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ABSTRACT

We introduce a new family of linearizations of rational matrices, which we call
block full rank linearizations. The theory of block full rank linearizations is useful
as it establishes very simple criteria to determine if a pencil is a linearization of a
rational matrix in a target set or in the whole underlying field, by using rank con-
ditions. Block full rank linearizations allow us to recover locally information about
zeros and poles. To recover the pole-zero information at infinity, we will define the
grade of the new block full rank linearizations as linearizations at infinity and the
notion of degree of a rational matrix will be used. Moreover, the eigenvectors of a
rational matrix associated with its eigenvalues in a target set can be obtained from
the eigenvectors of its block full rank linearizations in that set. This new family of
linearizations generalizes and includes the structures appearing in most of the lin-
earizations for rational matrices constructed in the literature. As example, we study
the structure and properties of the linearizations in [P. Lietaert et al., Automatic
rational approximation and linearization of nonlinear eigenvalue problems, 2021].
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1. Introduction

A rational matrix R(λ) is a matrix whose entries are quotients of polynomials in the
scalar variable λ, i.e., rational functions. Zeros and poles are among the most inter-
esting quantities attached to a rational matrix [20], both from theoretical and applied
points of view. The Smith–McMillan form of rational matrices [23] is the classical
way to define their poles and zeros, together with their partial multiplicities. How-
ever, it is well-known that the Smith–McMillan form is not convenient for computing
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numerically poles and zeros [32].
The problem of determining the pole and zero structure of rational matrices appears

in several applications. Many classic problems in linear systems and control theory can
be posed in terms of rational matrices [20,27,34] and are related to the computation of
their zeros and poles [32]. Currently, the computation of the zeros of rational matrices is
playing a fundamental role in the very active area of Nonlinear Eigenvalue Problems
(NLEPs) [17], either because they appear directly in rational eigenvalue problems
(REPs) modeling real-life problems [24] or because other NLEPs are approximated
by REPs [15,17,18,21,22,29]. Recall that for a regular rational matrix R(λ), the REP
consists in computing numbers λ0 (eigenvalues) and nonzero vectors v (eigenvectors)
such that λ0 is not a pole of any of the entries of R(λ) and R(λ0)v = 0. This is
equivalent to say that λ0 is a zero of R(λ) but not a pole.

One of the most reliable methods for computing the zeros and poles of a rational
matrix R(λ) is via linearizations. This approach is based on constructing a matrix
pencil L(λ), i.e., a matrix polynomial of degree at most 1, containing the pole and zero
information of R(λ) and then applying to L(λ) backward stable eigenvalue algorithms,
as [25,31] for problems of moderate size, or Krylov methods adapted to the structure
of L(λ) in the large-scale setting [10,18]. The pencil L(λ) is called a linearization of
R(λ). This classical approach was introduced at least in the late 1970s [32,35] and has
been revisited recently, mainly motivated by research on NLEPs and the reference [28].
Thus, a first formal definition of linearization of a rational matrix was proposed in [1].
A different definition was introduced in [4], together with the first formal definition
of strong linearization, i.e., a pencil that allows to recover both the finite and infinite
pole and zero structure of R(λ).

In addition to formal definitions, recent research on linearizations of rational ma-
trices R(λ) has produced new classes of strong linearizations that can be easily con-
structed from the polynomial part of R(λ) and a minimal state-space realization of its
strictly proper part. Also, the study of the recovery properties of these linearizations
has received considerable attention. References in these lines include [2,3,5,7–9,12].
Among the new classes of strong linearizations we mention the strong block mini-
mal bases linearizations introduced in [4, Theorem 5.11] since they form a very wide
general family. For instance, they include as particular cases the Fiedler-like lineariza-
tions (modulo permutations) [5, Section 8], are closely connected to other classes of
linearizations developed in the literature [12] and are valid for general rectangular
rational matrices.

Despite the intense activity described in the previous paragraph, there are pencils
that have been used in influential references as [18,21] for solving numerically REPs
that approximate NLEPs which do not satisfy the definitions of linearization of rational
matrices given in [1,4]. The reason is that these definitions focus on pencils that allow
to recover the complete pole and zero structure of rational matrices, while in [18,21]
only the eigenvalue information in a certain subset of the complex plane is necessary.
This has motivated the development in [13] of a new theory of linearizations of rational
matrices in a local sense. These linearizations are pencils that preserve the structure
of zeros and poles of the corresponding rational matrix in a particular subset of the
underlying field and/or at infinity. Thus, such linearizations are useful in applications
where only the zero and pole information in a particular region is needed. Apart from
a new definition, a specific family of local linearizations of rational matrices is also
introduced in [13, Section 5], that are called block full rank pencils. These pencils are
particular instances of local linearizations that allow to recover the information about
zeros that are not poles of rational matrices.
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The main contribution of this work is to extend the block full rank pencils from
[13] to a much larger family of pencils, that allow also to recover pole information
under minimality conditions. This new family is called block full rank linearizations,
where we use a name similar to that in [13] for emphasizing the connection between
both concepts. We remark that block full rank linearizations can also be seen as a wide
nontrivial generalization of the strong block minimal bases linearizations introduced in
[4, Theorem 5.11]. This generalization allows to study the structure and properties of
most of the linearizations of rational matrices in the literature in a general framework.
In this manuscript, as a relevant example, we apply the theory of block full rank
linearizations to study the precise properties of the pencils used in [21]. Moreover,
block full rank linearizations may have future applications to backward error analyses
of rational eigenvalue problems solved via linearizations by considering more general
linearizations than those in [14] or, perhaps, by allowing more flexible analyses than
that in [14].

The paper is organized as follows. Some preliminaries are presented in Section 2. In
Section 3, we introduce block full rank linearizations at finite points and at infinity.
The notion of degree of a rational matrix will be used to determine the grade of the
new linearizations as linearizations at infinity. In Subsection 3.3, we will see that the
block full rank linearizations extend the structure of the strong block minimal bases
linearizations in [4]. In Section 4, we will study how to recover eigenvectors of regular
rational matrices from those of their block full rank linearizations. Finally, in Section
5, we will show that the linearizations in [21] are block full rank linearizations. Then,
we will provide sufficient conditions under which these linearizations are minimal, so
that pole information can also be recovered from them. Block full rank linearizations
allow also to determine the precise properties of other linearizations appearing in the
literature as those in [15,18,28]. Conclusions are presented in Section 6.

2. Preliminaries

Let F be an algebraically closed field that does not include infinity. F[λ] denotes the
ring of polynomials with coefficients in F, and F(λ) the field of rational functions over
F[λ]. Fp×m, F[λ]p×m and F(λ)p×m denote the sets of p×m matrices with elements in
F, F[λ] and F(λ), respectively. The elements of F[λ]p×m are called polynomial matri-
ces or matrix polynomials. A unimodular matrix is a square polynomial matrix with
polynomial inverse or, equivalently, a square polynomial matrix with nonzero constant
determinant. Moreover, the elements of F(λ)p×m are called rational matrices.

Let R(λ) ∈ F(λ)p×m and let Ω be a nonempty subset of F. R(λ) is defined or
bounded in Ω if R(λ0) ∈ Fp×m for all λ0 ∈ Ω (by assuming the entries of R(λ) to be
irreducible rational functions). Moreover, R(λ) ∈ F(λ)m×m is invertible in Ω if it is
defined in Ω and detR(λ0) ̸= 0 for all λ0 ∈ Ω. R(λ) is said to be defined (invertible)
at λ0 if it is defined (invertible) in Ω := {λ0}. A rational matrix R(λ) ∈ F(λ)m×m

is said to be regular if it is invertible at some λ0 ∈ F, that is, detR(λ) ̸≡ 0. Let
λ0 ∈ F. Two rational matrices G(λ), H(λ) ∈ F(λ)p×m are equivalent at λ0 if there
exist rational matrices R1(λ) ∈ F(λ)p×p and R2(λ) ∈ F(λ)m×m both invertible at λ0

such that R1(λ)G(λ)R2(λ) = H(λ). If G(λ) and H(λ) are equivalent for all λ0 in a
nonempty set Ω then G(λ) and H(λ) are said to be equivalent in Ω [13, Proposition
2.4]. Let G(λ) ∈ F(λ)p×m and λ0 ∈ F. Then G(λ) is equivalent at λ0 to a matrix of
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the form (see [6,33])[
diag ((λ− λ0)

ν1 , . . . , (λ− λ0)
νr) 0

0 0(p−r)×(m−r)

]
, (1)

where r is the normal rank of G(λ), which will be denoted by nrankG(λ), and ν1 ≤
· · · ≤ νr are integers. The integers ν1, . . . , νr are uniquely determined by G(λ) and
λ0, and are called the invariant orders at λ0 of G(λ). The matrix in (1) is called
the local Smith–McMillan form of G(λ) at λ0. In order to define zeros and poles
we need to distinguish between positive and negative invariant orders [20,34]. Let
ν1 ≤ · · · ≤ νk < 0 = νk+1 = · · · = νu−1 < νu ≤ · · · ≤ νr be the invariant orders at λ0

of G(λ). Then λ0 is said to be a pole of G(λ) with partial multiplicities −νk, · · · ,−ν1,
and a zero of G(λ) with partial multiplicities νu, · · · , νr. In particular, the integers
−νk, · · · ,−ν1 and νu, · · · , νr are called the pole and zero partial multiplicities of G(λ)
at λ0, respectively. Moreover, (λ−λ0)

−νi for i = 1, . . . , k are called the pole elementary
divisors of G(λ) at λ0, while (λ− λ0)

νi for i = u, . . . , r are called the zero elementary
divisors of G(λ) at λ0. If G(λ) is a polynomial matrix then the polynomials (λ−λ0)

νi

with νi ̸= 0 are simply called elementary divisors of G(λ) at λ0, and the nonzero
integers νi ̸= 0 are all positive and are called partial multiplicities of G(λ) at λ0.
The (pole/zero) elementary divisors of G(λ) in a nonempty subset Ω of F are the
(pole/zero) elementary divisors of G(λ) at every λ0 ∈ Ω. The invariant orders at
infinity q1 ≤ · · · ≤ qr of a rational matrix G(λ) are defined as the invariant orders at
λ0 = 0 of G(1/λ). Then, for qi < 0, −qi are the partial multiplicities of ∞ as pole
while, for qi > 0, qi are the partial multiplicities of ∞ as zero (see [20]).

