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Abstract

We present two new canonical forms for real congruence of a real square matrix A.
The first one is a direct sum of canonical matrices of four different types and is obtained
from the canonical form under ∗congruence of complex matrices provided by Horn and
Sergeichuk in [Linear Algebra Appl. 416 (2006) 1010-1032]. The second one is a direct sum of
canonical matrices of three different types, has a block tridiagonal structure and is obtained
from the canonical form under ∗congruence of complex matrices provided by Futorny, Horn
and Sergeichuk in [J. Algebra 319 (2008) 2351-2371]. A detailed comparison between both
canonical forms is also presented, as well as their relation with the real Kronecker canonical
form under strict real equivalence of the matrix pair (A

⊤
, A). Another canonical form for

real congruence was presented by Lee and Weinberg in [Linear Algebra Appl. 249 (1996)
207-215], which consists of a direct sum of eight different types of matrices. In the last part
of the paper, we explain the correspondence between the blocks in this canonical form and
those in the two new forms introduced in this work.
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AMS subject classification: 15A18, 15A21, 15A22, 15A63, 65F15.

1 Introduction
The classification of general sesquilinear or bilinear forms A : Fn×Fn → F over a field F is a long-
standing issue that has been addressed both from the scope of pure algebra and linear algebra.
A classification of bilinear forms over the complex field (namely, when F = C) is known since, at
least, the 1930s [17, p. 139] using a linear algebra approach (see [1] for some historical details).
With a pure algebra approach, relevant contributions were obtained in [6,15], for sesquilinear and
bilinear forms over arbitrary fields F by reducing the problem to classifying Hermitian forms over
finite extensions of F (see also the Introduction of [5] for more details). When F is, respectively,
the complex field or the real field, it is natural to look for a classification using, respectively,
the ∗congruence or the real-congruence of matrices, namely the following actions of the groups
GLn(C) and GLn(R) on the sets of complex and real n× n matrices, respectively:

GLn(C)× Cn×n → Cn×n

(P,A) 7→ PAP ∗ and
GLn(R)× Rn×n → Rn×n

(P,A) 7→ PAP⊤,
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where P ∗ and P⊤ denote the conjugate-transpose and the transpose of P , respectively. The
reason for using such actions relies on the fact that two ∗congruent (respectively, real-congruent)
complex (resp., real) matrices correspond to the same sesquilinear (resp., bilinear) form over Cn×
Cn (resp., Rn × Rn) in different bases. Moreover, it is also natural to classify these sesquilinear
or bilinear forms by means of a canonical form, which provides a unique representative for every
equivalence class (namely, for every single orbit under the action of the group GLn(C) or GLn(R)).

Canonical forms for ∗congruence of complex matrices have been provided in [10, Theorem
1.1(b)] and later in [5, Theorem 1.2]. In both cases, the canonical forms consist of a direct
sum of canonical blocks. In the case of the canonical form in [10] there are three different
types of blocks, whereas in the one in [5] there are two different types of blocks, which are
tridiagonal. Some of the blocks depend on certain parameters. From these canonical forms, and
specializing to real matrices, it is possible to get canonical forms for real congruence, and this
is the main goal of this work. In particular, we derive and present in Theorem 4.1 a canonical
form for real congruence of real square matrices from the canonical form introduced in [10].
This canonical form for real congruence consists of a direct sum of blocks of four different kinds,
which come from considering separately those blocks of the canonical form for ∗congruence of
general complex matrices involving real parameters and those associated to (pairs of conjugate)
non-real parameters. In terms of bilinear forms, the canonical form of Theorem 4.1 allows us to
classify bilinear forms over the real field. Analogously, we present and derive in Theorem 5.1 a
canonical form for real congruence of real square matrices from the canonical form introduced
in [5]. The canonical form in Theorem 5.1 is a direct sum of blocks of three different types.
The relation between the two canonical forms for real congruence in Theorems 4.1 and 5.1
is presented in Theorem 6.1, which is connected with Theorem 3.2 about the correspondence
between the blocks of the canonical forms for ∗congruence of complex matrices in [10, Theorem
1.1(b)] and [5, Theorem 1.2].

Another canonical form for real congruence of real square matrices was presented in [12,
Theorem II]. It consists also of a direct sum of canonical blocks of several types, but in this case
the number of different types of blocks is eight, which is twice the number of different types of
blocks in the canonical form in Theorem 4.1 and more than twice the number of canonical blocks
in the canonical form in Theorem 5.1. In Section 7, we obtain and display the correspondence
between the eight types of blocks in the canonical form of [12] and the ones presented in Theorem
4.1 (the correspondence with the blocks in Theorem 5.1 can be obtained via Theorem 6.1).
Moreover, in Section 7, we impose restrictions on the values of some of the parameters appearing
in the blocks in [12, Theorem II] to make these blocks “truly” canonical (see Remark 7.2).

The real congruence canonical form of a matrix A ∈ Rn×n is naturally related with the real
Kronecker canonical form under strict real equivalence [11] of the real matrix pair (A⊤, A), or,
equivalently, of the matrix pencil λA⊤ +A in the variable λ. These particular pencils are called
real palindromic pencils and are in the intersection of the families of complex ⊤-palindromic
pencils and ∗-palindromic pencils [13]. Although palindromic pencils (without the name) exist
in the literature since long time ago, they have received considerable attention in the last two
decades, in particular since [13] was published. A small sample of other recent works dealing
with palindromic pencils are [1, 2, 14]. Recall in this context that two complex matrix pencils
λN1 + M1 and λN2 + M2 are said to be strictly equivalent if there are two invertible complex
matrices P,Q such that P (λN1 + M1)Q = λN2 + M2 and strictly real equivalent if P and Q
are real. Theorems 4.2 and 5.2 establish, respectively, the relations between the real congruence
canonical forms of A ∈ Rn×n in Theorems 4.1 and 5.1 and the real Kronecker canonical form
under strict real equivalence of (A⊤, A). More precisely, Theorems 4.2 and 5.2 prove that the real
congruence canonical forms fully determine the real Kronecker canonical form but that the real
Kronecker canonical form determines the real congruence canonical forms only up to the sign of
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certain canonical blocks. Despite this indetermination, we will see throughout the paper that the
real Kronecker canonical form under strict real equivalence of (A⊤, A) is a very useful tool in the
study of the real congruence canonical forms of A, because the class of real strict equivalence
transformations is much larger than the class of real congruence transformations. So, it is often
easier to prove that two real pairs (A⊤, A) and (B⊤, B) are strictly real equivalent than to prove
that the matrices A and B are real congruent.

2 Notation, basic notions, and basic results
In this section, we present some definitions and results that will be used in the rest of the paper.
Most of them are well-known or are direct consequences of well-known results. Others are new.

2.1 Congruence of matrices. Equivalence of matrix pairs
By Ik we denote the k × k identity matrix, and i denotes the imaginary unit (namely i2 = −1).
The notation M⊤ and M∗ is used for, respectively, the transpose and the conjugate transpose
of the matrix M . The ∗cosquare of an invertible matrix M is the matrix M−∗M , where M−∗

denotes the conjugate transpose of the inverse of M . By Cm×n and Rm×n we denote the sets of
m× n complex and real matrices, respectively.

Definition 2.1. Two matrices A,B ∈ Cn×n are

• ∗congruent if there is some invertible matrix S ∈ Cn×n such that SAS∗ = B,

• congruent if there is some invertible matrix S ∈ Cn×n such that SAS⊤ = B,

• real-congruent if there is some invertible matrix S ∈ Rn×n such that SAS⊤ = B.

The interesting case for real congruence is when A,B both have real entries.
The following theorem will be fundamental in the proofs of the main results of this paper. It

states that if two real matrices are ∗congruent then they are also real-congruent.

Theorem 2.2. [4, Th. 1.1] Let A,B ∈ Rn×n be such that PAP ∗ = B, for some invertible
P ∈ Cn×n. Then, there exists an invertible Q ∈ Rn×n such that QAQ⊤ = B.

The counterpart of Theorem 2.2 for the similarity of matrices is well-known and can be found
in [9, Theorem 1.3.29], for instance. We remark that the proof of Theorem 2.2 is considerably
more involved than the one of [9, Theorem 1.3.29].

Matrix pairs, or matrix pencils, will play also an important role in this paper. So, we recall
some related definitions.

Definition 2.3. Let A,B,C,D ∈ Cm×n. The matrix pairs (A,B) and (C,D) are

• strictly equivalent if there are invertible matrices R ∈ Cm×m and S ∈ Cn×n such that
RAS = C and RBS = D,

• strictly real-equivalent if there are invertible matrices R ∈ Rm×m and S ∈ Rn×n such that
RAS = C and RBS = D.

The interesting case for strict real-equivalence is when A,B,C,D have real entries.
A matrix pair (A,B) can also be seen as a matrix pencil λA+B, where λ is a variable [7, Ch.

XII]. We will use both views throughout the paper. We emphasize that, in this paper, in the
pencil view the first matrix of a pair (A,B) is the leading coefficient of the corresponding pencil
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and that we use the “+” sign in the definition of the pencil. We will denote strict equivalence of
pairs by ≈ and strict real-equivalence by

r
≈. For simplicity, given matrices R,A,B, S of adequate

sizes, we define the product of matrices times matrix pairs as R(A,B)S := (RAS,RBS).
The following result states that if two real pencils are strictly equivalent then they are also

strictly real-equivalent. We include the proof since we have not found it in the literature.

Lemma 2.4. Let (A,B) ∈ Rm×n × Rm×n and (C,D) ∈ Rm×n × Rm×n be such that R(A,B) =
(C,D)S for some invertible matrices R ∈ Cm×m and S ∈ Cn×n. Then there exist invertible
matrices R̃ ∈ Rm×m and S̃ ∈ Rn×n such that R̃(A,B) = (C,D)S̃.

Proof. Let R = Rr + iRi with Rr, Ri ∈ Rm×m and S = Sr + iSi with Sr, Si ∈ Rn×n, i.e., we
express R and S in terms of their real and imaginary parts. Then, R(A,B) = (C,D)S implies
Rr(A,B) = (C,D)Sr and Ri(A,B) = (C,D)Si. So, for any number τ , (Rr + τRi)(A,B) =
(C,D)(Sr+τSi). It only remains to prove that we can choose τ0 ∈ R, such that det(Rr+τ0Ri) ̸= 0
and det(Sr + τ0Si) ̸= 0. For this purpose note that the polynomials in τ , p(τ) = det(Rr + τRi)
and q(τ) = det(Sr + τSi) are not identically zero since p(i) ̸= 0 and q(i) ̸= 0. Moreover, p(τ) has
at most m complex roots and q(τ) has at most n complex roots. Thus, we can take τ0 to be equal
to any real number which is not a root of p(τ) q(τ) and R̃ = Rr + τ0Ri and S̃ = Sr + τ0Si.

2.2 Canonical blocks
The canonical forms considered in this work are direct sums of certain canonical blocks that are
described in this subsection. We also investigate some properties of these canonical blocks. As
usual, the direct sum of two matrices is defined as A⊕B := [A 0

0 B ].
The following matrices were introduced in [10, p. 1011], for each integer k ≥ 1 and µ ∈ C:

Jk(µ) :=


µ 1

. . .
. . .

µ 1
µ


k×k

, (1)

Γk :=



0 (−1)k+1

. .
.

(−1)k

−1 . .
.

