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Abstract

We investigate rank revealing factorizations of rank deficient m × n polynomial matrices
P (λ) into products of three, P (λ) = L(λ)E(λ)R(λ), or two, P (λ) = L(λ)R(λ), polynomial
matrices. Among all possible factorizations of these types, we focus on those for which
L(λ) and/or R(λ) is a minimal basis, since they allow us to relate easily the degree of
P (λ) with some degree properties of the factors. We call these factorizations minimal
rank factorizations. Motivated by the well-known fact that, generically, rank deficient
polynomial matrices over the complex field do not have eigenvalues, we pay particular
attention to the properties of the minimal rank factorizations of polynomial matrices
without eigenvalues. We carefully analyze the degree properties of generic minimal rank
factorizations in the set of complex m×n polynomial matrices with normal rank at most r
and degree at most d, and we prove that they are of the form L(λ)R(λ), where the degrees
of the r columns of L(λ) differ at most by one, the degrees of the r rows of R(λ) differ at
most by one, and, for each i = 1, . . . , r, the sum of the degrees of the ith column of L(λ)
and of the ith row of R(λ) is equal to d. Finally, we show how these sets of polynomial
matrices with generic factorizations are related to the sets of polynomial matrices with
generic eigenstructures.
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1. Introduction

Given an m × n matrix A with complex entries and rank r < min{m,n}, it is often
useful to express A as the product of three factors A = LER of sizes m×r, r×r and r×n,
respectively, or as the product of two factors A = LR of sizes m×r and r×n, respectively.
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Such factorizations are sometimes called rank-revealing factorizations, or rank factoriza-
tions for short, since the sizes of the factors reveal the rank of the matrix. The singular
value decomposition is probably the best known example of a rank-revealing factorization,
though several other rank-revealing factorizations exist and are used in practice. Rank-
revealing factorizations have many applications. Among them, data compression plays
an important role [13]. It is well-known that a rank-revealing factorization A = LR is
equivalent to expressing A as a sum of r rank-1 matrices A = v1u

T
1 + · · · + vru

T
r , where

v1, . . . , vr are the columns of L and uT1 , . . . , u
T
r are the rows of R.

The main goal of this paper is to investigate rank-revealing factorizations of m × n
polynomial matrices P (λ), of normal rank3 r < min{m,n} and degree d, into products of
three, P (λ) = L(λ)E(λ)R(λ), or two, P (λ) = L(λ)R(λ), polynomial matrices. We will see
that this problem is very different from the corresponding one for constant matrices and
that it requires the use of completely different tools. These differences come essentially
from two facts. First, from the constraint that the factors must be also polynomial matrices
and, second, from the notion of degree, and the non-trivial question of how the degree of
P (λ) is related to the degrees (of the entries) of the factors.

This degree-problem motivates us to focus on rank-revealing factorizations of poly-
nomial matrices, P (λ) = L(λ)E(λ)R(λ) or P (λ) = L(λ)R(λ), where at least one of the
leftmost or rightmost factors, L(λ) or R(λ), is a minimal basis [11]. We will prove that
these factorizations allow us to relate the degree of P (λ) with certain matching properties
of the degrees of the entries of the factors. We call these factorizations minimal rank
factorizations.

Another important ingredient of our work is the well-known fact, proved in [9], that
generic m× n polynomial matrices with normal rank r < min{m,n} and degree at most
d, over the complex field, do not have eigenvalues and have minimal indices with very
particular properties. More precisely, the m− r left minimal indices differ at most by one
and the same happens with the n − r right minimal indices (see Theorem 2.11 below).
This result motivates us, in the first place, to study in more detail the minimal rank
factorizations of polynomial matrices without eigenvalues and, in the second place, to
look for some generic properties of rank-revealing factorizations of complex polynomial
matrices. In this line, we prove that, generically, a factorization of P (λ) = L(λ)R(λ) into
two polynomial matrices of sizes m×r and r×n implies that the degrees of the r columns
of L(λ) differ at most by one, the degrees of the r rows of R(λ) differ at most by one, and,
for each i = 1, . . . , r, the sum of the degrees of the ith column of L(λ) and of the ith row
of R(λ) is equal to d. In this context, we will also study how the orbits of the polynomial
matrices with the generic eigenstructures identified in [9], are related to the polynomial
matrices with the generic factorizations that we identify in this work.

We are not aware of other similar results available in the literature, dealing with rank-
revealing factorizations of polynomial matrices of degree larger than one. However, there
exist factorizations of this type in the case of degree at most one, that is, in the case
of matrix pencils. In fact, rank-revealing factorizations expressed as the sum of matrix
pencils with rank one exist for unstructured pencils [2, 3, 4] and also for matrix pencils
with symmetry structures [8]. Rank-revealing factorizations of matrix pencils have played
a fundamental role in the study of the generic effect of low rank perturbations on the

3The concepts mentioned in this introduction are revised in Section 2.
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eigenstructure of a given matrix pencil. Therefore, we hope that the results developed in
this paper will have applications in the study of the generic effect of low rank perturbations
on the eigenstructure of a given polynomial matrix of degree larger than one, which is a
problem that remains open in the literature.

We emphasize that the rank-revealing factorizations of matrix pencils mentioned above
have been obtained by using the Kronecker canonical form of pencils under strict equiv-
alence [12], or structured versions of this form. Since a canonical form of this type does
not exist for polynomial matrices of degree larger than one, the problem for polynomial
matrices is harder than for matrix pencils and requires different tools.

The paper is organized as follows. Section 2 includes some known concepts and results
that are important for obtaining the main results of this paper. Rank-revealing factor-
izations and minimal rank factorizations of polynomial matrices are introduced in Section
3, where their properties are also studied. Section 4 establishes the generic properties of
rank-revealing factorizations and minimal rank factorizations. Finally, Section 5 presents
some conclusions and possible lines of future research.

2. Preliminaries

This section summarizes the notation and some of the results previously published in
the literature, that will be used in the paper. Many of the results in this paper are valid
over an arbitrary field F while others are only valid over the field C of complex numbers.
This will be clearly indicated in the text by using either F or C. F[λ] stands for the ring of
polynomials in the variable λ with coefficients in F and F(λ) stands for the field of fractions
of F[λ], i.e., rational functions in the variable λ with coefficients in F. A polynomial vector
is a vector with entries in F[λ]. F[λ]m×n and F(λ)m×n denote the sets of m×n polynomial
matrices and of m× n rational matrices, respectively, over F. The degree of a polynomial
vector, q(λ), or of a polynomial matrix, P (λ), is the highest degree of all of its entries
and is denoted by deg(q) or deg(P ). The degree of the zero polynomial is defined to be
−∞. The set of m × n polynomial matrices of degree at most d is denoted by F[λ]m×n

d .
Given a list d = (d1, d2, . . . , dm) of nonnegative integers, F[λ]m×n

d denotes the set of m×n

polynomial matrices whose ith row has degree at most di for i = 1, . . . ,m. We also use F
for the algebraic closure of F, In for the n × n identity matrix, and 0m×n for the m × n
zero matrix, where the sizes are omitted when they are clear from the context. We need
to use very often the ith row or the jth column of a polynomial matrix P (λ) and we adopt
the following compact notations for them: Pi∗(λ), or simply Pi∗, denotes the ith row of
P (λ) and P∗j(λ), or simply P∗j , denotes the jth column of P (λ).

The normal rank of a polynomial or rational matrix P (λ), denoted as rank(P ), is the
rank of P (λ) considered as a matrix over the field F(λ), or the size of the largest non-
identically zero minor of P (λ). The reader can find more information on polynomial and
rational matrices in the books [12, 14].

The set of m× n polynomial matrices with degree at most d and normal rank at most
r is denoted by F[λ]m×n

d,r . In the case F = C and r < min{m,n}, new results about
factorizations of the elements of this set will be presented in Section 4. In order to avoid
trivialities, every time that the symbol F[λ]m×n

d,r is written it should be understood that
the integers d and r satisfy d ≥ 1 and r ≥ 1.
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The well-known Smith form of a polynomial matrix plays a very important role in
this work and the corresponding result is presented in Theorem 2.1 [12]. It requires the
use of unimodular polynomial matrices, that is, square polynomial matrices with constant
nonzero determinant.

Theorem 2.1. (Smith form) Let P (λ) ∈ F[λ]m×n with rank(P ) = r. Then there exist
unimodular matrices U(λ) ∈ F[λ]m×m, V (λ) ∈ F[λ]n×n and a diagonal matrix S(λ) ∈
F[λ]m×n such that

P (λ) = U(λ)S(λ)V (λ), S(λ) :=



e1(λ) 0 . . . 0

0 e2(λ)
. . .

...
...

. . .
. . . 0

0 . . . 0 er(λ)

0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)


, (1)

where each polynomial ej(λ) ∈ F[λ] is monic and divides ej+1(λ) for j = 1, . . . , r − 1.
Moreover the diagonal polynomial matrix S(λ) is unique.

The unique matrix S(λ) in (1) is the Smith form of P (λ) and the expression P (λ) =
U(λ)S(λ)V (λ) is called a Smith factorization of P (λ). Smith factorizations are not unique.
The polynomials ej(λ) are called the invariant polynomials of P (λ) and those that are equal
to 1 are called trivial invariant polynomials. For any α ∈ F, the invariant polynomials
can be uniquely factorized as ej(λ) = (λ − α)σjpj(λ), with pj(λ) ∈ F[λ], pj(α) ̸= 0 and
σj ∈ N = {0, 1, 2, . . .}, for j = 1, . . . , r. The sequence σ1 ≤ · · · ≤ σr is called the partial
multiplicity sequence of P (λ) at α. A root β ∈ F of any of the invariant polynomials ej(λ)
of P (λ) is called a finite eigenvalue of P (λ). Equivalently, β ∈ F is a finite eigenvalue of
P (λ) if and only if the partial multiplicity sequence of P (λ) at β contains at least one
nonzero term.

The partial multiplicity sequence at ∞ of P (λ) ∈ F[λ]m×n
d is defined to be the partial

multiplicity sequence at 0 of λdP (1/λ) ∈ F[λ]m×n
d and it is said that P (λ) has an eigenvalue

at ∞ if its partial multiplicity sequence at ∞ contains at least one nonzero term, or,
equivalently, if zero is an eigenvalue of λdP (1/λ). It is easy to prove that the first term
of the partial multiplicity sequence at ∞ and the degree of the polynomial are related as
follows.

Lemma 2.2. [1, Lemma 2.6] Let P (λ) ∈ F[λ]m×n
d with rank(P ) = r and partial multiplicity

sequence at ∞ equal to 0 ≤ γ1 ≤ γ2 ≤ · · · ≤ γr. Then γ1 = d− deg(P ).

Next, we refresh the concept of minimal bases of a rational subspace [11]. Let us
consider the vector space F(λ)n over the field F(λ). A subspace V of F(λ)n is called a
rational subspace. It is very easy to see that every rational subspace V has bases consisting
entirely of polynomial vectors. Following Forney [11], we say that a minimal basis of V is
a basis of V consisting of polynomial vectors whose sum of degrees is minimal among all
bases of V consisting of polynomial vectors. A key property [11] is that the ordered list
of degrees of the polynomial vectors in any minimal basis of V is always the same. These
degrees are called the minimal indices of V. The minimal bases of any rational subspace
can be characterized in different important ways [11, p. 495] (see also [14]). Among them,
we emphasize the characterization in Theorem 2.4, which requires to use Definition 2.3.
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Definition 2.3. Let d′1, . . . , d
′
n be the degrees of the columns of N(λ) ∈ F[λ]m×n. The

highest-column-degree coefficient matrix of N(λ), denoted by Nhc, is the m × n constant

matrix whose jth column is the vector coefficient of λd′j in the jth column of N(λ). The
polynomial matrix N(λ) is said to be column reduced if Nhc has full column rank.

Similarly, let d1, . . . , dm be the degrees of the rows of M(λ) ∈ F[λ]m×n. The highest-
row-degree coefficient matrix of M(λ), denoted by Mhr, is the m×n constant matrix whose
jth row is the vector coefficient of λdj in the jth row of M(λ). The polynomial matrix
M(λ) is said to be row reduced if Mhr has full row rank.