A finite λ0 ∈ F is said to be a finite eigenvalue of G(λ) ∈ F(λ)p×m if it is a zero of
G(λ) that is not a pole. Then, for a regular G(λ), nonzero constant vectors x and y
satisfying

G(λ0)x = 0 and yTG(λ0) = 0,

are called, respectively, right and left eigenvectors associated with λ0. Given λ0 ∈ F,
we consider the following vector spaces over F:

Nr(G(λ0)) = {x ∈ Fm×1 : G(λ0)x = 0}, and
Nℓ(G(λ0)) = {yT ∈ F1×p : yTG(λ0) = 0},

which are called, respectively, the right and left nullspaces over F of G(λ0). If λ0 is
an eigenvalue of a regular G(λ), then Nr(G(λ0)) and Nℓ(G(λ0)) are non trivial and
contain, respectively, the right and left eigenvectors of G(λ) associated with λ0.

2.1. Polynomial system matrices

A matrix polynomial of the form

P (λ) =

[
A(λ) B(λ)
−C(λ) D(λ)

]
(2)
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with A(λ) ∈ F[λ]n×n regular, B(λ) ∈ F[λ]n×m, C(λ) ∈ F[λ]p×n, and D(λ) ∈ F[λ]p×m,
is called a polynomial system matrix, and the rational matrix

G(λ) = D(λ) + C(λ)A(λ)−1B(λ)

is called the transfer function matrix of P (λ) [27]. The matrix A(λ) is called the state
matrix of P (λ). We allow n to be 0, that is, we consider P (λ) = D(λ) as a polynomial
system matrix with A(λ), B(λ) and C(λ) as empty matrices. In this extreme case we
say that P (λ) = D(λ) is a polynomial system matrix with empty state matrix. Its
transfer function is D(λ).

The right and left eigenvectors of a polynomial system matrix and those of its
transfer function matrix are related by the following Lemma 2.1, that follows from
[12, Proposition 5.1] and [12, Proposition 5.2].

Lemma 2.1. Let P (λ) be a polynomial system matrix as in (2), and let G(λ) ∈
F(λ)p×m be its transfer function matrix. Let λ0 ∈ F such that detA(λ0) ̸= 0. Then,
the following statements hold:

(a) The linear map

Fr : Nr(G(λ0)) −→ Nr(P (λ0))

x 7−→
[
−A(λ0)

−1B(λ0)
Im

]
x

is a bijection between the right nullspaces over F of G(λ0) and P (λ0).
(b) The linear map

Fℓ : Nℓ(G(λ0)) −→ Nℓ(P (λ0))

yT 7−→ yT
[
C(λ0)A(λ0)

−1 Ip
]

is a bijection between the left nullspaces over F of G(λ0) and P (λ0).

Let Ω be a nonempty subset of F. The polynomial system matrix P (λ) in (2), with
n > 0, is said to be minimal in Ω if

rank

[
A(λ0)
C(λ0)

]
= rank

[
A(λ0) B(λ0)

]
= n,

for all λ0 ∈ Ω. In the particular case that Ω = {λ0}, P (λ) is said to be minimal at λ0

if P (λ) is minimal in Ω. If n = 0 in (2), we adopt the agreement that P (λ) is minimal
at every point λ0 ∈ F.

2.2. Linearizations of rational matrices in a set and at infinity

We can now state the definition of linearization of a rational matrix in a subset of F.
Then, in Theorem 2.3, a spectral characterization is given.
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Definition 2.2. [13, Definition 4.1] Let G(λ) ∈ F(λ)p×m and let Ω ⊆ F be nonempty.
Let

L(λ) =
[

A1λ+A0 B1λ+B0

−(C1λ+ C0) D1λ+D0

]
∈ F[λ](n+q)×(n+r) (3)

be a linear polynomial system matrix, with state matrix A1λ+A0, and let

Ĝ(λ) = (D1λ+D0) + (C1λ+ C0)(A1λ+A0)
−1(B1λ+B0) ∈ F(λ)q×r

be its transfer function matrix. L(λ) is a linearization of G(λ) in Ω if the following
conditions hold:

(a) L(λ) is minimal in Ω, and
(b) there exist nonnegative integers s1, s2 satisfying s1 − s2 = q − p = r − m,

and rational matrices R1(λ) ∈ F(λ)(p+s1)×(p+s1) and R2(λ) ∈ F(λ)(m+s1)×(m+s1)

invertible in Ω such that

R1(λ) diag(G(λ), Is1)R2(λ) = diag(Ĝ(λ), Is2). (4)

The most usual case is when q − p = r − m ≥ 0. This implies that the size of
the transfer function matrix Ĝ(λ) of the linearization L(λ) is at least the size of the
rational matrix G(λ). We assume in the rest of the paper that this holds and take
s2 = 0 and s := s1 ≥ 0 without loss of generality.

Theorem 2.3. [13, Theorem 4.4][Spectral characterization of linearizations in a sub-
set of F] Let G(λ) ∈ F(λ)p×m and Ω ⊆ F be nonempty. Let

L(λ) =
[

A1λ+A0 B1λ+B0

−(C1λ+ C0) D1λ+D0

]
∈ F[λ](n+(p+s))×(n+(m+s))

be a linear polynomial system matrix, with state matrix A1λ+A0, minimal in Ω. Then
L(λ) is a linearization of G(λ) in Ω if and only if the following three conditions hold:

(a) nrankL(λ) = nrankG(λ) + n+ s,
(b) the pole elementary divisors of G(λ) in Ω are the elementary divisors of A1λ+A0

in Ω, and
(c) the zero elementary divisors of G(λ) in Ω are the elementary divisors of L(λ) in

Ω.

All the concepts and results introduced above are extended to infinity in [13]. For
that, the notion of g-reversal of a rational matrix [13, Definition 3.7] is used. That is,
given a rational matrix G(λ) ∈ F(λ)p×m and an integer g, the g-reversal of G(λ) is
defined as the rational matrix

revg G(λ) := λgG

(
1

λ

)
.

A nonconstant linear polynomial system matrix L(λ) as in (3) is defined to be a
linearization of a rational matrix G(λ) at ∞ of grade g if rev1 L(λ) is a linearization
of revg G(λ) at 0. Linearizations at ∞ of G(λ) provide information about the pole/zero
structure of G(λ) at ∞ as is explained in Proposition 2.4.
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Proposition 2.4. [13, Proposition 4.13][Recovery of the spectral information at in-
finity] Let G(λ) ∈ F(λ)p×m be a rational matrix with nrankG(λ) = r, and let

L(λ) =
[

A1λ+A0 B1λ+B0

−(C1λ+ C0) D1λ+D0

]
be a nonconstant linearization at infinity of grade g of G(λ). If e1 ≤ · · · ≤ et are
the partial multiplicities of rev1(A1λ + A0) at 0 and ẽ1 ≤ · · · ≤ ẽu are the partial
multiplicities of rev1 L(λ) at 0, then the invariant orders at infinity q1 ≤ · · · ≤ qr of
G(λ) are

(q1, . . . , qr) = (−et, . . . ,−e1, 0, . . . , 0︸ ︷︷ ︸
r−t−u

, ẽ1, . . . , ẽu)− (g, . . . , g).

2.3. Rational and minimal bases

Finally, we recall the notions of rational and minimal bases, which are very useful for
the construction of linearizations for rational matrices. A rational matrix R(λ) is said
to be a rational basis if its rows form a basis of the rational subspace they span, i.e.,
if R(λ) has full row normal rank. The term “rational subspace” indicates that F(λ) is
the underlying field. Two rational matrices G(λ) ∈ F(λ)p×m and H(λ) ∈ F(λ)q×m are
dual rational bases if both have full row normal rank, p+q = m, and G(λ)H(λ)T = 0.
Let Ω ⊆ F be nonempty. We will say that a rational matrix R(λ) ∈ F(λ)p×m has full
row rank in Ω if, for all λ0 ∈ Ω, R(λ0) ∈ Fp×m, i.e., R(λ) is defined or bounded at λ0,
and rankR(λ0) = p. Notice that a rational matrix having full row rank in F must be
polynomial, since it has to be defined in F.

For polynomial matrices, the notion of minimal basis is also considered [16]. One
of the most useful characterizations of minimal bases (see [16, Main Theorem] or [11,
Theorem 2.2]) is that K(λ) ∈ F[λ]p×m is a minimal basis if and only if K(λ0) has
full row rank for all λ0 ∈ F and K(λ) is row reduced, i.e., its highest row degree
coefficient matrix has full row rank (see [11, Definition 2.1]). Minimal bases appear in
the definition of strong block minimal bases pencils in [11]. A strong block minimal
bases pencil is a linear polynomial matrix with the following structure

L(λ) =

[
M(λ) K2(λ)

T

K1(λ) 0

] }
p+p̂

} m̂︸ ︷︷ ︸
m+m̂

︸ ︷︷ ︸
p̂

, (5)

whereK1(λ) ∈ F[λ]m̂×(m+m̂) (respectivelyK2(λ) ∈ F[λ]p̂×(p+p̂)) is a minimal basis with
all its row degrees equal to 1 and with the row degrees of a minimal basis N1(λ) ∈
F[λ]m×(m+m̂) (respectively N2(λ) ∈ F[λ]p×(p+p̂)) dual to K1(λ) (respectively K2(λ))
all equal. In addition, given a polynomial matrix D(λ), L(λ) is said to be associated
with D(λ) if

D(λ) = N2(λ)M(λ)N1(λ)
T . (6)

In this case, L(λ) is a strong linearization of D(λ) [11, Theorem 3.3].
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3. Block full rank linearizations of rational matrices

In this section, we introduce in Theorems 3.2 and 3.10 a wide family of pencils that
give us the information about the zeros and poles of rational matrices locally, at finite
points and also at infinity. They will be called block full rank linearizations. Previously,
we introduce the notion of block full rank pencils [13], that are an extension of the
strong block minimal bases pencils in [11].

