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Abstract. Bounds for the variation of the Moore-Penrose inverse of general matrices under
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1. Introduction. The main character of this paper is the Moore-Penrose in-
verse. Therefore, we start by stating its de�nition and most basic properties. The
Moore-Penrose inverse of A ∈ Cm×n is de�ned to be the unique matrix Z ∈ Cn×m
such that

(1.1) (i) AZA = A, (ii) ZAZ = Z, (iii) (AZ)∗ = AZ, (iv) (ZA)∗ = ZA,

or, equivalently, such that

(1.2) AZ = PA and ZA = PZ ,

where PA and PZ stand for the orthogonal projectors onto the column spaces of A
and Z, respectively. The equivalence of the four conditions in (1.1) and the two
conditions in (1.2) can be easily established and can be found in [4, Theorem 1.1.1].
We will denote by A† ∈ Cn×m the Moore-Penrose inverse of A ∈ Cm×n. Recall
that if A ∈ Cn×n is nonsingular, then A† = A−1. It is well known [21, Chapter 3]
that the SVD of A allows us to get an expression for A† and to prove many of its
properties. R(A) will denote the column space of A and N (A) its null space. It is
easy to see that R(A∗) = R(A†), so, according to (1.2), PA = AA† and PA∗ = PA† =
A†A are, respectively, the orthogonal projectors onto R(A) and R(A∗). One of the
most important properties of the Moore-Penrose inverse is that the minimum 2-norm
solution of the Least Squares Problem (LSP)

(1.3) min
x∈Cn

‖Ax− b‖2, A ∈ Cm×n, b ∈ Cm,

is x0 = A† b.
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The Moore-Penrose inverse is probably the most important of all other generalized
inverses due to its relationship with the LSP, both for full rank and rank de�cient
matrices. The perturbation theory of the Moore-Penrose inverse is a classical topic in
Matrix Analysis and Numerical Linear Algebra. It was studied for the �rst time by
Wedin [22] and nowadays appears in standard references [2, 21].

Classic references only consider additive perturbations of the matrix. Lately there
has been an increase of interest in the multiplicative perturbation theory of the Moore-
Penrose inverse due, in part, to its application to the error analysis of algorithms that
solve structured LSP with High Relative Accuracy (HRA) [3, 5]. In this work we will
understand by a multiplicative perturbation of a matrix A ∈ Cm×n a matrix of the
form Ã = (I + E)A(I + F ) ∈ Cm×n, where (I + E) ∈ Cm×m and (I + F ) ∈ Cn×n
are nonsingular matrices. Multiplicative perturbation theory [17, 18, 19] has played
an important role in the analyses of HRA algorithms for a wide range of Numerical
Linear Algebra problems (see [7, 8, 9, 10, 11, 12, 13] and the references therein). In

the previous work [5] expressions for Ã† were given and they were used to bound,
up to �rst order, the relative variation for the minimum 2-norm solution of the LSP
under multiplicative perturbations, but no bounds for ‖Ã† − A†‖ were presented. In
this paper we extend those results to give relative perturbation bounds for ‖Ã†−A†‖
in terms of the perturbation matrices E and F , and this is done for any normalized
unitarily invariant (UI) matrix norm [21, Ch. II, Section 3]. In addition, sharper
bounds are presented for the family of UI norms known as Q-norms [1, Def. IV.2.9, p.
95], which includes the spectral or 2-norm, ‖ ·‖2, and the Frobenius norm of matrices,
among many others.

Multiplicative perturbation bounds for the Moore-Penrose inverse have also been
presented recently in [3]. There are two main di�erences between the bounds in
[3] and the ones presented here: the �rst is that our bounds are obtained from an

explicit expression of Ã† in terms of A† and the perturbation matrices, which opens
the possibility to extend the results to linear operators in in�nite dimensional spaces,
and the second, and more important, is that we are able to express our relative
bounds with respect to either ‖A†‖2 or ‖Ã†‖2 (see Theorem 3.5), and not relative to

max{‖A†‖2, ‖Ã†‖2}. The factor max{‖A†‖2, ‖Ã†‖2} is natural and necessary [21, 22]

in the case of additive perturbations if no constraints are imposed on Ã = A + E.
For example it is proved in [21, Ch. III-Theorem 3.8] (see also [22]) that, in any
normalized UI norm,

(1.4) ‖Ã† −A†‖ ≤ µmax{‖A†‖22, ‖Ã†‖22} ‖E‖,

where µ is a moderate constant that depends on the norm used. As G. W. Stewart
and J-G. Sun say in [21, p. 145] bounds as (1.4) � ... cannot by themselves insure the

convergence of Ã† to A† as E → 0, since Ã† may grow unboundedly�. The reason is
that a general additive perturbation can change the rank of A, and it is well known
that if the perturbation is not acute then we have the lower bound for the size of the
perturbation [21, 22]:

(1.5) ‖Ã† −A†‖ ≥ 1

‖E‖2
.

If, however, the perturbation does not change the rank of the matrix (and that guar-
antees that the pertubation is acute when its goes to zero [21, p. 145]) we have [21,
Ch. III-Theorem 3.9]:

(1.6) ‖Ã† −A†‖ ≤ µ‖A†‖2‖Ã†‖2‖E‖,
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the factor max{‖A†‖2, ‖Ã†‖2} can be avoided, and Ã† depends continuosly on E.
It is reasonable to expect that things will be di�erent for nonsingular multiplicative
perturbations because in this case the rank does not change and it should be expected,
even in the non acute case, to avoid the factor max{‖A†‖2, ‖Ã†‖2} in the relative

bounds for ‖Ã† −A†‖. This is what we show in Theorem 3.5, but is missing in [3].
Closely related to the perturbation theory of A† is the perturbation of the solution

of the LSP (1.3). Let x̃0 = Ã†b̃ be the minimum 2-norm solution of the perturbed
LSP

(1.7) min
x∈Cn

‖Ãx− b̃‖2, Ã ∈ Cm×n, b̃ ∈ Cm.

The classical bounds [22, Theorem 5.1] for the relative variation of the minimum
2-norm solution and the residual of the LSP under general additive perturbations

(1.8) Ã = A+ ∆A, b̃ = b+ ∆b,

can be written in the following form [2, Theorem 1.4.6]:

‖x̃0 − x0‖2
‖x0‖2

≤ 1

1− η

(
2κ2(A) εA +

‖A†‖2 ‖b‖2
‖x0‖2

εb + κ2(A)2
‖r‖2

‖A‖2 ‖x0‖2
εA

)
,(1.9)

‖r̃ − r‖2
‖b‖2

≤
(
‖A‖2‖x0‖2
‖b‖2

εA + εb + κ2(A)
‖r‖2
‖b‖2

εA

)
,(1.10)

where r := b− Ax0, κ2(A) = ‖A‖2 ‖A†‖2, εA := ‖∆A‖2/‖A‖2 and εb := ‖∆b‖2/‖b‖2,
and it is supposed that x0 6= 0, rank (A) = rank (Ã), and η := κ2(A) ‖∆A‖2/‖A‖2 < 1.
The bounds in (1.9)-(1.10) can be very large if A is ill-conditioned, i.e., κ2(A)� 1.

A very important application of perturbation theory is the estimation of the
forward errors in the computed quantities using backward stable numerical algorithms.
In that case the structure of the perturbation is determined by the backward error
analysis of the algorithm [14], and the relevant size of the relative perturbations
is typically of the order of the unit roundo� of the computer, u. If a numerical
algorithm used to solve LSP has additive backward errors, as those in (1.8), the
relative error in the solution x0 will have the form (1.9) with εA, εb ≈ O(u). Then
the error will be larger than uκ2(A) (in fact, it can be much larger under certain
conditions) and, so, (1.9) does not guarantee any digit of accuracy in the computed
solution if κ2(A) & 1/u, that is, if A is ill-conditioned with respect to the inverse
of the unit roundo�. Unfortunately, many types of structured matrices arising in
applications (as, for example, Vandermonde matrices, which arise in polynomial data
�tting, and Cauchy matrices [14, Chapters 22 and 28]) are extremely ill-conditioned
and, so, standard backward stable algorithms for LSP may compute solutions with
huge relative errors. However not all algorithms will produce additive backward errors.
An algorithm to compute the solution of certain structured LSP that hasmultiplicative
backward errors has been presented recently [5]. Therefore the study of multiplicative
perturbations of the LSP is relevant. We consider in this paper a multiplicatively
perturbed LSP as:

(1.11) min
x∈Cn

‖Ãx− b̃‖2, Ã = (I + E)A(I + F ) ∈ Cm×n, b̃ = b+ h ∈ Cm ,

where (I + E) ∈ Cm×m and (I + F ) ∈ Cn×n are nonsingular matrices. We show in
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Theorem 4.1 that

‖x̃0 − x0‖2
‖x0‖2

≤ C1 + C2
‖A†‖2‖b‖2
‖x0‖2

,(1.12)

‖r̃ − r‖2
‖b‖2

≤ C3,(1.13)

where x̃0 := Ã†b̃ is the minimum 2-norm solution of (1.11), and C1, C2, C3 are quan-
tities (de�ned in Theorem 4.1) that depend only on the norms of the perturbations
E and F , and on ‖h‖2/‖b‖2. First order asymptotic bounds of the type (1.12) and
(1.13) valid only for in�nitesimal perturbations E and F have been already proved in
[5], while the bounds in this paper are valid for perturbations of any size.