Theorem 2.4. The columns (resp., rows) of a polynomial matrix N(λ) ∈ F[λ]m×n are
a minimal basis of the rational subspace they span if and only if N(λ0) has full column
(resp., row) rank for all λ0 ∈ F, and N(λ) is column (resp., row) reduced.

Next, we define four rational subspaces associated with a polynomial matrix P (λ).

Definition 2.5. (Rational subspaces of a polynomial matrix) Let P (λ) ∈ F[λ]m×n. Then

(i) Nℓ(P ) = {y(λ) ∈ F(λ)1×m : y(λ)P (λ) = 0} ⊆ F(λ)1×m is the left nullspace of P (λ),

(ii) Nr(P ) = {x(λ) ∈ F(λ)n×1 : P (λ)x(λ) = 0} ⊆ F(λ)n×1 is the right nullspace of P (λ),

(iii) Row(P ) = {w(λ)P (λ) : w(λ) ∈ F(λ)1×m} ⊆ F(λ)1×n is the row space of P (λ),

(iv) Col(P ) = {P (λ)v(λ) : v(λ) ∈ F(λ)n×1} ⊆ F(λ)m×1 is the column space of P (λ).

Observe that if rank(P ) = r, then dimNℓ(P ) = m − r, dimNr(P ) = n − r and
dimRow(P ) = dim Col(P ) = r, by the rank-nullity theorem [12, Vol. I, p. 64]. Thus,
Nℓ(P ) has m − r minimal indices, Nr(P ) has n − r minimal indices, and Row(P ) and
Col(P ) have each of them r minimal indices.

Given a polynomial matrix P (λ) ∈ F[λ]m×n
d , the set formed by its invariant polyno-

mials, by its partial multiplicity sequence at ∞, by the minimal indices of Nℓ(P ) and by
the minimal indices of Nr(P ) is often called the complete eigenstructure of P (λ) [7, 17].
Observe that the minimal indices of Row(P ) and Col(P ) are not included in the complete
eigenstructure of P (λ).

The complete eigenstructure of a polynomial matrix satisfies the well-known index sum
theorem, which was published for the first time in [18, Theorem 3] for general rational
matrices. See [5] for the polynomial matrix specific version.

Theorem 2.6. (Index Sum Theorem) Let P (λ) ∈ F[λ]m×n
d be a polynomial matrix of

normal rank r, with invariant polynomials of degrees δ1, . . . , δr, with partial multiplicity
sequence at ∞ equal to γ1, . . . , γr, with minimal indices of Nℓ(P ) equal to η1, . . . , ηm−r

and with minimal indices of Nr(P ) equal to ε1, . . . , εn−r. Then,

rd =

m−r∑
i=1

ηi +
n−r∑
j=1

εj +
r∑

k=1

γk +
r∑

ℓ=1

δℓ.
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2.1. Dual minimal bases and related properties

Dual minimal bases were defined in [6], but they are closely linked to the dual rational
subspaces introduced much earlier in [11, Section 6]. For brevity, we often say in this
paper that a polynomial matrix M(λ) ∈ F[λ]m×n is a minimal basis if its rows form a
minimal basis of the rational subspace they span when n ≥ m or if its columns form a
minimal basis of the rational subspace they span when m ≥ n.

Definition 2.7. Two polynomial matrices M(λ) ∈ F[λ]m×k and N(λ) ∈ F[λ]n×k are dual
minimal bases if they are minimal bases satisfying m+ n = k and M(λ)N(λ)T = 0.

Observe that the dual minimal bases in Definition 2.7 satisfy that the rows of M(λ)
form a minimal basis of Nℓ(N(λ)T ) and that the columns of N(λ)T form a minimal basis
of Nr(M(λ)). As a consequence, the minimal indices of Nr(M(λ)) are the degrees of the
rows of N(λ) and the minimal indices of Nℓ(N(λ)T ) are the degrees of the rows of M(λ).

Dual minimal bases satisfy Theorem 2.8, whose “direct part” was proved in [11, p.
503] (see other proofs in [6, Remark 2.14] and in [7, Lemma 3.6]) and whose “converse
part” was proved in [6, Theorem 6.1].

Theorem 2.8. Let M(λ) ∈ F[λ]m×(m+n) and N(λ) ∈ F[λ]n×(m+n) be dual minimal bases
with the degrees of their rows equal to (d1, . . . , dm) and to (d′1, . . . , d

′
n), respectively. Then

m∑
i=1

di =

n∑
j=1

d′j . (2)

Conversely, given any two lists of nonnegative integers (d1, . . . , dm) and (d′1, . . . , d
′
n) sat-

isfying (2), there exists a pair of dual minimal bases M(λ) ∈ F[λ]m×(m+n) and N(λ) ∈
F[λ]n×(m+n) such that the degrees of the rows of M(λ) and N(λ) are (d1, . . . , dm) and
(d′1, . . . , d

′
n), respectively.

A corollary of Theorem 2.8 is the following result.

Corollary 2.9. Let P (λ) ∈ F[λ]m×n be a polynomial matrix of normal rank r, with
minimal indices of Nℓ(P ) equal to η1, . . . , ηm−r, with minimal indices of Nr(P ) equal
to ε1, . . . , εn−r, with minimal indices of Row(P ) equal to r1, . . . , rr, and with minimal
indices of Col(P ) equal to c1, . . . , cr. Then

m−r∑
i=1

ηi =

r∑
i=1

ci and

n−r∑
i=1

εi =

r∑
i=1

ri .

Proof. We only prove the first equality, since the second one follows from applying the
first to P (λ)T . Let us arrange a minimal basis of Nℓ(P ) as the rows of a matrix M(λ) ∈
F[λ](m−r)×m and a minimal basis of Col(P ) as the columns of a matrix N(λ)T ∈ F[λ]m×r.
Then M(λ)N(λ)T = 0, which implies that M(λ) and N(λ) are dual minimal bases and
the first equality follows from Theorem 2.8.

Combining Theorem 2.6 and Corollary 2.9, we obtain the following dual version of the
Index Sum Theorem.
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Corollary 2.10. (Dual version of the Index Sum Theorem) Let P (λ) ∈ F[λ]m×n
d be a

polynomial matrix of normal rank r, with invariant polynomials of degrees δ1, . . . , δr, with
partial multiplicity sequence at ∞ equal to γ1, . . . , γr, with minimal indices of Row(P )
equal to r1, . . . , rr and with minimal indices of Col(P ) equal to c1, . . . , cr. Then,

rd =
r∑

i=1

ci +
r∑

j=1

rj +
r∑

k=1

γk +
r∑

ℓ=1

δℓ.

2.2. Generic complete eigenstructures in C[λ]m×n
d,r

We recall in this subsection the main results of [9]. For that, we need to introduce
some concepts. First, we introduce a distance in the vector space (over the field C)
C[λ]m×n

d in terms of the Frobenius matrix norm of complex matrices as follows: Given
P (λ) = λdPd + · · ·+ λP1 + P0 ∈ C[λ]m×n

d and Q(λ) = λdQd + · · ·+ λQ1 +Q0 ∈ C[λ]m×n
d ,

where Pi, Qi ∈ Cm×n, for i = 0, . . . , d, the distance between P (λ) and Q(λ) is

ρ(P,Q) :=

(
d∑

i=0

||Pi −Qi||2F

) 1
2

. (3)

This makes C[λ]m×n
d a metric space and allows us to define in it limits, open and closed

sets, closures of sets and any other topological concept. The closure of any subset A of
C[λ]m×n

d will be denoted by A.
Given P (λ) ∈ C[λ]m×n

d , we define the orbit of P (λ), denoted by O(P ), as the set of
polynomial matrices in C[λ]m×n

d with the same complete eigenstructure as P (λ). The
closure of O(P ) is denoted by O(P ). Observe that all the polynomial matrices in O(P )
have the same rank, since the complete eigenstructure determines the rank, and the same
degree, since the first term in the partial multiplicity sequence at ∞ determines the degree
according to Lemma 2.2.

The main result in [9] describes C[λ]m×n
d,r in terms of closures of orbits of certain

polynomial matrices with very particular complete eigenstructures. It is stated in the
next theorem.

Theorem 2.11. [9, Theorem 3.2] Let m,n, r and d be integers such that m,n ≥ 2, d ≥
1 and 1 ≤ r < min{m,n}. Define rd + 1 complete eigenstructures Ka of polynomial
matrices in C[λ]m×n

d,r with r invariant polynomials all equal to one, with all the terms of
the partial multiplicity sequence at ∞ equal to zero (equivalently, without finite or infinite
eigenvalues), with m− r minimal indices of the left null space equal to β and β + 1, and
with n− r minimal indices of the right null space equal to α and α+ 1, as follows:

Ka : {α+ 1, . . . , α+ 1︸ ︷︷ ︸
s

, α, . . . , α︸ ︷︷ ︸
n−r−s

, β + 1, . . . , β + 1︸ ︷︷ ︸
t

, β, . . . , β︸ ︷︷ ︸
m−r−t

} (4)

for a = 0, 1, . . . , rd, where α = ⌊a/(n− r)⌋, s = a mod (n− r), β = ⌊(rd− a)/(m− r)⌋,
and t = (rd− a) mod (m− r). Then,

(i) There exists a polynomial matrix Ka(λ) ∈ C[λ]m×n
d,r of degree exactly d and normal

rank exactly r with the complete eigenstructure Ka for a = 0, 1, . . . , rd;
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(ii) For every polynomial matrix M(λ) ∈ C[λ]m×n
d,r , there exists an integer a such that

O(Ka) ⊇ O(M);

(iii) O(Ka)
⋂
O(Ka′) = ∅ whenever a ̸= a′;

(iv) C[λ]m×n
d,r =

⋃
0≤a≤rd

O(Ka) and C[λ]m×n
d,r is a closed subset of C[λ]m×n

d .

Moreover, it was proved in [9, Corollary 3.3] that for each a = 0, 1, . . . , rd, the orbit
O(Ka) is an open subset of C[λ]m×n

d,r (in the subspace topology of C[λ]m×n
d,r corresponding to

the distance (3)). This means that
⋃

0≤a≤rdO(Ka) is an open and dense subset of C[λ]m×n
d,r ,

which justifies to term the complete eigenstructures in (4) as the generic eigenstructures
of the polynomial matrices in C[λ]m×n

d,r . As we have explained in Section 1, one of the

main objectives of this paper is to provide an alternative description of C[λ]m×n
d,r in terms

of the union of the closures of some sets of polynomial matrices that can be factorized in
certain specific ways and to relate this description with that in Theorem 2.11-(iv). This
is done in Section 4.

2.3. Generic polynomial matrices in C[λ]r×(r+s)
d

The last subsection in these preliminaries presents a result from [10] that describes the

generic polynomial matrices in the vector space (over the field C) C[λ]r×(r+s)
d , where r, s >

0. Observe that if d = (d1, d2, . . . , dr) and d = max1≤i≤r di, then C[λ]r×(r+s)
d is a subspace

of C[λ]r×(r+s)
d and we can use the distance (3) in C[λ]r×(r+s)

d . Moreover, this allows us to

define naturally the partial multiplicity sequence at ∞ of any M(λ) ∈ C[λ]r×(r+s)
d as the

partial multiplicity at 0 of λdP (1/λ).

Next, we define an important subset of C[λ]r×(r+s)
d , which is proved to be generic in

Theorem 2.13.

Definition 2.12. Let r, s > 0 be two positive integers, consider the set C[λ]r×(r+s)
d , where

d = (d1, d2, . . . , dr) is a list of nonnegative integers, and define

k′ =

⌈∑r
i=1 di
s

⌉
and s k′ =

r∑
i=1

di + t, where 0 ≤ t < s.

Then G[λ]r×(r+s)
d ⊂ C[λ]r×(r+s)

d is the set of polynomial matrices whose ith row has degree
exactly di, for i = 1, . . . , r, whose rows form a minimal basis, and such that their right
nullspaces have s minimal indices, t of them equal to k′ − 1 and s− t equal to k′.

Theorem 5.3 in [10] implies that G[λ]r×(r+s)
d is equal to the set of the polynomial

matrices that have full-trimmed-Sylvester rank4. Combining this fact with [10, Theorem
6.2], we obtain the following result.