Definition 3.1. [13, Definition 5.1] A block full rank pencil is a linear polynomial
matrix over F with the following structure

L(λ) =

[
M(λ) K2(λ)

T

K1(λ) 0

]
(7)

where K1(λ) and K2(λ) are pencils with full row normal rank.

Definition 3.1 includes the cases when K1(λ) or K2(λ) are empty matrices, that is,

L(λ) =
[
M(λ) K2(λ)

T
]
, L(λ) =

[
M(λ)
K1(λ)

]
or L(λ) = M(λ).

Theorem 5.3 of [13] states that block full rank pencils can be considered as local
linearizations of rational matrices that contain information about their zeros. However,
Theorem 5.3 of [13] does not provide any information about poles.

3.1. Block full rank linearizations at finite points

In Theorem 3.2, we generalize [13, Theorem 5.3] in order to obtain local lineariza-
tions that give us not only information about the zeros but also about the poles of
the corresponding rational matrix. Note also that the linear polynomial system ma-
trix in (8) generalizes the structure of the strong block minimal bases linearizations
of rational matrices presented in [4, Theorem 5.11] from three perspectives: general
pencils B(λ) and C(λ) are allowed, while those in [4] have a very particular structure;
A(λ) can be any regular pencil, while in [4] its coefficient in λ must be invertible; and[

M(λ) K2(λ)
T

K1(λ) 0

]
is an arbitrary block full rank pencil (7), while in [4] strong block

minimal bases pencils (5) are considered. We give more details in Subsection 3.3.

Theorem 3.2. Consider a nonconstant linear polynomial system matrix

L(λ) =

 A(λ) B(λ) 0

− C(λ) M(λ) K2(λ)
T

0 K1(λ) 0

 ∈ F[λ](n+q)×(n+r) (8)

with n > 0 and state matrix A(λ). Let L(λ) :=

[
M(λ) K2(λ)

T

K1(λ) 0

]
be a block full

rank pencil, and let N1(λ) and N2(λ) be any rational bases dual to K1(λ) and K2(λ),
respectively. Let Ω be a nonempty subset of F such that Ki(λ) and Ni(λ) have full
row rank in Ω for i = 1, 2. If

rank

[
A(λ0)

−N2(λ0)C(λ0)

]
= rank

[
A(λ0) B(λ0)N1(λ0)

T
]
= n (9)
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for all λ0 ∈ Ω then L(λ) is a linearization of the rational matrix

R(λ) = N2(λ)[M(λ) + C(λ)A(λ)−1B(λ)]N1(λ)
T (10)

in Ω with state matrix A(λ).

A pencil of the form (8) satisfying the hypotheses in Theorem 3.2 is called a block
full rank linearization. In particular, L(λ) is said to be a block full rank linearization
of R(λ) in Ω with state matrix A(λ).

Remark 3.3. The extreme case of n = 0 in the linear polynomial system matrix (8) is
studied in [13, Theorem 5.3]. It states that the block full rank pencil L(λ) in Theorem
3.2 is a linearization of the rational matrix

G(λ) = N2(λ)M(λ)N1(λ)
T

in Ω with empty state matrix. In this case, L(λ) is said to be a block full rank lin-
earization of G(λ) in Ω with empty state matrix.

Proof of Theorem 3.2. In order to simplify the notation, throughout this proof we
do not specify the sizes of different identity matrices and all of them are denoted by
I. Let K̃1(λ), K̃2(λ), Ñ1(λ) and Ñ2(λ) be minimal bases of the row spaces of K1(λ),
K2(λ), N1(λ) and N2(λ), respectively. Then, by [13, Lemma 5.2], there exist rational
matrices S1(λ), S2(λ), W1(λ) and W2(λ) such that

Ki(λ) = Si(λ)K̃i(λ), and Si(λ) is invertible in Ω, for i = 1, 2,

Ni(λ) = Wi(λ)Ñi(λ), and Wi(λ) is invertible in Ω, for i = 1, 2.

Moreover, K̃1(λ), K̃2(λ), S1(λ) and S2(λ) are all matrix pencils. We consider the linear
polynomial system matrix

L̃(λ) :=

 A(λ) B(λ) 0

− C(λ) M(λ) K̃2(λ)
T

0 K̃1(λ) 0

 , (11)

which is equivalent in Ω to L(λ), since
[
I 0
0 S1(λ)

]
L̃(λ)

[
I 0
0 S2(λ)

T

]
= L(λ). For

i = 1, 2, there exist unimodular matrices

Ui(λ) =

[
K̃i(λ)

K̂i(λ)

]
, and Ui(λ)

−1 =
[
N̂i(λ)

T Ñi(λ)
T
]
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as in [11, Theorem 2.10]. Consider now the unimodular matrices

V1(λ) :=

I 0 0 0

0 N̂1(λ)
T Ñ1(λ)

T 0
0 0 0 I




I 0 0 0
0 0 I 0
0 I 0 0
0 −X(λ) 0 I

 , and

V2(λ) :=


I 0 0 0
0 0 I −Y (λ)
0 0 0 I
0 I 0 −Z(λ)



I 0 0

0 N̂2(λ) 0

0 Ñ2(λ) 0
0 0 I

 ,

where Z(λ) := N̂2(λ)M(λ)N̂1(λ)
T , X(λ) := N̂2(λ)M(λ)Ñ1(λ)

T , Y (λ) :=

Ñ2(λ)M(λ)N̂1(λ)
T . We obtain that

V2(λ)L̃(λ)V1(λ) =


A(λ) B(λ)Ñ1(λ)

T B(λ)N̂1(λ)
T 0

− Ñ2(λ)C(λ) Ñ2(λ)M(λ)Ñ1(λ)
T 0 0

0 0 I 0

−N̂2(λ)C(λ) 0 0 I

 ,

which is, in addition, unimodularly equivalent to
A(λ) B(λ)Ñ1(λ)

T 0

− Ñ2(λ)C(λ) Ñ2(λ)M(λ)Ñ1(λ)
T 0

0 0 I

 := P (λ).

By condition (9), the polynomial matrix

H(λ) :=

[
A(λ) B(λ)Ñ1(λ)

T

− Ñ2(λ)C(λ) Ñ2(λ)M(λ)Ñ1(λ)
T

]

is minimal in Ω, and its transfer function matrix is

R̃(λ) = Ñ2(λ)[M(λ) + C(λ)A(λ)−1B(λ)]Ñ1(λ)
T .

Moreover, W2(λ)R̃(λ)W1(λ)
T = R(λ), and, thus, R̃(λ) and R(λ) are equivalent in Ω.

Therefore, the zero elementary divisors of H(λ) in Ω are the zero elementary divisors
of R(λ) in Ω, and the zero elementary divisors of A(λ) in Ω are the pole elementary

divisors of R(λ) in Ω. In addition, P (λ) =

[
H(λ) 0
0 I

]
is unimodularly equivalent

to L̃(λ), which is equivalent in Ω to L(λ). Therefore, the zero elementary divisors of
L(λ) in Ω are the zero elementary divisors of R(λ) in Ω. By Theorem 2.3, L(λ) is a
linearization in Ω of R(λ), since it is immediate to check that the rank condition in
Theorem 2.3(a) is satisfied.

Remark 3.4. Notice that L(λ) being minimal in Ω is a necessary condition, but not
sufficient, in order the rank condition (9) to be satisfied.
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Under the conditions of Theorem 3.2, Theorem 2.3 guarantees that the elementary
divisors of L(λ) in Ω are the zero elementary divisors of R(λ) in Ω, and that the
elementary divisors of A(λ) in Ω are the pole elementary divisors of R(λ) in Ω.

We would like to emphasize the fact that Theorem 3.2 gives very simple conditions
to determine if a pencil is a linearization (in a target set) and, in addition, to determine
the rational matrices associated with it by considering rational bases dual to K1(λ)
and K2(λ). Notice that this “association” is not one-to-one because there are infinitely
many rational bases N1(λ) and N2(λ) dual to K1(λ) and K2(λ). Thus, Theorem 3.2
is useful, for instance, if a linearization gets perturbed and one wants to know which
rational matrix is associated with the new perturbed pencil. Then, if the perturbation
is small enough that the rank conditions in Theorem 3.2 are still satisfied and after
restoring the zero blocks of the block full rank linearization, we will get a perturbed
block full rank linearization and one can then reconstruct the new rational matrices
associated with it. This type of perturbation problems arise in backward error analyses
of rational eigenvalue problems solved via linearizations. Thus, the block full rank
linearizations may have future applications in this setting allowing more flexible and/or
more general analyses than the one in [14].

Remark 3.5. If in Theorem 3.2, K1(λ) (resp. K2(λ)) is an empty matrix, we can
take the dual rational basis N1(λ) (resp. N2(λ)) as any rational matrix invertible in
Ω of size the number of colums (resp. rows) of M(λ).

Example 3.6. Let us see a simple example that illustrates Remark 3.5. For instance,
for constructing a linearization of the rational matrix

R(λ) =
λ− 2

λ+ 2

[
−λ+ 3

λ2 − 1

1

λ(λ− 1)

]
in the set Ω := F− {−1, 0, 1},

we can considerK1(λ) andK2(λ) as empty matrices and dual rational bases N1(λ)
T :=

diag
(

1
λ2−1 ,

1
(λ−1)λ

)
and N2(λ) := 1, both invertible in Ω. Then, by Theorem 3.2, the

following linear polynomial system matrix

L(λ) :=
[

λ+ 2 −λ+ 3 1
−λ+ 2 0 0

]
:=

[
A(λ) B(λ)
−C(λ) M(λ)

]
is a linearization of R(λ) in Ω with state matrix λ+ 2, since

rank

[
λ+ 2
−λ+ 2

]
= rank

[
λ+ 2

−λ+ 3

λ2 − 1

1

λ(λ− 1)

]
= 1

for all λ ∈ Ω. Therefore, we can recover from L(λ) the pole and zero structure of R(λ)
in Ω. More precisely, −2 is the only zero of the state matrix in Ω and, thus, is the only
pole of R(λ) in Ω. Moreover, 2 is the unique zero of L(λ) in Ω and, thus, is the unique
zero of R(λ) in Ω.