We emphasize that the new multiplicative bounds in (1.12-1.13) are in general
completely di�erent from the classical additive bounds in (1.9-1.10). As it has been
said, the bound in (1.9) ampli�es the perturbations in the data at least by a factor
κ2(A) and the ampli�cation can be much larger under certain conditions. However
the bound in (1.12) does not depend on κ2(A) and includes only the ampli�cation
factor ‖A†‖2 ‖b‖2/‖x0‖2. We will show in Subsection 4.2 that ‖A†‖2 ‖b‖2/‖x0‖2 is
a moderate number, even in the case κ2(A) is very large, except for very particular
choices of b. The result (1.12) is therefore an important step to prove that the al-
gorithms in [5] compute with guaranteed HRA solutions of structured LSP that are
so ill conditioned that classical algorithms (with additive backward errors) do not
guarantee a single digit of accuracy.

The paper is organized as follows. We introduce in Section 2 the basic facts
on unitarily invariant norms and Q-norms that will be used throughout the paper.
In Section 3 we present explicit expressions for the variation of the Moore-Penrose
inverse under multiplicative perturbations and also get bounds for the relative change
of A† in any unitarily invariant norm and in any Q-norm. We get bounds relative to
‖A†‖2 or to ‖Ã†‖2, and not to max{‖A†‖2, ‖Ã†‖2}. In Section 4 �nite multiplicative
perturbation bounds for the minimum 2-norm solution of the LSP are presented. We
also study the condition number of LSP under multiplicative perturbations and the
behavior of the factor ‖A†‖2 ‖b‖2/‖x0‖2. Finally in Section 5 some conclusions and
lines of future research are discussed.

Note that a few particular cases of the results of this paper have appeared already
in [5]. More precisely, Lemma 2.1 in [5] can be obtained from particularizing Lemma
2.2 to the 2-norm. The �rst equalities in parts (a) and (b) in Lemma 3.1 are Lemma
3.1 in [5], and also some parts of Theorem 3.4 appear in [5] as Theorem 3.2. Theorem
3.4 is a key result in our developments, both here and in [5], though it is used for
di�erent purposes in each paper. The proof of Theorem 3.4 is new and also the
equations in (3.9) are new results. Finally, observe that the �rst order bound (4.9) in
Section 4, obtained here as a corollary of our main Theorem 4.1 for LSP, appeared in
[5] as Theorem 4.1.

2. Preliminaries and basic results. The symbol In stands for the n × n
identity matrix, but we will use simply I if the size is clear from the context. A∗

denotes the conjugate-transpose of A. We denote the Euclidean vector norm of x ∈ Cn
by ‖x‖2 and the spectral matrix norm, or 2-norm, of A by ‖A‖2 := max‖x‖2=1 ‖Ax‖2.
We recall that a norm ‖ · ‖ on Cm×n is unitarily invariant (UI) if ‖U∗AV ‖ = ‖A‖
for all A ∈ Cm×n and any unitary matrices U ∈ Cm×m, V ∈ Cn×n. An UI norm is
normalized if ‖A‖ = ‖A‖2 whenever rank(A) = 1. See [1, Section IV.2] or [21, Ch. II,
Section 3] for more information on UI norms.
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Given A ∈ Cm×n, with rank(A) = r, its singular values are denoted as σ1(A) ≥
· · · ≥ σr(A) > σr+1(A) = · · · = σp(A) = 0, with p = min{m,n}. Then ‖A‖2 = σ1(A)
and the condition number with respect to the 2-norm of A is given by κ2(A) =
σ1(A)/σr(A).

The Ky Fan p-k norms on Cm×n [1, p. 95], de�ned by

‖A‖p,k = (σ1(A)p + · · ·+ σk(A)p)
1/p

, p ≥ 1, k = 1, . . . , n,

are UI norms. If p = 1 we obtain the Ky Fan k norms

‖A‖k = σ1(A) + · · ·+ σk(A), k = 1, . . . , n.

These latter norms are important because of the following result [15, Corollary 3.5.9]:
If A,B ∈ Cm×n, then ‖A‖ ≤ ‖B‖ for every UI norm on Cm×n if and only if ‖A‖k ≤
‖B‖k for k = 1, . . . , n.

From the previous characterization it follows that ‖A‖ = ‖A∗‖ for every UI norm
on Cn×n because the singular values of A are the same as those of A∗. A norm ‖ · ‖Q
is said to be a Q-norm on Cm×n if there is some unitarily invariant norm ||| · ||| on
Cn×n such that ‖A‖Q = |||A∗A|||1/2 for all A ∈ Cm×n [1, Def. IV.2.9]. The norm ‖ · ‖Q
is normalized if the UI norm ||| · ||| is normalized. Notice that a Q-norm is itself a UI
norm. The Ky Fan p-k norms with p ≥ 2 are Q-norms. Indeed,

‖A‖p,k = ((σ1(A∗A))p/2 + · · ·+ (σk(A∗A))p/2)1/p = ‖A∗A‖1/2p/2,k.

In particular the spectral and Frobenius matrix norms are Q-norms.
An UI norm ‖·‖ on Cm×m induces a UI norm on Cr×s for any r, s with max{r, s} ≤

m. For any A ∈ Cr×s de�ne ‖A‖ = ‖A‖, where

A =

[
A 0
0 0

]
∈ Cm×m

has been augmented by zero blocks to �ll out its size to m×m. These norms will be
called a family of UI norms and we will denote by the symbol ‖ · ‖ any such family.

Given any family of UI norms on Cm×m, it can be proved that [21, Theorem 3.9,
p.80]

(2.1) ‖AB‖ ≤ ‖A‖‖B‖2 and ‖AB‖ ≤ ‖A‖2‖B‖,

for all A ∈ Cr×s, B ∈ Cs×t with max{r, s, t} ≤ m. If we consider a family of UI
normalized norms, ‖AB‖ ≤ ‖A‖‖B‖ also holds. In this paper we will assume that
all unitarily invariant norms, included the Q-norms, are normalized, and therefore
consistent. We end this section by presenting two Lemmas that will be needed in the
rest of the sections1.

Lemma 2.1. Let A,B ∈ Cm×n and let ‖ · ‖ be a UI norm on Cn×n. Then
(a) ‖A∗B‖2 ≤ ‖A∗A‖‖B∗B‖.
(b) If P ∈ Cm×m is an orthogonal projector, then ‖A∗PA‖ ≤ ‖A∗A‖.
Proof.

(a) See [16, Eq.(3.5.22)].

1Lemma 2.2 has appeared as Lemma 2.1 in [5] for the particular case of the 2-norm.
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(b) Since P ∗ = P = P 2, the Cauchy-Schwarz type inequality given in (a) implies

‖A∗PA‖2 ≤ ‖A∗A‖‖A∗PA‖.

Hence ‖A∗PA‖ ≤ ‖A∗A‖.

Lemma 2.2. Let B,C ∈ Cm×n, let S ⊆ Cm and W ⊆ Cn be two vector subspaces,
and let PS ∈ Cm×m and PW ∈ Cn×n be the orthogonal projectors onto, respectively,
S and W. Let ‖ · ‖Q be a Q-norm on Cm×n. Then the following statements hold:

(a) ‖PSB + (I − PS)C‖Q ≤
√
‖B‖2Q + ‖C‖2Q .

(b) ‖BPW + C(I − PW)‖Q ≤
√
‖B‖2Q + ‖C‖2Q .