1 1
−1 −1

1 1 0


k×k

, (2)

H2k(µ) :=

[
0 Ik

Jk(µ) 0

]
2k×2k

. (3)

The matrix in (1) is a Jordan block associated with the eigenvalue µ (see, for instance, [9, Def.
3.1.1]). We highlight that Γ1 = 1 and J1(µ) = µ.

Following the notation in [9, p. 202], for a, b ∈ R and k ≥ 1, we define the matrices

C(a, b) :=

[
a b
−b a

]
and C2k(a, b) :=


C(a, b) I2

C(a, b)
. . .

. . . I2
C(a, b)


2k×2k

. (4)
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Note that we write C2k(a, b) instead of Ck(a, b) (as in [9]) to highlight that the size of the matrix
is 2k × 2k, as we have done with H2k(µ).

We will also need the matrix (again for a, b ∈ R and k ≥ 1):

Ĥ4k(a, b) :=

[
0 I2k

C2k(a, b) 0

]
. (5)

Lemmas 2.5 and 2.6 are slight variants of some identities from [9, pp. 201-202]. They will be
used later. Lemma 2.5 follows from a direct computation.

Lemma 2.5. Let µ = a + ib, with a, b ∈ R and b ̸= 0, and D(µ) :=
[
µ 0
0 µ

]
. Then the unitary

matrix W = 1√
2

[−i −i
1 −1

]
satisfies WD(µ)W ∗ = C(a, b).

In the proof of the next lemma, as well as in many other parts of the paper, we use the
Kronecker product A⊗B of two matrices and some of its properties. The reader can find a lot
of information about it in [8, Ch. 4].

Lemma 2.6. Let µ = a+ ib, with a, b ∈ R and b ̸= 0. Then there is a unitary matrix U ∈ C2k×2k

such that U
[
Jk(µ) 0

0 Jk(µ)

]
U∗ = C2k(a, b).

Proof. According to [9, p. 201], there is a permutation matrix P such that

(Ik⊗W )P
[
Jk(µ) 0

0 Jk(µ)

]
P⊤(Ik⊗W ∗) = (Ik⊗W )


D(µ) I2

D(µ)
. . .

. . . I2
D(µ)

 (Ik⊗W ∗) = C2k(a, b),

where D(µ) and W are as in Lemma 2.5. Setting U = (Ik ⊗W )P we get the result.

The following tridiagonal matrices were introduced in [5, eqs. (6) and (7)], for each integer
k ≥ 1 and µ ∈ C:

Tk(µ) :=



0 1 0
µ 0 1

µ 0
. . .

. . .
. . . 1

0 µ 0


k×k

(T1(µ) = 0), (6)

Γ̃k :=



1 1 0
−1 0 1

1 0 1
−1 0 1

1 0
. . .

0
. . .

. . .


k×k

(Γ̃1 = 1). (7)
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From Tk(µ) in (6) and the first matrix in (4), we define, for a, b ∈ R and k ≥ 1, the matrix:

T̂2k(a, b) :=



0 I2 0
C(a, b) 0 I2

C(a, b) 0
. . .

. . .
. . . I2

0 C(a, b) 0


2k×2k

(T̂2(a, b) = 02×2). (8)

We warn the reader that in the main results of this paper where the matrix in (8) plays a key
role, i.e., Theorems 5.1, 5.2, and 6.1, the parameter k defining the number of 2× 2 blocks is an
even number and so the matrix appears written as T̂4k(a, b).

The next lemma relates the matrices (6) and (8). It resembles Lemma 2.6.

Lemma 2.7. Let µ = a+ ib, with a, b ∈ R and b ̸= 0. Then there is a unitary matrix V ∈ C2k×2k

such that V
[
Tk(µ) 0

0 Tk(µ)

]
V ∗ = T̂2k(a, b).

Proof. Let P ∈ C2k×2k be the permutation matrix which corresponds to permuting the rows[
1, 2, . . . , k, k + 1, k + 2, . . . , 2k

]
of I2k as follows[

1, k + 1, 2 k + 2, 3, k + 3, . . . , k, 2k
]
,

i.e., the first k rows of I2k are in the odd positions in P and the last k rows of I2k are in the
even positions, preserving in both cases the relative order. If W and D(µ) are the matrices in
Lemma 2.5, then

(Ik ⊗W )P

[
Tk(µ) 0
0 Tk(µ)

]
P⊤(Ik ⊗W ∗) = (Ik ⊗W )



0 I2 0
D(µ) 0 I2

D(µ) 0
. . .

. . .
. . . I2

0 D(µ) 0

 (Ik ⊗W ∗)

= T̂2k(a, b).

Setting V = (Ik ⊗W )P concludes the proof.

We will also use the following result.

Lemma 2.8. If A and B are square n×n similar matrices, then
[
0 In
A 0

]
and

[
0 In
B 0

]
are congruent

and ∗congruent.

Proof. Let S be nonsingular such that SAS−1 = B. Then M
[
0 In
A 0

]
M⋆ =

[
0 In
B 0

]
, where

M =
[
S

−⋆
0

0 S

]
, and with ⋆ being either ⊤ or ∗.

Lemma 2.9 states two properties of the matrices in (2) and (3) which will be often used. The
proof is omitted because it is essentially provided in [10, p. 1016], with H2k(µ)

∗ replaced by
H2k(µ)

⊤.

Lemma 2.9. Let Γk and H2k(µ) be the matrices defined in (2) and (3). Then

1. Γ−⊤
k Γk is similar to Jk((−1)k+1), and
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2. H2k(µ)
−∗H2k(µ) is similar to

[
Jk(µ) 0

0 Jk(1/µ)

]
.

The key property of the Kronecker product in Lemma 2.10 will be applied in several proofs.
It is a particular case of [8, Cor. 4.3.10].

Lemma 2.10. Let A ∈ Cn×n and B ∈ Cp×p. Then there is a permutation matrix P (n, p) ∈
Cnp×np, depending only on the dimensions n and p, such that A⊗B = P (n, p) (B⊗A)P (n, p)⊤.

2.3 Kronecker and real-Kronecker canonical forms of matrix pairs
We revise in this section the Kronecker Canonical Form (KCF) of a complex matrix pair under
strict equivalence and the real Kronecker Canonical Form (real-KCF) of a real matrix pair under
strict real-equivalence. The reason is that we will relate the canonical forms under ∗congruence
of a matrix A ∈ Cn×n (resp. under real-congruence of a matrix A ∈ Rn×n) with the KCF of
the complex pair (A∗, A) (resp. with the real-KCF of the real pair (A⊤, A)). We will need the
following two additional matrices for defining the KCF:

Fk :=

1 0 0
. . .

. . .

0 1 0


k×(k+1)

and Gk :=

0 1 0
. . .

. . .

0 0 1


k×(k+1)

, (9)

where F0 = G0 is the 0 × 1 matrix. The direct sum of two matrix pairs is defined in a natural
way as (A,B)⊕ (C,D) = (A⊕ C,B ⊕D).

Theorem 2.11. (KCF, [7, Ch. XII, Theorem 5]) Each matrix pair (A,B) ∈ Cm×n × Cm×n

is strictly equivalent to a direct sum, uniquely determined up to permutation of summands, of
canonical pairs of the following four types

Regular pairs for finite eigenvalues (Ik, Jk(µ)) with µ ∈ C

Regular pairs for infinite eigenvalues (Jk(0), Ik)

Right singular pairs (Fk, Gk)

Left singular pairs (F⊤
k , G⊤

k )

The direct sum asserted in Theorem 2.11 is (up to permutation of its direct summands) the
KCF of (A,B) and it will be denoted by KCF(A,B).

Theorem 2.12. (real-KCF, [11, Theorem 3.2]) Each matrix pair (A,B) ∈ Rm×n × Rm×n is
strictly real-equivalent to a direct sum, uniquely determined up to permutation of summands, of
real canonical pairs of the following five types

Regular pairs for finite real eigenvalues (Ik, Jk(µ)) with µ ∈ R

Regular pairs for infinite eigenvalues (Jk(0), Ik)

Regular pairs for finite complex-conjugate eigenvalues (I2k, C2k(a, b)) with a, b ∈ R, b > 0

Right singular pairs (Fk, Gk)

Left singular pairs (F⊤
k , G⊤

k )

The direct sum asserted in Theorem 2.12 is (up to permutation of its direct summands) the
real-KCF of (A,B) and it will be denoted by real-KCF(A,B).
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2.4 Horn-Sergeichuk canonical form for ∗congruence
Due to its relevance in this paper, we reproduce here the canonical form for ∗congruence of a
matrix A ∈ Cn×n provided in [10, Theorem 1.1 (b)]. Moreover, we relate such canonical form
with the KCF of (A∗, A) under strict equivalence. We call the direct sum asserted in Theorem
2.13 (a) the Horn-Sergeichuk canonical form of A and it will be denoted as HSCF(A), where
it must be understood that HSCF(A) is defined up to permutation of the direct summands.
We emphasize that Theorem 2.13 (b) establishes that KCF(A∗, A) determines HSCF(A) up to
the signs of a particular type of canonical blocks. This may be useful in determining HSCF(A)
because the class of strict equivalence transformations is larger than the class of ∗congruence
transformations.

Theorem 2.13.

(a) [10, Th. 1.1 (b)] Each square complex matrix A is ∗congruent to a direct sum, uniquely
determined up to permutation of summands, of canonical matrices of the following three
types

Name Block Conditions

Type 0 Jk(0) –

Type I µΓk µ ∈ C, |µ| = 1

Type II H2k(µ) µ ∈ C, |µ| > 1

(b) The direct sum asserted in (a) determines the KCF(A∗, A) under strict equivalence uniquely
up to permutation of its direct summands. Conversely, the KCF(A∗, A) under strict equiv-
alence determines the direct sum asserted in (a) uniquely up to permutation of summands
and multiplication of any direct summand of Type I by −1. For any direct summand B
of Types I, II, or III in part (a), the KCF(B∗, B) under strict equivalence is given in the
following table:

Block B in HSCF KCF(B∗, B)

Jk(0)
(Fℓ, Gℓ)⊕ (F⊤

ℓ , G⊤
ℓ ) if k = 2ℓ+ 1

(Jℓ(0), Iℓ)⊕ (Iℓ Jℓ(0)) if k = 2ℓ

µΓk, µ ∈ C, |µ| = 1
(
Ik , Jk

(
(−1)k+1 µ2

))
H2k(µ), µ ∈ C, |µ| > 1 (Ik , Jk(µ) )⊕ (Ik , Jk (1/µ) )

Proof of (b). Observe that if A = P (B1⊕· · ·⊕Bq)P
∗ is the ∗congruence asserted in part (a), where

each Bi is a canonical matrix of Type 0, I, or II, then (A∗, A) = P
(
(B∗

1 , B1)⊕ · · · ⊕ (B∗
q , Bq)

)
P ∗.

So, (A∗, A) ≈ (B∗
1 , B1)⊕ · · · ⊕ (B∗

q , Bq) and KCF(A∗, A) = KCF(B∗
1 , B1)⊕ · · · ⊕KCF(B∗

q , Bq).
Thus, HSCF(A) and the table in part (b) determine completely KCF(A∗, A). On the other
hand, from the table in part (b), it is obvious that KCF(A∗, A) determines HSCF(A) only up to
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multiplication of any direct summand of Type I by −1. Therefore, it only remains to prove the
table in part (b).

The KCF of (Jk(0)
∗, Jk(0)) follows from [5, Theorem 1.2 (b)] by taking λ = 0 in that reference.