In Section 5 we will see that the linearizations for rational approximations of non-
linear eigenvalue problems given in [21] are block full rank linearizations.

Remark 3.7. We notice that, although the state matrix A(λ) appears in the (1,1)
block in (8), in practice, it can be any regular submatrix of L(λ). In particular, in
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some applications [18,21] we have found pencils with the structure of block full rank
linearizations of the form

L(λ) =

 M(λ) K2(λ)
T −C(λ)

K1(λ) 0 0

B(λ) 0 A(λ)

 ∈ F[λ](q+n)×(r+n). (12)

3.2. Block full rank linearizations at infinity

We now study the counterpart of Theorem 3.2 at infinity. First, we define the notion
of degree of a rational matrix. For the scalar case, we define the degree of a rational

function r(λ) =
n(λ)

d(λ)
as

deg(r(λ)) := deg(n(λ))− deg(d(λ)). (13)

Then, for rational matrices we consider the following definition (see, for instance, [34,
p.10]).

Definition 3.8. Let R(λ) = [rij(λ)] ∈ F(λ)p×m be a rational matrix with entries

rij(λ) =
nij(λ)

dij(λ)
. The degree of R(λ) is then defined as

deg(R(λ)) := max
i=1,...,p
j=1,...,m

{deg(rij(λ))}.

Notice that this notion of degree of a rational matrix generalizes the notion of degree
of a polynomial matrix. In what follows, we call the degrees of each row of R(λ), the
row degrees of R(λ).

Lemma 3.9. Let R(λ) be a rational matrix. Then there exists an integer t such that
all the rows of revtR(λ) are defined at 0 and are all different from zero at 0 if and
only if all the row degrees of R(λ) are equal to t.

Proof. First, we consider a rational function r(λ) =
a(λ)

b(λ)
such that the numerator

a(λ) has degree n, and that the denominator b(λ) has degree m. We assume that there
exists an integer t for which revt r(0) is defined and is different from 0. We can write

revt r(λ) = λt+m−n revn a(λ)

revm b(λ)
:= λt+m−nh(λ), (14)

where 0 is not a pole nor a zero of h(λ) since revn a(0) ̸= 0 and revm b(0) ̸= 0. That
is, h(λ) is defined and is different from 0 at 0. Therefore, t + m − n = 0, so that
revt r(λ) is also defined and is different from 0 at 0. Then, t = n − m = deg(r(λ)).
Now, we assume that we have a rational row vector v(λ) = [r1(λ) · · · rs(λ)] such
that, for some integer t, revt v(0) is defined and is different from 0. Then, it must
be t = max

i=1,...,s
{deg(ri(λ))}. That is, t = deg(v(λ)). Finally, consider a rational matrix

R(λ) = [v1(λ)
T · · · vq(λ)

T ]T where vi(λ) are rational row vectors. Assume that
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there exists an integer t such that all the rows of revtR(λ) are defined at 0 and are
different from zero at 0. Then, for each row vi(λ), it must hold that t = deg(vi(λ)).

The converse is trivial taking into account equation (14) for each entry of R(λ).

Theorem 3.10. Consider a nonconstant linear polynomial system matrix

L(λ) =

 A(λ) B(λ) 0

− C(λ) M(λ) K2(λ)
T

0 K1(λ) 0

 ∈ F[λ](n+q)×(n+r) (15)

with n > 0 and state matrix A(λ). Let L(λ) :=

[
M(λ) K2(λ)

T

K1(λ) 0

]
be a block full

rank pencil and let N1(λ) (resp. N2(λ)) be any rational basis dual to K1(λ) (resp.
K2(λ)) with its row degrees all equal to an integer t1 (resp. t2). If rev1Ki(λ) and
revti Ni(λ) have full row rank at zero for i = 1, 2 and

rank

[
rev1A(0)

− revt2 N2(0) rev1C(0)

]
= rank

[
rev1A(0) rev1B(0) revt1 N1(0)

T
]
= n (16)

then L(λ) is a linearization of the rational matrix

R(λ) = N2(λ)[M(λ) + C(λ)A(λ)−1B(λ)]N1(λ)
T

at ∞ of grade 1 + t1 + t2 with state matrix A(λ).

A pencil of the form (15) satisfying the hypotheses in Theorem 3.10 is called block
full rank linearization at infinity. In particular, L(λ) is said to be a block full rank
linearization of R(λ) at ∞ of grade 1 + t1 + t2 with state matrix A(λ). In general, a
block full rank linearization is said to be strong if it is a linearization in F ∪ {∞}.

Remark 3.11. The extreme case of n = 0 in the linear polynomial system matrix
(15) is studied in [13, Theorem 5.5]. It states that the block full rank pencil L(λ) in
Theorem 3.10 is a linearization of the rational matrix

G(λ) = N2(λ)M(λ)N1(λ)
T

at ∞ of grade 1 + t1 + t2 with empty state matrix. In this case, L(λ) is said to be a
block full rank linearization of G(λ) at ∞ of grade 1+ t1+ t2 with empty state matrix.
We notice that, by Lemma 3.9, the integers t1 and t2 appearing in [13, Theorem 5.5]
are the row degrees of the dual bases N1(λ) and N2(λ), respectively.

Proof of Theorem 3.10. The result follows by applying Theorem 3.2 to rev1 L(λ)
at 0. Then rev1 L(λ) is a linearization at 0 of

revt2 N2(λ)[rev1M(λ)+rev1C(λ)(rev1A(λ))−1 rev1B(λ)] revt1 N1(λ)
T = rev1+t1+t2 R(λ).
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Example 3.12. We now consider the rational matrix

R(λ) :=

2∑
k=0

Ak
λk

(λ− ϵ)2
+ In

1

λ
∈ F(λ)n×n and the set Ω := F− {ϵ},

for some ϵ ∈ F. Then we define the following linear polynomial system matrix

L(λ) :=


−λIn 0 (λ− ϵ)In 0
0 A2 0 −In

(λ− ϵ)In 0 λA1 +A0 λIn
0 −In λIn 0

 =:

 A(λ) B(λ) 0

−C(λ) M(λ) K2(λ)
T

0 K1(λ) 0

 ,

with state matrix A(λ) = λIn. We consider the dual rational bases N1(λ) := N2(λ) :=[
λIn
λ− ϵ

In
λ− ϵ

]
, which have row degrees t1 = t2 = 0. Then R(λ) can be writ-

ten as R(λ) = N2(λ)[M(λ) + C(λ)A(λ)−1B(λ)]N1(λ)
T . Notice that revti Ni(λ) and

rev1Ki(λ) have both full row rank at 0, for i = 1, 2, and that condition (16) is satisfied
since rev1A(0) = In. Thus, by Theorem 3.10, L(λ) is a linearization of R(λ) at ∞
of grade 1 + t1 + t2 = 1 with state matrix A(λ). In addition, by Theorem 3.2, L(λ)
is a linearization of R(λ) in Ω, since Ni(λ) and Ki(λ) have both full row rank in Ω,
for i = 1, 2, and condition (9) is satisfied in Ω. Observe that, if R(λ) has symmetric
coefficients, L(λ) preserves the symmetry.

Remark 3.13. If we want a linearization as in (15) to be a linearization at all finite
and infinite points we need, besides minimality conditions, the matrices K1(λ) and
K2(λ) being minimal bases with all their row degrees equal to 1. Notice that if a
pencil K(λ) has full row rank in F and, in addition, rev1K(λ) has full row rank at 0
then K(λ) is a minimal basis. Conversely, if K(λ) is a minimal basis with all its row
degrees equal to one then K(λ) has full row rank in F and rev1K(λ) has full row rank
at 0.

3.3. Strong block minimal bases linearizations as block full rank
linearizations

By using strong block minimal bases pencils, in [4, Theorem 5.11] (strong) lineariza-
tions are constructed that contain the complete spectral information of rational ma-
trices, finite and infinite, as well as the information about their minimal bases and
indices [5], when the corresponding rational matrix R(λ) is expressed in the form
R(λ) = D(λ) + C(λIn − A)−1B, where D(λ) is the polynomial part of R(λ) with
deg(D(λ)) > 1, and C(λIn−A)−1B is a minimal state-space realization of the strictly
proper part of R(λ). We will see that such linearizations satisfy Theorem 3.2, with
Ω = F, and Theorem 3.10.

For the construction, in [4] L(λ) :=

[
M(λ) K2(λ)

T

K1(λ) 0

]
is considered to be a strong

block minimal bases pencil as in (5) associated with D(λ) with sharp degree, that
is, deg(D(λ)) = deg(N2(λ)) + deg(N1(λ)) + 1, where N1(λ) (respectively N2(λ)) is

a minimal basis dual to K1(λ) (respectively K2(λ)). Then, constant matrices K̂1 ∈
Fm×(m+m̂) and K̂2 ∈ Fp×(p+p̂) and matrices N̂1(λ)

T ∈ F[λ](m+m̂)×m̂ and N̂2(λ)
T ∈
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F[λ](p+p̂)×p̂ exist such that, for i = 1, 2,

Ui(λ) =

[
Ki(λ)

K̂i

]
and Ui(λ)

−1 =
[
N̂i(λ)

T Ni(λ)
T
]

are unimodular. Finally, the following linear polynomial matrix is constructed

L(λ) =

 X(λIn −A)Y XBK̂1 0

− K̂T
2 CY M(λ) K2(λ)

T

0 K1(λ) 0

 , (17)

where X,Y ∈ Fn×n are any nonsingular constant matrices. With these assumptions,
L(λ) is a strong linearization of R(λ) [4, Theorem 5.11].