Proof.
(a) Since

(PSB + (I − PS)C)∗(PSB + (I − PS)C) = B∗PSB + C∗(I − PS)C,

we have

‖PSB+ (I −PS)C‖2Q = |||B∗PSB+C∗(I −PS)C||| ≤ |||B∗PSB|||+ |||C∗(I −PS)C|||.

Now, from second item in Lemma 2.1 it follows that

‖PSB + (I − PS)C‖2Q ≤ ‖B‖2Q + ‖C‖2Q.

(b) Let A = BPW +C(I − PW). Then A∗ = PWB
∗ + (I − PW)C∗. Now, apply part

(a) to A∗.

3. Multiplicative perturbations for the Moore-Penrose inverse: expres-

sions and bounds. In this section and in Section 4, we consider a multiplicative
perturbation of a general matrix A ∈ Cm×n, that is, a matrix Ã = (I + E)A(I + F ),
where (I + E) ∈ Cm×m and (I + F ) ∈ Cn×n are nonsingular matrices. We are inter-

ested in �nding expressions for Ã† and, from them, in �nding bounds for the relative
change of A† in any UI norm and in any Q-norm. In Theorem 3.5 we get those bounds
relative to ‖A†‖2 or to ‖Ã†‖2, and not to max{‖A†‖2, ‖Ã†‖2} as it was done in [3],
where similar bounds where obtained. The results in [3] will be compared with the
new ones in this paper after Theorem 3.5 and we will show that the new ones are
superior.

We start with the following technical Lemma2 that will be needed in the study
of the multiplicative perturbation of the Moore-Penrose inverse.

Lemma 3.1. Let A ∈ Cm×n and Ã = (I + E)A(I + F ) ∈ Cm×n, where (I +

E) ∈ Cm×m and (I + F ) ∈ Cn×n are nonsingular matrices. Let Ê = (I + E)−1E,

F̂ = (I + F )−1F , and let ‖ · ‖ be a family of unitarily invariant normalized norms on
Cq×q, where q = max{m,n}, and let us de�ne:

(3.1) E := min{‖E‖, ‖Ê‖} and F := min{‖F‖, ‖F̂‖}.

Then the following hold:

2The �rst equation in both items (a) and (b) of Lemma 3.1 have appeared already in Lemma 3.1
in [5].
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(a) PA(I − PÃ) = −PAE∗(I − PÃ) and PA = (I + E)−1PÃ(I + E)PA,
(b) (I−PÃ∗)PA∗ = −(I−PÃ∗)F

∗PA∗ and PA∗ = (I+F ∗)−1PÃ∗(I+F ∗)PA∗ ,

(c) ‖PÃ(I − PA)‖ = ‖PA(I − PÃ)‖ ≤ min{‖EPA‖, ‖(I − PA)Ê‖} ≤ E,
(d) ‖PÃ∗(I − PA∗)‖ = ‖PA∗(I − PÃ∗)‖ ≤ min{‖PA∗F‖, ‖F̂ (I − PA∗)‖} ≤ F .
Proof.
(a) Since R(Ã) = R((I +E)A) then (I − PÃ)(I +E)A = 0. Thus, (I − PÃ)(I +

E)AA† = (I−PÃ)(I+E)PA = 0, which is equivalent to PA(I+E∗)(I−PÃ) =
0. We have also that PA(I+E∗) = PA(I+E∗)PÃ or PA = PA(I+E∗)PÃ(I+
E∗)−1. Hence (a) holds.

(b) Apply (a) to Ã∗ = (I +F ∗)A∗(I +E∗) and conjugate and transpose the �rst
equality.

(c) The subspaces R(A) and R(Ã) have the same dimension. Thus, from [22,
Theorem 7.1], the equality ‖PÃ(I − PA)‖ = ‖PA(I − PÃ)‖ holds for all UI
norms. Moreover, by part (a), ‖PA(I − PÃ)‖ = ‖ − PAE

∗(I − PÃ)‖ ≤
‖PAE∗‖ = ‖EPA‖. On the other hand, if we write A = (I−Ê)Ã(I−F̂ ), simi-

larly, we get ‖PÃ(I−PA)‖ = ‖PÃÊ
∗(I−PA)‖ ≤ ‖Ê∗(I−PA)‖ = ‖(I−PA)Ê‖,

which completes the proof of (c).

(d) Part (d) follows from applying part (c) to Ã∗ = (I + F ∗)A∗(I + E∗).

Remark 3.2. We have used in the proof of Lemma 3.1(c) that Ã = (I+E)A(I+
F ) can be written equivalently as,

(3.2) A = (I + E)−1Ã(I + F )−1 = (I − Ê)Ã(I − F̂ ).

Therefore, equivalent expressions to those in Lemma 3.1 can be obtained just by the
simultaneous interchanges

(3.3) A←→ Ã, E ←→ −Ê, and F ←→ −F̂ .

For example, by doing that to the equations in item (a) in Lemma 3.1 we get the
following expressions that will be used later in this paper

(3.4) PÃ(I − PA) = PÃÊ
∗(I − PA) and PÃ = (I + E)PA(I − Ê)PÃ.

We will refer to the relationship: Lemma 3.1(a) ↔ (3.4), as �dual" expressions under
the transformations in (3.3). They will be used extensively in this paper to get new
expressions from the �original" ones when needed.

Our next step will be to analyze the variation of the orthogonal projectors PA and
PA∗ under multiplicative perturbations. The bounds in Theorem 3.3 for the 2-norm
will be used in Section 4. The rest of the bounds are included for completeness.

Theorem 3.3. Let A ∈ Cm×n and Ã = (I + E)A(I + F ) ∈ Cm×n, where
(I +E) ∈ Cm×m and (I + F ) ∈ Cn×n are nonsingular matrices. Let ‖ · ‖ be a family
of normalized UI norms and ‖ · ‖Q be a family of normalized Q-norms. Then

‖PÃ − PA‖ ≤ 2E , ‖PÃ − PA‖Q ≤
√

2 EQ, and ‖PÃ − PA‖2 ≤ E2,(3.5)

‖PÃ∗ − PA∗‖ ≤ 2F , ‖PÃ∗ − PA∗‖Q ≤
√

2 FQ, and ‖PÃ∗ − PA∗‖2 ≤ F2,(3.6)

‖PN (Ã) − PN (A)‖ ≤ 2 F , ‖PN (Ã) − PN (A)‖Q ≤
√

2 FQ, and(3.7)

‖PN (Ã) − PN (A)‖2 ≤ F2,
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where E , EQ, E2,F ,FQ,F2 are de�ned as in (3.1), in each case for the corresponding
norm.

Proof. To prove (3.5), we write PÃ − PA = PÃ(I − PA)− (I − PÃ)PA. Then the
�rst inequality in (3.5) follows from Lemma 3.1(c). Taking Q-norms and applying
Lemma 2.2, and again Lemma 3.1(c) we get

‖PÃ − PA‖
2
Q = ‖PÃ(I − PA)(I − PA)− (I − PÃ)PAPA‖2Q
≤ ‖PÃ(I − PA)‖2Q + ‖(I − PÃ)PA‖2Q
≤ 2 E2Q.

In addition, it follows from [21, Ch. I, Theorem 5.5] and from [22, Theorem 7.1], that
‖PÃ − PA‖2 = ‖PÃ(I − PA)‖2 = ‖PA(I − PÃ)‖2; then the third inequality in (3.5)
follows immediately from Lemma 3.1(c). The bounds in (3.6) follow from applying

the bounds in (3.5) to Ã∗ = (I + F ∗)A∗(I + E∗). Finally, (3.7) follows from (3.6)
using PN (A) = I − PA∗ , and PN (Ã) = I − PÃ∗ .

Now we present the two main results of this section, that is, Theorems 3.4 and
3.5. First we express Ã† as a projected multiplicative perturbation of A†, and we write
the di�erence between them explicitly in terms of E and F and also of the perturbed
projectors PÃ∗ and PÃ. Parts of Theorem 3.4 have appeared already in [5, Theorem
3.2]. We present them here again for completeness. Besides, the equations in (3.9)
are new results, and also we present a di�erent proof.

Theorem 3.4. Let A ∈ Cm×n and Ã = (I + E)A(I + F ) ∈ Cm×n, where

(I+E) ∈ Cm×m and (I+F ) ∈ Cn×n are nonsingular matrices, and I−Ê := (I+E)−1,

I − F̂ := (I + F )−1. Then

(3.8) Ã† = PÃ∗(I + F )−1A†(I + E)−1PÃ,

(3.9) Ã†(I + E)PA = PÃ∗(I − F̂ )A†, A†(I − Ê)PÃ = PA∗(I + F )Ã†,

and

(3.10) Ã† −A† = A†ΘE + ΘFA
† + ΘFA

†ΘE ,

where

(3.11) ΘE := E∗(I − PÃ)− ÊPÃ and ΘF := (I − PÃ∗)F
∗ − PÃ∗ F̂ .

