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Abstract

The matrix Sylvester equation for congruence, or T-Sylvester equation, has recently attracted
considerable attention as a consequence of its close relation to palindromic eigenvalue problems.
The theory concerning T-Sylvester equations is rather well understood and there are stable
and efficient numerical algorithms which solve these equations for small- to medium-sized ma-
trices. However, developing numerical algorithms for solving large-scale T-Sylvester equations
still remains an open problem. In this paper, we present several projection algorithms based
on different Krylov spaces for solving this problem when the right-hand side of the T-Sylvester
equation is a low-rank matrix. The new algorithms have been extensively tested, and the re-
ported numerical results show that they work very well in practice, offering a clear guidance on
which algorithm is the most convenient in each situation.

Key words. matrix equations, Krylov subspace, iterative methods, large-scale equations, Sylvester
equation, Sylvester equation for congruence
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1 Introduction

This paper is concerned with the numerical solution of the real square T-Sylvester equation

AX +XTB = C, (1.1)

where A,B,C ∈ Rn×n are given and X ∈ Rn×n is the unknown. The study of theoretical properties
for this equation goes back to at least 1962, when Taussky and Wielandt [38] analyzed the linear
map X 7→ AX+XTB for the special case B = AT . Conditions for the existence of solutions in the
general case were established by Wimmer in the early ’90s [42]. Recently, there has been renewed
interest in studying (1.1) for the general case, see, e.g., [11, 13, 14, 15, 18]. To some extent, this
has been sparked by the close relation of (1.1) to palindromic eigenvalue problems of the form
G + λGT . For example, the solution of (1.1) is needed to determine the first-order perturbation
expansion for a deflating subspace of G + λGT [8]. In turn, a Newton method for computing
such a deflating subspace would require the repeated solution of possibly large-scale T-Sylvester
equations, similar to the methods presented in [9, 16] for standard eigenvalue problems. Equations

∗Departamento de Matemáticas, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain
(dopico@math.uc3m.es). Supported by Ministerio de Economı́a y Competitividad of Spain through grant MTM2012-
32542.
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of the form (1.1) also arise as auxiliary problems in a structure-preserving QR algorithm [29] for
solving palindromic eigenvalue problems. Applications that involve (1.1) with B = ±AT arise from
Hamiltonian systems [7], time-varying singular value decompositions [3], and quadratic inverse
eigenvalue problems [43].

Finding solutions of (1.1) becomes rather simple for the special case B = ±AT , C = ±CT [7].
For example, if A is invertible then X = 1

2A
−1C is trivially a solution. In the general case,

however, solutions of (1.1) do not admit such a simple expression. For small- to medium-sized
matrices, extensions of the Bartels-Stewart algorithm [2] have been proposed in [13, 11, 39]. A
whole class of iterative methods can be derived by viewing (1.1) as an n2× n2 linear system in the
entries of X and applying an existing iterative solver for linear systems, see [41] for an example.
Still, the need for storing all entries of the approximate solution limits these methods to n . 104.

In this work, we develop novel projection methods that iteratively construct low-rank approx-
imations to the solution of T-Sylvester equations with a low-rank right-hand side matrix C, a
situation that arises in some applications discussed in detail in Section 2. Based on Krylov sub-
spaces, our methods only require matrix-vector multiplications and the solution of linear systems
with A,B, which makes them applicable to equations with large and sparse coefficient matrices.
Similar projection methods are routinely used for approximating the solution of large-scale Sylvester
and Lyapunov equations, see [35] for a recent survey. As we will see in the course of this paper,
the extension of these existing projection methods to (1.1) is by no means straightforward.

Throughout this paper, we restrict our attention to T-Sylvester equations with real coefficient
matrices. However, our results and numerical methods can be easily adapted to complex coefficients,
for which the transpose in (1.1) is replaced either by the complex transpose or by the conjugate
transpose, see [13] and the references therein.

Notation. We follow standard notation found in, e.g., [19]. Given a matrix G, the subspace
spanned by the columns of G is denoted by range(G). The block Krylov subspace of order m
associated with the matrices A ∈ Rn×n and V ∈ Rn×r is denoted by

Km(A, V ) = range([V,AV,A2V, . . . , Am−1V ]). (1.2)

For any subspace V ⊆ Rn, we set AV := {Ax : x ∈ V} ⊆ Rn. The field of values of a matrix A
is given by F(A) := {x∗Ax : x ∈ Cn , x∗x = 1}, where x∗ is the conjugate-transpose vector. The
spectral and Frobenius norm of matrices are denoted by ‖ · ‖2 and ‖ · ‖F , respectively.