This result follows as a corollary of Theorems 3.2 and 3.10 as well. First, since
K̂iNi(λ)

T = I, notice that R(λ) can be written as in (10):

N2(λ)[M(λ)+K̂T
2 CY Y −1(λIn−A)−1X−1XBK̂1]N1(λ)

T = D(λ)+C(λIn−A)−1B = R(λ),

and, in addition, conditions (9), with Ω = F, and (16) are satisfied. More precisely, we
have that

rank

[
X(λIn −A)Y

−N2(λ)K̂
T
2 CY

]
= rank

[
X(λIn −A)Y

−CY

]
= n, and

rank
[
X(λIn −A)Y XBK̂1N1(λ)

T
]
= rank

[
X(λIn −A)Y XB

]
= n

for all λ ∈ F, since X and Y are nonsingular, and the realization C(λIn − A)−1B
is minimal. Therefore, condition (9) is satisfied and, thus, L(λ) is a linearization of
R(λ) in F by Theorem 3.2. Moreover, we have that condition (16) is satisfied since
rev1(λIn−A) evaluated at 0 is just In. Then, by Theorem 3.10, L(λ) is a linearization
of R(λ) at infinity of grade deg(N2(λ)) + deg(N1(λ)) + 1 = deg(D(λ)).

4. Recovery of eigenvectors

In this section, we show how to recover right and left eigenvectors of a regular rational
matrix R(λ), associated with the eigenvalues in a set Ω, from those of a block full rank
linearization of R(λ) in Ω. For that, in Theorem 4.2 we study the relation between
their right and left nullspaces. We will use the following Lemma 4.1.

Lemma 4.1. Let K(λ) be a rational basis and let N(λ) be any rational basis dual to
K(λ). Let Ω be a nonempty subset of F such that K(λ) and N(λ) have full row rank
in Ω. Then there exist rational matrices of the form

V (λ) =

[
K(λ)
K̄(λ)

]
and V (λ)−1 =

[
N̄(λ)T N(λ)T

]
(18)

that are invertible in Ω.
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Proof. By [13, Lemma 5.2], there exist rational matrices S(λ) and W (λ), both in-

vertible in Ω, such that K(λ) = S(λ)K̃(λ) and N(λ) = W (λ)Ñ(λ), where K̃(λ) and

Ñ(λ) are minimal bases of the row spaces of K(λ) and N(λ), respectively. Then, by
[11, Theorem 2.10], there exist unimodular matrices of the form

U(λ) =

[
K̃(λ)

K̂(λ)

]
and U(λ)−1 =

[
N̂(λ)T Ñ(λ)T

]
.

Then we consider the rational matrix

V (λ) :=

[
S(λ) 0
0 W (λ)−T

]
U(λ) =

[
K(λ)
K̄(λ)

]
,

with K̄(λ) := W (λ)−T K̂(λ). We have that V (λ) is invertible in Ω since S(λ) and
W (λ) are invertible in Ω and U(λ) is unimodular. Finally, we note that V (λ)−1 =

U(λ)−1

[
S(λ)−1 0

0 W (λ)T

]
=
[
N̂(λ)TS(λ)−1 Ñ(λ)TW (λ)T

]
=
[
N̄(λ)T N(λ)T

]
,

with N̄(λ)T := N̂(λ)TS(λ)−1.

Let us now consider the rational bases K1(λ) and K2(λ) of the block full rank
linearization in Theorem 3.2 and their dual rational bases N1(λ) and N2(λ). It then
follows that, since they have full row rank in a nonempty set Ω, there exist rational
matrices of the form

Vi(λ) =

[
Ki(λ)
K̄i(λ)

]
and Vi(λ)

−1 =
[
N̄i(λ)

T Ni(λ)
T
]

(19)

that are invertible in Ω, for i = 1, 2, by Lemma 4.1. We use these matrices in the
following Theorem 4.2.

Theorem 4.2. Let

L(λ) =

 A(λ) B(λ) 0

− C(λ) M(λ) K2(λ)
T

0 K1(λ) 0

 ∈ F[λ](n+q)×(n+r)

be a block full rank linearization in a nonempty set Ω of the rational matrix

R(λ) = N2(λ)[M(λ) + C(λ)A(λ)−1B(λ)]N1(λ)
T ,

as in Theorem 3.2. Consider the rational matrices N̄1(λ) and N̄2(λ) in (19) and denote
S(λ) := M(λ) + C(λ)A(λ)−1B(λ). Let λ0 ∈ Ω such that detA(λ0) ̸= 0. Then, the
following statements hold:

(a) The linear map

Er : Nr(R(λ0)) −→ Nr(L(λ0))

x 7−→

−A(λ0)
−1B(λ0)N1(λ0)

T

N1(λ0)
T

−N̄2(λ0)S(λ0)N1(λ0)
T

x
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is a bijection between the right nullspaces over F of R(λ0) and L(λ0).
(b) The linear map

Eℓ : Nℓ(R(λ0)) −→ Nℓ(L(λ0))

yT 7−→ yT
[
N2(λ0)C(λ0)A(λ0)

−1 N2(λ0) −N2(λ0)S(λ0)N̄1(λ0)
T
]

is a bijection between the left nullspaces over F of R(λ0) and L(λ0).

Proof. We only prove (a) since (b) is analogous. We will see that Er is a composition
of maps, Er = Gr ◦Hr, where Gr and Hr are linear bijections. For that, we consider
the transfer function of L(λ). That is, the rational matrix

R̂(λ) =

[
S(λ) K2(λ)

T

K1(λ) 0

]
∈ F(λ)q×r. (20)

By Lemma 2.1, the linear map

Gr : Nr(R̂(λ0)) −→ Nr(L(λ0))

x̂ 7−→
[
−A(λ0)

−1
[
B(λ0) 0

]
Ir

]
x̂

is a bijection between the right nullspaces of R̂(λ0) and L(λ0), since R̂(λ) is the transfer
function of L(λ) and detA(λ0) ̸= 0. Now, we consider the linear map

Hr : Nr(R(λ0)) −→ Nr(R̂(λ0))

x 7−→
[

N1(λ0)
T

−N̄2(λ0)S(λ0)N1(λ0)
T

]
x.

To see that Hr is well defined, we consider the rational matrix V2(λ)
−1 =[

N̄2(λ)
T N2(λ)

T
]
in (19). Then, we have that

[
V2(λ)

−T 0
0 I

] [
S(λ) K2(λ)

T

K1(λ) 0

] [
N1(λ)

T

−N̄2(λ)S(λ)N1(λ)
T

]
=

 0
R(λ)
0

 . (21)

By (21), Hr is well defined since the matrix

[
V2(λ)

−T 0
0 I

]
is invertible in Ω, by Lemma

4.1. In addition, since L(λ) is a linearization of R(λ) in Ω, we have that R̂(λ) and
diag(R(λ), Is) are equivalent in Ω for some s > 0 (see Definition 2.2). Therefore,

dimNr(R(λ0)) = dimNr(R̂(λ0)). Thus, to see that Hr is a bijection we only have

to prove that Hr is injective. Assume that

[
N1(λ0)

T

−N̄2(λ0)S(λ0)N1(λ0)
T

]
x = 0 for some

x ∈ Nr(R(λ0)). In particular, N1(λ0)
Tx = 0. Since N1(λ0)

T has full column rank,
x = 0. Therefore, Hr is a bijection. Finally, note that Er = Gr ◦Hr.

Remark 4.3. We recall that, since the linear maps Er and Eℓ are bijections, one
can recover a basis of the right (resp. left) nullspace of R(λ0) from a basis of the
right (resp. left) nullspace of L(λ0), and conversely. For instance if {xi}ti=1 is a basis
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of Nr(R(λ0)) then {

−A(λ0)
−1B(λ0)N1(λ0)

T

N1(λ0)
T

−N̄2(λ0)S(λ0)N1(λ0)
T

xi}ti=1 is a basis of Nr(L(λ0)). And,

given a basis {yi}ti=1 of Nr(L(λ0)), we can recover a basis of Nr(R(λ0)) taking into

account that the elements will be of the form yi =

−A(λ0)
−1B(λ0)N1(λ0)

T

N1(λ0)
T

−N̄2(λ0)S(λ0)N1(λ0)
T

xi for

some basis {xi}ti=1 of Nr(R(λ0)). Then, to recover {xi}ti=1 we can use, in general, that
K̄1(λ0)N1(λ0)

Txi = xi. However, in practice, it can usually be recovered from the
structure of N1(λ0)

Txi, without computing K̄1(λ0), since N1(λ0)
T has often a simple

block structure including an identity block or a multiple of an identity block.

5. Block full rank linearizations for “the automatic rational
approximations of NLEPs” in [21]

In this section we study the precise properties of the linearizations for rational approxi-
mations of nonlinear eigenvalue problems (NLEPs) in [21]. We will see that they satisfy
Theorem 3.2 in a particular subset of C, where C is the field of complex numbers, and
in the whole field C under mild conditions.

