmetrizer MATLAB m-files folder with all the above m-files and testing programs, available at
http://www.auburn.edu/~uhligfd/m_files/MatrixSymm , (2014).

ABRAHAM VAN DER SLUIS, Condition numbers and equilibration of matrices, Numer. Math., 14 (1969), p. 14-23.

V. CH. VENKAIAH AND S. K. SEN, Computing a matrix symmetrizer exactly using modified multiple modulus residue
arithmetic, J. of Computational and Applied Mathematics, 21 (1988), p. 27-40.

DAVID S. WATKINS, A case where balancing is harmful, Electron. Trans. Numer. Anal., 23 (2006), p. 1 - 4.
JAMES H. WILKINSON, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford (1965).

JAMES H. WILKINSON, Invariant subspaces, manuscript, Gatlinburg VI (December 1974), Hopfen am See, Germany, 8
p.

PUMEI ZHANG, Algebraic properties of compatible Poisson brackets, Regular and Chaotic Dynamics, 19 (2014), p.
267-288 .

spysymm10.pdf
Frank35eig.pdf
FrankeigQZ.pdf

[.../latex/symmviaeigcomputeDU-10f.tex | June 8, 2015

www.tau.ac.il/~stoledo/Tools/nulls.m
http://www.auburn.edu/~uhligfd/m_files/MatrixSymm/symmorthlongv.m
http://www.auburn.edu/~uhligfd/m_files/MatrixSymm/Symmlinequatl.m
http://www.auburn.edu/~uhligfd/m_files/MatrixSymm/rightsymmAfulljordan8l.m
http://www.auburn.edu/~uhligfd/m_files/MatrixSymm/rightsymmAGSplusLinEqul.m
http://www.auburn.edu/~uhligfd/m_files/MatrixSymm/rightsymmAjordanArnoldi1l.m
http://www.auburn.edu/~uhligfd/m_files/MatrixSymm/rightsymmSchurplusLinEqu2l.m
http://www.auburn.edu/~uhligfd/m_files/MatrixSymm

	Introduction
	The Matrix Symmetrizer Problem
	The Six Symmetrizer Algorithms
	 Method (1), a Linear two Stage Iterative Scheme
	 Method (2), the direct Linear Equations Approach to find S
	 Method (3), an Eigendata and Jordan Normal Form Algorithm
	 Method (4), using Orthonormal Bases for Principal Subspaces and method (2)
	 Method (5), using Arnoldi and Datta for A's Principal Subspace Representations
	Method (6), using the Schur Normal Form, invariant subspace bases and method (2)

	Numerical Results and Comparisons
	Acknowledgements, Assessment and Open Optimization Problems