2 Preliminaries, relation to Sylvester equations, and applications

In this section, we recall existing results on the real square T-Sylvester equation (1.1), show a new
relation to standard Sylvester equations, and discuss some applications where the right-hand side
C of (1.1) has low-rank.

To state necessary and sufficient conditions for the existence and uniqueness of a solution X
of (1.1), we need to introduce the following notion.

Definition 2.1. A set {λ1, λ2, . . . , λn} ⊂ C ∪ {∞} is called reciprocal free if λi 6= 1/λj for 1 ≤
i, j ≤ n.

By convention, 1/0 = ∞ and 1/∞ = 0 in Definition 2.1. We let spec(A,BT ) denote the set of
eigenvalues of the matrix pencil A− λBT . If B is singular then A− λBT has infinite eigenvalues,
that is, ∞ ∈ spec(A,BT ). The matrix pencil is called regular if det(A− λBT ) does not vanish for
all λ.

Theorem 2.2 ([8, Lemma 5.10]). The T-Sylvester equation AX + XTB = C with A,B ∈ Rn×n

has a unique solution for every right-hand side C ∈ Rn×n if and only if the following two conditions
hold:
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(a) The matrix pencil A− λBT is regular; and

(b) spec(A,BT )\{1} is reciprocal free and if 1 ∈ spec(A,BT ), then it has algebraic multiplicity 1.

Some references erroneously replace condition (b) in Theorem 2.2 simply by “spec(A,BT ) is
reciprocal free”, which requires 1 /∈ spec(A,BT ) (see, e.g., [25, Theorem 3]). It is easy to construct
examples showing that this requirement is not needed. Consider, for instance, n = 1 and A = B = 1.
In this case, the only eigenvalue of A − λBT is 1, but AX + XTB = C has the unique solution
X = C/2.

An extension of the Bartels-Stewart algorithm [2] to T-Sylvester equations admitting a unique
solution was presented in [13, Algorithm 3.1], see also [11] and [39]. This algorithm proceeds by first
computing a generalized real Schur decomposition of the pencil A−λBT via the QZ algorithm [19,
Section 7.7]. This yields orthogonal matrices V,W ∈ Rn×n such that

A = WTAV
T and BT = WTBV

T , (2.1)

where TA ∈ Rn×n is upper quasi-triangular (that is, block upper triangular with 1 × 1 or 2 × 2
diagonal blocks), and TB is upper triangular. By defining Y = V TXW , the factorizations (2.1)
allow us to transform (1.1) into the T-Sylvester equation

TAY + Y TT T
B = W TCW.

The (block) triangular structure of TA and TB allows us to construct the solution Y of this equation
by a simple substitution procedure, see [13, Algorithm 3.1] for details. The algorithm is completed
by performing the back transformation X = V YW T . Requiring O(n3) operations and O(n2)
memory, the scope of this algorithm is limited to moderately sized equations.

The following theorem reveals a relationship between (1.1) and a standard Sylvester equation
under certain assumptions, and also between (1.1) and a generalized Sylvester equation. To the
best of our knowledge, these relations are new.

Theorem 2.3. Let A,B,C ∈ Rn×n and assume that A and B are nonsingular. Consider the matrix
equations

AX +XTB = C, (2.2)(
B−TA

)
X −X

(
A−TB

)
= B−TC −B−TCTA−TB, (2.3)

AXAT −BTXB = C − CTA−TB, (2.4)

for the unknown X ∈ Rn×n. Then the following statements hold.

(a) If X0 is a solution of the T-Sylvester equation (2.2) then X0 is also a solution of the Sylvester
equation (2.3).

(b) If the Sylvester equation (2.3) has a unique solution X0 then the T-Sylvester equation (2.2)
has also a unique solution, which is equal to X0.

(c) X0 is a solution of the generalized Sylvester equation (2.4) if and only if (X0A
T ) is a solution

of the Sylvester equation (2.3), i.e., there is a bijection between the sets of solutions of (2.4)
and (2.3).

Proof. (a) If X0 satisfies (2.2), then

AX0 = C −XT
0 B =⇒ X0 = A−1C −A−1XT

0 B =⇒ XT
0 = CTA−T −BTX0A

−T .