We start by defining a NLEP [17]. Given a non-empty open set Ω ⊆ C and an
analytic matrix-valued function

F : Ω → Cn×n

λ 7→ F (λ),

the NLEP consists of computing scalars λ0 ∈ Ω (eigenvalues) and nonzero vectors
v ∈ Cn (eigenvectors) such that

F (λ0)v = 0,

under the regularity assumption det(F (λ)) ̸≡ 0. Since a direct solution of NLEPs is
usually not possible, they are often solved numerically via rational approximation and
by solving the corresponding REP with linearizations adapted to the structure of the
obtained rational matrix. An approach to obtain an automatic rational approximation
for the NLEP in a region Ω is given in [21]. The authors of [21] consider the n × n
nonlinear matrix F (λ) of the NLEP written in the form

F (λ) = Q(λ) +

s∑
i=1

(Ci − λDi)gi(λ) (22)

with Q(λ) a polynomial matrix, Ci and Di n×n constant matrices, and gi(λ) nonlinear
scalar functions. Then, a CORK linearization of Q(λ) of those introduced in [30] is
considered, and the functions gi(λ) are approximated by rational functions employing
the adaptive Antoulas–Anderson (AAA) algorithm [26], or its set-valued generalization
presented in [21]. We recall the definition of CORK linearization as given in [21].
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Definition 5.1. Let G(λ) be an n× n rational matrix written as

G(λ) =

k−1∑
i=0

(Ai − λBi)fi(λ), (23)

where fi(λ) are scalar rational functions with f0(λ) ≡ 1, and Ai, Bi are n×n constant
matrices. Define

f(λ) := [f0(λ) · · · fk−1(λ)]
T ,

and assume that the rational functions fi(λ) satisfy a linear relation

(X − λY )f(λ) = 0, (24)

where rank(X −λY ) = k− 1 for all λ ∈ C, and X −λY has size (k− 1)× k. Then the
matrix pencil

LG(λ) =

[
A0 − λB0 · · · Ak−1 − λBk−1

(X − λY )⊗ In

]

is called a CORK linearization of G(λ).

If the vector f(λ) is polynomial then G(λ) in (23) is a polynomial matrix and LG(λ)
is a linearization of G(λ) in C, in particular, LG(λ) is a block full rank linearization of
G(λ) in C with empty state matrix. However, if f(λ) is a rational vector then LG(λ) is
not, in general, a linearization in the sense of [4], that is, in C but it is a linearization in
a local sense [13]. More precisely, it is a block full rank linearization in all the subsets
where the rational vector f(λ) is defined, i.e., has no poles. Such result is stated in
the next theorem.

Theorem 5.2. Let Ω be a nonempty subset of C where the rational vector f(λ) in
(24) is defined. Then a CORK linearization LG(λ) of a rational matrix G(λ) as in (23)
is a block full rank linearizacion of G(λ) in Ω with empty state matrix.

Proof. Notice that, by takingM(λ) :=
[
A0 − λB0 · · · Ak−1 − λBk−1

]
, K1(λ) :=

(X−λY )⊗In, and K2(λ) empty, LG(λ) is a block full rank pencil. Moreover, f(λ)T is
a rational basis dual to X −λY. Then we apply Remark 3.3 with N1(λ) := f(λ)T ⊗ In
and N2(λ) = In.

Once CORK linearizations and some of their properties have been revised, we recall
the AAA approximation of scalar functions. A given nonlinear function g : C −→ C is
approximated in [21] on a set Σ ⊂ C by a rational function r(λ) in barycentric form,
that is,

r(λ) =

m∑
j=1

g(zj)wj

λ− zj

/ m∑
j=1

wj

λ− zj
, (25)

where z1, . . . , zm are distinct support points and w1, . . . , wm are nonzero weights, that
can be automatically chosen as explained in [26]. In this case, lim

λ→zj
r(λ) = g(zj). It is
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shown in [21, Proposition 2.1] that (25) can be written as

r(λ) = [g(z1)w1 · · · g(zm)wm]


w1 w2 · · · wm−1 wm

λ− z1 z2 − λ

λ− z2
. . .

. . . zm−1 − λ
λ− zm−1 zm − λ



−1 
1
0
...
0

 ,

where it is easy to check that the inverted pencil is regular whenever z1, . . . , zm are
distinct and w1, . . . , wm are nonzero. That is, r(λ) can be written as a generalized
state-space realization. Then, the pencil

P (λ) :=



w1 w2 · · · wm−1 wm −1
λ− z1 z2 − λ 0

λ− z2
. . .

...
. . . zm−1 − λ

...
λ− zm−1 zm − λ 0

g(z1)w1 g(z2)w2 · · · g(zm−1)wm−1 g(zm)wm 0


:=

[
E − λF −b

aT 0

]

(26)
is a linear polynomial system matrix of r(λ) (i.e., with transfer function r(λ)) by
considering E−λF as state matrix. In order to know what pole and zero information of
r(λ) we can obtain from this realization, we consider in Proposition 5.4 the polynomial
system matrix P (λ) and we study its minimality. First, we prove Lemma 5.3. In both
Proposition 5.4 and Lemma 5.3, we consider r(λ) written as the following quotient of
polynomials

r(λ) :=
p(λ)

q(λ)
, (27)

where

p(λ) :=

 m∏
j=1

(λ− zj)

 m∑
j=1

g(zj)wj

λ− zj

 and q(λ) :=

 m∏
j=1

(λ− zj)

 m∑
j=1

wj

λ− zj

 .

Note that the representation of the rational function (27) might not be irreducible.
We will see that the irreducibility of (27) is the key property for the minimality of
P (λ).

Lemma 5.3. The pencil E − λF in (26) is a strong block minimal bases pencil asso-
ciated with the polynomial q(λ) in (27).

Proof. We set

E − λF =


w1 w2 · · · wm−1 wm

λ− z1 z2 − λ

λ− z2
. . .
. . . zm−1 − λ

λ− zm−1 zm − λ

 =:

[
M

K(λ)

]
. (28)
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Since z1, . . . , zm are distinct, K(λ0) has full row rank for all λ0 ∈ C. In addition, K(λ)
is row reduced because its highest row degree coefficient matrix

Khr =


1 −1 0

1 −1 0
. . .

. . .
. . .

1 −1 0
1 −1


has full row rank. We conclude that K(λ) is a minimal basis. Let us denote

N(λ) :=

m∏
j=1

(λ− zj)

[
1

λ− z1
· · · 1

λ− zm

]
. (29)

Then, it is not difficult to prove that N(λ) is also a minimal basis, taking again into

account that z1, . . . , zm are distinct. Moreover, since K(λ)N(λ)T = 0 and

[
K(λ)
N(λ)

]
is

a square matrix, we have that K(λ) and N(λ) are dual minimal bases. In addition, all
the row degrees of K(λ) are equal to 1 and the row degree of N(λ) is equal to m− 1.
Hence, E − λF is a strong block minimal bases pencil associated with the polynomial
matrix MN(λ)T = q(λ).

E − λF being a strong block minimal bases pencil associated with the polynomial
q(λ) implies that E−λF is a (strong) linearization of q(λ) and, in particular, that the
determinant of E − λF is equal to q(λ) up to a scalar multiple. This fact is used to
prove the following result.

Proposition 5.4. Consider the rational function r(λ) in (27) and its linear polynomial
system matrix P (λ) in (26). Then, P (λ) is not minimal at λ0 ∈ C if and only if λ0 is
a zero of both polynomials p(λ) and q(λ).

Proof. Consider P (λ) =

[
E − λF −b

aT 0

]
as in (26). By Lemma 5.3,

det(E − λF ) = αq(λ) with α ̸= 0. (30)

In addition, since the Schur complement of E − λF in P (λ) is r(λ), we have that

det(P (λ)) = det(E − λF )r(λ) = αq(λ)
p(λ)

q(λ)
= αp(λ). (31)

Now, assume that λ0 is a zero of both polynomials p(λ) and q(λ). That is, we can
cancel out at least one factor of the form (λ−λ0) in both numerator and denominator
of r(λ). Then, the algebraic multiplicity of λ0 as a zero of r(λ) is not the same as the
algebraic multiplicity of λ0 as a zero of P (λ). Therefore, P (λ) is not minimal at λ0.

For the converse, assume that P (λ) is not minimal at λ0. Then, rank

[
E − λ0F

aT

]
< m,
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since rank
[
E − λ0F −b

]
= m. Actually, rank

[
E − λ0F

aT

]
= m−1, as the sub-matrix

K(λ0) =


λ0 − z1 z2 − λ0

λ0 − z2
. . .
. . . zm−1 − λ0

λ0 − zm−1 zm − λ0


contains a non-zero minor of order m − 1 for all λ0 ∈ C, where K(λ) is the matrix
appearing in (28). Therefore, by using the notation Nr(·) for the right nullspace,

dimNr

([
E − λ0F

aT

])
= 1 and dimNr(K(λ0)) = 1. Then, Nr

([
E − λ0F

aT

])
=

Nr(K(λ0)), since Nr

([
E − λ0F

aT

])
⊆ Nr(K(λ0)) and both have the same dimension.

Actually, Nr(K(λ0)) = Span{N(λ0)
T }, where N(λ) is the polynomial matrix in (29).

Hence,

[
E − λ0F

aT

]
N(λ0)

T = 0 and, therefore,
[
w1 w2 · · · wm

]
N(λ0)

T = 0 and[
g(z1)w1 g(z2)w2 · · · g(zm)wm

]
N(λ0)

T = 0. That is, λ0 is a root of both q(λ)
and p(λ).

With these tools at hand, we go back to the original NLEP. Let F (λ) be the nonlinear
matrix function in (22). Then, each function gi(λ) is approximated in [21] on a set
Σ ⊂ C by a rational function ri(λ) as in (25), i.e.,

gi(λ) ≈ ri(λ) =

ℓi∑
j=1

gi(z
i
j)w

i
j

λ− zij

/ ℓi∑
j=1

wi
j

λ− zij
,

where ℓi is the number of support points zij and weights wi
j for each i = 1, . . . , s.

For that, one can use the AAA algorithm on each function gi(λ) separately [26], or
one can use the set-valued AAA algorithm in [21, Section 2.2], so that the rational
approximants ri(λ) are all constructed simultaneously and sharing the same support
points zij := zj and weights wi

j := wj . By using any of the two approaches above, the
following approximation of F (λ) on Σ is obtained:

F (λ) ≈ R(λ) := Q(λ) +

s∑
i=1

(Ci − λDi)ri(λ). (32)

Next, the polynomial matrix Q(λ) is expressed in the form of (23), i.e., Q(λ) :=
k−1∑
i=0

(Ai−λBi)fi(λ), assuming the functions fi(λ) are polynomials, with f0(λ) = 1, and

each ri(λ) is written in generalized state-space form, that is,

R(λ) =

k−1∑
i=0

(Ai − λBi)fi(λ) +

s∑
i=1

(Ci − λDi)a
T
i (Ei − λFi)

−1bi, (33)
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with ai =
[
gi(z

i
1)w

i
1 · · · gi(z

i
ℓi
)wi

ℓi

]T ∈ Cℓi , bi = [1 0 · · · 0]T ∈ Cℓi and ℓi × ℓi
matrices

Ei =



wi
1 wi

2 · · · wi
ℓi−1 wi

ℓi
−zi1 zi2

−zi2
. . .