It can be also easily deduced via standard arguments of matrix pencils. For KCF((µΓk)
∗, µΓk)

with |µ| = 1, we proceed as follows

((µΓk)
∗, µΓk)) ≈ (Ik, (µΓk)

−∗µΓk)) =

(
Ik,

µ

µ
Γ−⊤
k Γk)

)
≈
(
Ik, Jk

(
(−1)k+1µ

µ

))
=
(
Ik, Jk

(
(−1)k+1µ2

))
,

where the last strict equivalence follows from Lemma 2.9 and the last equality from the fact that
µ2 = µ/µ if |µ| = 1. Analogously, for KCF(H2k(µ)

∗, H2k(µ)), observe that

(H2k(µ)
∗, H2k(µ)) ≈ (I2k, H2k(µ)

−∗H2k(µ)) ≈ (Ik , Jk(µ) )⊕ (Ik , Jk (1/µ) ),

where the last strict equivalence follows from Lemma 2.9.

Remark 2.14. We emphasize that the condition |µ| > 1 in the Type II blocks in Theorem 2.13

(a) can be replaced by 0 < |µ| < 1. To see this note that
[
0 Jk(µ)

−1

I 0

] [
0 I

Jk(µ) 0

] [
0 Jk(µ)

−1

I 0

]∗
=[

0 I
Jk(µ)

−∗
0

]
and, since Jk(µ)

−∗ is similar to Jk(1/µ), we can use Lemma 2.8 to replace µ by 1/µ.

2.5 Futorny-Horn-Sergeichuk tridiagonal canonical form for ∗congruence
Another interesting canonical form for ∗congruence of a matrix A ∈ Cn×n is the tridiagonal one
introduced in [5, Theorem 1.2], which requires fewer canonical blocks than the HSCF described in
Theorem 2.13. We reproduce here [5, Theorem 1.2], since we will also develop a real counterpart
of this canonical form. We remark that [5, Theorem 1.2] is valid for any algebraically closed field
with a nonidentity involution, but, taking into account the purposes of this work, we will state it
over C. The direct sum asserted in Theorem 2.15 (a) will be called the Futorny-Horn-Sergeichuk
canonical form of A and will be denoted by FHSCF(A), which is defined up to permutation
of the direct summands. As in the case of Theorem 2.13, the FHSCF(A) will be related to
KCF(A∗, A), although in this case such a relationship was already established in [5, Theorem
1.2]. Also in this case, KCF(A∗, A) determines FHSCF(A) up to the signs of a particular type of
canonical blocks. It is natural to wonder about the precise relationship between the HSCF and
the FHSCF. We postpone the answer to this question to Section 3, as it requires careful analysis.
We warn the reader that we have used µ2 = µ−1µ if |µ| = 1, and (Jk(α), Ik) ≈ (Ik, Jk(1/α)) if
α ̸= 0 in Theorem 2.15 (b).

Theorem 2.15. [5, Theorem 1.2]

(a) Each square complex matrix A is ∗congruent to a direct sum, uniquely determined up to
permutation of summands, of tridiagonal canonical matrices of the following two types

Name Block Conditions

Type Tri-I Tk(µ)

µ ∈ C, |µ| ≠ 1,
each nonzero µ is determined
up to replacement by µ−1,
µ = 0 if k is odd

Type Tri-II µΓ̃k µ ∈ C, |µ| = 1

9



(b) The direct sum asserted in (a) determines the KCF(A∗, A) under strict equivalence uniquely
up to permutation of its direct summands. Conversely, the KCF(A∗, A) under strict equiv-
alence determines the direct sum asserted in (a) uniquely up to permutation of summands
and multiplication of any direct summand of Type Tri-II by −1. For any direct summand
B of Types Tri-I or Tri-II in part (a), the KCF(B∗, B) under strict equivalence is given in
the following table:

Block B in FHSCF KCF(B∗, B)

Tk(µ),
µ ∈ C, |µ| ≠ 1,

µ = 0 if k is odd

(Fℓ, Gℓ)⊕ (F⊤
ℓ , G⊤

ℓ ) if k = 2ℓ+ 1

(Jℓ(0), Iℓ)⊕ (Iℓ, Jℓ(0)) if k = 2ℓ and µ = 0

(Iℓ , Jℓ(µ) )⊕ (Iℓ , Jℓ (1/µ) ) if k = 2ℓ and µ ̸= 0

µΓ̃k, µ ∈ C, |µ| = 1
(
Ik , Jk

(
(−1)k+1 µ2

))

3 Relation between Horn-Sergeichuk and Futorny-Horn- Serge-
ichuk canonical forms

We present in Theorem 3.2 the precise ∗congruence relations between the canonical blocks in the
HSCF of Theorem 2.13 (a) and those in the FHSCF of Theorem 2.15 (a). For that purpose, we
need the auxiliary Lemma 3.1, which shows that Γk is real-congruent to either Γ̃k, when k ≡ 1, 2
(mod 4), or −Γ̃k, when k ≡ 0, 3 (mod 4). Moreover, it also provides the explicit real-congruence
between these two matrices, which is the product of a permutation matrix times a diagonal
signature matrix and, so, is orthogonal. The proof of Lemma 3.1 is postponed to Appendix A.

Lemma 3.1. For any k ≥ 1, let Pk ∈ Rk×k be the permutation matrix which corresponds to
permuting the columns

[
1, . . . , k

]
of Ik as follows[

k
2 + 1, k

2 ,
k
2 + 2, k

2 − 1, . . . , k − 1, 2, k, 1
]

if k is even, and (10)[
k+1
2 , k+3

2 , k−1
2 , k+5

2 , k−3
2 , . . . , k − 1, 2, k, 1

]
if k is odd. (11)

Let also Sk := diag(s1, . . . , sk), where

si =

{
−1 if i ≡ 3 (mod 4),
1 otherwise.

Then

(PkSk)
⊤Γk(PkSk) =

{
Γ̃k if k ≡ 1, 2 (mod 4),
−Γ̃k if k ≡ 0, 3 (mod 4).

Theorem 3.2 is a direct corollary of Lemma 3.1 and part (b) in Theorems 2.13 and 2.15, so
the proof is omitted.

Theorem 3.2. Let Jk(0), Γk, H2k(µ), Tk(µ), and Γ̃k be the matrices in (1), (2), (3), (6), and
(7), respectively. Then the ∗congruences described in the following table hold.
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Block B in HSCF is ∗congruent to block C in FHSCF

Jk(0) Tk(0)

µΓk, µ ∈ C, |µ| = 1
µΓ̃k if k ≡ 1, 2 (mod 4)

−µΓ̃k if k ≡ 0, 3 (mod 4)

H2k(µ), µ ∈ C, |µ| > 1 T2k(µ)

4 First canonical form of real matrices for real-congruence
Theorem 4.1 establishes a real counterpart of the HSCF presented in Theorem 2.13 (a). It is one
of the two main results of this paper. Theorem 4.1 will be complemented in Theorem 4.2 with
the relation between the first canonical form of A ∈ Rn×n for real-congruence and the real-KCF
of (A⊤, A).

Theorem 4.1. Each square matrix A ∈ Rn×n is real-congruent to a direct sum, uniquely deter-
mined up to permutation of summands, of canonical matrices of the following four types

Name Block Conditions

Type (i) Jk(0) –

Type (ii) Γk ⊗N
N = ±1 or

N = C(a, b), with a, b ∈ R, a2 + b2 = 1, and b > 0

Type (iii) H2k(a) a ∈ R, 0 < |a| < 1

Type (iv) Ĥ4k(a, b) a, b ∈ R, a2 + b2 < 1, and b > 0

In the matrices of Type (ii), Γk ⊗ N can be replaced by N ⊗ Γk. In the matrices of Type (iii),
the condition 0 < |a| < 1 can be replaced by |a| > 1 or, in other words, each a is determined
up to replacement by 1/a. In the matrices of Type (iv), the condition a2 + b2 < 1 can be
replaced by a2 + b2 > 1 or, in other words, each pair (a, b) is determined up to replacement by(
a/(a2 + b2) , b/(a2 + b2)

)
.

Proof. According to Theorem 2.13 (a), there is a nonsingular matrix P ∈ Cn×n such that A =
P CAP

∗, where CA is a direct sum of canonical matrices of the types Jk(0), µΓk with |µ| = 1, and
H2k(µ) with |µ| > 1 (which can be replaced by 0 < |µ| < 1, see Remark 2.14), where Jk(0),Γk,
and H2k(µ) are as in (1), (2), and (3). By taking conjugates in A = P CAP

∗ and using that A

is real, we get A = P CAP
⊤. This means that CA is ∗congruent to A. Since CA is also a direct

sum of canonical matrices Jk(0), µ̃Γk with |µ̃| = 1, and H2k(µ̃) with |µ̃| > 1, the uniqueness (up
to permutation of summands) of the direct sum in Theorem 2.13 (a) implies that, for µ ∈ C \R,
if a block µΓk appears in CA, the block µΓk must appear as well. In other words, the blocks
µΓk, µΓk, with µ ∈ C \ R are paired up in CA. The same happens with the blocks H2k(µ) and
H2k(µ), with µ ∈ C \ R.

11



Now, we divide the proof in several steps. In Step 1 we see that each pair µΓk ⊕ µΓk, with
µ ∈ C \ R, is ∗congruent to a real block of Type (ii) with N = C(a, b) in the statement, whereas
in Step 2 we do the same with the pairs of blocks H2k(µ)⊕H2k(µ), with µ ∈ C \ R, and blocks
of Type (iv) in the statement. In Step 3 we show that then there is a real congruence leading A
to the direct sum of the blocks produced in Steps 1–2, together with the real blocks of Types (i),
(ii) with N = ±1, and (iii) that were already in CA. Finally, in Step 4 we prove that this final
direct sum is unique up to permutation of its direct summands.

Step 1: Let µ = a+ ib, with |µ| = 1 (so a2 + b2 = 1) and b ̸= 0. Then[
µΓk 0
0 µΓk

]
=

[
µ 0
0 µ

]
⊗Γk = Π

(
Γk ⊗

[
µ 0
0 µ

])
Π⊤ = Π(Ik⊗W )∗

(
Γk ⊗

[
a b
−b a

])
(Ik⊗W )Π⊤,

where Π is the permutation matrix in Lemma 2.10, and W is as in Lemma 2.5. As a consequence,[
µΓk 0
0 µΓk

]
is (unitarily) ∗congruent to Γk ⊗ C(a, b).

If b < 0 then [ 0 1
1 0 ]C(a, b) [ 0 1

1 0 ] = C(a,−b), so C(a,−b) is ∗congruent to C(a, b). Therefore,
we can restrict ourselves to b > 0.

Hence every block
[
µΓk 0
0 µΓk

]
is ∗congruent to a block of Type (ii) in the statement, with

N = C(a, b) and b > 0. Lemma 2.10 proves also that Γk ⊗N can be replaced by N ⊗ Γk in any
direct summand of Type (ii).

Step 2: Let µ = a+ ib with b > 0. Then, the block
[
H2k(µ) 0

0 H2k(µ)

]
is ∗congruent to Ĥ4k(a, b).