Inserting this expression for XT
0 into AX0 +XT

0 B = C, we obtain

AX0 + CTA−TB −BTX0A
−TB = C =⇒ AX0 −BTX0A

−TB = C − CTA−TB.
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Multiplying the latter equation with B−T on the left yields that X0 satisfies (2.3).
(b) Assume that (2.3) has a unique solution, which is equivalent to assuming that

spec
(
B−TA

)
∩ spec

(
A−TB

)
= ∅, (2.5)

see [23, p. 270], where spec(Z) denotes the spectrum of Z. Note that

spec
((
B−TA

)−1)
= spec

((
A−1BT

)T)
= spec

(
BA−T

)
= spec

(
A−TB

)
.

This shows that (2.5) is equivalent to

spec
(
B−TA

)
∩ spec

((
B−TA

)−1)
= ∅.

In other words, spec
(
B−TA

)
= spec

(
A,BT

)
is reciprocal free. Thus, Theorem 2.2 shows that (2.2)

has a unique solution.
So far, we have established that the unique solvability of (2.3) implies the unique solvability

of (2.2), but not yet that the solutions of both equations are the same. This, however, follows
directly from part (a), which states that the solution set of (2.2) is included in the solution set
of (2.3). Therefore both sets must be identical when they only have one element.

(c) If we multiply equation (2.3) on the left byBT , then we get the equivalent equationA(XA−T )AT−
BT (XA−T )B = C − CTA−TB and the result follows.

Remark 2.4. Observe that elementary results on ranks [22, p. 13] yield

rank
(
B−TC −B−TCTA−TB

)
≤ rank

(
B−TC

)
+ rank

(
B−TCTA−TB

)
≤ 2 rank(C).

So, if the right-hand side of (2.2) has low rank then the right-hand side of (2.3) has also low rank.

Before discussing the use of Theorem 2.3 for computations, let us remark that the converse of
Theorem 2.3(b) does not hold. The T-Sylvester equation (2.2) may have a unique solution when
the Sylvester equation (2.3) does not. To see this, consider again the case n = 1 with A = B = 1
and arbitrary C ∈ R. Then (2.2) has the unique solution X = C/2, while (2.3) reads X −X = 0
and thus every X ∈ R is a solution of (2.3). In addition, note that also every X ∈ R is a solution of
the generalized Sylvester equation (2.4) in this example. It follows from the proof of Theorem 2.3
that such a situation can only occur when (2.2) has a unique solution and 1 is a simple eigenvalue
of A− λBT .

Theorem 2.3(b) suggests that we can compute the solution of (1.1) by simply computing the
solution of the standard Sylvester equation (2.3), provided that (2.3) has a unique solution. In view
of the availability of reliable numerical algorithms for solving both small- and large-scale Sylvester
equations [19, 35], such an approach sounds quite attractive and will be investigated in the large-
scale setting in Section 7. However, we advance that the different unique solvability conditions
for (2.2) and (2.3) are not merely a theoretical issue and cause numerical difficulties, as we have
observed in the numerical tests presented in Section 7. The generalized Sylvester equation (2.4)
can also be used, in the case it has a unique solution, for computing the solution of (1.1): simply
compute the solution of (2.4) and multiply it by AT on the right. However, in the case of generalized
Sylvester equations the available numerical algorithms and software are somewhat less developed
compared to standard Sylvester equations [35].

In a situation where the standard Sylvester equation (2.3) is uniquely solvable but A − λBT

has an eigenvalue close to one, we can expect (2.3) to be much more sensitive to approximation
and roundoff errors than the original T-Sylvester equation (2.2). In particular, this may lead to
approximate solutions X̃ that yield a tiny residual for (2.3) but not for (2.2). To illustrate this
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seemingly subtle but practically important point, it suffices to consider a scalar example; examples
of larger sizes can be easily constructed. Let A = 1 + δ, with a small parameter δ 6= 0, and B = 1.
Then the T-Sylvester equation (2.2) has the unique solution X = C/(2 + δ). For this example, it
is straightforward to see that tiny relative perturbations of A and B always lead to tiny relative
variations of the solution for (2.2). On the other hand, the Sylvester equation (2.3) for A = 1 + δ
and B = 1 is given by

(1 + δ)X − X

1 + δ
= C

δ

1 + δ
. (2.6)

Its solution is unique and, of course, equal to X = C/(2 + δ). In contrast to the T-Sylvester
equation, tiny relative perturbations of the coefficients of (2.6) may change the solution drastically.
Suppose that the first coefficient (1 + δ) in (2.6) is replaced by 1, yielding the perturbed solution
X̃ = C. Clearly, this is quite different from X, although the residual of X̃ for (2.6) is small:

RS = (1 + δ) X̃ − X̃

1 + δ
− C δ

1 + δ
= δC.