Theorem 2.13. G[λ]r×(r+s)
d is an open and dense subset of C[λ]r×(r+s)

d .

4The reader can see in [10, Definition 5.1], the definition of this concept, though it is not of interest in
the present paper.
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3. Minimal rank factorizations of polynomial matrices

We consider in this section factorizations of a polynomial matrix P (λ) into products
of other polynomial matrices that reveal the normal rank and the degree of P (λ).

Definition 3.1. Let P (λ) ∈ F[λ]m×n with rank(P ) = r > 0. A factorization of P (λ) as
P (λ) = L(λ)E(λ)R(λ) with L(λ) ∈ F[λ]m×r, E(λ) ∈ F[λ]r×r and R(λ) ∈ F[λ]r×n is called
a rank factorization of P (λ).

The name “rank factorization” in the definition above reminds us that the sizes of the
factors L(λ), E(λ), and R(λ) reveal the rank of P (λ). Standard linear algebra proper-
ties of matrices over the field F(λ), in particular, the inequality rank(L(λ)E(λ)R(λ)) ≤
min{rank(L), rank(E), rank(R)}, immediately imply the following simple well-known re-
sults.

Lemma 3.2. Let P (λ) ∈ F[λ]m×n with rank(P ) = r > 0 and P (λ) = L(λ)E(λ)R(λ) be a
rank factorization of P (λ). Then,

(i) rank(L) = rank(E) = rank(R) = r and, in particular, E(λ) is nonsingular,

(ii) Nℓ(P ) = Nℓ(L),

(iii) Nr(P ) = Nr(R),

(iv) Row(P ) = Row(R), and the rows of R(λ) are a polynomial basis of Row(P ),

(v) Col(P ) = Col(L), and the columns of L(λ) are a polynomial basis of Col(P ).

The following simple lemma is valid for rational matrices (and, so, for constant and
polynomial matrices) and is also very easy to prove.

Lemma 3.3. Let L(λ) ∈ F(λ)m×r, E(λ) ∈ F(λ)r×r and R(λ) ∈ F[λ]r×n with rank(L) =
rank(R) = r > 0. Then rank(L(λ)E(λ)R(λ)) = rank(E(λ)).

We will often consider rank factorizations with E(λ) = Ir. In this case a rank factor-
ization is expressed as the product of just two factors as P (λ) = L(λ)R(λ). Observe that
rank factorizations are mainly of interest for polynomial matrices P (λ) ∈ F[λ]m×n with
rank(P ) < min{m,n}, because if rank(P ) = m or rank(P ) = n, then P (λ) = Im P (λ) or
P (λ) = P (λ)In is a rank factorization of P (λ). Therefore, we will only consider the case
rank(P ) < min{m,n} in the rest of the paper.

An example of a rank factorization of a polynomial matrix can be obtained from trun-
cating the Smith factorization and from elementary properties of matrix multiplication.
This is stated in the next lemma.

Lemma 3.4. Let P (λ) ∈ F[λ]m×n with min{m,n} > rank(P ) = r > 0 and Smith
factorization P (λ) = U(λ)S(λ)V (λ) as in (1). Let L(λ) ∈ F[λ]m×r be the polynomial
matrix whose columns are the first r columns of U(λ), E(λ) ∈ F[λ]r×r be the diagonal
polynomial matrix whose diagonal entries are the first r diagonal entries of S(λ), and
R(λ) ∈ F[λ]r×n be the polynomial matrix whose rows are the first r rows of V (λ). Then,
P (λ) = L(λ)E(λ)R(λ) is a rank factorization of P (λ).
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Definition 3.5. The factorization P (λ) = L(λ)E(λ)R(λ) in Lemma 3.4 is called a Smith
rank factorization of P (λ).

Smith rank factorizations P (λ) = L(λ)E(λ)R(λ) reveal the invariant polynomials of
P (λ) in E(λ), which is a very important information, in addition to the rank of P (λ).
However, in general, the columns of L(λ) are not a minimal basis of Col(P ) and the rows
of R(λ) are not a minimal basis of Row(P ). Moreover, the degree properties of a Smith
rank factorization of P (λ) are not optimal in general. The next example illustrates these
facts.

Example 3.6. Let

P (λ) =

 λ8 0 0
λ6 + 1 −λ7 −λ5

1 −λ7 −λ5

 . (5)

Then,

P (λ) =

 λ8 λ2 1
λ6 + 1 1 0

1 0 0

 1 0 0
0 λ11 0
0 0 0

 1 −λ7 −λ5

0 λ2 1
0 1 0

 ,

P (λ) =

 λ8 λ2

λ6 + 1 1
1 0

[ 1 0
0 λ11

] [
1 −λ7 −λ5

0 λ2 1

]
=: L(λ)E(λ)R(λ) (6)

are, respectively, a Smith factorization and a Smith rank factorization of P (λ). Note
that according to Theorem 2.4 neither L(λ) nor R(λ) are minimal bases because their
highest-column-degree and highest-row-degree coefficients are, respectively,

Lhc =

1 1
0 0
0 0

 and Rhr =

[
0 −1 0
0 1 0

]
,

which do not have full column and full row rank, respectively. Observe that the degree of
P (λ) is 8 and that is not equal to the sum of the degrees of the three factors in (6), which
is 26. This inequality is expected because the entries with highest degrees in each factor
do not interact when the product L(λ)E(λ)R(λ) is computed. But note also that if (6) is
expanded into a sum of rank one matrices as follows

P (λ) =

 λ8

λ6 + 1
1

 [ 1
] [

1 −λ7 −λ5
]
+

 λ2

1
0

 [ λ11
] [

0 λ2 1
]
, (7)

then the degrees of both terms are equal to 15, again much larger than deg(P ) = 8.

In the rest of this section, we explore other rank factorizations, different from Smith
rank factorizations, of a polynomial matrix P (λ) whose factors provide minimal bases of
Col(P ) and/or Row(P ) and reveal the degree of P (λ). We emphasize that, in general,
such factorizations do not reveal explicitly the invariant polynomials of P (λ).

We will need in the sequel the two auxiliary Lemmas 3.7 and 3.8. Lemma 3.7 implies,
in particular, that any rank factorization of a polynomial matrix P (λ) with normal rank
equal to one reveals the degree of P (λ) via the sum of the degrees of the three factors.
The simple proof of this lemma is omitted.
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Lemma 3.7. Let L(λ) ∈ F[λ]m×1, E(λ) ∈ F[λ]1×1, R(λ) ∈ F[λ]1×n and P (λ) = L(λ)E(λ)R(λ).
Then deg(P ) = deg(L) + deg(E) + deg(R).

Lemma 3.8 is a consequence of [19, Theorem 2.5.7], which introduces an algorithm
for transforming any polynomial matrix with full column rank into a column reduced
polynomial matrix via multiplication on the right by unimodular matrices. In order to be
self-contained, we include a short proof of this lemma.

Lemma 3.8.

(i) Let L(λ) ∈ F[λ]m×r be a polynomial matrix such that the constant matrix L(λ0) has
full column rank r for all λ0 ∈ F. Then, L(λ) can be factorized as L(λ) = Lc(λ)V (λ),
where the columns of Lc(λ) ∈ F[λ]m×r form a minimal basis of Col(L) and V (λ) ∈
F[λ]r×r is unimodular. Hence, the degrees of the columns of Lc(λ) are the minimal
indices of Col(L).

(ii) Let R(λ) ∈ F[λ]r×n be a polynomial matrix such that the constant matrix R(λ0) has
full row rank r for all λ0 ∈ F. Then, R(λ) can be factorized as R(λ) = U(λ)Rr(λ),
where the rows of Rr(λ) ∈ F[λ]r×n form a minimal basis of Row(R) and U(λ) ∈
F[λ]r×r is unimodular. Hence, the degrees of the rows of Rr(λ) are the minimal
indices of Row(R).

Proof. We only prove item (i), since item (ii) is obtained from item (i) by transposition.
The columns of L(λ) are a basis of Col(L). If the columns of Lc(λ) are any minimal basis
of Col(L), then L(λ) = Lc(λ)V (λ), with V (λ) an r×r polynomial matrix according to [11,
p. 495]. In addition, V (λ) must be unimodular since, otherwise, L(λ0) = Lc(λ0)V (λ0)
would have rank strictly smaller than r for any root λ0 of detV (λ0).

The next example illustrates Lemma 3.8.

Example 3.9. The matrices L(λ) and R(λ) in (6) can be factorized as follows: λ8 λ2

λ6 + 1 1
1 0

 =

 0 λ2

1 1
1 0

[ 1 0
λ6 1

]
=: Lc(λ)V (λ), (8)

[
1 −λ7 −λ5

0 λ2 1

]
=

[
1 −λ5

0 1

] [
1 0 0
0 λ2 1

]
=: U(λ)Rr(λ). (9)

Theorem 2.4 implies that the columns of Lc(λ) are a minimal basis, as well as the rows of
Rr(λ). Obviously V (λ) and U(λ) are unimodular matrices.

Theorem 3.10 presents for each polynomial matrix three different types of rank factor-
izations, with E(λ) = Ir in the case of items (ii) and (iii).

Theorem 3.10. Let P (λ) ∈ F[λ]m×n with min{m,n} > rank(P ) = r > 0. Then, P (λ)
can be factorized as follows:

(i) P (λ) = Lc(λ)E(λ)Rr(λ), where Lc(λ) ∈ F[λ]m×r, E(λ) ∈ F[λ]r×r, Rr(λ) ∈ F[λ]r×n,
the columns of Lc(λ) form a minimal basis of Col(P ), the rows of Rr(λ) form a
minimal basis of Row(P ), and the invariant polynomials of E(λ) are the invariant
polynomials of P (λ).
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(ii) P (λ) = Lc(λ)R(λ), where Lc(λ) ∈ F[λ]m×r, R(λ) ∈ F[λ]r×n, the columns of Lc(λ)
form a minimal basis of Col(P ) and the invariant polynomials of R(λ) are the in-
variant polynomials of P (λ).

(iii) P (λ) = L(λ)Rr(λ), where L(λ) ∈ F[λ]m×r, Rr(λ) ∈ F[λ]r×n, the rows of Rr(λ) form
a minimal basis of Row(P ), and the invariant polynomials of L(λ) are the invariant
polynomials of P (λ).

Proof. Let P (λ) = L̃(λ)Ẽ(λ)R̃(λ) with L̃(λ) ∈ F[λ]m×r, Ẽ(λ) ∈ F[λ]r×r, and R̃(λ) ∈
F[λ]r×n, be a Smith rank factorization as in Lemma 3.4. Therefore, L̃(λ0) and R̃(λ0) have,
respectively, full column rank and full row rank for all λ0 ∈ F, because they are formed
by columns and rows, respectively, of unimodular matrices. Then using the factorizations
in Lemma 3.8 applied to L̃(λ) and R̃(λ), we get the following three expressions,

P (λ) = Lc(λ) (V (λ)Ẽ(λ)U(λ))Rr(λ), (10)

P (λ) = Lc(λ) (V (λ)Ẽ(λ)R̃(λ)), (11)

P (λ) = (L̃(λ)Ẽ(λ)U(λ))Rr(λ). (12)

The factorization in (10) proves item (i) with E(λ) = V (λ)Ẽ(λ)U(λ), because the r
diagonal entries of Ẽ(λ) are the invariant polynomials of P (λ) and they do not change
under multiplications by unimodular matrices. The statements about Col(P ) and Row(P )
follow from Lemma 3.2.

The factorization in (11) proves item (ii) with R(λ) = V (λ)Ẽ(λ)R̃(λ). Note that R̃(λ)
is formed by the first r rows of a unimodular matrix Ṽ (λ) ∈ F[λ]n×n, according to Lemma
3.4. Thus,

R(λ) = V (λ)
[
Ẽ(λ) 0

]
Ṽ (λ),

and indeed the invariant polynomials of R(λ) are the same of those of Ẽ(λ), which in turn
are those of P (λ). The statement about Col(P ) follows again from Lemma 3.2.

Analogously, the factorization in (12) proves item (iii).

Definition 3.11. Any of the three factorizations introduced in Theorem 3.10 is called a
minimal rank factorization of P (λ).

The name “minimal rank factorization” in Definition 3.11 reminds us that these factor-
izations display a minimal basis of Col(P ) and/or a minimal basis of Row(P ), in addition
to the rank of P (λ).