To see this, let U be the unitary matrix in Lemma 2.6 and let P be the 4× 4 block permutation
matrix of size 4k × 4k which exchanges the second and third block rows (or columns). Then([

U 0
0 U

]
P

)[
H2k(µ) 0

0 H2k(µ)

]([
U 0
0 U

]
P

)∗

=

[
U 0
0 U

]
Ik 0 0 0
0 0 Ik 0
0 Ik 0 0
0 0 0 Ik




0 Ik 0 0
Jk(µ) 0 0 0
0 0 0 Ik
0 0 Jk(µ) 0



Ik 0 0 0
0 0 Ik 0
0 Ik 0 0
0 0 0 Ik

[U 0
0 U

]∗

=

[
U 0
0 U

]
0 0 Ik 0
0 0 0 Ik

Jk(µ) 0 0 0
0 Jk(µ) 0 0

[U 0
0 U

]∗
=

[
0 I2k

C2k(a, b) 0

]
= Ĥ4k(a, b),

where, to get the last-but-one identity, we use that U is unitary (namely, UU∗ = I).
Moreover, note that, if b < 0, we can consider Ĥ4k(a,−b), since Ĥ4k(a, b) is real-congruent to

Ĥ4k(a,−b). To see this, set ∆2 := [ 0 1
1 0 ], and then (I2k ⊗∆2)Ĥ4k(a, b)(I2k ⊗∆2)

⊤ = Ĥ2k(a,−b).
Finally, according to Remark 2.14, H2k(µ) with |µ| > 1 can be replaced by H2k(µ) with

0 < |µ| < 1. In the first case, the argument above leads to Ĥ4k(a, b) with a2 + b2 > 1 and in the
second to Ĥ4k(a, b) with a2 + b2 < 1.

Step 3: As a consequence of Steps 1–2, the matrix A is ∗congruent to a direct sum of blocks
of Types (i)–(iv) in the statement, that we denote by Cr

A. Since both A and Cr
A have real entries,

Theorem 2.2 guarantees that they are also real-congruent.

Step 4 (uniqueness): Assume that there are two different direct sums of blocks of Types
(i)–(iv), denoted by C1 and C2, which are real-congruent. Then, they are also ∗congruent. But,
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as we have seen before, blocks of Type (i)–(iv) are ∗congruent to a direct sum of blocks of Types
0, I, and II in Theorem 2.13. More precisely, blocks of Type-(i) correspond to Type-0 blocks;
blocks of Type-(ii) correspond to either blocks of Type-I with µ = ±1 or to a direct sum of Type-I
blocks when µ = a + ib ̸= ±1; blocks of Type-(iii) are particular cases of Type-II blocks; and
blocks of Type-(iv) are ∗congruent to a direct sum of Type-II blocks. Note also that the Type-I
blocks corresponding to different blocks of Type-(ii) are not ∗congruent to each other, since they
correspond to different complex numbers µ with |µ| = 1, and the same happens with the Type-II
blocks associated with different blocks of Types (iii) and (iv). Let us denote by Ĉ1 and Ĉ2 the
direct sum corresponding to the Type 0, I, and II blocks associated with the blocks of C1 and
C2, respectively (in the same order). By Theorem 2.13, the blocks in Ĉ2 are a permutation of
the blocks in Ĉ1 and, then, the blocks in C2 are also a permutation of the blocks in C1.

4.1 Relation of the first canonical form for real-congruence of A and
the real-KCF of (A⊤, A)

Theorem 4.2 establishes that real-KCF(A⊤, A) determines the canonical form in Theorem 4.1 up
to the signs of some parameters in the blocks of Type (ii).

Theorem 4.2. Let A ∈ Rn×n. The direct sum asserted in Theorem 4.1 determines real-
KCF(A⊤, A) under strict real-equivalence uniquely up to permutation of its direct summands.
Conversely, the real-KCF(A⊤, A) under strict real-equivalence determines the direct sum asserted
in Theorem 4.1 uniquely up to permutation of summands, multiplication of any direct summand
of type Γk ⊗ [±1] by −1, and multiplication of the parameter a in any direct summand of type
Γk ⊗ C(a, b) by −1. For any direct summand B of Types (i), (ii), (iii), and (iv) in Theorem 4.1,
the real-KCF(B⊤, B) under strict real-equivalence is given in the following table:

Block B in Th. 4.1 real-KCF(B⊤, B)

Jk(0)
(Fℓ, Gℓ)⊕ (F⊤

ℓ , G⊤
ℓ ) if k = 2ℓ+ 1

(Jℓ(0), Iℓ)⊕ (Iℓ, Jℓ(0)) if k = 2ℓ

Γk ⊗ (±1)
(
Ik , Jk

(
(−1)k+1

))

Γk ⊗ C(a, b), a, b ∈ R,
a2 + b2 = 1, b > 0

(
Ik , Jk

(
(−1)k

))
⊕
(
Ik , Jk

(
(−1)k

))
if a = 0, b = 1(

I2k, C2k( (−1)k+1(a2 − b2) , 2|ab| )
)

if a ̸= 0

H2k(a), a ∈ R, 0 < |a| < 1 (Ik , Jk(a) )⊕ (Ik , Jk (1/a) )

Ĥ4k(a, b),
a, b ∈ R,
a2 + b2 < 1, b > 0

(I2k, C2k(a, b))⊕
(
I2k, C2k

(
a

a2 + b2
,

b

a2 + b2

))

Remark 4.3. Observe that, given a matrix pair (I2k, C2k(c, d)), c, d ∈ R, c2+d2 = 1, and d > 0,
the equality

(I2k, C2k(c, d)) =
(
I2k , C2k( (−1)k+1(a2 − b2) , 2|ab| )

)
,
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with a, b ∈ R, a2 + b2 = 1, and b > 0, holds if and only if

a = ±

√
1 + (−1)k+1c

2
and b =

d√
2
(
1 + (−1)k+1c

) .
This allows us to determine explicitly, up to the sign of a, the block B = Γk ⊕ C(a, b) from the
real-KCF(B⊤, B).

Proof of Theorem 4.2. An argument analogous to that at the beginning of the proof of Theorem
2.13 (b) shows that it suffices to prove the results in the table in the statement. For this purpose,
we will perform general strict equivalences, i.e., multiplications by invertible matrices that may
be complex, on each real pair (B⊤, B) in the table until we get the desired real target pair. Then,
we apply Lemma 2.4 to conclude that (B⊤, B) and the target pair are strictly real-equivalent.

(1) The real-KCF of (Jk(0)
⊤, Jk(0)) follows from the first row in the table of Theorem 2.13 (b)

and Lemma 2.4.

(2) The real-KCF of ( (Γk ⊗N)⊤,Γk ⊗N) with N = ±1 follows from the second row in the table
of Theorem 2.13 (b) with µ = ±1 and Lemma 2.4.

(3) Next, we obtain the real-KCF of ( (Γk ⊗ N)⊤,Γk ⊗ N) with N = C(a, b), with a, b ∈ R,
a2 + b2 = 1, and b > 0. Observe that in this case C(a, b)⊤ = C(a, b)−1. Thus,

( (Γk ⊗ C(a, b))⊤,Γk ⊗ C(a, b)) = (Γ⊤
k ⊗ C(a, b)⊤,Γk ⊗ C(a, b)) ≈ (I2k,Γ

−⊤
k Γk ⊗ C(a, b)2)

≈ (I2k, C(a, b)2 ⊗ Γ−⊤
k Γk), (12)

where the last strict equivalence follows from Lemma 2.10. If W and D(µ) are the matrices in
Lemma 2.5, C(a, b)2 = WD(µ)2W ∗, which combined with (12) and Lemma 2.9, yields

( (Γk ⊗ C(a, b))⊤,Γk ⊗ C(a, b)) ≈ (I2k, D(µ)2 ⊗ Jk((−1)k+1)). (13)

If a = 0, then b = 1, µ2 = (ib)2 = −1, µ2 = (−ib)2 = −1, D(µ)2 = −I2, and (13) reads

( (Γk ⊗ C(a, b))⊤,Γk ⊗ C(a, b)) ≈ (I2k, Jk((−1)k)⊕ Jk((−1)k)),

which is the desired real-KCF. Then, the use of Lemma 2.4 completes the proof. On the other
hand, if a ̸= 0, then (13) implies

( (Γk ⊗ C(a, b))⊤,Γk ⊗ C(a, b)) ≈ (I2k , Jk((−1)k+1 µ2)⊕ Jk((−1)k+1 µ2))

≈ ( I2k , C2k( (−1)k+1(a2 − b2) , (−1)k+1 (2ab) ) ),

where the last strict equivalence follows from Lemma 2.6 with µ replaced by (−1)k+1 µ2. If
(−1)k+1 (2ab) = 2|ab|, we have obtained the target real-KCF. If not, multiply the pair above on
the left and on the right by Ik⊗ [ 0 1

1 0 ]. In one case or in another, the use of Lemma 2.4 completes
again the proof.

(4) The real-KCF of (H2k(a)
⊤, H2k(a)), with a ∈ R, 0 < |a| < 1, follows from the last row in the

table of Theorem 2.13 (b) and Lemma 2.4 (recall Remark 2.14).
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(5) Finally, we obtain the real-KCF of (Ĥ4k(a, b)
⊤, Ĥ4k(a, b)), with a, b ∈ R, a2 + b2 < 1, and

b > 0. For this purpose, note that from Step 2 in the proof of Theorem 4.1 (observe that
Ĥ4k(a, b)

⊤ = Ĥ4k(a, b)
∗), Lemma 2.9 and Lemma 2.6, we have the following(

Ĥ4k(a, b)
⊤, Ĥ4k(a, b)

)
≈
([

H2k(µ)
∗ 0

0 H2k(µ)
∗

]
,

[
H2k(µ) 0

0 H2k(µ)

])
≈
(
I4k ,

[
H2k(µ)

−∗H2k(µ) 0

0 H2k(µ)
−∗H2k(µ)

])
≈ ( I4k , Jk(µ)⊕ Jk(1/µ)⊕ Jk(µ)⊕ Jk(1/µ) )

≈ ( I4k , Jk(µ)⊕ Jk(µ)⊕ Jk(1/µ)⊕ Jk(1/µ) )

≈
(
I4k , C2k(a, b)⊕ C2k

(
a

a2 + b2
,

b

a2 + b2

))
,

which is the target real-KCF. Again, the use of Lemma 2.4 completes the proof.

5 Second canonical form of real matrices for real-congruence:
block tridiagonal form

Theorem 5.1 establishes a real counterpart of the FHSCF presented in Theorem 2.15 (a). It is
one of the two main results of this paper. Theorem 5.1 will be complemented in Theorem 5.2
with the relation between the second canonical form of A ∈ Rn×n for real-congruence and the
real-KCF of (A⊤, A). The relation between the real canonical forms in Theorems 4.1 and 5.1
is established in Section 6. Recall that the matrix T̂4k(a, b) is the matrix defined in (8) with k
replaced by 2k.

Theorem 5.1. Each square matrix A ∈ Rn×n is real-congruent to a direct sum, uniquely deter-
mined up to permutation of summands, of canonical matrices of the following three types

Name Block Conditions

Type Tri-(i) Tk(a)

a ∈ R, a ̸= ±1,

each nonzero a is determined

up to replacement by a−1,

a = 0 if k is odd

Type Tri-(ii) T̂4k(a, b)

a, b ∈ R, a2 + b2 ̸= 1, and b > 0,

(a, b) is determined up to

replacement by
(

a

a2 + b2
,

b

a2 + b2

)

Type Tri-(iii) Γ̃k ⊗N
where N = ±1 or

N = C(a, b), with a, b ∈ R, a2 + b2 = 1, and b > 0

In the matrices of Type Tri-(iii), Γ̃k ⊗N can be replaced by N ⊗ Γ̃k.
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Proof. The proof is very similar to that of Theorem 4.1, but based on the FHSCF in Theorem 2.15
(a) instead of the HSCF of Theorem 2.13 (a). Therefore, we focus on the relevant differences and
sketch very briefly the similar parts. According to Theorem 2.15 (a) there exists a nonsingular
matrix P ∈ Cn×n such that A = PFAP

∗, where FA is a direct sum of canonical matrices of types
Tri-I and Tri-II. The fact that A is real implies via the same argument in the first paragraph of
the proof of Theorem 4.1 that for µ ∈ C \ R the blocks Tk(µ), Tk(µ) are paired up in FA (note
that k is even in such Tk(µ) because 0 /∈ C \ R), as well as the blocks µ Γ̃k, µ Γ̃k.