In contrast, the residual of X̃ for AX +XTB = C is large:

RTS = X̃(2 + δ)− C = (1 + δ)C .

We invite the reader to check that the sensitivity to tiny relative perturbations in A and B of the
solution of the generalized Sylvester equation (2.4) is, in this particular example, exactly the same
as the sensitivity of the T-Sylvester equation (2.2), as long as the solution of (2.4) remains unique.
From this perspective, equation (2.4) seems to be superior to (2.3), as it is suggested also by the
absence of inverses in the left hand side of (2.4). Nonetheless, note that if the coefficients A = 1+δ
and B = 1 suffer the tiny change Â = 1 and B̂ = 1, then the solution of (2.2) simply change to
C/2, while (2.4) has now any number as solution.

A rigorous perturbation analysis of the equations (2.2), (2.3), and (2.4) is out of the scope of
this paper and the only purpose of the discussion above is to warn the reader that in transforming
an equation into another the sensitivity of the solution may be an issue for numerical computations.

Since the goal of this paper is to solve the T-Sylvester equation (1.1) when the rank of C
is low, we finish this section by discussing some applications where this situation arises. It is
well-known that standard Sylvester equations with low-rank right-hand sides appear very often in
linear system theory and control theory, more precisely in the context of model order reduction
and as intermediate steps in the solution of continuous-time algebraic Riccati equations (CARE)
by iterative methods in linear-quadratic optimal control problems [1, 5]. Analogously, certain
non-standard problems in optimal Hankel-norm model reduction and H2/H∞ controls related to
non-standard J-spectral factorization problems lead to T-CARE whose nonlinear and constant
terms have both low rank, under the natural assumption that the numbers of inputs and outputs
are much smaller than the number of internal states of the system (see [27, 28] and the references
therein). For instance, the T-CARE appearing in [27, 28] is

ATX +XTA+XTRX +Q = 0, (2.7)

ETX −XTE = 0, (2.8)

where E,A,Q,R ∈ Rn×n, E may be singular, Q = QT , R = RT , Q and R are indefinite, and the
ranks of Q and R are much smaller than n under the conditions mentioned above. The problem of
interest in applications is to compute a stabilizing solution X of (2.7)-(2.8), which roughly speaking
is a solution such that the corresponding close-loop matrix has its eigenvalues in the left-hand plane
including the extended imaginary axis. Conditions for the existence of such solutions have been
established in [28] and their numerical computation is a non-trivial problem considered in [27] and
solved satisfactorily in [12] for small- to medium- size matrices. However, the solution of (2.7)-(2.8)
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for large-scale matrices remains an open problem. The efficient solution of this problem will require
iterative methods that will need efficient solvers of large-scale T-Sylvester equations with low-rank
right-hand sides, similarly to the solution of large-scale standard CAREs which requires solvers of
large-scale Sylvester equations with low-rank right-hand sides [5]. To realize this point, note that
the two equations (2.7)-(2.8) are equivalent to

(AT + ET )X +XT (A− E) +XTRX +Q = 0, (2.9)

because the sum of (2.7) and (2.8) yields (2.9), while (2.9) plus and minus its transpose yield (2.7)
and (2.8), respectively [11, Section 2.3]. Clearly, any fixed point iteration or any Newton-based
method for solving (2.9) would need the solution of T-Sylvester equations with low-rank right-hand
sides. Variants of equations (2.7)-(2.8) where Q and R are low-rank positive semidefinite matrices
have also appeared in applications [40] and they can be connected to T-Sylvester equations exactly
in the same way.