Remark 3.12. The minimal rank factorizations in Theorem 3.10 are not unique. In fact
Lc(λ) can be any of the infinitely many minimal bases of Col(P ) and Rr(λ) can be any
of the infinitely many minimal bases of Row(P ). However, note that once Lc(λ) and/or
Rr(λ) are chosen, E(λ) in item (i) is uniquely determined by this choice, R(λ) in item (ii)
is uniquely determined by this choice, and L(λ) in item (iii) is uniquely determined by
this choice.

The next example illustrates Theorem 3.10.
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Example 3.13. In this example, the Smith rank factorization in (6) is combined with the
factorizations in (8) and (9) to obtain the following minimal rank factorizations of P (λ)
in (5):

P (λ) =

 0 λ2

1 1
1 0

[ 1 −λ5

λ6 0

] [
1 0 0
0 λ2 1

]
=: Lc(λ)F (λ)Rr(λ), (13)

P (λ) =

 0 λ2

1 1
1 0

[ 1 −λ7 −λ5

λ6 0 0

]
=: Lc(λ)R(λ), (14)

P (λ) =

 λ8 0
λ6 + 1 −λ5

1 −λ5

[ 1 0 0
0 λ2 1

]
=: L(λ)Rr(λ). (15)

The factorizations in (13), (14) and (15) illustrate, respectively, items (i), (ii) and (iii) of
Theorem 3.10. Observe that none of them reveals by inspection the invariant polynomials
1 and λ11 of P (λ) in (5). However, the degree of P (λ), which is 8, is revealed as the largest
degree of the terms in each of the expansions of P (λ) into a sum of rank one matrices
stemming from (13), (14) and (15). These expansions are the following ones:

P (λ) =

 0
1
1

 [ 1
] [

1 0 0
]
+

 0
1
1

 [ −λ5
] [

0 λ2 1
]
+

 λ2

1
0

 [ λ6
] [

1 0 0
]

=

 0
1
1

 [ 1 −λ7 −λ5
]
+

 λ2

1
0

 [ λ6 0 0
]

=

 λ8

λ6 + 1
1

 [ 1 0 0
]
+

 0
−λ5

−λ5

 [ 0 λ2 1
]
.

The term with highest degree in each of these expansions has degree 8, which is precisely
the degree of the polynomial. This behaviour is in contrast with the degrees of the terms
in the expansion (7) coming from the Smith rank factorization (6). This result about
degrees holds for any minimal rank factorization and will be proved in Theorem 3.14.

Example 3.13 motivates us to establish in Theorem 3.14 the “predictable degree prop-
erties” of certain products of two and three polynomial matrices. This result is inspired
by the properties of minimal bases presented in [11] (see also [14, p. 387]). Observe that
Theorem 3.14 can be applied, in particular, to minimal rank factorizations but that it
holds for much more general products of polynomial matrices. Recall the following nota-
tion introduced in Section 2: X∗i denotes the ith column of the matrix X and Yi∗ denotes
the ith row of Y .

Theorem 3.14.

(i) Let P (λ) = L(λ)R(λ), where L(λ) ∈ F[λ]m×r and R(λ) ∈ F[λ]r×n. If L(λ) is column
reduced, then

deg(P ) = max
1≤i≤r

{deg(L∗i) + deg(Ri∗)},

where we emphasize that R(λ) is a completely arbitrary matrix.
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(ii) Let P (λ) = L(λ)R(λ), where L(λ) ∈ F[λ]m×r and R(λ) ∈ F[λ]r×n. If R(λ) is row
reduced, then

deg(P ) = max
1≤i≤r

{deg(L∗i) + deg(Ri∗)},

where we emphasize that L(λ) is a completely arbitrary matrix.

(iii) Let P (λ) = L(λ)E(λ)R(λ), where L(λ) ∈ F[λ]m×r, E(λ) ∈ F[λ]r×s and R(λ) ∈
F[λ]s×n. If L(λ) is column reduced and R(λ) is row reduced, then

deg(P ) = max
1 ≤ i ≤ r
1 ≤ j ≤ s

{deg(L∗i) + deg(eij) + deg(Rj∗),

where we emphasize that E(λ) is a completely arbitrary matrix.

Proof. Proof of item (i). The result is obviously true if R(λ) = 0. Then, we will as-
sume that R(λ) ̸= 0. Let c1, . . . , cr be the degrees of the columns of L(λ) and define
D(λ) = diag(λc1 , . . . , λcr) ∈ F[λ]r×r. Then P (λ) = (L(λ)D(λ)−1)(D(λ)R(λ)). If Lhc is
the highest-column-degree coefficient matrix of L(λ), which has full column rank since
L(λ) is column reduced, then (L(λ)D(λ)−1) = Lhc +

1
λL−1 +

1
λ2L−2 + · · ·+ 1

λcmax L−cmax ,
where cmax := max{c1, . . . , cr} and L−j ∈ Fm×r are constant matrices for j = 1, . . . , cmax.
Moreover, D(λ)R(λ) is a polynomial matrix whose degree is the maximum degree d of its
rows, that is, d = max1≤i≤r{ci + deg(Ri∗)}. Thus, D(λ)R(λ) = λdR̃d + · · · + λR̃1 + R̃0,

with R̃d ̸= 0 and R̃j ∈ Fr×n are constant matrices for j = 0, 1, . . . , d. With these results
at hand, we get

P (λ) = (L(λ)D(λ)−1)(D(λ)R(λ)) = LhcR̃d λ
d + Pd−1λ

d−1 + · · ·+ P0,

with Pj ∈ Fm×n for j = 0, 1, . . . , d − 1. Note that LhcR̃d ̸= 0, since Lhc has full column

rank and R̃d ̸= 0, which implies that deg(P ) = d = max1≤i≤r{ci + deg(Ri∗)} and the
result is proved.

Proof of item (ii). Simply apply item (i) to the transposed polynomial matrix P (λ)T .

Proof of item (iii). The result is obviously true if E(λ) = 0. Then, we will as-
sume that E(λ) ̸= 0. Let c1, . . . , cr be the degrees of the columns of L(λ) and define
DL(λ) = diag(λc1 , . . . , λcr) ∈ F[λ]r×r and cmax := max{c1, . . . , cr}. Let r1, . . . , rs be
the degrees of the rows of R(λ) and define DR(λ) = diag(λr1 , . . . , λrs) ∈ F[λ]s×s and
rmax := max{r1, . . . , rs}. Then

P (λ) = (L(λ)DL(λ)
−1) (DL(λ)E(λ)DR(λ)) (DR(λ)

−1R(λ)).

If Lhc and Rhr are, respectively, the highest-column-degree coefficient matrix of L(λ) and
the highest-row-degree coefficient matrix of R(λ), which have full column and full row
ranks, respectively, since L(λ) is column reduced and R(λ) is row reduced, then

L(λ)DL(λ)
−1 = Lhc +

1

λ
L−1 +

1

λ2
L−2 + · · ·+ 1

λcmax
L−cmax ,

DR(λ)
−1R(λ) = Rhr +

1

λ
R−1 +

1

λ2
R−2 + · · ·+ 1

λrmax
R−rmax ,
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where L−j ∈ Fm×r is a constant matrix for j = 1, . . . , cmax and R−j ∈ Fs×n is a constant
matrix for j = 1, . . . , rmax. Moreover, DL(λ)E(λ)DR(λ) is a polynomial matrix whose
degree is the maximum degree d of its entries, that is,

d = max
1 ≤ i ≤ r
1 ≤ j ≤ s

(ci + deg(eij) + rj).

Thus, DL(λ)E(λ)DR(λ) = λdẼd + · · · + λẼ1 + Ẽ0, with Ẽd ̸= 0 and Ẽj ∈ Fr×s for
j = 0, 1, . . . , d, and

P (λ) = (L(λ)DL(λ)
−1)(DL(λ)E(λ)DR(λ))(DR(λ)

−1R(λ))

= λdLhcẼdRhr + Pd−1λ
d−1 + · · ·+ P0,

with Pj ∈ Fm×n for j = 0, 1, . . . , d−1. Note that LhcẼdRhr ̸= 0, since Lhc has full column

rank, Rhr has full row rank, and Ẽd ̸= 0, which implies that deg(P ) = d.

Remark 3.15. Observe that P (λ) in items (i) and (ii) of Theorem 3.14 can be expanded
as a sum of rank one polynomial matrices as P (λ) =

∑r
i=1 L∗i(λ)Ri∗(λ), while P (λ)

in item (iii) can be expanded as a sum of rank one polynomial matrices as P (λ) =∑r
i=1

∑s
j=1 L∗i(λ) eij(λ)Rj∗(λ). Thus, taking into account Lemma 3.7, Theorem 3.14

states that the degree of P (λ) is precisely the degree of the term(s) with highest degree in
such expansions.

In the last part of this section, we study minimal rank factorizations of polynomial
matrices that have no finite or infinite eigenvalues. The motivation for this study comes
from Theorem 2.11, which shows that rank deficient polynomial matrices have no finite
or infinite eigenvalues, generically, when F = C. We will see that the minimal rank
factorizations have very simple properties in this case.

Theorem 3.16. Let P (λ) ∈ F[λ]m×n
d and r be an integer such that 0 < r < min{m,n}.

P (λ) has normal rank r, degree exactly d, and has no finite or infinite eigenvalues if and
only if P (λ) can be factorized as

P (λ) = L(λ)R(λ), L(λ) ∈ F[λ]m×r, R(λ) ∈ F[λ]r×n, (16)

where the columns of L(λ) are a minimal basis, the rows of R(λ) are a minimal basis, and

deg(L∗i) + deg(Ri∗) = d, for i = 1, . . . , r. (17)

Proof. Sufficiency. If P (λ) satisfies (16) and (17) with L(λ) and R(λ) minimal bases,
then rank(P ) = r follows from Lemma 3.3 with E(λ) = Ir, and deg(P ) = d follows
from Theorem 3.14. Lemma 3.2 implies that the degrees of the columns of L(λ) are
the minimal indices of Col(P ) and that the degrees of the rows of R(λ) are the minimal
indices ofRow(P ), and (17) implies that the sum of all these minimal indices is equal to rd.
Combining this fact with Corollary 2.10, we see that all the terms of the partial multiplicity
sequence at ∞ of P (λ) must be zero, as well as all the degrees of the invariant polynomials
of P (λ). This is equivalent to state that P (λ) has no finite or infinite eigenvalues.

Necessity. If P (λ) has normal rank r, degree d and has no finite or infinite eigenvalues,
then we start from a minimal rank factorization of P (λ) given by Theorem 3.10-(ii). That
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is, P (λ) = L(λ)R̂(λ), where the columns of L(λ) ∈ F[λ]m×r form a minimal basis of Col(P )
and the degrees of these columns, denoted by c1, . . . , cr, are the minimal indices of Col(P ).
Note also that Lemma 3.2 guarantees that the rows of R̂(λ) ∈ F[λ]r×n form a basis of
Row(P ). Let r̂1, . . . , r̂r be the degrees of the rows of R̂(λ), which are not necessarily the
minimal indices Row(P ). Therefore, their sum is larger than or equal to the sum of the
minimal indices r1, . . . , rr of Row(P ) by the definition of minimal basis. That is

r∑
i=1

r̂i ≥
r∑

i=1

ri (18)

and, simultaneously, from Theorem 3.14-(i),

d ≥ ci + r̂i for i = 1, . . . , r. (19)

On the other hand Corollary 2.10 implies

r∑
i=1

ci +

r∑
j=1

rj = rd, (20)

since P (λ) has no finite or infinite eigenvalues, which is equivalent to
∑r

k=1 γk+
∑r

ℓ=1 δℓ =
0. The combination of (18), (19) and (20) leads to

r∑
i=1

ci +
r∑

j=1

r̂j ≥
r∑

i=1

ci +
r∑

j=1

rj = rd ≥
r∑

i=1

ci +
r∑

j=1

r̂j . (21)

Therefore,
∑r

i=1 r̂i =
∑r

i=1 ri, which implies that R̂(λ) is a minimal basis of Row(P ).
Moreover, (21) implies

∑r
i=1 ci +

∑r
j=1 r̂j = rd, which combined with (19) yields

ci + r̂i = d, i = 1, . . . , r .