Proof. First, we observe that

Ã† = Ã†Ã(I + F )−1A†(I + E)−1ÃÃ† = PÃ∗(I + F )−1A†(I + E)−1PÃ,

and (3.8) holds.
To prove (3.9), �rst let us write, using (3.8):

(3.12) Ã†(I + E)PA = PÃ∗(I + F )−1A†(I + E)−1PÃ(I + E)PA,

and noticing that the �rst equation in Lemma 3.1(a) is equivalent to (I − PÃ)(I +
E)PA = 0 we get

(3.13) Ã†(I + E)PA = PÃ∗(I − F̂ )A†(I + E)−1(I + E)PA = PÃ∗(I − F̂ )A†PA,
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that is the �rst equation in (3.9). The second equation in (3.9) is the dual, according
to the transformation (3.3), of the �rst one.

Finally to get (3.10), it follows from (a) and (b) in Lemma 3.1 that

A†ΘE = A†[−(I − PÃ)− (I + E)−1EPÃ] = A†((I + E)−1PÃ − I),(3.14)

ΘFA
† = [−(I − PÃ∗)− PÃ∗(I + F )−1F ]A† = (PÃ∗(I + F )−1 − I)A†,(3.15)

ΘFA
†ΘE = (PÃ∗(I + F )−1 − I)A†((I + E)−1PÃ − I),(3.16)

hence,

A†ΘE + ΘFA
† + ΘFA

†ΘE = PÃ∗(I + F )−1A†(I + E)−1PÃ −A
† = Ã† −A†.

That is (3.10).

We emphasize that expression (3.8) can be rewritten in a way (see equation (3.2)
in [5, Theorem 3.2]) that ensures that under �small� multiplicative perturbations of
A, i.e., small E and F , we obtain �small� multiplicative perturbations of A†. Using
Theorem 3.4 we can bound the relative changes for ‖Ã† − A†‖ and ‖Ã† − A†‖Q in
terms of the perturbation matrices E and F .

Theorem 3.5. Let A ∈ Cm×n and Ã = (I + E)A(I + F ) ∈ Cm×n, where

(I+E) ∈ Cm×m and (I+F ) ∈ Cn×n are nonsingular matrices, and I−Ê := (I+E)−1,

I − F̂ := (I + F )−1. Let us denote by ‖ · ‖ a family of normalized unitarily invariant
norms and by ‖ ·‖Q a family of normalized Q-norms. Then the following bounds hold:

‖Ã† −A†‖
‖A†‖2

≤ ‖E‖+ ‖Ê‖+ ‖F‖+ ‖F̂‖+‖Ê‖‖F̂‖,(3.17)

‖Ã† −A†‖
‖Ã†‖2

≤ ‖E‖+ ‖Ê‖+ ‖F‖+ ‖F̂‖+‖E‖‖F‖,(3.18)

‖Ã† −A†‖Q
‖A†‖2

≤
√
‖E‖2Q + ‖F‖2Q + (‖Ê‖Q + ‖F̂‖Q + ‖Ê‖Q ‖F̂‖Q)2,(3.19)

‖Ã† −A†‖Q
‖Ã†‖2

≤
√
‖Ê‖2Q + ‖F̂‖2Q + (‖E‖Q + ‖F‖Q + ‖E‖Q ‖F‖Q)

2
.(3.20)

Proof. The bound in (3.17) is obtained by �rst rewriting equation (3.10) in
Theorem 3.4 as

(3.21) Ã† −A† = (I + ΘF )A†ΘE + ΘFA
†,

or as

(3.22) Ã† −A† = ΘFA
†(I + ΘE) +A†ΘE ,

and from (3.14) and (3.15) we have

A† (I + ΘE) = A†(I + E)−1PÃ = A†(I − Ê)PÃ,(3.23)

(I + ΘF )A† = PÃ∗(I + F )−1A† = PÃ∗(I − F̂ )A†.(3.24)
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From (3.21) and (3.24) we get

(3.25) Ã† −A† = PÃ∗(I − F̂ )A†ΘE + ΘFA
†,

and from (3.22) and (3.23)

(3.26) Ã† −A† = ΘFA
†(I − Ê)PÃ +A†ΘE .

From (3.25), and using (3.23) and (3.11),

‖Ã† −A†‖ = ‖PÃ∗(I − F̂ )A†ΘE + ΘFA
†‖

= ‖PÃ∗(I − F̂ )A†ΘE + (I − PÃ∗)F
∗A† − PÃ∗ F̂A

†‖

≤ ‖PÃ∗A
†ΘE‖+ ‖PÃ∗ F̂A

†(I + ΘE)‖+ ‖F ∗‖‖A†‖2
≤ ‖A†‖2(‖E‖+ ‖Ê‖+ ‖F‖+ ‖F̂‖) + ‖PÃ∗ F̂A

†ÊPÃ‖

≤ ‖A†‖2(‖E‖+ ‖Ê‖+ ‖F‖+ ‖F̂‖+ ‖Ê‖‖F̂‖),

which is (3.17).
To get the bound in (3.19) we use (3.21), (3.24), (3.23) and (3.11) to prove that

Ã† −A† = (I + ΘF )A†ΘE + ΘFA
†

= PÃ∗(I − F̂ )A†ΘE + ΘFA
†

= PÃ∗
[
(I − F̂ )A†ΘE − F̂A†

]
+ (I − PÃ∗)F

∗A†

= PÃ∗
[
A†ΘE − F̂A†(I + ΘE)

]
+ (I − PÃ∗)F

∗A†

= PÃ∗
[
A†E∗(I − PÃ)−A†ÊPÃ − F̂A

†(I − Ê)PÃ

]
+ (I − PÃ∗)F

∗A†.

It remains to apply Lemma 2.2 to the last equation above and get

‖Ã† −A†‖2Q ≤ ‖A†E∗(I − PÃ)− [A†Ê + F̂A†(I − Ê)]PÃ‖
2
Q + ‖F ∗A†‖2Q

≤ ‖A†E∗‖2Q + ‖A†Ê + F̂A†(I − Ê)‖2Q + ‖F ∗A†‖2Q
≤ ‖A†‖22

(
‖E‖2Q + ‖F‖2Q + (‖Ê‖Q + ‖F̂‖Q + ‖Ê‖Q ‖F̂‖Q)2

)
.

The last inequality being a consequence of (2.1) and the fact that the Q-norms are nor-

malized UI matrix norms. The inequality above gives the bound for ‖Ã†−A†‖Q/‖A†‖2
in (3.19).

The bounds in (3.18) and (3.20) are the dual expressions, according to the trans-
formation (3.3), respectively, of (3.17) and (3.19).

We highlight now the following points on Theorem 3.5.

Remark 3.6.

(a) The bounds in Theorem 3.5 improve signi�catively the classical bounds for the
relative variation of the Moore-Penrose inverse under general additive perturba-
tions Ã = A + ∆A in the case rank(Ã) = rank(A) (see [22, Theorem 4.1] or the
rearrangement in [21, Ch. III, Corollary 3.10]). The crucial point is that the
bounds in Theorem 3.5 do not depend on κ2(A), while the classical bounds do.
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(b) The bounds (3.17)-(3.18) in Theorem 3.5 have the advantage that are valid for any
normalized unitarily invariant norm, but when they are particularized to ‖ · ‖Q,
then the bounds in (3.19)-(3.20) are always sharper than the ones in (3.17)-(3.18).

(c) If A has full row rank, then Ã has also full row rank and PÃ = Im. Thus, ΘE in

(3.11) simpli�es to ΘE = −Ê and all the terms containing ‖E‖ or ‖E‖Q in the

bounds of Theorem 3.5 vanish (but one should keep ‖Ê‖ and ‖Ê‖Q).
(d) If A has full column rank, then Ã has also full column rank and PÃ∗ = In. Thus,

ΘF in (3.11) simpli�es to ΘF = −F̂ and all the terms containing ‖F‖ or ‖F‖Q
in the bounds of Theorem 3.5 vanish (but one should keep ‖F̂‖ and ‖F̂‖Q).