3 A general projection framework for the T-Sylvester equation

As explained in the introduction, the goal of this paper is to solve T-Sylvester equations with large
and sparse coefficient matrices A,B, and low-rank right-hand side C. So, from now on, we write
the T-Sylvester equation in the form

AX +XTB = C1C
T
2 , (3.1)

where C1, C2 ∈ Rn×r are full-rank matrices with r � n. As our methods involve the inversion
of A and/or B, we additionally assume the generic condition that these matrices are invertible.
Moreover, (3.1) is assumed to admit a unique solution, that is, the conditions of Theorem 2.2 hold.
Although A and B may be sparse, the solution matrix X is full, in general, so the storage of X
requires excessive memory allocations for large problems. We thus look for low-rank approximations
to X. This strategy is strongly supported by the link established in Theorem 2.3(b) between a
T-Sylvester equation and a standard Sylvester equation both with low-rank right-hand sides (see
Remark 2.4), together with existing results on the singular value decay of solutions to Sylvester
equations with low-rank right-hand side [20, 31], which suggest that the solution X of (3.1) can
often be well approximated by a low-rank matrix.

To construct low-rank approximations to the solution, existing approaches for large-scale Sylvester
equations with low-rank right-hand side often proceed by imposing a Galerkin condition on a ten-
sor product of low-dimensional subspaces, see [6, 26, 32] and [35, Section 4.4.1] for examples. We
follow a similar strategy for T-Sylvester equations. Our starting point is therefore to consider
approximations of the form

X ≈ Xm = VmYmWT
m ∈ Rn×n, (3.2)

where the columns of Vm,Wm ∈ Rn×pm form orthonormal bases of subspaces Vm,Wm ⊂ Rn,
respectively:

Vm = range(Vm) and Wm = range(Wm). (3.3)

In terms of these subspaces, the relation (3.2) states that Xm ∈ Vm ⊗Wm, where the tensor
product of these subspaces is defined as

Vm ⊗Wm := span
{
v ⊗ w : v ∈ Vm, w ∈Wm

}
.

When identifying Rn×n ∼= Rn2
, which will be assumed in the following, the set Vm ⊗Wm is the

set of all matrices of the form (3.2). The matrix Ym ∈ Rpm×pm , which contains the coefficients of
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Xm in the chosen bases, is determined by imposing a Petrov-Galerkin condition: We require the
residual

Rm = AXm +XT
mB − C1C

T
2 = A(VmYmWT

m) + (VmYmWT
m)TB − C1C

T
2 (3.4)

to be orthogonal toWm⊗Wm in the matrix inner product, Rm ⊥Wm⊗Wm. Using the orthonormal
basis Wm, this becomes equivalent to requiring

WT
mRmWm = 0. (3.5)

Inserting (3.4) into (3.5) yields the small-scale T-Sylvester equation

(WT
mAVm)Ym + Y T

m (VTmBWm) = (WT
mC1)(WT

mC2)
T . (3.6)

Assuming that this equation admits a unique solution, it can be solved within O(p3m) operations
using the Bartels-Stewart-like algorithm discussed in Section 2.

It is important to emphasize that most existing projection methods for the standard Sylvester
equation FX +XG = C1C

T
2 use a Galerkin approach instead of a Petrov-Galerkin approach. This

means that the same tensorized subspace Vm⊗Wm is used for searching the approximate solution
and testing the residual:

Xm ∈ Vm ⊗Wm and (FXm +XmG− C1C
T
2 ) ⊥ Vm ⊗Wm . (3.7)

In contrast, our projection framework for T-Sylvester equations involves two different tensorized
subspaces Vm⊗Wm andWm⊗Wm as search and test spaces, respectively. This is needed to ensure
that the compressed equation (3.6) is again a T-Sylvester equation, which allows for its inexpensive
solution. In the language of projection methods [33, 34], our framework for T-Sylvester equations
yields oblique projection methods, while the one for Sylvester equations yields orthogonal projection
methods.

The choice of the subspaces Vm and Wm decisively determines the quality of the approximation
Xm obtained from (3.2) and (3.6). Two different choices adapted to the structure of the T-Sylvester
equation will be studied in detail in the subsequent sections.

4 Block Krylov subspaces for the T-Sylvester equation

In order to motivate the choice of adequate subspaces Vm and Wm for the projection framework
from Section 3, we will first consider the generalized Schur decomposition (2.1) of the pencilA−λBT ,
which implies

B−TA = V T−1B TA V
T and BTV = WTB . (4.1)

Letting V (:, 1 : p) denote the first p < n columns of V , this means that V (:, 1 : p) represents an
orthonormal basis for an invariant subspace of B−TA, provided that the subdiagonal entry (p+1, p)
of the upper quasi-triangular matrix TA is zero. Moreover,

range(W (:, 1 : p)) = range(BTV (:, 1 : p)) = BT range(V (:, 1 : p)). (4.2)