This completes the proof.

Remark 3.17. Observe that the hypothesis that P (λ) has degree exactly d in Theorem
3.16 is redundant, because Lemma 2.2 combined with the hypothesis that P (λ) has not
eigenvalues at ∞ implies that deg(P ) = d. We have included this redundant hypothesis
for emphasizing this key property of the polynomial matrices satisfying Theorem 3.16.

We remark that the proof of the necessity in Theorem 3.16 proves, in fact, that for any
minimal rank factorization as in Theorem 3.10-(ii) of a polynomial matrix P (λ) ∈ F[λ]m×n

d

with normal rank r, with degree exactly d, and without finite or infinite eigenvalues, the
factor R(λ) must be a minimal basis and that the degree constraints (17) must be satisfied.
A complementary result can be proved for any minimal rank factorization as in Theorem
3.10-(iii) just by transposing the argument above. These discussions can be formalized
into the following theorem.

Theorem 3.18. Let P (λ) ∈ F[λ]m×n
d be a polynomial matrix with normal rank r, 0 < r <

min{m,n}, with degree exactly d, and without eigenvalues, finite or infinite. Then, the
following statements hold:
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(i) If the minimal rank factorization P (λ) = L(λ)E(λ)R(λ) satisfies the properties in
Theorem 3.10-(i), then the rows of R̂(λ) = E(λ)R(λ) form a minimal basis of
Row(P ) and the columns of L̂(λ) = L(λ)E(λ) form a minimal basis of Col(P ).
Moreover,

deg(L∗i) + deg(R̂i∗) = deg(L̂∗i) + deg(Ri∗) = d, for i = 1, . . . r.

(ii) If the minimal rank factorization P (λ) = L(λ)R(λ) satisfies the properties in Theo-
rem 3.10-(ii), then the rows of R(λ) form a minimal basis of Row(P ). Moreover,

deg(L∗i) + deg(Ri∗) = d, for i = 1, . . . r.

(iii) If the minimal rank factorization P (λ) = L(λ)R(λ) satisfies the properties in Theo-
rem 3.10-(iii), then the columns of L(λ) form a minimal basis of Col(P ). Moreover,

deg(L∗i) + deg(Ri∗) = d, for i = 1, . . . r.

The next example illustrates that polynomial matrices without finite nor infinite eigen-
values have rank factorizations that are not minimal, that do not satisfy the degree con-
ditions (17) and whose factors can have arbitrarily large degrees. Thus, for polynomial
matrices without eigenvalues, minimal rank factorizations are clearly preferable.

Example 3.19. Consider the following polynomial matrix P (λ) ∈ C[λ]3×3
6 with rank(P ) =

2 and its following factorizations:

P (λ) =

λ6 λ5 0
λ λ6 + 1 λ2

0 λ4 1

 =

 λ5 0
1 λ2

0 1

[ λ 1 0
0 λ4 1

]
, (22)

=

 λ5 0
λp+2 + 1 λ2

λp 1

[ λ 1 0
−λp+1 −λp + λ4 1

]
, (23)

where p > 3 is an integer. Both factors in the factorization (22) are minimal bases, accord-
ing to Theorem 2.4, and they satisfy (17). This proves that P (λ) has no finite or infinite
eigenvalues. In contrast, the left and right factors in (23) are not, respectively, column
and row reduced polynomial matrices. So, they are not minimal bases. Nevertheless,
the factorization in (23) is a rank factorization of P (λ). Its factors have arbitrarily high
degrees for arbitrarily large values of p.

By Theorem 2.11, rank deficient complex polynomial matrices have, generically, no
finite or infinite eigenvalues. Combining this with Theorem 3.16, we obtain that, gener-
ically, rank deficient complex polynomial matrices have minimal rank factorizations as
simple as those appearing in Theorem 3.16. However, the degree condition (17) still al-
lows for a lot of freedom for the possible degrees of the columns of L(λ) and the rows of
R(λ) when d is large. In the next section, we restrict this freedom considerably and prove
that, generically, the degrees of the columns of L(λ) differ at most by one and that the
degrees of the rows of R(λ) also differ at most by one.
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4. Generic minimal rank factorizations in C[λ]m×n
d,r and related results

In this section, we prove that arbitrarily close (in the distance defined in (3)) to any
polynomial matrix P (λ) ∈ C[λ]m×n

d,r there is another polynomial matrix Q(λ) ∈ C[λ]m×n
d,r

that can be factorized as Q(λ) = L(λ)R(λ), with L(λ) ∈ C[λ]m×r, R(λ) ∈ C[λ]r×n, with
the degrees of the columns of L(λ) differing at most by one and with the degrees of the
rows of R(λ) also differing at most by one. Moreover, we will see that L(λ) and R(λ) can
be chosen to be minimal bases satisfying (17). Finally, we will relate the sets of polynomial
matrices in C[λ]m×n

d,r that can be factorized in these specific ways with the orbits O(Ka)
of Theorem 2.11.

Before stating the first result in this section, we recall that the degree of the zero
polynomial has been defined to be −∞. Therefore, an expression as deg(L∗i)+deg(Ri∗) =
d for the ith column and row of the factors in Q(λ) = L(λ)R(λ) implies that L∗i(λ) ̸= 0,
Ri∗(λ) ̸= 0, 0 ≤ deg(L∗i) ≤ d, and 0 ≤ deg(Ri∗) ≤ d. In contrast, an expression as
deg(L∗i) + deg(Ri∗) ≤ d without further conditions does not imply that deg(L∗i) ≤ d and
deg(Ri∗) ≤ d, because it might be possible that deg(L∗i) = −∞ and deg(Ri∗) is arbitrarily
large, or vice versa.

The first result in this section is a simple consequence of the results in Section 3
and states that every polynomial matrix in F[λ]m×n

d,r can be factorized into two factors
that reveal the maximum possible rank r and such that the sums of the degrees of their
corresponding columns and rows is bounded by d.

Theorem 4.1. Let m,n, r and d be integers such that m,n ≥ 2, d ≥ 1 and 0 < r <
min{m,n}. Then

F[λ]m×n
d,r =

L(λ)R(λ) :
L(λ) ∈ F[λ]m×r, R(λ) ∈ F[λ]r×n,
deg(L∗i) ≤ d, deg(Ri∗) ≤ d,
deg(L∗i) + deg(Ri∗) ≤ d, for i = 1, . . . , r

 .

Proof. For brevity, in this proof we use the notation:

S :=

L(λ)R(λ) :
L(λ) ∈ F[λ]m×r, R(λ) ∈ F[λ]r×n,
deg(L∗i) ≤ d, deg(Ri∗) ≤ d,
deg(L∗i) + deg(Ri∗) ≤ d, for i = 1, . . . , r

 .

Proof of F[λ]m×n
d,r ⊆ S. If P (λ) ∈ F[λ]m×n

d,r and P (λ) = 0, then trivially P (λ) =

0m×r0r×n ∈ S. If P (λ) ∈ F[λ]m×n
d,r and P (λ) ̸= 0, then 0 ≤ deg(P ) = d̃ ≤ d and

0 < rank(P ) = r̃ ≤ r. Then, Theorem 3.10-(ii) and Theorem 3.14-(i) imply that P (λ)
can be factorized as P (λ) = L̃(λ)R̃(λ), with L̃(λ) ∈ F[λ]m×r̃, R̃(λ) ∈ F[λ]r̃×n, and
0 ≤ deg(L̃∗i) + deg(R̃i∗) ≤ d̃ ≤ d for i = 1, . . . , r̃. If r̃ = r, this proves that P (λ) ∈ S. If
r̃ < r, then we pad L̃(λ) and R̃(λ) with zeros and define

L(λ) :=
[
L̃(λ) 0

]
∈ F[λ]m×r and R(λ) :=

[
R̃(λ)
0

]
∈ F[λ]r×n ,

which satisfy P (λ) = L(λ)R(λ), with deg(L∗i) ≤ d, deg(Ri∗) ≤ d, and deg(L∗i) +
deg(Ri∗) ≤ d for i = 1, . . . , r. Therefore, P (λ) ∈ S. This proves F[λ]m×n

d,r ⊆ S.
Proof of S ⊆ F[λ]m×n

d,r . If P (λ) = L(λ)R(λ) ∈ S, then rank(P ) ≤ min{rank(L), rank(R)}
≤ r. In addition, the expansion P (λ) =

∑r
i=1 L∗i(λ)Ri∗(λ) and Lemma 3.7 imply
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deg(P ) ≤ max1≤i≤r{deg(L∗i) + deg(Ri∗)} ≤ d. Thus P (λ) ∈ F[λ]m×n
d,r , and the proof

is completed.

The rest of the results of this section are valid only over the field C since they use
limits and topological concepts with respect to the distance in (3). This will allow us to
prove that every polynomial matrix in C[λ]m×n

d,r is the limit of a sequence of polynomial

matrices in C[λ]m×n
d,r that can be factorized into two factors such that the degrees of their

columns and rows have very specific properties when compared with those in Theorem
4.1. The first result in this direction is Theorem 4.2.

Theorem 4.2. Let m,n, r and d be integers such that m,n ≥ 2, d ≥ 1 and 0 < r <
min{m,n} and define the sets

Am×n
d,r :=

{
L(λ)R(λ) :

L(λ) ∈ C[λ]m×r, R(λ) ∈ C[λ]r×n,
deg(L∗i) + deg(Ri∗) = d, for i = 1, . . . , r

}
.

Then
C[λ]m×n

d,r = Am×n
d,r .

Proof. From Theorem 4.1 it is obvious that Am×n
d,r ⊆ C[λ]m×n

d,r . Moreover, C[λ]m×n
d,r is a

closed subset of C[λ]m×n
d and the closure of Am×n

d,r is the smallest closed set that contains

Am×n
d,r . Therefore, Am×n

d,r ⊆ Am×n
d,r ⊆ C[λ]m×n

d,r .

In the rest of the proof, we prove that C[λ]m×n
d,r ⊆ Am×n

d,r . If P (λ) ∈ C[λ]m×n
d,r , then

Theorem 4.1 implies that P (λ) = L(λ)R(λ) with L(λ) ∈ C[λ]m×r, R(λ) ∈ C[λ]r×n,
deg(L∗i) ≤ d, deg(Ri∗) ≤ d, and deg(L∗i) + deg(Ri∗) ≤ d, for i = 1, . . . , r. Moreover,
without loss of generality, we take L∗j(λ) = 0 whenever Rj∗(λ) = 0. If deg(L∗i) +

deg(Ri∗) = d, for i = 1, . . . , r, then P (λ) ∈ Am×n
d,r ⊆ Am×n

d,r . Otherwise, let us consider the
set of indices corresponding to strict inequalities, that is,

I := {j : 1 ≤ j ≤ r and deg(L∗j) + deg(Rj∗) < d}.

Then, consider any two sequences of constant nonzero vectors {vk}k∈N ⊂ Cm×1 such that
limk→∞ vk = 0 and {wk}k∈N ⊂ C1×n such that limk→∞wk = 0, and construct the following
two sequences of polynomial matrices: (1) Lk(λ) = L(λ) + Fk(λ), where the columns of
Fk(λ) are constructed as follows

(Fk)∗j(λ) =


0, if j /∈ I,
λd−deg(Rj∗)vk, if j ∈ I and Rj∗(λ) ̸= 0,
λdvk, if j ∈ I and Rj∗(λ) = 0,

and (2) Rk(λ) = R(λ) +Gk(λ), where the rows of Gk(λ) are constructed as follows

(Gk)j∗(λ) =


0, if j /∈ I,
0, if j ∈ I and Rj∗(λ) ̸= 0,
wk, if j ∈ I and Rj∗(λ) = 0.

Then, Pk(λ) := Lk(λ)Rk(λ) ∈ Am×n
d,r and limk→∞ Pk(λ) = P (λ), which implies that

P (λ) ∈ Am×n
d,r .
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Next, we consider some subsets of the set Am×n
d,r introduced in Theorem 4.2 that will

be fundamental auxiliary tools for getting the main results of this section. More precisely,
we express in the next theorem the set Am×n

d,r as the union of such subsets, and C[λ]m×n
d,r

as the union of their closures.