(e) If we restrict in Theorem 3.5 the magnitude of the perturbations to be max{‖E‖2,
‖F‖2} < 1, then, standard perturbation theory of the inverse [21, Ch. III, Theo-
rem 2.5] and (2.1) provide inequalities that can be used in Theorem 3.5 to obtain
bounds that are easily computable just in terms of E and F . To this purpose note
�rst that ‖Ê‖ = ‖(I +E)−1E‖ ≤ ‖(I +E)−1‖2‖E‖, and that an analogous result

holds for ‖F̂‖, and second that ‖(I + E)−1‖2 ≤ 1/(1 − ‖E‖2), and the analogue
for ‖(I + F )−1‖2. As a consequence, we get

(3.27) ‖Ê‖ ≤ ‖E‖
1− ‖E‖2

and ‖F̂‖ ≤ ‖F‖
1− ‖F‖2

.

(f) Finally, again with the additional restriction max{‖E‖2, ‖F‖2} < 1, Theorem 3.5

can be completed with the following lower and upper bounds for ‖Ã†‖:

‖A†‖
(1 + ‖E‖2)(1 + ‖F‖2)

≤ ‖Ã†‖ ≤ ‖A†‖
(1− ‖E‖2)(1− ‖F‖2)

.

The upper bound follows from (3.8), the properties used in part (e), and also from
‖PÃ‖2 = ‖PÃ∗‖2 = 1. For getting the lower bound: consider A as a multiplicative

perturbation of Ã, i.e., A = (I +E)−1Ã(I + F )−1, and apply (3.8) with the roles

of A and Ã exchanged to get A† = PA∗(I + F )Ã†(I + E)PA.

As it was said at the beginning of this section and in the Introduction, multi-
plicative perturbation bounds for the Moore-Penrose inverse have also been presented
recently in [3, Section 4]. The bounds in [3] are not based on expressions for Ã† as
those in Theorem 3.4, they are obtained following a di�erent approach and therefore
they are di�erent. In the rest of this section we are going to compare some of the
bounds in [3] with the results of Theorem 3.5.

In order to do that, �rst we present Theorem 3.7, in which we rewrite in the
notation of this paper Theorems 4.1 and 4.2 in [3]. Moreover Theorem 3.7 includes
a new result: the bound in (3.30). We will show a new proof of Theorem 4.1 in [3],
that is, the bound (3.28) below, using the techniques of this paper and the proof of
the new result (3.30), that is similar and comparable to (3.29) [3, Theorem 4.2].

Theorem 3.7. [3, Theorems 4.1 and 4.2] With the same hypotheses as in Theo-
rem 3.5:

‖Ã† −A†‖
max{‖A†‖2, ‖Ã†‖2}

≤ ‖E‖+ ‖Ê‖+ ‖F‖+ ‖F̂‖,(3.28)

‖Ã† −A†‖Q
max{‖A†‖2, ‖Ã†‖2}

≤
√

3

2

√
‖E‖2Q + ‖Ê‖2Q + ‖F‖2Q + ‖F̂‖2Q.(3.29)
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Furthermore, the following bound alternative to (3.29) also holds:

(3.30)
‖Ã† −A†‖Q

max{‖A†‖2, ‖Ã†‖2}
≤
√
‖E‖2Q + ‖Ê‖2Q + ‖F‖2Q + ‖F̂‖2Q + 2 ‖E‖Q ‖F̂‖Q.

Proof. To get the bound in (3.28) we use the �rst equation in (3.9) and (3.25)

(3.31) ‖Ã† −A†‖ = ‖PÃ∗(I − F̂ )A†ΘE + ΘFA
†‖ = ‖Ã†(I + E)PAΘE + ΘFA

†‖.

The term Ã†(I + E)PAΘE can be written, using (3.14) and the second equation in
(3.4), as

Ã†(I + E)PAΘE = Ã†(I + E)PA((I + E)−1PÃ − I)(3.32)

= Ã†PÃ − Ã
†(I + E)PA = Ã†(I − PA)− Ã†EPA

= Ã†Ê∗(I − PA)− Ã†EPA,

where we have used the �rst equation in (3.4) for the last equality. Finally, by using
(3.15) and the �rst equation in Lemma 3.1 (b), the second term in (3.31) is written
as

(3.33) ΘFA
† = (PÃ∗ − I)A† − PÃ∗ F̂A

† = (PÃ∗ − I)F ∗A† − PÃ∗ F̂A
†.

Now substituting (3.32) and (3.33) into (3.31) we get

‖Ã† −A†‖ ≤ ‖Ã†(I + E)PAΘE‖+ ‖ΘFA
†‖(3.34)

≤ ‖Ã†Ê∗(I − PA)− Ã†EPA‖+ ‖(PÃ∗ − I)F ∗A† − PÃ∗ F̂A
†‖

≤ ‖Ã†‖2(‖Ê∗‖+ ‖E‖) + ‖A†‖2(‖F ∗‖+ ‖F̂‖)
= ‖Ã†‖2(‖Ê‖+ ‖E‖) + ‖A†‖2(‖F‖+ ‖F̂‖),

which leads to (3.28).
To get (3.30) we proceed as in (3.31) and (3.33), to obtain

(3.35) ‖Ã† −A†‖2Q = ‖Ã†(I + E)PAΘE − PÃ∗ F̂A
† − (I − PÃ∗)F

∗A†‖2Q.

Now, using Lemma 2.2, (3.32), Ã† = PÃ∗Ã
†, and A† = A†PA,

‖Ã† −A†‖2Q ≤ ‖Ã†(I + E)PAΘE − F̂A†‖2Q + ‖A†‖22‖F‖2Q(3.36)

≤ ‖Ã†Ê∗(I − PA)− Ã†EPA − F̂A†‖2Q + ‖A†‖22‖F‖2Q
≤ ‖Ã†Ê∗‖2Q + ‖Ã†E − F̂A†‖2Q + ‖A†‖22‖F‖2Q
≤ ‖Ã†‖22‖Ê‖2Q + ‖A†‖22‖F‖2Q + (‖Ã†‖2‖E‖Q + ‖A†‖2‖F̂‖Q)2,

that can be converted easily into (3.30).
Let us compare now the results of Theorems 3.5 and 3.7. To begin with note that

the presence of max{‖A†‖2, ‖Ã†‖2} in Theorem 3.7 makes it di�cult to compare in
general the bounds (3.28)-(3.29) with the bounds (3.17)-(3.20), but simultaneously it
makes the bounds in Theorem 3.5 more natural and applicable, because the standard
situation in perturbation theory is that A† is known, but Ã† is not. In this context
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note, for instance, that if ‖A†‖2 = ‖Ã†‖2, then the bound in (3.28) is obviously sharper
than (3.17)-(3.18); but if ‖A†‖2 � ‖Ã†‖2, then (3.28) does not give any information

on ‖Ã† − A†‖/‖A†‖2, while (3.17) does. However, as we discuss next, the bounds in
Theorem 3.5 are superior to (3.28)-(3.29), both to �rst order and in terms of wider
applicability.

If we consider tiny perturbations and neglect second order terms, then we can
replace both max{‖A†‖2, ‖Ã†‖2} and ‖Ã†‖2, simply by ‖A†‖2 (see Remark 3.6(f)),
which allows us to make comparisons easier. The bounds (3.17)-(3.18) in Theorem 3.5

and (3.28) in Theorem 3.7 are equal to �rst order, that is, ‖Ã†−A†‖/‖A†‖2 ≤ 2(‖E‖+
‖F‖). However, to �rst order, the right-hand side of (3.29) is Ξ1 :=

√
3
√
‖E‖2Q + ‖F‖2Q

and the right-hand side of (3.19)-(3.20) is Ξ2 :=
√
‖E‖2Q + ‖F‖2Q + (‖E‖Q + ‖F‖Q)2.

To compare Ξ1 and Ξ2, use that (x+ y)2 ≤ 2(x2 + y2), for x ≥ 0, y ≥ 0 real numbers.
Thus

Ξ2 ≤
√

3 ‖E‖2Q + 3 ‖F‖2Q = Ξ1,

which implies that, to �rst order, the bounds (3.19)-(3.20) are always sharper than
(3.29).

For su�ciently large perturbations, the presence of max{‖A†‖2, ‖Ã†‖2} makes
(3.28)-(3.29) unapplicable in certain situations, since, as said before, one of the stan-

dard goals of perturbation theory is to bound ‖Ã† − A†‖ without knowing Ã† and
having only some bounds on the norms of the perturbations E and F .