. . . ziℓi−1

−ziℓi−1 ziℓi

 and Fi =


0 0 · · · 0 0
−1 1

−1
. . .

. . . 1
−1 1

 .

The linearization constructed in [21] for R(λ) is the following.

Definition 5.5. [21, Definition 3.2](CORK linearization for AAA rational approxi-
mation) Let R(λ) be a rational matrix as in (33). Consider b := [bT1 · · · bTs ]

T and
E − λF := diag(E1 − λF1, . . . , Es − λFs). Then a CORK linearization for R(λ) is

LR(λ) =

 A0 − λB0 · · · Ak−1 − λBk−1 aT1 ⊗ (C1 − λD1) · · · aTs ⊗ (Cs − λDs)

(X − λY )⊗ In 0

−b⊗ In 0 (E − λF )⊗ In



where

[
A0 − λB0 · · · Ak−1 − λBk−1

(X − λY )⊗ In

]
is any CORK linearization of Q(λ).

In particular, for the set-valued AAA approximation, all the matrices Ei − λFi in
(33) are the same for all i, as well as all the vectors bi. Then, in [21, Remark 3.3] the
following CORK linearization for AAA rational approximation is considered

Lsv
R (λ) =


A0 − λB0 · · · Ak−1 − λBk−1

s∑
i=1

aTi ⊗ (Ci − λDi)

(X − λY )⊗ In 0

−b1 ⊗ In 0 (E1 − λF1)⊗ In

 (34)

Notice that Lsv
R (λ) has size (kn+ ℓ1n)× (kn+ ℓ1n) whereas LR(λ) in Definition 5.5

has size (kn+
∑s

i=1 ℓin)× (kn+
∑s

i=1 ℓin).
By using Theorem 3.2, we study in Theorem 5.6 the structure of LR(λ) and Lsv

R (λ)
as linearizations of R(λ).

Theorem 5.6. Let R(λ) be a rational matrix as in (33), and let LR(λ) (resp., Lsv
R (λ))

be the matrix pencil in Definition 5.5 (resp., in (34)). Let Ω ⊆ C be nonempty. If LR(λ)
(resp., Lsv

R (λ)), viewed as a polynomial system matrix with state matrix (E−λF )⊗In
(resp., (E1−λF1)⊗In), is minimal in Ω then LR(λ) (resp., Lsv

R (λ)) is a block full rank
linearization of R(λ) in Ω with state matrix (E − λF )⊗ In (resp., (E1 − λF1)⊗ In).

Proof. We only prove the result for LR(λ), because the proof for Lsv
R (λ) is similar.

Set M(λ) :=
[
A0 − λB0 · · · Ak−1 − λBk−1

]
, C(λ) := −[aT1 ⊗ (C1 − λD1) · · ·

aTs ⊗ (Cs−λDs)], B := [−b⊗ In 0], A(λ) := (E−λF )⊗ In, K1(λ) := (X−λY )⊗ In,
N1(λ) := (f(λ)⊗In)

T , and K2(λ) empty. Observe that K1(λ) and N1(λ) have full row
rank in C. LR(λ) being minimal in Ω implies that condition (9) is satisfied in Ω since
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BN1(λ)
T = −b⊗In because f0(λ) = 1. Then, by Theorem 3.2, LR(λ) is a linearization

of [M(λ) + C(λ)A(λ)−1B](f(λ)⊗ In) = R(λ) in Ω with state matrix A(λ).

Remark 5.7. Theorem 5.6 also holds if f(λ) is rational but, in such a case, we need
the extra hypothesis of f(λ) being defined in Ω.

According to Theorem 5.6, we need minimality on LR(λ) (resp., Lsv
R (λ)) to be a lin-

earization of the rational matrix R(λ). In the following Theorem 5.8, we give sufficient
mild conditions for LR(λ) to be minimal in C in the case the rational approximants
ri(λ) do not share the same support points and weights. That is, when the functions
gi(λ) are approximated employing the adaptive Antoulas–Anderson (AAA) algorithm
in [26] separately. For the set-valued AAA approximation [21], i.e., the rational ap-
proximants ri(λ) sharing the same support points and weights, the authors in [21]
consider the pencil in (34), and we state minimality conditions for it in Theorem 5.9.
Recall that the pencils Ei − λFi are regular.

Theorem 5.8. Assume that, for i = 1, . . . , s, the rational functions ri(λ) in (32) are
represented as in (27) and that this representation is irreducible. Let LR(λ) be the
matrix pencil in Definition 5.5. If the pencils Ci − λDi are regular for i = 1, . . . , s and
the following conditions hold

(a) Ci−λDi and Ei−λFi have no finite eigenvalues in common for i = 1, . . . , s, and
(b) Ei − λFi and Ej − λFj with i ̸= j have no finite eigenvalues in common for

i, j = 1, . . . , s,

then LR(λ), viewed as a polynomial system matrix with state matrix (E − λF )⊗ In,
is minimal in C.

Proof. Assume first that s = 1. Then notice that LR(λ) is minimal in C if and only
if the pencil

S(λ) :=

[
0 aT1 ⊗ (C1 − λD1)

− b1 ⊗ In (E1 − λF1)⊗ In

]
,

considered as a polynomial system matrix with state matrix (E1 − λF1)⊗ In, is mini-
mal in C. Since r1(λ) is irreducible, we have, by Proposition 5.4, that the submatrix[
−b1 ⊗ In (E1 − λF1)⊗ In

]
has full row rank for all λ ∈ C. Then we only have to

prove that the submatrix H(λ) :=

[
aT1 ⊗ (C1 − λD1)

(E1 − λF1)⊗ In

]
has full column rank for all

λ ∈ C. By contradiction, assume that H(λ0) has no full column rank for some λ0 ∈ C.
Notice that, in such a case, λ0 must be an eigenvalue of E1 − λF1 since, otherwise,
H(λ0) would have full column rank. In addition, there exists a nonzero vector x such
that H(λ0)x = 0. Now we write

H(λ0)x =

[
C1 − λ0D1 0

0 Iℓ1n

][
aT1 ⊗ In

(E1 − λ0F1)⊗ In

]
x = 0, (35)

and define the vector

[
y1
y2

]
:=

[
aT1 ⊗ In

(E1 − λ0F1)⊗ In

]
x, which is nonzero since x ̸=
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0 and the matrix

[
aT1 ⊗ In

(E1 − λ0F1)⊗ In

]
has full column rank by Proposition 5.4.

Moreover, by (35), we have that y2 = 0 and, thus, (C1 − λ0D1)y1 = 0 with y1 ̸= 0.
Therefore, λ0 is an eigenvalue of C1 − λD1, which is a contradiction by condition (a).
Finally, if s > 1 we have to take into account condition (b) and the result follows.

For the set-valued AAA approximation, the minimality conditions we provide on
Lsv
R (λ) are milder and are necessary and sufficient. We state them in the following

Theorem 5.9. This case allows a more complete simple analysis because the denomi-
nators of the rational functions ri(λ), for i = 1, . . . , s, when they are represented as in
(27), are all equal to the same polynomial q(λ). Note also that the roots of q(λ) are
the finite eigenvalues of E1−λF1 according to Lemma 5.3. In Theorem 5.9, we assume
that q(λ) is not constant, since otherwise R(λ) in (32) is a polynomial matrix.

Theorem 5.9. Assume that, for i = 1, . . . , s, the rational functions ri(λ) in (32)
share the same support points z1, . . . , zℓ1 , which are distinct, and the same nonzero
weights w1, . . . , wℓ1 , and that are represented as in (27), i.e., ri(λ) = pi(λ)/q(λ), where
the denominators are equal for all i. Assume, in addition, that q(λ) is not a constant
polynomial. Let Lsv

R (λ) be the matrix pencil in (34). Then, Lsv
R (λ), viewed as a poly-

nomial system matrix with state matrix (E1 − λF1)⊗ In, is minimal in C if and only
if the polynomial matrix P sv(λ) =

∑s
i=1 pi(λ) (Ci − λDi) is regular and has no finite

eigenvalues in common with the pencil E1 − λF1.

Proof. The proof shares several arguments with that of Proposition 5.4. Observe first
that Lsv

R (λ) is minimal in C if and only if the pencil

Ssv(λ) :=

 0

s∑
i=1

aTi ⊗ (Ci − λDi)

− b1 ⊗ In (E1 − λF1)⊗ In

 ,

considered as a polynomial system matrix with state matrix (E1 − λF1)⊗ In, is min-
imal in C. Thus, we will prove the result for Ssv(λ), which has as transfer function
(1/q(λ))P sv(λ) as a consequence of (26).

Assume that Ssv(λ) is minimal in C. Then, the finite poles of (1/q(λ))P sv(λ)
are exactly the finite zeros (eigenvalues) of (E1 − λF1) ⊗ In, with the same
partial multiplicities. Since det((E1 − λF1) ⊗ In) = β q(λ)n with β a nonzero
number (this follows from Lemma 5.3 and [19, p. 249]), the product of the
denominators of the nonzero entries of the finite Smith-McMillan form of
(1/q(λ))P sv(λ) is a nonzero scalar multiple of q(λ)n. Such Smith-McMillan form
is a scalar multiple of diag(i1(λ)/q(λ), . . . , ir(λ)/q(λ), 0, . . . , 0) ∈ F(λ)n×n, where
diag(i1(λ), . . . , ir(λ), 0, . . . , 0) ∈ F[λ]n×n is the Smith form of the polynomial ma-
trix P sv(λ). Thus, r = n, i.e., P sv(λ) is regular, and ij(λ) and q(λ) have no roots in
common for j = 1, . . . , n.