Theorem 4.3. Let Am×n
d,r be the set defined in Theorem 4.2 and for each natural number

a = 0, 1, ...., rd define the following subsets of C[λ]m×n
d,r

Am×n
d,r,a :=

L(λ)R(λ) :
L(λ) ∈ C[λ]m×r, R(λ) ∈ C[λ]r×n,
deg(L∗i) + deg(Ri∗) = d, for i = 1, . . . , r,∑r

i=1 deg(Ri∗) = a

 .

Then

(i) Am×n
d,r =

⋃
0≤a≤rd

Am×n
d,r,a ,

(ii) C[λ]m×n
d,r =

⋃
0≤a≤rd

Am×n
d,r,a ,

(iii) for every P (λ) ∈ C[λ]m×n
d,r , there exists an integer a such that P (λ) ∈ Am×n

d,r,a .

Proof. Item (i). Let us prove first that Am×n
d,r ⊆

⋃
0≤a≤rdA

m×n
d,r,a . If P (λ) ∈ Am×n

d,r , then

P (λ) = L(λ)R(λ) with L(λ) ∈ C[λ]m×r, R(λ) ∈ C[λ]r×n, and deg(L∗i) + deg(Ri∗) =
d, for i = 1, . . . , r. So,

∑r
i=1 deg(L∗i) +

∑r
i=1 deg(Ri∗) = rd, which implies that 0 ≤∑r

i=1 deg(Ri∗) ≤ rd. Therefore, P (λ) ∈ Am×n
d,r,a for some a = 0, 1, . . . , rd and P (λ) ∈⋃

0≤a≤rdA
m×n
d,r,a .

The reverse inclusion
⋃

0≤a≤rdA
m×n
d,r,a ⊆ Am×n

d,r holds by definition.

Item (ii). It is an immediate consequence of Theorem 4.2, item (i), and the basic fact
that “the closure of the union of a finite number of sets is the union of the closures of such
sets”.

Item (iii) is just another expression of item (ii).

We present next the key technical result of this section, Theorem 4.6, which deals with
some subsets of Am×n

d,r,a that are introduced in Definition 4.4.

Definition 4.4. Let m,n, r and d be integers such that m,n ≥ 2, d ≥ 1 and 0 < r <
min{m,n}, a be an integer such that 0 ≤ a ≤ rd and (r1, . . . , rr) be any list of integers
such that 0 ≤ ri ≤ d, for i = 1, 2, . . . , r, and

∑r
i=1 ri = a. The following subsets of m× n

polynomial matrices are defined:

Am×n
d,r,a (r1, . . . , rr) :=

L(λ)R(λ) :
L(λ) ∈ C[λ]m×r, R(λ) ∈ C[λ]r×n,
deg(Ri∗) = ri, deg(L∗i) = d− ri, for i = 1, . . . , r,
0 ≤ ri ≤ d,

∑r
i=1 ri = a

 .

It is obvious that the following proposition holds.

Proposition 4.5. Let Am×n
d,r,a be the set defined in Theorem 4.3 and Am×n

d,r,a (r1, . . . , rr) be
any of the sets defined in Definition 4.4. Then

Am×n
d,r,a (r1, . . . , rr) ⊂ Am×n

d,r,a .
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Theorem 4.6. Let Am×n
d,r,a be the set defined in Theorem 4.3 and Am×n

d,r,a (r1, . . . , rr) be any
of the sets defined in Definition 4.4. Then the following statements hold:

(i) If (σ1, . . . , σr) is any permutation of (1, . . . , r), then

Am×n
d,r,a (r1, . . . , rr) = Am×n

d,r,a (rσ1 , . . . , rσr).

(ii) If rj − rk ≥ 2, then

Am×n
d,r,a (r1, . . . , rj , . . . , rk, . . . , rr) ⊆ Am×n

d,r,a (r1, . . . , rj − 1, . . . , rk + 1, . . . , rr) .

(iii) If dR = ⌊a/r⌋ and tR = a mod r, then

Am×n
d,r,a (r1, . . . , rr) ⊆ Am×n

d,r,a (dR + 1, . . . , dR + 1︸ ︷︷ ︸
tR

, dR, . . . , dR︸ ︷︷ ︸
r−tR

) .

Proof. Proof of item (i). If L(λ)R(λ) ∈ Am×n
d,r,a (r1, . . . , rr) and Π is an r × r permuta-

tion matrix such that the ith row of ΠR(λ) is the σith row of R(λ), for i = 1, . . . , r,
then L(λ)R(λ) = (L(λ)ΠT )(ΠR(λ)) ∈ Am×n

d,r,a (rσ1 , . . . , rσr). Therefore, Am×n
d,r,a (r1, . . . , rr) ⊆

Am×n
d,r,a (rσ1 , . . . , rσr). The “reverse” inclusion is proved in a similar manner using the “re-

verse” permutation.
Proof of item (ii). As a consequence of item (i), we can assume without loss of generality

that j = 1 and k = 2. Let P (λ) = L(λ)R(λ) ∈ Am×n
d,r,a (r1, r2, . . . , rr) with r1 − r2 ≥ 2.

Then, the first row of R(λ) and the second column of L(λ) can be written as follows:

R1∗(λ) = λr1vr1 + R̃1∗(λ), with 0 ̸= vr1 ∈ C1×n and deg(R̃1∗) < r1, (24)

L∗2(λ) = λd−r2wd−r2 + L̃∗2(λ), with 0 ̸= wd−r2 ∈ Cm×1 and deg(L̃∗2) < d− r2. (25)

Next, for any sequence {ϵk}k∈N ⊂ C of nonzero numbers such that limk→∞ ϵk = 0, we
define two sequences of polynomial matrices {Lk(λ)}k∈N ⊆ C[λ]m×r and {Rk(λ)}k∈N ⊆
C[λ]r×n (via their columns and rows, respectively) as follows

(Lk)∗1(λ) := −ϵkλ
d−r1+1wd−r2 + L∗1(λ),

(Lk)∗i(λ) := L∗i(λ), 1 < i ≤ r,
(Rk)2∗(λ) := ϵkλ

r2+1vr1 +R2∗(λ),
(Rk)i∗(λ) := Ri∗(λ), i ̸= 2, 1 ≤ i ≤ r.

(26)

From these sequences, we define the sequence {Pk(λ)}k∈N := {Lk(λ)Rk(λ)}k∈N ⊆ C[λ]m×n,
which obviously satisfies limk→∞ Pk(λ) = P (λ). In the rest of the proof, we will prove
that there exists an index k0 such that for every k ≥ k0,

Pk(λ) = Lk(λ)Rk(λ) ∈ Am×n
d,r,a (r1 − 1, r2 + 1, r3, . . . , rr),

which implies that P (λ) ∈ Am×n
d,r,a (r1 − 1, r2 + 1, r3, . . . , rr). For this purpose, we define

Dk(λ) :=

[
1 − 1

ϵk
λr1−r2−1

0 1

]
⊕ Ir−2,

whose inverse is

Dk(λ)
−1 :=

[
1 1

ϵk
λr1−r2−1

0 1

]
⊕ Ir−2 .
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Therefore,
Pk(λ) = (Lk(λ)Dk(λ)

−1)(Dk(λ)Rk(λ)). (27)

The ith row of (Dk(λ)Rk(λ)) is equal to the ith row of Rk(λ) for i = 2, . . . , r, and, taking
into account (24) and (26), the first row is

(Dk(λ)Rk(λ))1∗ = R̃1∗(λ)−
1

ϵk
λr1−r2−1R2∗(λ),

which has degree r1 − 1 for ϵk sufficiently close to zero or equivalently for all k sufficiently
large. In summary, there exists an index k′ such that for all k ≥ k′

the degrees of the rows of Dk(λ)Rk(λ) are r1 − 1, r2 + 1, r3, r4, . . . , rr . (28)

On the other hand, the ith column of Lk(λ)Dk(λ)
−1 is equal to the ith column of Lk(λ)

for i = 1, 3, 4 . . . , r, and, taking into account (25) and (26), the second column is

(Lk(λ)Dk(λ)
−1)∗2 =

1

ϵk
λr1−r2−1 L∗1(λ) + L̃∗2(λ),

which has degree d−r2−1 for ϵk sufficiently close to zero or equivalently for all k sufficiently
large. In summary, there exists an index k′′ such that for all k ≥ k′′

the degrees of the columns of Lk(λ)Dk(λ)
−1 are d−r1+1, d−r2−1, d−r3, d−r4, . . . , d−rr .

(29)
Combining (27), (28), and (29) we get that

Pk(λ) = Lk(λ)Rk(λ) ∈ Am×n
d,r,a (r1 − 1, r2 + 1, r3, . . . , rr)

for all k ≥ max{k′, k′′} = k0 and the proof is completed.
Proof of item (iii). Observe that item (ii) and the fact that “the closure of a set is the

smallest closed set that includes it” imply

Am×n
d,r,a (r1, . . . , rj , . . . , rk, . . . , rr) ⊆ Am×n

d,r,a (r1, . . . , rj − 1, . . . , rk + 1, . . . , rr) .

Therefore, we can apply again this result to the set on the right hand side of the equation
above (permuting if necessary the indices by using the result in item (i)) as long as for
at least two of the indices in (r1, . . . , rj − 1, . . . , rk + 1, . . . , rr) the absolute value of their
difference is larger than or equal to two. We can construct in this way a chain of subset
inclusions until the indices ri differ at most by one unit, that is,

Am×n
d,r,a (r1, . . . , rj , . . . , rk, . . . , rr) ⊆ Am×n

d,r,a (r1, . . . , rj , . . . , rk, . . . , rr)

⊆ Am×n
d,r,a (r1, . . . , rj − 1, . . . , rk + 1, . . . , rr)

⊆ · · · ⊆ Am×n
d,r,a (dR + 1, . . . , dR + 1︸ ︷︷ ︸

tR

, dR, . . . , dR︸ ︷︷ ︸
r−tR

) .

We emphasize that the values of dR and tR are completely determined by the fact that the
sum of the r indices of all the subsets in the chain above is always a and that the indices
in the last subset differ at most by one (in absolute value).
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Example 4.7. In order to illustrate the proof and the statement of Theorem 4.6, we
consider the following polynomial matrix

P (λ) =

 0 λ2

1 1
1 0

[ 0 λ2 1
1 0 0

]
=

 λ2 0 0
1 λ2 1
0 λ2 1

 ∈ A3×3
2,2,2(2, 0) ⊂ C[λ]3×3

2,2 . (30)

Since a = 2 and r = 2, the quantities in Theorem 4.6-(iii) are dR = 1 and tR = 0. One
might wonder whether P (λ) might be factorized in a form different from the one in (30)
in such a way that P (λ) ∈ A3×3

2,2,2(1, 1). However, it is easy to see that P (λ) /∈ A3×3
2,2,2(1, 1)

as follows. Observe first that in the factorization P (λ) = L(λ)R(λ) given in (30) both
factors are minimal bases by Theorem 2.4. Thus, the minimal indices of Row(P ) are 2
and 0. If P (λ) ∈ A3×3

2,2,2(1, 1), then there would exist a factorization P (λ) = L̃(λ)R̃(λ) with

L̃(λ) ∈ C[λ]3×2 and R̃(λ) ∈ C[λ]2×3 with the degrees of both rows of R̃(λ) equal to 1 and,
since rank(P ) = 2, Lemma 3.2-(iv) would imply that the rows of R̃(λ) form a polynomial
basis of Row(P ) with the sum of the degrees of its vectors equal to 2. Therefore, the rows
of R̃(λ) would be a minimal basis of Row(P ) and the minimal indices of this rational
subspace would be 1 and 1, which contradicts that the minimal indices of Row(P ) are 2
and 0.

Consider any sequence {ϵk}k∈N of nonzero numbers with limk→∞ ϵk = 0 and construct
from P (λ) the following sequence of polynomial matrices via the strategy in (26):

Pk(λ) =

 −ϵkλ λ2

1 1
1 0

[ 0 λ2 1
1 ϵkλ 0

]
=

 λ2 0 −ϵkλ
1 λ2 + ϵkλ 1
0 λ2 1

 ,

which satisfies limk→∞ Pk(λ) = P (λ). Proceeding as in (27), Pk(λ) can be written as:

Pk(λ) =

 −ϵkλ λ2

1 1
1 0

[ 1 1
ϵk

λ

0 1

] [
1 − 1

ϵk
λ

0 1

] [
0 λ2 1
1 ϵkλ 0

]

=

 −ϵkλ 0
1 1

ϵk
λ+ 1

1 1
ϵk
λ

[ − 1
ϵk
λ 0 1

1 ϵkλ 0

]
∈ A3×3

2,2,2(1, 1) ⊂ C[λ]3×3
2,2 .