Then, we divide the proof in four steps as in Theorem 4.1. Steps 3 and 4 are identical to
those in Theorem 4.1, and Step 1 is also equal except for the fact that Γk is now replaced by
Γ̃k. This step proves that every block

[
µ Γ̃k 0

0 µ Γ̃k

]
, with µ ∈ C \ R, is ∗congruent to a block

Γ̃k ⊗ C(a, b) with b > 0 as in the statement. Then, the only difference with respect to the proof
of Theorem 4.1 is in Step 2, which now deals with

[
Tk(µ) 0

0 Tk(µ)

]
, where µ = a + ib, a, b ∈ R,

b ̸= 0, |µ| ≠ 1, and k even. According to Lemma 2.7,
[
Tk(µ) 0

0 Tk(µ)

]
is (unitarily) ∗congruent

to T̂2k(a, b). If b > 0, the proof is complete. Otherwise, perform the (unitary) ∗congruence
(Ik ⊗ [ 0 1

1 0 ]) T̂2k(a, b) (Ik ⊗ [ 0 1
1 0 ])

⊤ = T̂2k(a,−b). Since k is even, we replace T̂2k(a, b) by T̂4k(a, b)
in the statement.

5.1 Relation of the second canonical form for real-congruence of A and
the real-KCF of (A⊤, A)

Theorem 5.2 establishes that real-KCF(A⊤, A) determines the canonical form in Theorem 5.1 up
to the signs of some parameters in the blocks of Type Tri-(iii).

Theorem 5.2. Let A ∈ Rn×n. The direct sum asserted in Theorem 5.1 determines the real-
KCF(A⊤, A) under strict real-equivalence uniquely up to permutation of its direct summands.
Conversely, the real-KCF(A⊤, A) under strict real-equivalence determines the direct sum asserted
in Theorem 5.1 uniquely up to permutation of summands, multiplication of any direct summand
of type Γ̃k ⊗ [±1] by −1, and multiplication of the parameter a in any direct summand of type
Γ̃k⊗ C(a, b) by −1. For any direct summand B of Types Tri-(i), Tri-(ii), and Tri-(iii) in Theorem
5.1, the real-KCF(B⊤, B) under strict real-equivalence is given in the following table:

16



Block B in Th. 5.1 real-KCF(B⊤, B)

Tk(a) ,
a ∈ R, a ̸= ±1,

a = 0 if k is odd

(Fℓ, Gℓ)⊕ (F⊤
ℓ , G⊤

ℓ ) if k = 2ℓ+ 1

(Jℓ(0), Iℓ)⊕ (Iℓ, Jℓ(0)) if k = 2ℓ, a = 0

(Iℓ, Jℓ(a))⊕ (Iℓ , Jℓ (1/a)) if k = 2ℓ, a ̸= 0

T̂4k(a, b) ,
a, b ∈ R,

a2 + b2 ̸= 1, b > 0
(I2k, C2k(a, b))⊕

(
I2k, C2k

(
a

a2 + b2
,

b

a2 + b2

))

Γ̃k ⊗ [±1]
(
Ik , Jk

(
(−1)k+1

))

Γ̃k ⊗ C(a, b) , a, b ∈ R,

a2 + b2 = 1, b > 0

(
(Ik , Jk

(
(−1)k

)
)⊕ (Ik , Jk

(
(−1)k

))
if a = 0, b = 1(

I2k, C2k( (−1)k+1(a2 − b2) , 2|ab| )
)

if a ̸= 0

Proof. As in the proof of Theorem 4.2, it suffices to prove the results in the table in the statement.
We will proceed case by case via analogous manipulations to those in Theorem 4.2.

Before we start note that the second row in the table of Theorem 2.15 (b) with µ = 1 implies
(Γ̃⊤

k , Γ̃k) ≈ (Ik, Jk((−1)k+1)). On the other hand, (Γ̃⊤
k , Γ̃k) ≈ (Ik, Γ̃

−⊤
k Γ̃k). Thus, (Ik, Γ̃

−⊤
k Γ̃k) ≈

(Ik, Jk((−1)k+1)), which implies that Γ̃−⊤
k Γ̃k is similar to Jk((−1)k+1). We will use this fact in

the proof without explicitly referring to.

(1) The real-KCF of (Tk(a)
⊤, Tk(a)) with a ∈ R, a ̸= ±1 follows from the first row in the table

in Theorem 2.15 (b) with µ = a and Lemma 2.4.

(2) We obtain the real-KCF of (T̂4k(a, b)
⊤, T̂4k(a, b)), a, b ∈ R, a2 + b2 ̸= 1, b > 0, from Lemma

2.7, the table in Theorem 2.15 (b) with µ = a+ ib, and Lemma 2.6 as follows

(T̂4k(a, b)
⊤, T̂4k(a, b)) ≈ (T2k(µ)

∗ ⊕ T2k(µ)
∗, T2k(µ)⊕ T2k(µ))

= (T2k(µ)
∗, T2k(µ))⊕ (T2k(µ)

∗, T2k(µ))

≈ (Ik , Jk(µ) )⊕ (Ik , Jk (1/µ) )⊕ (Ik , Jk(µ) )⊕ (Ik , Jk (1/µ) )

≈ (Ik , Jk(µ) )⊕ (Ik , Jk(µ) )⊕ (Ik , Jk (1/µ) )⊕ (Ik , Jk (1/µ) )

≈ (I2k, C2k(a, b))⊕
(
I2k, C2k

(
a/(a2 + b2), b/(a2 + b2)

))
.

The proof is completed by applying Lemma 2.4.

(3) The real-KCF of ( (Γ̃k ⊗N)⊤, Γ̃k ⊗N) with N = ±1 follows from the second row in the table
of Theorem 2.15 (b) with µ = ±1 and Lemma 2.4.

(4) Next, we obtain the real-KCF of ( (Γ̃k ⊗ C(a, b))⊤, Γ̃k ⊗ C(a, b)), with a, b ∈ R, a2 + b2 = 1,
and b > 0. We proceed as in the proof of Theorem 4.2 for Γk⊗C(a, b), i.e., case (3) in that proof.
So, we skip most of the details. Recall that for these parameters a, b, C(a, b)⊤ = C(a, b)−1. Thus,

( (Γ̃k ⊗ C(a, b))⊤, Γ̃k ⊗ C(a, b)) ≈ (I2k, Γ̃
−⊤
k Γ̃k ⊗ C(a, b)2) ≈ (I2k, C(a, b)2 ⊗ Γ̃−⊤

k Γ̃k)

≈ (I2k, D(µ)2 ⊗ Jk((−1)k+1)),
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where D(µ) is the matrix in Lemma 2.5. Note that this strict equivalence is as that in (13).
Therefore, the rest of the proof is exactly the same as the corresponding one in Theorem 4.2.

6 Relation between the first and the second canonical forms
for real congruence

Theorem 6.1 presents the precise real-congruence relations between the canonical blocks in The-
orems 4.1 and 5.1. It is a direct consequence of Lemma 3.1 and Theorems 4.2 and 5.2, so the
proof is omitted.

Theorem 6.1. Let Jk(0),Γk, H2k(a), C(a, b), Ĥ4k(a, b), Tk(a), Γ̃k, and T̂2k(a, b) be the matrices
in (1)-(8), and

ε :=

{
1 if k ≡ 1, 2 (mod 4),

−1 if k ≡ 0, 3 (mod 4).

Then the real-congruences described in the following table hold.

Block B in Theorem 4.1 is real-congruent to block C in Theorem 5.1

Jk(0) Tk(0)

Γk ⊗ [±1] Γ̃k ⊗ [±ε]

Γk ⊗ C(a, b), a, b ∈ R,
a2 + b2 = 1, b > 0

Γ̃k ⊗ C(εa, b)

H2k(a), a ∈ R, 0 < |a| < 1 T2k(a)

Ĥ4k(a, b),
a, b ∈ R,

a2 + b2 < 1, b > 0

T̂4k(a, b)

7 Correspondence with the blocks in the Lee-Weinberg canon-
ical form

In this section, we relate the blocks in the first canonical form for real-congruence in Theorem
4.1 with those in the real-congruence canonical form in [12, Theorem II, p. 213]. Once this result
is established, the correspondence of the blocks in [12, Theorem II, p. 213] with those in the
second block-tridiagonal canonical form for real-congruence in Theorem 5.1 follows immediately
from Theorem 6.1. For brevity, such correspondence is not explicitly stated.

To describe the canonical form in [12], several structured matrices must be defined. We use
the same notation as in [12], although additional restrictions are imposed on some parameters
to make the form in [12] truly canonical (see Remark 7.2). We start with the following auxiliary

18



matrices:

Lk :=


1
1 1

. . .
. . .

1 1
1


(k+1)×k

, L+
k :=


1 −1

1 −1
. . .

. . .

1 −1


k×(k+1)

,

∆k :=

 1

. .
.

1


k×k

, Λk :=


0

0 1

. .
.

1
0 1


k×k

(Λ1 := 0),

S∆k :=



[
0 ∆k/2

−∆k/2 0

]
k×k

(k even),0 0 0
0 0 ∆(k−1)/2

0 −∆(k−1)/2 0


k×k

(k odd).

The canonical form for real-congruence of real square matrices in [12] is a direct sum of the
following eight types of blocks:

m′
3 :=

[
0 Lk

L+
k 0

]
(2k+1)×(2k+1)

(m′
3 := 0 if k = 0), (14)

∞′
4 := ε (S∆k + Λk) (ε = ±1, k even), (15)

∞′
5 :=

[
0 ∆k + Λk

−∆k + Λk 0

]
2k×2k

(k odd), (16)

o′3 := ε (∆k + S∆k) (ε = ±1, k odd), (17)

o′4 :=

[
0 ∆k + Λk

∆k − Λk 0

]
2k×2k

(k even), (18)

α′
3 :=

[
0 (α+ 1)∆k + Λk

(−α+ 1)∆k − Λk 0

]
2k×2k

(α ∈ R, α > 0), (19)

β′
4 := ε


R

R S

..
.

. .
.

R S


2k×2k

(ε = ±1), (20)

β′
5 :=



R′

R′ S′

. .
.

. .
.

R′ S′

−T
−T −S′

. .
.

. .
.

−T −S′


4k×4k

, (21)
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where

R =

[
1 |b|

−|b| 1

]
, S =

[
0 1
−1 0

]
, T =

[
b a− 1

a− 1 −b

]
, R′ =

[
b a+ 1

a+ 1 −b

]
, S′ =

[
0 1
1 0

]
with

a, b ∈ R and a ̸= 0, b ̸= 0.

Theorem 7.1 is the main result in [12].

Theorem 7.1. [12, Theorem II, p. 213] Each square real matrix is real-congruent to a direct
sum, uniquely determined up to permutation of summands, of matrices of types m′

3,∞
′
4,∞

′
5, o

′
3, o

′
4,

α′
3, β

′
4, and β′

5.