Let us illustrate this point with an example. Let

(3.37) A =

1 0
0 1
0 0

 , E =

−4/5 0 0
0 −4/5 0
0 0 −4/5

 , and F =

[
−4/5 0

0 −4/5

]
.

An easy computation shows that

‖Ã† −A†‖2
‖A†‖2

= 24,
‖Ã† −A†‖2
‖Ã†‖2

= 0.96,(3.38)

‖E‖2 = 0.8, ‖F‖2 = 0.8, ‖Ê‖2 = 4, ‖F̂‖2 = 4,(3.39)

which give, using ‖.‖Q = ‖.‖2, the results in Table 3.1. It can be seen that all three

bounds in Theorem 3.7 fail by far in getting a bound for ‖Ã†−A†‖2/‖A†‖2, but notice
also that (3.30) is the sharpest of the three for ‖Ã†−A†‖2/‖Ã†‖2, and, �nally, notice
that the bounds in Theorem 3.5 give the sharpest estimates, in particular those in
(3.19) and (3.20).

4. Bounds for the solutions of the Least Squares Problem. In this section
we consider the Least Squares Problem (LSP)

(4.1) min
x∈Cn

‖Ax− b‖2, A ∈ Cm×n, b ∈ Cm,

and the multiplicatively perturbed LSP:

(4.2) min
x∈Cn

‖Ãx− b̃‖2, Ã = (I + E)A(I + F ) ∈ Cm×n, b̃ = b+ h ∈ Cm ,
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Bounds in Theorem 3.5 Bounds in Theorem 3.7

‖Ã† −A†‖2
‖A†‖2

‖Ã† −A†‖2
‖Ã†‖2

(3.17) (3.18) (3.19) (3.20) (3.28) (3.29) (3.30)

24 0.96 25.6 10.24 24.03 6.08 9.6 7.07 6.30

Table 3.1
Example (3.37): Comparing the results of Theorems 3.5 and 3.7. Blue columns should be

compared among themselves, and so the black columns.

where (I + E) ∈ Cm×m and (I + F ) ∈ Cn×n are nonsingular matrices. We are
interested in �nding an upper bound for the relative variation ‖x̃0−x0‖2/‖x0‖2, where
x0 = A†b and x̃0 = Ã†b̃ are, respectively, the minimum 2-norm solutions of (4.1) and
(4.2). We will also examine the variation of the associated residuals r = b−Ax0 and

r̃ = b̃ − Ãx̃0. We will use the multiplicative perturbation theory of A† developed in
Section 3. In addition, the results in this section are compared with the classic additive
perturbation bounds of the solution of the LSP [22, Theorem 5.1]. As was said in
the Introduction these results are very important for the numerical computation of
solutions of structured LSP with high relative accuracy. In particular, one result of
this section, the �rst order bound (4.9) in Corollary 4.2, has already been presented in
[5, Theorem 4.1] where it was used in the error analysis of an algorithm that computes
with high relative accuracy the minimum 2-norm solutions of structured LSP. Next
theorem is the main result in this section.

Theorem 4.1. Let x0 and x̃0 be the minimum 2-norm solutions of (4.1) and

(4.2), respectively, and let r = b−Ax0 and r̃ = b̃−Ãx̃0 be the corresponding residuals.

Let Ê := (I + E)−1E and F̂ := (I + F )−1F , de�ne αE :=

√
‖E‖22 + ‖Ê‖22 and

αF :=

√
‖F‖22 + ‖F̂‖22, and assume that ‖h‖2 ≤ ε‖b‖2. Then,

‖x̃0 − x0‖2 ≤ αF ‖x0‖2 + [αE (1 + αF ) (1 + ε) + ε (1 + αF ) ] ‖A†‖2 ‖b‖2 ,(4.3)

‖r̃ − r‖2 ≤ ‖b‖2
√

(ε+ ‖E‖2)
2

+ ‖E‖22 .(4.4)

Proof. Let us prove �rst (4.3). The proof is based on (3.10) in Theorem 3.4 that
implies:

x̃0 − x0 = Ã†(b+ h)−A†b

=
(
Ã† −A†

)
(b+ h) +A†h

=
(
A†ΘE + ΘFA

† + ΘFA
†ΘE

)
(b+ h) +A†h

=
(
A†ΘE + ΘFA

†ΘE

)
(b+ h) + ΘFx0 + ΘFA

†h+A†h.

Apply norm inequalities and get

‖x̃0−x0‖2 ≤ ‖ΘF ‖2‖x0‖2 + [‖ΘE‖2 (1 + ‖ΘF ‖2) (1 + ε) + ε (1 + ‖ΘF ‖2)] ‖A†‖2 ‖b‖2 .
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Now, (4.3) follows from Lemma 2.2 that implies ‖ΘE‖2 ≤ αE and ‖ΘF ‖2 ≤ αF .
Next, we prove (4.4). First, observe that

r̃ − r = h− Ãx̃0 +Ax0

= h− ÃÃ†b̃+Ax0

= (I − ÃÃ†)h+Ax0 − ÃÃ†b

= (I − ÃÃ†)h+Ax0 − ÃÃ†(r +Ax0)

= (I − ÃÃ†)(h+Ax0)− ÃÃ†r.(4.5)

Note that the summands in (4.5) are orthogonal vectors, since PÃ = ÃÃ†, use Ax0 =
PAb and r = (I − PA)b, recall Lemma 3.1(c), and get (4.4) as follows

‖r̃ − r‖22 = ‖(I − PÃ)(h+ PAb)‖22 + ‖PÃ(I − PA)b‖22
≤
(
‖h‖2 + ‖(I − PÃ)PAb‖2

)2
+ ‖PÃ(I − PA)b‖22

≤ (ε‖b‖2 + ‖E‖2‖b‖2)
2

+ ‖E‖22‖b‖22.

The bound (4.3) simpli�es if A has full row or full column rank in the way ex-
plained in parts (c) and (d) of Remark 3.6. If A has full row rank, then r̃ = r = 0
and ‖r̃ − r‖2 = 0.

As said in the Introduction the bounds in Theorem 4.1 improve signi�catively the
classical bounds (1.9-1.10) for the relative variation of minimum 2-norm solutions and

residuals of LSP under general additive perturbations Ã = A+∆A [22, Theorem 5.1].
Let us compare them. First, it is convenient to bear in mind that(‖A‖2‖x0‖2)/‖b‖2 ≤
κ2(A) and ‖r‖2 ≤ ‖b‖2 in (1.10). Next, observe that the bound for ‖r̃ − r‖2/‖b‖2
in (1.10) includes terms that can be very large even if εA and εb are very tiny. This
happens if κ2(A) is large and ‖r‖2 6= 0 is not very small. In contrast, if ‖E‖2 and
ε are tiny, then the bound for ‖r̃ − r‖2/‖b‖2 that follows from (4.4) is always tiny.
With respect to the bounds for ‖x̃0 − x0‖2/‖x0‖2: the bound in (1.9) ampli�es the
perturbations in the data at least by a factor κ2(A) and the ampli�cation can be much
larger under certain conditions. In addition, (1.9) includes the ampli�cation factor
‖A†‖2 ‖b‖2/‖x0‖2, which is the only potentially large factor in the bound that follows
from (4.3). We will show in Subsection 4.2 that ‖A†‖2 ‖b‖2/‖x0‖2 is a moderate
number except for very particular choices of b. Therefore, (4.3) always improves
(1.9) and, if ‖E‖2, ‖F‖2, and ε are tiny, then (4.3) produces tiny bounds for ‖x̃0 −
x0‖2/‖x0‖2 for almost all b.

The bounds in Theorem 4.1 depend both on Ê and F̂ . This reduces their applica-
bility in practical situations. Corollary 4.2 overcomes this shortcoming by restricting
the magnitude of the perturbations and by using (3.27). Corollary 4.2 follows directly
from Theorem 4.1 and is stated in a way that is convenient for its use in error analysis
of Least Squares algorithms, as was done in [5].

Corollary 4.2. With the same notation and hypotheses that in Theorem 4.1,
assume in addition that ‖E‖2 ≤ µ < 1 and ‖F‖2 ≤ ν < 1, x0 6= 0, and b 6= 0. De�ne

(4.6) θµ := µ

√
1 +

1

(1− µ)2
and θν := ν

√
1 +

1

(1− ν)2
.
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Then the following bounds hold:

‖x̃0 − x0‖2
‖x0‖2

≤ θν + [θµ(1 + θν)(1 + ε) + ε(1 + θν)]
‖A†‖2‖b‖2
‖x0‖2

,(4.7)

‖r̃ − r‖2
‖b‖2

≤
√

(ε+ µ)2 + µ2 .(4.8)

The bound (4.7) yields to �rst order in ε, µ, ν

‖x̃0 − x0‖2
‖x0‖2

≤
√

2 ν +
(
ε+
√

2µ
) ‖A†‖2‖b‖2
‖x0‖2

+ h.o.t ,(4.9)

where h.o.t stands for �higher order terms� in ε, µ, ν.