The set Am×n
d,r,a (dR + 1, . . . , dR + 1, dR, . . . , dR) appearing in Theorem 4.6-(iii), with tR

entries equal to dR + 1 and r − tR entries equal to dR in the list, plays a crucial role in
the main results of this section. Therefore, we redefine it in Definition 4.8 and introduce
a simpler notation for it.

Definition 4.8. Let m,n, r and d be integers such that m,n ≥ 2, d ≥ 1 and 0 < r <
min{m,n}, and a be an integer such that 0 ≤ a ≤ rd. Let us define dR := ⌊a/r⌋,
tR := a mod r and the following subset of polynomial matrices

Bm×n
d,r,a :=

L(λ)R(λ) :

L(λ) ∈ C[λ]m×r, R(λ) ∈ C[λ]r×n,
deg(Ri∗) = dR + 1, for i = 1, . . . , tR,
deg(Ri∗) = dR, for i = tR + 1, . . . , r,
deg(L∗i) = d− deg(Ri∗), for i = 1, . . . , r

 ∈ C[λ]m×n
d,r .
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Remark 4.9. Observe that the sets introduced in Definition 4.8 and in Theorem 4.6-(iii)
are equal, that is,

Bm×n
d,r,a = Am×n

d,r,a (dR + 1, . . . , dR + 1︸ ︷︷ ︸
tR

, dR, . . . , dR︸ ︷︷ ︸
r−tR

) .

As a simple consequence of the developments above, we prove the first main result of
this section.

Theorem 4.10. Let Am×n
d,r,a and Bm×n

d,r,a be the sets of polynomial matrices defined in The-
orem 4.3 and in Definition 4.8, respectively. Then,

(i) Bm×n
d,r,a ⊆ Am×n

d,r,a for a = 0, 1, . . . , rd,

(ii) Bm×n
d,r,a = Am×n

d,r,a for a = 0, 1, . . . , rd,

(iii) C[λ]m×n
d,r =

⋃
0≤a≤rd

Bm×n
d,r,a , and

(iv) for every P (λ) ∈ C[λ]m×n
d,r , there exists an integer a such that P (λ) ∈ Bm×n

d,r,a .

Proof. Item (i) is obvious by definition. Item (i) implies Bm×n
d,r,a ⊆ Am×n

d,r,a . Next, suppose

L(λ)R(λ) ∈ Am×n
d,r,a . Then L(λ)R(λ) ∈ Am×n

d,r,a (r1, . . . , rr) for some integers (r1, . . . , rr)
such that 0 ≤ ri ≤ d, for i = 1, . . . , r, and

∑r
i=1 ri = a, and, by Theorem 4.6-(iii),

L(λ)R(λ) ∈ Bm×n
d,r,a . Therefore, A

m×n
d,r,a ⊆ Bm×n

d,r,a , which implies Am×n
d,r,a ⊆ Bm×n

d,r,a . This proves
item (ii). Finally, items (iii) and (iv) follow from item (ii) and the items (ii) and (iii),
respectively, of Theorem 4.3.

Theorem 4.10 proves the promised result that arbitrarily close to any polynomial ma-
trix P (λ) ∈ C[λ]m×n

d,r , there is another polynomial matrix Q(λ) ∈ C[λ]m×n
d,r that can be

factorized as Q(λ) = L(λ)R(λ), with the degrees of the columns of L(λ) differing at most
by one and with the degrees of the rows of R(λ) also differing at most by one. However,
the factorization of Q(λ) is not necessarily a minimal rank factorization, according to the
definition of Bm×n

d,r,a . Next, we prove in Theorem 4.12 that arbitrarily close to any polyno-

mial matrix P (λ) ∈ C[λ]m×n
d,r there is a polynomial matrix Q(λ) that can be factorized as

Q(λ) = L(λ)R(λ) with factors satisfying the conditions of Theorem 3.16, and, moreover,
with the degrees of the columns of L(λ) differing at most by one and with the degrees of
the rows of R(λ) also differing at most by one. In addition, the minimal indices of Nℓ(Q)
and Nr(Q) are as those in Theorem 2.11. For that purpose we introduce first the following
definitions.

Definition 4.11. Let m,n, r and d be integers such that m,n ≥ 2, d ≥ 1 and 0 <
r < min{m,n}, and a be an integer such that 0 ≤ a ≤ rd. Let us define dR := ⌊a/r⌋,
tR := a mod r, α := ⌊a/(n − r)⌋, s := a mod (n − r), β := ⌊(rd − a)/(m − r)⌋, and
t := (rd− a) mod (m− r) and the following subsets of C[λ]m×n

d,r

Mm×n
d,r,a :=

L(λ)R(λ) :

L(λ) ∈ C[λ]m×r, R(λ) ∈ C[λ]r×n,
L(λ) and R(λ) are minimal bases,
deg(Ri∗) = dR + 1, for i = 1, . . . , tR,
deg(Ri∗) = dR, for i = tR + 1, . . . , r,
deg(L∗i) = d− deg(Ri∗), for i = 1, . . . , r

 ,
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MHm×n
d,r,a :=


L(λ)R(λ) :

L(λ) ∈ C[λ]m×r, R(λ) ∈ C[λ]r×n,
L(λ) and R(λ) are minimal bases,
Nℓ(L) has minimal indices {β + 1, . . . , β + 1︸ ︷︷ ︸

t

, β, . . . , β︸ ︷︷ ︸
m−r−t

},

Nr(R) has minimal indices {α+ 1, . . . , α+ 1︸ ︷︷ ︸
s

, α, . . . , α︸ ︷︷ ︸
n−r−s

},

deg(Ri∗) = dR + 1, for i = 1, . . . , tR,
deg(Ri∗) = dR, for i = tR + 1, . . . , r,
deg(L∗i) = d− deg(Ri∗), for i = 1, . . . , r


.

With respect to the definition of MHm×n
d,r,a , it is important to recall that Lemma 3.2

implies that Nℓ(L) = Nℓ(L(λ)R(λ)) and that Nr(R) = Nr(L(λ)R(λ)).

Theorem 4.12. Let Bm×n
d,r,a , M

m×n
d,r,a and MHm×n

d,r,a be the sets of polynomial matrices in-
troduced in Definitions 4.8 and 4.11. Then,

(i) MHm×n
d,r,a ⊆ Mm×n

d,r,a ⊆ Bm×n
d,r,a for a = 0, 1, . . . , rd,

(ii) MHm×n
d,r,a = Mm×n

d,r,a = Bm×n
d,r,a for a = 0, 1, . . . , rd,

(iii) C[λ]m×n
d,r =

⋃
0≤a≤rd

MHm×n
d,r,a =

⋃
0≤a≤rd

Mm×n
d,r,a , and

(iv) for every P (λ) ∈ C[λ]m×n
d,r , there exists an integer a such that P (λ) ∈ MHm×n

d,r,a =

Mm×n
d,r,a .

Proof. Item (i) is obvious from the definitions of the involved sets.
Proof of item (ii). First note that item (i) implies immediately that

MHm×n
d,r,a ⊆ Mm×n

d,r,a ⊆ Bm×n
d,r,a .

With this result at hand, observe that if we prove Bm×n
d,r,a ⊆ MHm×n

d,r,a , then Bm×n
d,r,a ⊆

MHm×n
d,r,a immediately follows, which implies MHm×n

d,r,a = Bm×n
d,r,a , which in turn implies the

result in item (ii). Therefore, we focus on proving Bm×n
d,r,a ⊆ MHm×n

d,r,a . If L(λ)R(λ) ∈ Bm×n
d,r,a ,

then

L(λ)T ∈ C[λ]r×m
f , with f = (d− dR − 1, . . . , d− dR − 1︸ ︷︷ ︸

tR

, d− dR, . . . , d− dR︸ ︷︷ ︸
r−tR

), (31)

R(λ) ∈ C[λ]r×n
g , with g = (dR + 1, . . . , dR + 1︸ ︷︷ ︸

tR

, dR, . . . , dR︸ ︷︷ ︸
r−tR

). (32)

Therefore, Theorem 2.13 applied to L(λ) and R(λ) implies that there exist sequences of
polynomial matrices {Lk(λ)}k∈N ⊂ C[λ]m×r and {Rk(λ)}k∈N ⊂ C[λ]r×n, such that

(1) limk→∞ Lk(λ) = L(λ) and limk→∞Rk(λ) = R(λ),

(2) each polynomial matrix Lk(λ) is a minimal basis, Nℓ(Lk) has minimal indices equal
to {β + 1, . . . , β + 1︸ ︷︷ ︸

t

, β, . . . , β︸ ︷︷ ︸
m−r−t

}, and deg((Lk)∗i) = d − dR − 1 for i = 1, . . . , tR, and

deg((Lk)∗i) = d− dR for i = tR + 1, . . . , r,
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(3) each polynomial matrix Rk(λ) is a minimal basis, Nr(Rk) has minimal indices equal
to {α+ 1, . . . , α+ 1︸ ︷︷ ︸

s

, α, . . . , α︸ ︷︷ ︸
n−r−s

}, and deg((Rk)i∗) = dR + 1 for i = 1, . . . , tR, and

deg((Rk)i∗) = dR for i = tR + 1, . . . , r.

This means that {Lk(λ)Rk(λ)}k∈N ⊂ MHm×n
d,r,a and that limk→∞ Lk(λ)Rk(λ) = L(λ)R(λ).

So, L(λ)R(λ) ∈ MHm×n
d,r,a and Bm×n

d,r,a ⊆ MHm×n
d,r,a is proved.

Items (iii) and (iv) follow from item (ii) and items (iii) and (iv) in Theorem 4.10.

To compare the results we are obtaining for polynomial matrices with degree at most
d, where d ≥ 1, with those in [4] for matrix pencils, that is, for d = 1, we introduce some
additional sets of polynomial matrices and prove for them a result similar to Theorem
4.10.

Definition 4.13. Let m,n, r and d be integers such that m,n ≥ 2, d ≥ 1 and 0 <
r < min{m,n}, and a be an integer such that 0 ≤ a ≤ rd. Let us define dR := ⌊a/r⌋,
tR := a mod r, and the following subset of C[λ]m×n

d,r

Cm×n
d,r,a :=

L(λ)R(λ) :

L(λ) ∈ C[λ]m×r, R(λ) ∈ C[λ]r×n,
deg(Ri∗) ≤ dR + 1, for i = 1, . . . , tR,
deg(Ri∗) ≤ dR, for i = tR + 1, . . . , r,
deg(L∗i) ≤ d− dR − 1, for i = 1, . . . , tR,
deg(L∗i) ≤ d− dR, for i = tR + 1, . . . , r

 .

Theorem 4.14. Let Bm×n
d,r,a and Cm×n

d,r,a be the sets of polynomial matrices introduced in
Definitions 4.8 and 4.13, respectively. Then,

(i) Bm×n
d,r,a ⊆ Cm×n

d,r,a for a = 0, 1, . . . , rd,

(ii) Bm×n
d,r,a = Cm×n

d,r,a for a = 0, 1, . . . , rd,

(iii) C[λ]m×n
d,r =

⋃
0≤a≤rd

Cm×n
d,r,a , and

(iv) for every P (λ) ∈ C[λ]m×n
d,r , there exists an integer a such that P (λ) ∈ Cm×n

d,r,a .

Proof. Item (i) is obvious from the definitions of the involved sets.