Remark 7.2. (On the values of the parameters α in (19) and a, b in (20)–(21)) In [12] the parame-
ter α in (19) is just required to be “finite and nonzero”. We have imposed α > 0, because otherwise
the block would not be “truly” canonical. The reason is that α′

3 is real-congruent to the matrix ob-
tained by replacing α by −α in α′

3. To see this, set Sk := diag(1,−1, 1,−1, . . . , (−1)k−1) ∈ Rk×k

and S̃k := diag((−1)k−1, . . . ,−1, 1,−1, 1) ∈ Rk×k, i.e., S̃k has the same diagonal entries as Sk

but in reversed order. Then[
0 Ik
Ik 0

] [
Sk 0

0 S̃k

]
α′
3

[
Sk 0

0 S̃k

] [
0 Ik
Ik 0

]
=

[
0 (−α+ 1)∆k + Λk

(α+ 1)∆k − Λk 0

]
.

In [12], the parameters a and b in β′
4, and β′

5 are just required to be real. However, [12,
Theorem II, p. 213] is obtained from [16, Theorem 2 (c), p. 344] and this result requires a ̸= 0 ̸= b.
Therefore, we also have required a ̸= 0 ̸= b. In fact, if a = 0 or b = 0, then β′

4 and β′
5 would not

be canonical blocks since they would be real-congruent to direct sums of other canonical blocks in
Theorem 7.1. To see this, compare the table in Appendix B with Table 1.

Theorem 7.3 is the main theorem of this section.

Theorem 7.3. Let m′
3,∞

′
4,∞

′
5, o

′
3, o

′
4, α

′
3, β

′
4, and β′

5 be the matrices in (14)–(21), and Jk(0),
Γk, H2k(a), C(a, b), and Ĥ4k(a, b) be the matrices defined in (1)–(5) and appearing in Theorem
4.1. Then the real congruences described in Table 1 hold.

The proof of Theorem 7.3 is postponed to Subsection 7.1, where it is obtained as a corollary
of a sequence of lemmas, each proving the real-congruence described in one of the rows of Table
1. We hasten to admit that the precise sign of the parameters in two of the blocks in the right
column of Table 1 has not been determined. These are the blocks corresponding to β′

4.
We see in Table 1 that the difference in the number of distinct canonical blocks in the canonical

forms of Theorems 4.1 and 7.1 comes from the blocks ∞′
4,∞

′
5, o

′
3, o

′
4, and β′

4, which are gathered
in the two variants Γk ⊗ [±1] and Γk ⊗ C(a, b) of the blocks of Type (ii) in Theorem 4.1.

7.1 Proof of Theorem 7.3
In addition to performing direct real-congruences, we will often use the following approach for
proving the results in this section: given a block B in the left column of Table 1, we will compute
the real-KCF(B⊤, B) and we will make use of the table in Theorem 4.2 to determine the block
in Theorem 4.1 to which B is real-congruent. Recall that Lemma 2.4 allows us to compute
real-KCFs by means of intermediate complex strict equivalences.

Lemma 7.4. The matrix m′
3 in Table 1 is real-congruent to J2k+1(0).
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Block B in Theorem 7.1 is real-congruent to block C in Theorem 4.1

m′
3 J2k+1(0)

∞′
4 Γk ⊗ (ε (−1)

k
2+1) (k even)

∞′
5 Γk ⊗ C(0, 1) (k odd)

o′3 Γk ⊗ (ε (−1)
k−1
2 ) (k odd)

o′4 Γk ⊗ C(0, 1) (k even)

α′
3

J2k(0) if α = 1

H2k

(
1− α

1 + α

)
if α ̸= 1

β′
4

Γk ⊗ C

(
± |b|√

1 + b2
,

1√
1 + b2

)
if k is even

Γk ⊗ C

(
± 1√

1 + b2
,

|b|√
1 + b2

)
if k is odd

β′
5 Ĥ4k

(
1− (a2 + b2)

(1 + |a|)2 + b2
,

2|b|
(1 + |a|)2 + b2

)

Table 1: Real-congruences between the canonical blocks in Theorem 7.1 and those in Theorem
4.1. The sizes of the blocks in Theorem 7.1 are those indicated in (14)–(21). The parameter α
in α′

3 satisfies α > 0 and a, b in β′
4 and β′

5 satisfy a ̸= 0 ̸= b.
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Proof. To see this, we compute the real-KCF of the pair ((m′
3)

⊤,m′
3):

((m′
3)

⊤,m′
3) =

([
0 (L+

k )
⊤

L⊤
k 0

]
,

[
0 Lk

L+
k 0

])
r
≈ ((L+

k )
⊤, Lk)⊕ (L⊤

k , L
+
k ).

Thus, real-KCF((m′
3)

⊤,m′
3) = real-KCF((L+

k )
⊤ , Lk) ⊕ real-KCF(L⊤

k , L+
k ). We first compute

real-KCF(L⊤
k , L+

k ). For this purpose, we consider the pencil in the variable λ

λL⊤
k + L+

k =

 1 + λ λ− 1
. . .

. . .

1 + λ λ− 1


(k+1)×k

.

This pencil has normal rank k and has no finite or infinite eigenvalues, since the rank is k when λ
is replaced by any number and the rank of L⊤

k is also k. Moreover, it has no left minimal indices
and has only one right minimal index. By the Index Sum Theorem [3, Theorem 6.5], this right
minimal index must be k. Therefore, real-KCF(L⊤

k , L+
k ) = (Fk, Gk). A similar argument proves

that real-KCF((L+
k )

⊤ , Lk) = (F⊤
k , G⊤

k ). Therefore, real-KCF((m′
3)

⊤,m′
3) = (Fk, Gk)⊕(F⊤

k , G⊤
k )

and the result follows from the first row in the table of Theorem 4.2.

Lemma 7.5. The matrix ∞′
4 in Table 1 is real-congruent to Γk ⊗

(
ε (−1)

k
2+1
)
.

Proof. Taking into account that k is even note that

∞′
4 = ε



1
1 1

. .
.

. .
.

1 1
−1 1

−1 1

. .
.

. .
.

−1 1


k×k

.

Now, if we set S := diag((−1)k/2, (−1)k/2+1, (−1)k/2, (−1)k/2+1, . . .)k/2×k/2⊕Ik/2, then S∞′
4S

⊤ =

ε (−1)
k
2+1Γk (namely, we just change the sign of the first k/2 rows and columns with odd or

even indices, depending on the parity of k/2).

Lemma 7.6. The matrix ∞′
5 in Table 1 is real-congruent to Γk ⊗ C(0, 1).

Proof. Note that

∞′
5 =



1
1 1

. .
.

. .
.

1 1
−1

−1 1

. .
.

. .
.

−1 1


2k×2k

.
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Taking into account that k is odd define S := diag(1,−1, 1,−1, . . . , 1,−1, 1)k×k ⊕ Ik. Then

S∞′
5S

⊤ =



1
−1 −1

. .
.

. .
.

−1 −1
1 1

−1
1 1

−1 −1

. .
.

. .
.

1 1
−1 −1


2k×2k

= C(0, 1)⊗ Γk,

and the result follows from Lemma 2.10.

Lemma 7.7. The matrix o′3 in Table 1 is real-congruent to Γk ⊗
(
ε (−1)

k−1
2

)
.

Proof. Note that

o′3 = ε



1
1 1

. .
.

. .
.

1 1
1 1

1 −1
1 −1

. .
.

. .
.

1 −1


k×k

.

Taking into account that k is odd, if

S := diag((−1)(k−1)/2, (−1)(k+1)/2, (−1)(k−1)/2, (−1)(k+1)/2, . . .) k−1
2 × k−1

2
⊕ I k+1

2
,

then So′3S
⊤ = ε (−1)

k−1
2 Γk.

Lemma 7.8. The matrix o′4 in Table 1 is real-congruent to Γk ⊗ C(0, 1).

Proof. Note that

o′4 =



1
1 1

. .
.

. .
.

1 1
1

1 −1

. .
.

. .
.

1 −1


2k×2k

.
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Proceeding as for ∞′
5 but with k even, if S := diag(−1, 1, . . . ,−1, 1)k×k ⊕ Ik, then

So′4S
⊤ =



−1
1 1

. .
.

. .
.

−1 −1
1 1

1
−1 −1

1 1

. .
.

. .
.

1 1
−1 −1


2k×2k

= C(0, 1)⊗ Γk,

and the result follows from Lemma 2.10.

Lemma 7.9. The matrix α′
3 in Table 1 is real-congruent to J2k(0) if α = 1 and to H2k

(
1−α
1+α

)
if α ̸= 1.

Proof. We prove this result by computing the real-KCF((α′
3)

⊤, α′
3). To this purpose, note first

that ∆k((α + 1)∆k + Λk) = Jk(α + 1) and ∆k((−α + 1)∆k − Λk) = −Jk(α − 1). Taking into
account that Jk(α+ 1) is invertible (because α > 0), we proceed as follows:

((α′
3)

⊤, α′
3) =

([
0 (−α+ 1)∆k − Λk

(α+ 1)∆k + Λk 0

]
,

[
0 (α+ 1)∆k + Λk

(−α+ 1)∆k − Λk 0

])
≈
([

0 −Jk(α− 1)
Jk(α+ 1) 0

]
,

[
0 Jk(α+ 1)

−Jk(α− 1) 0

])
≈
([

−Jk(α+ 1)−1Jk(α− 1) 0
0 Ik

]
,

[
Ik 0

0 −Jk(α+ 1)−1Jk(α− 1)

])
.

The Jordan canonical form of the matrix C = −Jk(α+1)−1Jk(α− 1) is Jk
(

1−α
1+α

)
, because C is

upper triangular with all diagonal entries equal to 1−α
1+α . Hence, C has only one eigenvalue equal

to 1−α
1+α with algebraic multiplicity k. Moreover, its geometric multiplicity is 1 because

rank

(
C − 1− α

1 + α
Ik

)
= rank

(
Jk(α− 1) +

1− α

1 + α
Jk(α+ 1)

)
= rank ((1 + α)Jk(α− 1) + (1− α)Jk(α+ 1))

= rank


0 2

. . .
. . .

. . . 2
0

 = k − 1.

Thus,

((α′
3)

⊤, α′
3) =

(
Jk

(
1− α

1 + α

)
, Ik

)
⊕
(
Ik , Jk

(
1− α

1 + α

))
.

The result follows from the table in Theorem 4.2. Namely, from its first row for α = 1 and from
its third row for α ̸= 1.
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We will need Lemma 7.10 in the proofs of Lemmas 7.11 and 7.12. In the statement of Lemma
7.10, N (A) and C(A) denote the null and column space of a matrix A, respectively.

Lemma 7.10. Let A,B ∈ Cn×n, with B invertible, k ≥ 2 be an integer, and

Zk(A,B) :=



A

..
.

B

. .
.

. .
.

A B
A B

 ∈ Cnk×nk.

Then:

1. dimN (Zk(A,B)) = dimN (A) if and only if

N (Zk(A,B)) = {[x⊤
1 , 0, . . . , 0]

⊤ ∈ Cnk : x1 ∈ N (A)}.

2. dimN (Zk(A,B)) = dimN (A) if and only if N (A) ∩ C (B−1A) = {0}.