Next, we prove the converse. Assume that the polynomial matrix P sv(λ) is reg-
ular and has no finite eigenvalues in common with the pencil E1 − λF1. Note that[
−b1 ⊗ In (E1 − λ0F1)⊗ In

]
has full row rank for all λ0 ∈ C, as we saw in the
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proof of Proposition 5.4. Thus, it only remains to prove that

Hsv
0 :=


s∑

i=1

aTi ⊗ (Ci − λ0Di)

(E1 − λ0F1)⊗ In


has full column rank for all λ0 ∈ C. According to [19, Corollary 4.3.10], Hsv

0 is permu-
tationally equivalent to

Xsv
0 :=


s∑

i=1

(Ci − λ0Di)⊗ aTi

In ⊗ (E1 − λ0F1)

 ,

and we have to prove that Xsv
0 has full column rank for all λ0 ∈ C. This is obviously

true if λ0 is not an eigenvalue of E1−λF1. Therefore, we assume that λ0 is an eigenvalue
of E1 − λF1 in the rest of the proof, which implies by hypothesis that λ0 is not
an eigenvalue of P sv(λ). Let y ∈ Cnℓ1 be such that Xsv

0 y = 0 and partition y =
[yT1 yT2 · · · yTn ]T with yi ∈ Cℓ1 for i = 1, . . . , n. Thus,(

s∑
i=1

(Ci − λ0Di)⊗ aTi

)
y = 0 and (E1 − λ0F1)yj = 0, j = 1, . . . , n. (36)

An argument similar to that in the proof of Proposition 5.4 establishes that Nr(E1 −
λ0F1) = Nr(K(λ0)) = Span{N(λ0)

T }, where N(λ) is the polynomial vector in (29) for
z1, . . . , zℓ1 and K(λ) is the pencil in (28) corresponding to E1−λF1. This implies that
yj = αj N(λ0)

T , with αj ∈ C, and that y = v ⊗N(λ0)
T , with v = [α1, . . . , αn]

T ∈ Cn.
Using this expression for y in the first equation of (36), one gets

s∑
i=1

((Ci − λ0Di)v)⊗ (aTi N(λ0)
T ) =

(
s∑

i=1

pi(λ0) (Ci − λ0Di)

)
v = P sv(λ0) v = 0.

This implies that v = 0, because λ0 is not an eigenvalue of the regular polynomial
matrix P sv(λ), and y = 0. Therefore, Xsv

0 has full column rank and Hsv
0 has also full

column rank.

Remark 5.10. It is clear that if we consider the set Ω := {λ ∈ C : E −
λF is invertible}, then LR(λ) is minimal in Ω and, by Theorem 5.6, LR(λ) is a block
full rank linearization of R(λ) in Ω, with state matrix (E−λF )⊗In. However, in such
a case we do not obtain any information about the poles of R(λ) since they do not
belong to Ω. For this particular choice of the set Ω, the fact that LR(λ) is a lineariza-
tion of R(λ) in Ω can also be proved by considering LR(λ) as a block full rank pencil
of the form

LR(λ) :=

[
M(λ)
K1(λ)

]
,
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with

M(λ) := [ A0 − λB0 · · · Ak−1 − λBk−1 aT1 ⊗ (C1 − λD1) · · · aTs ⊗ (Cs − λDs) ] ,

and by applying Remark 3.3. For that, write R(λ) as

R(λ) =

k−1∑
i=0

(Ai − λBi)(fi(λ)⊗ In) +

s∑
i=1

[aTi ⊗ (Ci − λDi)](Ri(λ)⊗ In),

with Ri(λ) := (Ei − λFi)
−1bi, and consider the dual rational basis of K1(λ)

N1(λ) := [f0(λ) · · · fk−1(λ) | R1(λ)
T · · · Rs(λ)

T ]⊗ In.

Then, LR(λ) is a linearization of R(λ) in Ω with empty state matrix. On the other
hand, if LR(λ) (considering the partition with state matrix (E−λF )⊗In) were minimal
at those λ0 ∈ C such that E − λ0F is singular then LR(λ) would be a linearization
of R(λ) in C with state matrix (E − λF ) ⊗ In. That means that the zeros of LR(λ)
would be the zeros of R(λ), and the zeros of (E − λF ) ⊗ In would be the poles of
R(λ), together with their partial multiplicities. This happens, for instance, under the
conditions of Theorem 5.8.

Comments analogous to those in Remark 5.10 hold for Lsv
R (λ) in (34). They are

omitted for brevity.

Remark 5.11. In Remark 5.10, we consider LR(λ) from two different points of view:

as a block full rank pencil,

[
M(λ)
K1(λ)

]
, and as a polynomial system matrix with state

matrix (E − λF ) ⊗ In. In the former case, LR(λ) is not in general a linearization
at infinity of R(λ) since rev1K1(λ) does not have full row rank at 0. In particular,
[13, Theorem 5.5] can not be applied and there is not always an integer g such that
rev1 LR(λ) is equivalent at 0 to diag(revg R(λ), Ik(n−1)+

∑s
i=1 ℓin

). It is not difficult to
construct examples where such a g does not exist. In the latter case, LR(λ) is not a
linearization at infinity since rev1 LR(λ) is not minimal at 0. Both cases are due to
the fact that the matrix rev1(E − λF ) does not have full row rank at zero since F is
singular. Analogous remarks hold for Lsv

R (λ) in (34).

5.1. Low-rank structure

Low-rank structures are exploited in [21] for constructing smaller linearizations that
allow more efficient computations. We consider this scenario in this subsection, where
for the sake of brevity, we study only the case in which each function gi(λ) is ap-
proximated via an independent application of the AAA algorithm. More precisely, a
trimmed linearization is constructed in [21] if the matrix coefficients Ci − λDi in (22)
have low rank. For this purpose, write

Ci − λDi = (C̃i − λD̃i)Z̃
∗
i , (37)

with C̃i, D̃i, Z̃i ∈ Cn×ki , and Z̃∗
i Z̃i = Iki

. In several applied problems this type of
structure appears with ki ≪ n [18,21]. By using the expression (37) for the matrix



28

coefficients, the matrix R(λ) in (33) can be written as:

R(λ) =

k−1∑
i=0

(Ai − λBi)fi(λ) +

s∑
i=1

(C̃i − λD̃i)Z̃
∗
i a

T
i (Ei − λFi)

−1bi

=

k−1∑
i=0

(Ai − λBi)(fi(λ)⊗ In) +

s∑
i=1

[aTi ⊗ (C̃i − λD̃i)]((Ei − λFi)
−1bi ⊗ Iki

)Z̃∗
i .

(38)

Then, the trimmed linearization L̃R(λ) for R(λ) constructed in [21] is the following.

Definition 5.12. [21](Trimmed CORK linearization for AAA rational approxima-
tion) Let R(λ) be a rational matrix as in (38). Consider the matrices

Z :=
[
−Z̃1(b

∗
1 ⊗ Ik1

) · · · −Z̃s(b
∗
s ⊗ Iks

)
]
,

E := diag(E1 ⊗ Ik1
, . . . , Es ⊗ Iks

), and

F := diag(F1 ⊗ Ik1
, . . . , Fs ⊗ Iks

).

Then a trimmed CORK linearization for R(λ) is

L̃R(λ) =

 A0 − λB0 · · · Ak−1 − λBk−1 aT1 ⊗ (C̃1 − λD̃1) · · · aTs ⊗ (C̃s − λD̃s)

(X − λY )⊗ In 0

Z∗ 0 E − λF

 ,

where

[
A0 − λB0 · · · Ak−1 − λBk−1

(X − λY )⊗ In

]
is any CORK linearization of Q(λ).

Notice that the linearization LR(λ) in Definition 5.5 has size (kn +
∑s

i=1 ℓin) ×
(kn +

∑s
i=1 ℓin) whereas the trimmed pencil L̃R(λ) in Definition 5.12 has size (kn +∑s

i=1 ℓiki)× (kn+
∑s

i=1 ℓiki) with ki ≪ n in several applications.
Analogous to what we did in Theorem 5.6, we study in Theorem 5.13 the structure

of L̃R(λ) as linearization of R(λ). The proof is omitted since it is analogous to that of
Theorem 5.6.

Theorem 5.13. Let R(λ) be a rational matrix as in (38), and let L̃R(λ) be the matrix

pencil in Definition 5.12. Let Ω ⊆ C be nonempty. If L̃R(λ), viewed as a polynomial

system matrix with state matrix E − λF , is minimal in Ω then L̃R(λ) is a block full
rank linearization of R(λ) in Ω with state matrix E − λF .

Remark 5.14. As we discussed in Remark 5.11 for the matrix pencil LR(λ), the

trimmed CORK linearization L̃R(λ) is not in general a linearization at infinity of R(λ)
either. The reason is that, in this case, the matrix F is also singular and rev1(E−λF )
has not full row rank at zero.
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6. Conclusions

Combining the theory in [13] with a nontrivial extension of the structure of the strong
block minimal bases linearizations introduced in [4], we have constructed a new wide
family of local linearizations of rational matrices that generalizes and includes most
of the linearizations for rational matrices appearing in the literature. The lineariza-
tions in this family are called block full rank linearizations. Depending on the satisfied
minimality conditions, a pencil in this family can be a linearization in a set of finite
points and/or at infinity. If the minimality conditions are satisfied in the whole un-
derlying field F and at infinity, simultaneously, then we can recover from block full
rank linearizations the complete pole and zero information, finite and at infinity, of
rational matrices. Linearizations at infinity are defined using the notion of grade and,
to determine the grade of block full rank linearizations at infinity, we use the notion
of degree of rational matrices.

As an application, we use block full rank linearizations to study the structure of the
linearizations developed in [21] for solving rational eigenvalue problems coming from
rational approximations of nonlinear eigenvalue problems. We provide sufficient mild
conditions under which the pencils in [21] are linearizations in C.
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