Proof of item (ii). From item (i), we get that Bm×n
d,r,a ⊆ Cm×n

d,r,a . Next, we prove that

Cm×n
d,r,a ⊆ Bm×n

d,r,a . Let L(λ)R(λ) ∈ Cm×n
d,r,a , but L(λ)R(λ) /∈ Bm×n

d,r,a . This means that the
degrees of some rows of R(λ) and/or of some columns of L(λ) are strictly less than the
corresponding quantities dR+1, dR, d−dR−1, d−dR appearing in Definition 4.13. Using
any sequences of constant nonzero vectors {vk}k∈N ⊂ Cm×1 and/or {wk}k∈N ⊂ C1×n, such
that limk→∞ vk = 0 and limk→∞wk = 0, we sum to the rows of R(λ) with degrees strictly
less than dR + 1 and/or dR polynomial vectors λdR+1wk and/or λdRwk, and sum to the
columns of L(λ) with degrees strictly less than d−dR−1 and/or d−dR polynomial vectors
λd−dR−1vk and/or λd−dRvk. This allows us to construct a sequence {Lk(λ)Rk(λ)}k∈N ⊂
Bm×n
d,r,a such that limk→∞ Lk(λ)Rk(λ) = L(λ)R(λ). This proves L(λ)R(λ) ∈ Bm×n

d,r,a and

Cm×n
d,r,a ⊆ Bm×n

d,r,a , which implies Cm×n
d,r,a ⊆ Bm×n

d,r,a . This proves item (ii).
Items (iii) and (iv) follow from item (ii) and items (iii) and (iv) in Theorem 4.10.



27

Remark 4.15. (Comparisons with results for matrix pencils) For d = 1, i.e., for matrix
pencils, the sets Cm×n

1,r,a , for a = 0, 1, . . . , r, in Definition 4.13 are exactly the sets Cr
a in

[4, Lemma 4]. However, by using the Kronecker canonical form of pencils, Lemma 4 in

[4] proves that C[λ]m×n
1,r =

⋃
0≤a≤r

Cm×n
1,r,a , which is a result stronger than Theorem 4.14-

(iii) because it does not involve closures. This raises the question whether for d ≥ 2 the
closures can be removed in Theorem 4.14-(iii). Unfortunately, this is not possible as the
next example shows.

Example 4.16. Consider the polynomial matrix P (λ) ∈ C[λ]3×3
2,2 in (30). We are going to

show that P (λ) /∈
⋃

0≤a≤4 C
3×3
2,2,a. For this purpose, we follow an argument similar to that

in Example 4.7. Note first that the two factors L(λ) and R(λ) of P (λ) in (30) are minimal
bases. Thus, the minimal indices of Col(P ) are 2 and 0 and the minimal indices of Row(P )
are also 2 and 0. Moreover, since rank(P ) = 2, any factorization P (λ) = L̃(λ)R̃(λ) with
L̃(λ) ∈ C[λ]3×2 and R̃(λ) ∈ C[λ]2×3 must satisfy rank(L̃) = rank(R̃) = 2 and, so, the
columns of L̃(λ) are a polynomial basis of Col(P ) and the rows of R̃(λ) are a polynomial
basis of Row(P ). This means that the sum of the degrees of the columns of L̃(λ) must be
larger than or equal to 2 and that the sum of the degrees of the rows of R̃(λ) must be larger
than or equal to 2. Therefore, P (λ) /∈ C3×3

2,2,0 and P (λ) /∈ C3×3
2,2,1, because in both cases the

sum of the degrees of the rows of R̃(λ) would be smaller than 2, and also that P (λ) /∈ C3×3
2,2,3

and P (λ) /∈ C3×3
2,2,4, because in both cases the sum of the degrees of the columns of L̃(λ)

would be smaller than 2. Then, the only remaining option is P (λ) ∈ C3×3
2,2,2 but in this case

dR = 1 and tR = 0, which implies that both rows of R̃(λ) must have degree exactly 1, and
that they will be a minimal basis of Row(P ), which is impossible because the minimal
indices of Row(P ) are 2 and 0.

4.1. Relation between factorizations and generic complete eigenstructures in C[λ]m×n
d,r

A glance to the results in Theorems 2.11, 4.3, 4.10, 4.12 and 4.14 hints a relationship
between the closures of the orbits O(Ka) of polynomial matrices with generic eigenstruc-
tures and those of the sets defined before in Section 4. To establish this relationship, we
characterize O(Ka) as a set of factorized polynomial matrices in the next theorem.

Theorem 4.17. Let m,n, r and d be integers such that m,n ≥ 2, d ≥ 1 and 0 < r <
min{m,n}, and a be an integer such that 0 ≤ a ≤ rd. Let us define α := ⌊a/(n − r)⌋,
s := a mod (n− r), β := ⌊(rd− a)/(m− r)⌋, and t := (rd− a) mod (m− r). Let O(Ka)
be the orbit of polynomial matrices in C[λ]m×n

d,r appearing in Theorem 2.11. Then

O(Ka) =


L(λ)R(λ) :

L(λ) ∈ C[λ]m×r, R(λ) ∈ C[λ]r×n,
L(λ) and R(λ) are minimal bases,
Nℓ(L) has minimal indices {β + 1, . . . , β + 1︸ ︷︷ ︸

t

, β, . . . , β︸ ︷︷ ︸
m−r−t

},

Nr(R) has minimal indices {α+ 1, . . . , α+ 1︸ ︷︷ ︸
s

, α, . . . , α︸ ︷︷ ︸
n−r−s

},

deg(L∗i) + deg(Ri∗) = d, for i = 1, . . . , r


.

Proof. The result is an immediate corollary of Theorem 3.16 and the facts that Nℓ(L) =
Nℓ(L(λ)R(λ)) and Nr(R) = Nr(L(λ)R(λ)) according to Lemma 3.2.
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With this result at hand, we get the next theorem.

Theorem 4.18. Let Am×n
d,r,a , B

m×n
d,r,a , M

m×n
d,r,a , MHm×n

d,r,a and Cm×n
d,r,a be the sets of polynomial

matrices introduced in Theorem 4.3 and in Definitions 4.8, 4.11 and 4.13. Let O(Ka) be
the orbit of polynomial matrices in C[λ]m×n

d,r appearing in Theorem 2.11. Then,

(i) O(Ka) ⊆ Am×n
d,r,a for a = 0, 1, . . . , rd,

(ii) MHm×n
d,r,a ⊆ O(Ka) for a = 0, 1, . . . , rd,

(iii) O(Ka) = MHm×n
d,r,a = Mm×n

d,r,a = Bm×n
d,r,a = Cm×n

d,r,a = Am×n
d,r,a for a = 0, 1, . . . , rd.

Proof. Proof of item (i). If P (λ) ∈ O(Ka), then P (λ) = L(λ)R(λ) with the factors L(λ)
and R(λ) satisfying the properties described in Theorem 4.17. These properties imply
that the degrees of the rows of R(λ) are the minimal indices of Row(P ) by Lemma 3.2.
Combining this result with the fact that Nr(R) = Nr(P ), again by Lemma 3.2, and with
Corollary 2.9, we get

r∑
i=1

deg(Ri∗) = s(α+ 1) + (n− r − s)α = (n− r)α+ s = a.

This implies that P (λ) ∈ Am×n
d,r,a and, so, item (i).

Item (ii) follows from the definitions of the involved sets.

Proof of item (iii). Item (i) implies O(Ka) ⊆ Am×n
d,r,a . Combining this inclusion with

Theorems 4.10-(ii), 4.12-(ii) and 4.14-(ii), we get

O(Ka) ⊆ MHm×n
d,r,a = Mm×n

d,r,a = Bm×n
d,r,a = Cm×n

d,r,a = Am×n
d,r,a .

On the other hand, item (ii) implies MHm×n
d,r,a ⊆ O(Ka), which combined with the equation

above yields the result in item (iii).

The inclusion relationships presented in Theorem 4.18-(i) and (ii) between O(Ka) and
the other sets involved in this theorem are the only ones that hold in general. We illustrate
this statement in the next example.

Example 4.19. Consider the following polynomial matrix

P (λ) =


0 0 1 1
0 0 λ2 λ2

1 λ2 2λ4 λ4

1 λ2 λ4 0

 =


1 0
λ2 0
λ4 1
0 1

[0 0 1 1
1 λ2 λ4 0

]
=: L(λ)R(λ). (33)

P (λ) belongs to C[λ]4×4
4,2 . Moreover, the factors L(λ) and R(λ) are minimal bases by

Theorem 2.4. Consider also the following polynomial matrices

L̂(λ) =


λ2 0
−1 λ2

0 −1
0 1

 and R̂(λ) =

[
λ2 −1 0 0
0 λ2 −1 1

]
. (34)
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It is easy to check that the columns of L̂(λ) are a minimal basis of Nr(R) = Nr(P ) and
that the rows of R̂(λ) are a minimal basis of Nℓ(L) = Nℓ(P ). Therefore, P (λ) ∈ O(K4), by
Theorem 4.17. However, P (λ) /∈ B4×4

4,2,4, P (λ) /∈ M4×4
4,2,4, P (λ) /∈ MH4×4

4,2,4 and P (λ) /∈ C4×4
4,2,4.

To see this, we need to check that no factorization of P (λ) as P (λ) = L̃(λ)R̃(λ), with
L̃(λ) ∈ C[λ]4×2 and R̃(λ) ∈ C[λ]2×4, satisfies the conditions of the definitions of these
sets. Note that in any of these factorizations P (λ) = L̃(λ)R̃(λ) the rows of R̃(λ) are a
polynomial basis of Row(P ). Therefore, combining the “Strong Minimality Property of
Minimal Indices” in [15, Theorem 4.2] with the fact that the minimal indices of Row(P )
are 0, 4, we obtain that deg(R̃) ≥ 4. But, dR = ⌊a/r⌋ = ⌊4/2⌋ = 2 and tR = 0, which
implies that any polynomial matrix in any of the sets B4×4

4,2,4, M
4×4
4,2,4, MH4×4

4,2,4 and C4×4
4,2,4 can

be factorized as LS(λ)RS(λ) with LS(λ) ∈ C[λ]4×2, RS(λ) ∈ C[λ]2×4 and deg(RS) ≤ 2.
Thus, P (λ) does not belong to any of these sets.

Next, consider the polynomial matrix

Q(λ) =


λ2 0
−1 λ2

0 −1
0 1

[ λ2 −1 0 0
0 λ2 −1 1

]
=


λ4 −λ2 0 0

−λ2 λ4 + 1 −λ2 λ2

0 −λ2 1 −1
0 λ2 −1 1

 , (35)

which has been constructed as Q(λ) = L̂(λ)R̂(λ) with the matrices in (34). Observe that
Q(λ) ∈ M4×4

4,2,4 ⊆ B4×4
4,2,4 ⊆ C4×4

4,2,4 and Q(λ) ∈ A4×4
4,2,4. However, Q(λ) /∈ O(K4) because the

minimal indices of Nr(R̂) = Nr(Q) are 0 and 4, since the columns of L(λ) in (33) are a
minimal basis of Nr(R̂).

Remark 4.20. (Comparisons with results for matrix pencils) For d = 1, it was proved
in [4, Theorem 6] that O(Ka) = Cm×n

1,r,a , while Theorem 4.18 only proves the weaker result

O(Ka) = Cm×n
1,r,a . For d ≥ 2, the result O(Ka) = Cm×n

d,r,a cannot be improved, since, in

general, O(Ka) ̸= Cm×n
d,r,a . The polynomial matrix in (33) illustrates this inequality.

5. Conclusions

We have established many results on rank factorizations and minimal rank factor-
izations of polynomial matrices, which, as far as we know, are completely new in the
literature. In addition, the generic degree properties in the set C[λ]m×n

d,r of complex m×n
polynomial matrices of degree at most d and rank at most r of such factorizations have
been carefully studied and several dense subsets of factorized polynomial matrices have
been identified. Some of these subsets allow us to approximate any polynomial matrix in
C[λ]m×n

d,r as the limit of a sequence of factorized polynomial matrices that can be easily
and efficiently generated due to the particular degree properties of their factorizations,
which have left factors with columns whose degrees differ at most by one and right factors
with rows whose degrees differ at most by one. Apart from their fundamental nature in
the theory of polynomial matrices, we hope that these results will have applications in the
solution of different nearness problems involving polynomial matrices in C[λ]m×n

d,r . Possible
lines of future research include exploring the development of structured rank factorizations
and minimal rank factorizations of classes of structured polynomial matrices appearing in
applications [16], and verifying if some of the dense subsets of polynomial matrices in
Section 4 are also open in C[λ]m×n

d,r .
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