Proof. It is clear that the following inclusion and equalities hold

{[x⊤
1 , 0, . . . , 0]

⊤ ∈ Cnk : x1 ∈ N (A)} ⊆ N (Zk(A,B)), (22)

dim{[x⊤
1 , 0, . . . , 0]

⊤ ∈ Cnk : x1 ∈ N (A)} = dimN (A), (23)

N (Zk(A,B)) =




x1

x2
...

xk−1

xk

 : xi ∈ Cn and

Axk = 0,

xk = −B−1Axk−1,
...

...

x3 = −B−1Ax2,

x2 = −B−1Ax1.


. (24)

Proof of part 1. If dimN (Zk(A,B)) = dimN (A), then (22) and (23) together imply that
{[x⊤

1 , 0, . . . , 0]
⊤ ∈ Cnk : x1 ∈ N (A)} = N (Zk(A,B)). The converse follows from (23).

Proof of part 2. Assume first that dimN (Zk(A,B)) = dimN (A). If y ∈ N (A)∩C (B−1A), then
Ay = 0 and y = −B−1Ax for some x ∈ Cn, which implies [x⊤, y⊤, 0, . . . , 0]⊤ ∈ N (Zk(A,B)) by
(24). This, in turn, implies y = 0, by part 1, and N (A) ∩ C (B−1A) = {0}.

Conversely, assume N (A) ∩ C (B−1A) = {0}. If [x⊤
1 , x

⊤
2 , . . . , x

⊤
k ]

⊤ ∈ N (Zk(A,B)), where
xi ∈ Cn, then (24) implies xk ∈ N (A) ∩ C (B−1A). So xk = 0 and again from (24), xk−1 ∈
N (A)∩C (B−1A), which yields xk−1 = 0. The remaining equalities in (24) give x2 = x3 = · · · =
xk = 0 and Ax1 = 0, i.e., N (Zk(A,B)) = {[x⊤

1 , 0, . . . , 0]
⊤ ∈ Cnk : x1 ∈ N (A)}. The result

follows from part 1.

Lemma 7.11. The matrix β′
4 in Table 1 is real-congruent to

Γk ⊗ C

(
± |b|√

1 + b2
,

1√
1 + b2

)
if k is even,

Γk ⊗ C

(
± 1√

1 + b2
,

|b|√
1 + b2

)
if k is odd.
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Proof. Since β′
4 in (20) only depends on |b|, we assume throughout the proof that b = |b| > 0.

The proof proceeds by computing the real-KCF of the pair (
(
β′
4

)⊤
, β′

4) and applying Theorem
4.2. For this purpose, we consider the pencil

λ
(
β′
4

)⊤
+ β′

4 = ε


λR⊤ +R

λR⊤ +R (λ− 1)S⊤

. .
.

. .
.

λR⊤ +R (λ− 1)S⊤


2k×2k

(25)

in the variable λ. Since R is invertible for any b > 0, the pencil λ
(
β′
4

)⊤
+ β′

4 has no minimal
indices nor eigenvalues at infinity. So, its KCF is determined by the Jordan blocks associated to
its finite eigenvalues. The finite eigenvalues of λ

(
β′
4

)⊤
+ β′

4 are the two roots of the polynomial

det(λR⊤ +R) = (λ+ 1)2 + b2(λ− 1)2 = (λ+ 1 + ib(λ− 1))(λ+ 1− ib(λ− 1))

each with algebraic multiplicity k. These roots are

λ1 =
b+ i

b− i
=

b2 − 1 + i 2b

1 + b2
and λ2 = λ1,

which are conjugate and different from each other, because b > 0, and |λ1| = |λ2| = 1. Since β′
4

is real, the Jordan blocks associated to λ1 and λ2 in KCF(
(
β′
4

)⊤
, β′

4) are paired-up. Then, it
suffices to determine the Jordan blocks associated to λ1. For this, we prove that the geometric
multiplicity of λ1 is 1, i.e., dim N (λ1

(
β′
4

)⊤
+ β′

4) = 1, via Lemma 7.10-part 2 with

A = λ1R
⊤ +R =

2b(b+ i)

1 + b2

[
1 −i
i 1

]
and B = (λ1 − 1)S⊤ =

2(ib− 1)

1 + b2

[
0 −1
1 0

]
.

The matrix B is nonsingular,

B−1A = b

[
1 −i
i 1

]
and C(B−1A) = Span

{[
1
i

]}
.

Therefore, N (A) ∩ C (B−1A) = {0} and dim N (λ1

(
β′
4

)⊤
+ β′

4) = dimN (λ1R
⊤ + R) = 1, by

Lemma 7.10-part 2. As a consequence, the KCF(
(
β′
4

)⊤
, β′

4) has only one Jordan block Jk(−λ1)
associated with λ1. This implies

(
(
β′
4

)⊤
, β′

4) ≈ (Ik, Jk(−λ1))⊕ (Ik, Jk(−λ1)) ≈

(
I2k , C2k

(
1− b2

1 + b2
,

2b

1 + b2

))
,

where the last strict equivalence follows from Lemma 2.6. Lemma 2.4 guarantees that the
expression above is real-KCF(

(
β′
4

)⊤
, β′

4). Finally, the result in the statement follows from the
third case in the second row of the table in Theorem 4.2 (recall also Remark 4.3).

Lemma 7.12. The matrix β′
5 in Table 1 is real-congruent to

Ĥ4k

(
1− (a2 + b2)

(1 + |a|)2 + b2
,

2|b|
(1 + |a|)2 + b2

)
.
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Proof. The proof proceeds again by first computing the real-KCF of (
(
β′
5

)⊤
, β′

5) and, then, by
applying Theorem 4.2. For simplicity, let us express β′

5 in (21) as

β′
5 =

[
0 X
Y 0

]
, X, Y ∈ R2k×2k. (26)

Observe that X and Y are symmetric and nonsingular, since b ̸= 0. Thus,

(
(
β′
5

)⊤
, β′

5) =

([
0 Y
X 0

]
,

[
0 X
Y 0

])
≈
([

Y 0
0 X

]
,

[
X 0
0 Y

])
≈
([

I2k 0
0 I2k

]
,

[
Y −1X 0

0 (Y −1X)−1

])
.

Thus
KCF(

(
β′
5

)⊤
, β′

5) = KCF(Y,X)⊕ KCF(X,Y ), (27)

and KCF(X,Y ) can be obtained from KCF(Y,X) changing each involved Jordan block Jℓ(µ) by
Jℓ(1/µ). Therefore, we focus on computing KCF(Y,X). For this purpose, we follow an approach
similar to that in Lemma 7.11 for computing KCF(

(
β′
4

)⊤
, β′

4). We consider the pencil

λY +X =


R′ − λT

R′ − λT (1− λ)S′

. .
.

. .
.

R′ − λT (1− λ)S′

 (28)

in the variable λ. This pencil has no minimal indices nor eigenvalues at infinity because R′ and
T are invertible. This implies that its KCF is determined by the Jordan blocks associated to its
finite eigenvalues, which are the roots of the polynomial

det(R′ − λT ) = −( b2(λ− 1)2 + (λ(1− a) + (a+ 1))2 )

= −(λ(1− a) + (a+ 1) + ib(λ− 1)) (λ(1− a) + (a+ 1)− ib(λ− 1)),

each with algebraic multiplicity k. These roots are

λ1 =
a+ 1− ib

a− 1− ib
=

a2 + b2 − 1 + i 2b

(a− 1)2 + b2
and λ2 = λ1

and are complex conjugate to each other, because b ̸= 0, and |λ1| = |λ2| ̸= 1, because, a ̸= 0.
Since Y and X are real, the Jordan blocks associated to λ1 and λ2 in KCF(Y,X) are paired-up.
So, it suffices to determine the Jordan blocks associated to λ1. For this, we prove that the
geometric multiplicity of λ1 is 1, i.e., dim N (λ1Y +X) = 1, via Lemma 7.10-part 2 with

A = R′ − λ1T = − 2b

a− 1− ib

[
1 i
i −1

]
and B = (1− λ1)S

′.

The matrix B is nonsingular,

B−1A = −b

[
−i 1
−1 −i

]
and C(B−1A) = Span

{[
1
−i

]}
.

Therefore, N (A) ∩ C (B−1A) = {0} and dim N (λ1Y +X) = dimN (R′ − λ1T ) = 1, by Lemma
7.10-part 2. As a consequence, the KCF(Y,X) has only one Jordan block Jk(−λ1) associated
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with λ1. This implies KCF(Y,X) = (Ik, Jk(−λ1)) ⊕ (Ik, Jk(−λ1)). Combining this with (27)
and Lemma 2.6, we get

(
(
β′
5

)⊤
, β′

5) ≈ (Ik, Jk(−λ1))⊕ (Ik, Jk(−λ1))⊕ (Ik, Jk (−1/λ1))⊕
(
Ik, Jk

(
−1/λ1

))
≈ (I2k , C2k

(
1− (a2 + b2)

(a− 1)2 + b2
,

2 |b|
(a− 1)2 + b2

)
)

⊕ (I2k , C2k

(
1− (a2 + b2)

(a+ 1)2 + b2
,

2 |b|
(a+ 1)2 + b2

)
).

Lemma 2.4 guarantees that the expression above is the real-KCF(
(
β′
5

)⊤
, β′

5). The result follows
from the last row in the table of Theorem 4.2, taking into account that from the two C2k(c, d)
above, we choose the parameters c and d such that c2 + d2 < 1, i.e., the ones with largest
denominator.

Appendices

A Proof of Lemma 3.1
Proof. We will first see that the nonzero entries of (PkSk)

⊤Γk(PkSk) and Γ̃k are placed in the
same positions. For this, first notice that the nonzero entries of Γk are just 1 or −1, and they
are placed in the following positions:

• (k − i+ 1, i), for i = 1, . . . , k (placed in the main anti-diagonal).

• (k − i+ 2, i), for i = 2, . . . , k (placed below the main anti-diagonal).

These entries 1 or −1 are also the nonzero entries of (PkSk)
⊤Γk(PkSk), since Pk is a permutation

matrix and Sk is just a change of signs matrix, but they are placed in different positions. Now,
we are going to identify the positions of these nonzero entries in (PkSk)

⊤Γk(PkSk). We analyze
separately the cases k even and k odd.

▶ k even: Let us first identify the positions of the nonzero entries in the matrix P⊤
k ΓkPk.

The permutation corresponding to Pk, described in the statement, acts as follows on the ith
column-index:

i 7−→
{

k − 2i+ 2 for i = 1, . . . , k
2 ,

2i− k − 1 for i = k
2 + 1, . . . , k.

As a consquence, when applying the permutation to the indices corresponding to the nonzero
entries of Γk, these entries go to the following positions:

(k − i+ 1, i) 7−→
{

(A) : (k − 2i+ 1, k − 2i+ 2) for i = 1, . . . , k
2 ,

(B) : (2i− k, 2i− k − 1) for i = k
2 + 1, . . . , k.

(29)

(k − i+ 2, i) 7−→


(C) : (k − 2i+ 3, k − 2i+ 2) for i = 2, . . . , k

2 ,
(E) : (1, 1) for i = k

2 + 1,
(D) : (2i− k − 2, 2i− k − 1) for i = k

2 + 2, . . . , k.
(30)

The indices (A) and (D) above altogether run through all the entries in the upper diagonal,
namely those with indices (i, i + 1), for i = 1, . . . , k − 1. Similarly, the indices (B) and (C)
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correspond to all the entries in the lower diagonal, namely those with indices (i + 1, i), for
i = 1, . . . , k − 1. These entries, together with (E) = (1, 1) are all the nonzero entries of the
matrix P⊤

k ΓkPk. Note that these are, precisely, the same positions which contain all the nonzero
entries of Γ̃k.