To illustrate how the results of Theorem 4.1 and Corollary 4.2 improve classical
additive perturbation bounds, we have prepared an simple numerical example run in
MATLAB

TM. We have generated a 20 × 10 random matrix A with condition number
κ2(A) = 104, which has been perturbed in two forms: additively Ã1 := A+ ∆A and

multiplicatively Ã2 := (I + E)A(I + F ) with ‖∆A‖2 = ε‖A‖2, ‖E‖2 = ‖F‖2 = ε,
and the parameter ε has been varied geometrically from 10−16 to 10−1. We have also
generated a random vector b ∈ R20, that, for simplicity, has been kept unperturbed.
For each value of ε we have computed the �exact� minimal length solution x0 of each
Least Squares Problem via the svd command of MATLAB run in variable precision
arithmetic using 50 decimal digits of precision. This has been done for the three LSP:

min
x∈R10

‖Ax− b‖2, min
x∈R10

‖Ã1x− b‖2, and min
x∈R10

‖Ã2x− b‖2,

and we have called, respectively, the minimal length solutions x0, x1 and x2. In Figure
4.1 we have plotted ‖x1−x0‖2/‖x0‖2 (continuous line, squares) and ‖x2−x0‖2/‖x0‖2
(continuous line, circles) against the size of the perturbation ε, and we have also repre-
sented (dashed line) the bound in the right hand side of (4.9)3. It can be seen that for
additive perturbations the relative errors increase linearly proportional to κ2(A)ε as
predicted in (1.9), however the relative errors for multiplicative perturbations increase
linearly as ε, independently of the condition number of the matrix κ2(A) as predicted
in Theorem 4.1 and Corollary 4.2. Notice also that the factor ‖A†‖2‖b‖2/‖x0‖2 is, in
this example, of order 1. It will be argued in Section 4.2 that this is the case most of
the times.

Finally, observe that all the results in this section, as well as those in Section 3,
are valid for any values of m and n, that is, both if m ≥ n or if m < n. Thus, they
are valid also for multiplicative perturbations of solutions of underdetermined linear
systems.

4.1. The condition number under multiplicative perturbations of LSP.

In this subsection we prove that ‖A†‖2‖b‖2/‖x0‖2 is essentially, i.e., up to a moderate
constant, the condition number under multiplicative perturbations of LSP. After that
we will analyze in Subsection 4.2 that condition number, we will argue that it is a

3We have omitted, also for simplicity, the results for the residuals that are very similar.
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2 Additive vs Multiplicative Perturbations
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Additive Relative Error in (1.9)
Multiplicative Relative Error in (4.7)
Bound in (4.7)

Fig. 4.1. Additive vs Multiplicative errors in the solution of LSP: minx∈R10 ‖Ax − b‖2, A ∈
R

20×10, κ2(A) = 104 against the size of the pertubation ε.

moderate number for most vectors b, and we will compare it with the usual4 condition
number for LSP under additive tiny normwise perturbations of A and b, that is,

(4.10) κLS(A, b) :=

(
2κ2(A) +

‖A†‖2 ‖b‖2
‖x0‖2

+ κ2(A)2
‖r‖2

‖A‖2 ‖x0‖2

)
.

First notice that Theorem 4.1 and Corollary 4.2 prove that the sensitivity of the
minimum 2-norm solution x0 = A†b of a LSP under multiplicative perturbations is
governed by ‖A†‖2 ‖b‖2/‖x0‖2. This quantity is well known because it is the condition
number for LSP when only the right-hand side b is perturbed (this is easily seem from
the second term in the rhs in (1.9)). More precisely, it is easy to prove that if x0 = A†b,
then

‖A†‖2 ‖b‖2
‖x0‖2

= lim
ε→0

sup

{
‖x̃0 − x0‖2
ε‖x0‖2

: x̃0 = A† (b+ h), ‖h‖2 ≤ ε ‖b‖2
}
.

Thus Theorem 4.1 essentially proves that multiplicative perturbations have an e�ect
on the minimum 2-norm solution of LSP similar to perturbing only the right-hand
side b.

Let us de�ne now the condition number of LSP under multiplicative perturbations
and let us determine its magnitude. The reader should notice that, for simplicity, we
consider in our de�nition of the condition number that the left and right mulplicative
perturbations, and the relative variation of b, all have the same order.

4It is proved in [22, Section 6] that the bound (1.9) is approximately attained to �rst order in
the perturbations.
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Theorem 4.3. Let us use the same notation and assumptions as in Corollary 4.2
with the parameters µ, ν, and ε set equal to η, and let us de�ne the condition number

κ
(M)
LS (A, b) := lim

η→0
sup

{
‖x̃0 − x0‖2
η ‖x0‖2

: x̃0 = [(I + E)A(I + F )]† (b+ h),(4.11)

‖E‖2 ≤ η, ‖F‖2 ≤ η, ‖h‖2 ≤ η‖b‖2
}
.

Then

(4.12)
1

1 + 2
√

2
κ
(M)
LS (A, b) ≤ ‖A

†‖2 ‖b‖2
‖x0‖2

≤ κ(M)
LS (A, b) .

Proof. From (4.9) and 1 ≤ ‖A†‖2 ‖b‖2/‖x0‖2, we get

‖x̃0 − x0‖2
η ‖x0‖2

≤
√

2 +
(

1 +
√

2
) ‖A†‖2‖b‖2
‖x0‖2

+O(η) ≤
(

1 + 2
√

2
) ‖A†‖2‖b‖2
‖x0‖2

+O(η) ,

which implies the left inequality in (4.12). To prove the right inequality choose
a perturbation such that E = 0, F = 0, and h = ηw, where ‖w‖2 = ‖b‖2 and
‖A†w‖2 = ‖A†‖2‖w‖2. For this perturbation ‖x̃0 − x0‖2/‖x0‖2 = ‖A†h‖2/‖x0‖2 =

η ‖A†‖2‖b‖2/‖x0‖2. So, the �sup� appearing in the de�nition of κ
(M)
LS (A, b) implies

‖A†‖2‖b‖2/‖x0‖2 ≤ κ(M)
LS (A, b).

4.2. The factor ‖A†‖2 ‖b‖2/‖x0‖2 is usually small. In this subsection we are
going to show that ‖A†‖2‖b‖2/‖x0‖2 is usually small compared with κLS(A, b) given
in (4.10). In [11, Section 3.2] the same problem was considered for a nonsingular
matrix A. The fact that A ∈ Cm×n is rectangular forces nontrivial modi�cations,
but we will see that the main conclusions remain the same. First note that for the
square nonsingular case [11, Section 3.2] 1 ≤ ‖A†‖2‖b‖2/‖x0‖2 ≤ κ2(A). The �rst
inequality also holds in the rectangular case, but, in general, ‖A†‖2‖b‖2/‖x0‖2 �
κ2(A). Consider, for example, A = [1 0; 0 1; 0 0] ∈ C3×2 and b = [η; 0; 1] ∈ C3×1. In
this case x0 = [η; 0] ∈ C2×1 and ‖A†‖2 ‖b‖2/‖x0‖2 =

√
|η|2 + 1/|η| which tends to ∞

if η → 0 while κ2(A) = 1. Nevertheless it is always true that

‖A†‖2 ‖b‖2/‖x0‖2 ≤ κLS(A, b).

The �rst key point in this section is to show that if A is �xed, then ‖A†‖2 ‖b‖2/‖x0‖2
is a moderate number for most vectors b, even if κ2(A) � 1, and so κLS(A, b) � 1,
which implies that ‖A†‖2 ‖b‖2/‖x0‖2 � κLS(A, b) for most ill-conditioned LSP whose
coe�cient matrix is A. However, this is not enough for our purposes, because if
rank(A) < m, then for most vectors b the acute angle θ(b,R(A)) between b and the
column space of A is not small, which is equivalent to say that the relative residual
‖Ax0 − b‖2/‖b‖2 = sin θ(b,R(A)) is not small. But, very often in practice LSP have
small relative residuals, since the problems correspond to inconsistent linear systems
Ax ≈ b that are close to be consistent. Therefore, the second key point in this section
is if A is �xed to consider all vectors b such that Υ = θ(b,R(A)) < π/2 is also �xed,
and then to show that for most of these vectors b the factor ‖A†‖2 ‖b‖2/‖x0‖2 is a
moderate number much smaller than κLS(A, b) whenever A is very ill-conditioned.