Now, let us identify the positions with entries −1 in (PkSk)
⊤Γk(PkSk). Note first that the

entries equal to −1 in Γk are placed in the positions (k − 2i + 1, 2i), for i = 1, . . . , k/2 (those
in the main anti-diagonal), and (k − 2i + 1, 2i + 1), for i = 1, . . . , (k/2) − 1 (those below the
main anti-diagonal). Now, we will keep track of these entries when applying the permutation
corresponding to Pk. For this, we distinguish the cases k ≡ 0 (mod 4) and k ≡ 2 (mod 4).

• k ≡ 0 (mod 4): Replacing i by 2i in (29) and by 2i+1 in (30), the permutation corresponding
to Pk acts as follows on the previous indices:

(k − 2i+ 1, 2i) 7−→
{

(A) : (k − 4i+ 1, k − 4i+ 2) for i = 1, . . . , k
4 ,

(B) : (4i− k, 4i− k − 1) for i = k
4 + 1, . . . , k

2 .

(k − 2i+ 1, 2i+ 1) 7−→


(C) : (k − 4i+ 1, k − 4i) for i = 1, . . . , k

4 − 1,
(E) : (1, 1) for i = k

4 ,
(D) : (4i− k, 4i− k + 1) for i = k

4 + 1, . . . , k
2 − 1.

The first indices in (A), (C), and (E) above altogether are 1, 5, . . . , k−3, namely, all indices
i ≡ 1 (mod 4) between 1 and k. Therefore, the corresponding entries are all the nonzero
entries of P⊤

k ΓkPk in these rows (two entries per row).

Similarly, the first indices in (B) and (D) above altogether are 4, 8, . . . , k (the last one
appearing only once in (B) for i = k/2). Therefore, the positions (B) and (C) correspond
to all the nonzero entries in P⊤

k ΓkPk in rows with indices i ≡ 0 (mod 4).

Summarizing, all the entries equal to −1 in the matrix P⊤
k ΓkPk are in the rows with indices

i ≡ 0, 1(mod 4), and all the nonzero entries in these rows are equal to −1.

The change of signs matrix Sk changes the sign of all rows and columns with indices i ≡ 3
(mod 4). The change of sign in the rows turns into −1 all entries (i, i − 1) and (i, i + 1)
with i ≡ 3 (mod 4), and the change of sign in the columns changes the signs of the entries
(i + 1, i) and (i− 1, i) with i ≡ 3 (mod 4), namely i+ 1 ≡ 0 (mod 4) and i− 1 ≡ 2 (mod
4). Therefore, in (PkSk)

⊤Γk(PkSk) = S⊤
k (P⊤

k ΓkPk)Sk all entries in the upper diagonal,
namely those with indices (i, i+1), are equal to −1, whereas only the entries in the positions
(i, i − 1) with i ≡ 1, 3 (mod 4) are equal to −1 (the ones in the positions (i, i − 1) with
i ≡ 0, 2 (mod 4) are all equal to 1 instead). In other words, (PkSk)

⊤Γk(PkSk) = −Γ̃k, as
claimed.

• k ≡ 2 (mod 4): Replacing, again, i by 2i in (29) and by 2i + 1 in (30), the permutation
Pk acts on the indices corresponding to the negative entries of Γk in a similar way, though
the range of the indices now is slightly different, namely:

(k − 2i+ 1, 2i) 7−→
{

(A) : (k − 4i+ 1, k − 4i+ 2) for i = 1, . . . , k−2
4 ,

(B) : (4i− k, 4i− k − 1) for i = k+2
4 , . . . , k

2 .

(k − 2i+ 1, 2i+ 1) 7−→
{

(C) : (k − 4i+ 1, k − 4i) for i = 1, . . . , k−2
4 ,

(D) : (4i− k, 4i− k + 1) for i = k+2
4 , . . . , k

2 − 1.

Now, the indices in (A) and (C) correspond to the two nonzero entries in the rows
3, 7, . . . , k − 3, namely all rows with indices i ≡ 3 (mod 4). Similarly, the entries in (B)
and (D) correspond to the nonzero entries in the rows 2, 6, . . . , k (which are two entries per
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row, except in row k where there is only one) , namely those rows with indices i ≡ 2 (mod
4). Summarizing, the −1 entries in P⊤

k ΓkPk are those in rows with indices i ≡ 2, 3 (mod
4).

When we multiply on the left and on the right the matrix P⊤
k ΓkPk by Sk, we introduce a

change of sign in the rows and columns with indices i ≡ 3 (mod 4). The change of sign
in the rows turn the −1 into 1 in the entries placed in all rows with indices i ≡ 3 (mod
4). Now, the change of sign in the columns changes the sign of the entries with indices
(i− 1, i) and (i+ 1, i), with i ≡ 3 (mod 4), namely i− 1 ≡ 2 (mod 4) and i+ 1 ≡ 0 (mod
4). Therefore the entries of (PkSk)

⊤Γk(PkSk) = S⊤
k (P⊤

k ΓkPk)Sk in the positions (i, i− 1),
for i ≡ 0, 2 (mod 4), are −1, and these are the only entries which are equal to −1 in this
matrix. In other words, (PkSk)

⊤Γk(PkSk) = Γ̃k, as claimed.

▶ k odd: In this case, the permutation corresponding to Pk acts as follows on the ith column-
index:

i 7−→
{

k − 2i+ 2 for i = 1, . . . , k+1
2 ,

2i− k − 1 for i = k+3
2 , . . . , k.

As a consequence, the permutation applied to the matrix Γk acts as follows on the positions
corresponding to the nonzero entries of Γk:

(k − i+ 1, i) 7−→


(A) : (k − 2i+ 1, k − 2i+ 2) for i = 1, . . . , k−1

2 ,
(E) : (1, 1) for i = k+1

2 ,
(B) : (2i− k, 2i− k − 1) for i = k+3

2 , . . . , k.
(31)

(k − i+ 2, i) 7−→
{

(C) : (k − 2i+ 3, k − 2i+ 2) for i = 2, . . . , k+1
2 ,

(D) : (2i− k − 2, 2i− k − 1) for i = k+3
2 , . . . , k.

(32)

The indices (A) and (D) altogether correspond to the entries in the upper diagonal of P⊤
k ΓkPk,

namely those with indices (i, i+1), for i = 1, . . . , k−1. Similarly, the indices (B) and (C) together
correspond to (i, i − 1), for i = 2, . . . , k, i.e., to the entries in the lower diagonal of P⊤

k ΓkPk.
These indices, together with (E) = (1, 1) correspond to the nonzero entries of P⊤

k ΓkPk, as well
as those of Γ̃k.

As in the case k even, we are now going to identify the positions of the −1 entries in
(PkSk)

⊤Γk(PkSk). Starting again from the entries equal to −1 in Γk, which are placed in
the positions (k − 2i + 1, 2i) and (k − 2i + 1, 2i + 1), for i = 1, . . . , (k − 1)/2, we keep track of
these entries after applying the permutation corresponding to the matrix Pk and then applying
the change of signs corresponding to Sk. We analyze separately the cases k ≡ 1 (mod 4) and
k ≡ 3 (mod 4).

• k ≡ 1 (mod 4): Replacing i by 2i in (31) and by 2i+1 in (32), the permutation corresponding
to Pk acts as follows on the previous indices:

(k − 2i+ 1, 2i) 7−→
{

(A) : (k − 4i+ 1, k − 4i+ 2) for i = 1, . . . , k−1
4 ,

(B) : (4i− k, 4i− k − 1) for i = k+3
4 , . . . , k−1

2 .

(k − 2i+ 1, 2i+ 1) 7−→
{

(C) : (k − 4i+ 1, k − 4i) for i = 1, . . . , k−1
4 ,

(D) : (4i− k, 4i− k + 1) for i = k+3
4 , . . . , k−1

2 .

These are all nonzero entries of the matrix P⊤
k ΓkPk in the following rows: the entries (A)

and (C) together are in the rows 2, 6, . . . , k−3, namely all rows with indices i ≡ 2 (mod 4),
whereas the entries (B) and (D) together are the nonzero entries in the rows 3, 7, . . . , k−2,

30



namely the rows with indices i ≡ 3 (mod 4). Therefore, the entries (A)− (D) correspond
to the nonzero entries of P⊤

k ΓkPk in the rows with indices i ≡ 2, 3 (mod 4). Therefore, we
are in the same situation as for k ≡ 2 (mod 4), so (PkSk)

⊤Γk(PkSk) = Γ̃k.

• k ≡ 3 (mod 4): Replacing i by 2i in (31) and by 2i+ 1 in (32), this time we have:

(k − 2i+ 1, 2i) 7−→


(A) : (k − 4i+ 1, k − 4i+ 2) for i = 1, . . . , k−3

4 ,
(E) : (1, 1) for i = k+1

4 ,
(B) : (4i− k, 4i− k − 1) for i = k+1

4 + 1, . . . , k−1
2 .

(k − 2i+ 1, 2i+ 1) 7−→
{

(C) : (k − 4i+ 1, k − 4i) for i = 1, . . . , k−3
4 ,

(D) : (4i− k, 4i− k + 1) for i = k+1
4 , . . . , k−1

2 .

The entries (A)− (E) in this case correspond to all the nonzero entries of P⊤
k ΓkPk in the

rows with indices i ≡ 0, 1 (mod 4). More precisely, the first indices in (A) and (C) together
are equal to 4, 8, . . . , k−3, and those of (B), (D), and (E) together are equal to 1, 5, . . . , k−2
(in particular, the index 1 comes from (E), and from (D) for i = (k+1)/4). Therefore, we
are in the same situation as in the case k ≡ 0 (mod 4), so, again, (PkSk)

⊤Γk(PkSk) = −Γ̃k.

B Canonical forms of degenerate blocks β′
4 and β′

5 in Theo-
rem 7.1

For completeness, the next table presents the canonical forms in Theorem 4.1 of the matrices β′
4

and β′
5 in (20) and (21) if a = 0 or b = 0. We omit the proof for brevity.

31



Degenerate variant of
block B in Theorem 7.1

is real-congruent to direct sum of blocks in Theorem 4.1

β′
4

Γk ⊗ C(0, 1) if b = 0 and k even

(
Γk ⊗

(
ε (−1)ℓ

))
⊕
(
Γk ⊗

(
ε (−1)ℓ

))
if b = 0 and k = 2ℓ+ 1

β′
5

(Γk ⊗ C(0, 1))⊕ (Γk ⊗ C(0, 1)) if b = 0, a = 0, and k even

Γk ⊕ Γk ⊕ (−Γk)⊕ (−Γk) if b = 0, a = 0, and k odd

J2k(0)⊕ J2k(0) if b = 0, a = ±1

H2k

(
1− |a|
1 + |a|

)
⊕H2k

(
1− |a|
1 + |a|

)
if b = 0, a ̸= 0, a ̸= ±1

(Γk ⊗ C

(
± |b|√

1+b
2
, 1√

1+b
2

)
)⊕ (Γk ⊗ C

(
± |b|√

1+b
2
, 1√

1+b
2

)
)

if b ̸= 0, a = 0, k even

(Γk ⊗ C

(
± 1√

1+b
2
, |b|√

1+b
2

)
)⊕ (Γk ⊗ C

(
± 1√

1+b
2
, |b|√

1+b
2

)
)

if b ̸= 0, a = 0, k odd
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