To explain the properties mentioned above, assume rank (A) = r and let A =
UΣV ∗ be the SVD of A, where U ∈ Cm×r and V ∈ Cn×r have orthonormal columns,
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Σ = diag(σ1, . . . , σr) ∈ Cr×r , and σ1 ≥ · · · ≥ σr > 0. Observe that ‖x0‖2 =
‖A†b‖2 = ‖Σ−1U∗b‖2 ≥ |u∗rb|/σr and

(4.13)
‖A†‖2 ‖b‖2
‖x0‖2

=
‖b‖2

σr‖x0‖2
≤ ‖b‖2
|u∗rb|

=
1

cos θ(ur, b)
,

where ur is the last column of U and θ(ur, b) is the acute angle between ur and b.
Note that the bound on ‖A†‖2 ‖b‖2/‖x0‖2 in (4.13) may be large only if b is �almost�
orthogonal to ur. For example, if A is an extremely ill conditioned �xed matrix
(think that κ2(A) = 101000 to be concrete) and b is considered as a random vector
whose direction is uniformly distributed in the whole space, then the probability
that 0 ≤ θ(ur, b) ≤ π/2 − 10−6 is approximately 1 − 10−6. Note that the condition
0 ≤ θ(ur, b) ≤ π/2 − 10−6 implies ‖A†‖2 ‖b‖2/‖x0‖2 . 106, which is a moderate
number compared to 101000. In particular, if the perturbation parameters µ, ν, and ε
in Corollary 4.2 are 10−16, then ‖A†‖2‖b‖2/‖x0‖2 . 106 provides a very good bound
for the variation of the minimum 2-norm solution of the LS problem. Even more, it
is possible that ‖A†‖2‖b‖2/‖x0‖2 is moderate although cos θ(ur, b) ≈ 0. This can be
seen by extending from nonsingular to general matrices the original result by Chan
and Foulser in [6, Theorem 1]. We do not present this easy generalization here and
refer the reader to the discussion in [11, Section 3.2].

In the argument above, the random vector b may be everywhere in the space.
Next, we consider vectors b such that Υ = θ(b,R(A)) < π/2 is kept constant. Let us
describe all these vectors as follows: let y ∈ Cr be any vector and let U⊥ ∈ Cm×(m−r)
be such that [U U⊥ ] ∈ Cm×m is unitary. Then chose any z ∈ Cm−r such that
‖z‖2 = ‖y‖2 tan Υ, and de�ne b = Uy + U⊥z. It is obvious that Υ = θ(b,R(A)),
because R(U) = R(A). In addition, from (4.13), it can be easily proved that these
vectors b satisfy

(4.14)
‖A†‖2 ‖b‖2
‖x0‖2

=
‖b‖2

σr‖x0‖2
≤ ‖b‖2
|u∗rb|

=

√
1 + tan2 Υ

cos θ(er, y)
=

1

(cos Υ) · (cos θ(er, y) )
,

where er is the rth column of Ir. The bound in (4.14) is a �geometrical� quantity that
does not depend on κ2(A) and that, assuming that Υ is not very close to π/2, is a
moderate number for most vectors y, i.e., for most vectors5 b such that Υ = θ(b,R(A)).

Finally, we discuss an interesting relationship of the factor ‖A†‖2‖b‖2/‖x0‖2 with
the term of κLS(A, b) that depends on κ2(A)2. Note that this term can be upper
bounded as follows

(4.15) Φ := κ2(A)2
‖r‖2

‖A‖2 ‖x0‖2
= κ2(A)

‖A†‖2 ‖r‖2
‖x0‖2

≤ κ2(A)
‖A†‖2 ‖b‖2
‖x0‖2

.

According to our discussion in this subsection ‖A†‖2‖b‖2/‖x0‖2 is a moderate number
for most vectors b. Therefore, Φ is upper bounded by a moderate number times κ2(A)
for most vectors b and, as a consequence, κ2(A)2 only a�ects the sensitivity of LSP
in very particular situations. In addition, Φ can be written as follows

(4.16)

(
κ2(A)

‖A†‖2 ‖b‖2
‖x0‖2

)
‖r‖2
‖b‖2

= Φ ,

5It seems possible to give a rigorous probabilistic meaning to the loose sentences �for most

vectors b� that we have used in this section and throughout the paper. A possible strategy would
be to consider random vectors whose entries follow uniform distributions in symmetric intervals and
to develop results in the spirit of those in [20, Section 3]. This would likely lead to some extra

√
m

factor in the bounds. Due to the length of the paper, we postpone the investigation of these topics.
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which implies that for large enough relative residuals (think, for instance, in ‖r‖2/‖b‖2 ≥
10−3) and very ill conditioned matricesA, we have ‖A†‖2‖b‖2/‖x0‖2 � Φ ≤ κLS(A, b),
even if ‖A†‖2‖b‖2/‖x0‖2 is large.

4.3. Multiplicative perturbation bounds for other solutions of LSP.

Bounds for the variation of solutions di�erent from the minimum 2-norm solution
are easily obtained from Theorem 4.1 and (3.7) in Theorem 3.3 and are a minor mod-
i�cation of (4.3). Since the residual of a LS problem is the same for all its solutions,
it is not needed to consider again perturbation bounds for the residuals.

Theorem 4.4. If y ∈ Cn is a solution of the LSP (4.1), then there exists a
solution ỹ ∈ Cn of the LSP (4.2) such that

‖ỹ − y‖2 ≤ (αF + ‖F‖2) ‖y‖2 + [αE (1 + αF ) (1 + ε) + ε (1 + αF ) ] ‖A†‖2 ‖b‖2 ,

where αE, αF , and ε are de�ned as in the statement of Theorem 4.1.
Proof. Given y, there exists a vector z ∈ Cn such that y = x0 +PN (A)z, where x0

is the minimum 2-norm solution of (4.1). Recall also that ‖y‖22 = ‖x0‖22 + ‖PN (A)z‖22
and, so, ‖PN (A)z‖2 ≤ ‖y‖2. Let us choose the following solution of (4.2), ỹ = x̃0 +
PN (Ã)PN (A)z, where x̃0 is the minimum 2-norm solution of (4.2). Therefore

‖ỹ − y‖2 ≤ ‖x̃0 − x0‖2 + ‖(PN (Ã) − PN (A))PN (A)z‖2 ≤ ‖x̃0 − x0‖2 + ‖F‖2‖y‖2 ,

where we have used (3.7). Now, use (4.3) and ‖x0‖2 ≤ ‖y‖2 and get the result.
Note that the relative variation ‖ỹ−y‖2/‖y‖2 is governed by max{1, ‖A†‖2‖b‖2/‖y‖2},

which is smaller than or equal to max{1, ‖A†‖2 ‖b‖2/‖x0‖2}. Therefore, the minimum
2-norm solution is the most sensitive of the solutions under multiplicative perturba-
tions.

5. Conclusions. We have presented in this paper a thoroughly study of multi-
plicative perturbations of the Moore-Penrose inverse and the Least Squares Problem,
as well as detailed comparisons of the new results with respect to classical addi-
tive perturbation results and with respect to other multiplicative perturbation results
available in the literature. The multiplicative perturbation bounds for the Moore-
Penrose inverse presented here improve previous ones to �rst order and also in terms
of wider applicability. Such improvements are a consequence of the fact that the new
bounds are relative to ‖A†‖2 or ‖Ã†‖2, instead of relative to max{‖A†‖2, ‖Ã†‖2}, as
are the bounds published so far. On the other hand, the multiplicative perturbation
bounds for the Least Squares Problem introduced here are the �rst ones valid for �nite
perturbations of arbitrary size, since previously published bounds are asymptotic �rst
order bounds valid only for in�nitesimal perturbations. A distinctive feature of the
approach followed in this paper is that it is based on the use of adequate orthogonal
projectors that allow us to get exact expressions for the perturbed Moore-Penrose
inverse which are essential in our developments. A key advantage of this approach is
that, under certain conditions, it seems possible to generalize it to linear operators in
in�nite dimensional spaces, a problem that we plan to study in the future.
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