This suggests to choose a subspace Vm that contains good approximations to invariant subspaces
of B−TA and set Wm = BT Vm. Krylov subspaces are known to often contain excellent ap-
proximations to invariant subspaces [34]; it is therefore natural to choose Vm as a Krylov sub-
space for the matrix B−TA. On the other hand, in view of (3.6), it is important to ensure
range(C1) ∪ range(C2) ⊂ Wm, in order to fully preserve the information from the right-hand
side during the projection. Taking both considerations into account leads us to choose the block
Krylov subspaces

Vm = Km(B−TA,B−T [C1, C2]) , (4.3)

Wm = BTVm . (4.4)
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Note that the definition (1.2) and the algebraic identity BT (B−TA)kB−T = (AB−T )k imply

Wm = Km(AB−T , [C1, C2]), (4.5)

which shows that Wm indeed contains the columns of C1, C2. The computational cost can be
reduced if range(C1)=range(C2). Indeed, in this case it holds that

Vm = Km(B−TA ,B−T [C1, C2]) = Km(B−TA ,B−T C1),

yielding a block Krylov subspace of half the dimension. Algorithms for constructing orthonormal
bases for Vm,Wm will be discussed in Section 4.2.

Finally, we remark that the roles of A and B can be reversed. By transposing (3.1), we obtain

BTX +XTAT = C2C
T
1 . (4.6)

This is again a T-Sylvester equation, with A replaced by BT , B by AT , C1 by C2, and C2 by C1.
Assuming that A is invertible, we thus arrive at the block Krylov subspaces

V′m = Km(A−1BT , A−1 [C1, C2]) , (4.7)

W′m = AV′m . (4.8)

Following the arguments in Section 6, we can thus expect fast convergence of the projection method
applied to (4.6) with V′m,W

′
m if ρ(A−1BT ) < 1 and if this quantity is not too close to one.

Equivalently, this means that all eigenvalues of B−TA should be located well outside the unit
circle.

We can thus choose between two methods depending on the location of the eigenvalues of B−TA:

(1) when all eigenvalues are well inside the unit circle, use the projection method with the block
Krylov subspaces Vm,Wm defined in (4.3)–(4.4);

(2) when all eigenvalues are well outside the unit circle, use the projection method with the block
Krylov subspaces V′m,W

′
m defined in (4.7)–(4.8).

The power method can be used to estimate ρ(B−TA), ρ(A−1BT ), and guide the decision between
(1) and (2). In Section 5, we will discuss a variant that combines both approaches and does not
require such a decision.

In the rest of this section, we will focus on the equation (3.1) and the block Krylov sub-
spaces (4.3)–(4.4), but it should be kept in mind that our developments apply likewise to the
transposed equation.

4.1 Solvability of the compressed equation

When performing the projection method from Section 3, we require the compressed T-Sylvester
equation (3.6) to admit a unique solution. The unique solvability of the original equation (3.1)
is not sufficient to guarantee this property. Similar difficulties arise in projection methods for
the Sylvester equation FX + XG = C1C

T
2 , where this issue is addressed by imposing the more

restrictive condition that the fields of values (instead of the spectra) of F and −G are disjoint, see
[35, Section 4.4.1] and the references therein. In fact, the assumption F(F ) ∩F(−G) = ∅ is one of
the keys to prove rigorous error bounds for rational Galerkin projection methods for the Sylvester
equation [4]. Theorem 4.1 below suggests an analogous condition for T-Sylvester equations. Note
that the result of the theorem does not only hold for block Krylov subspaces, but for any pair of
subspaces Vm,Wm satisfying Wm = BTVm.
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Theorem 4.1. Let A,B ∈ Rn×n and assume that B is nonsingular. Let the columns of Vm,Wm ∈
Rn×pm form orthonormal bases of two subspaces Vm,Wm ⊆ Rn, respectively, which satisfy Wm =
BTVm. If F(AB−T ) is inside the open unit disk then

(a) AX +XTB = C has a unique solution for every right-hand side C, and

(b) (WT
mAVm)Ym + Y T

m (VTmBWm) = C̃ has a unique solution for every right-hand side C̃.

Proof. (a) Since F(AB−T ) is inside the open unit disk, all eigenvalues of AB−T are inside the open
unit disk and hence the spectrum of A − λBT is reciprocal free. Therefore, part (a) follows from
Theorem 2.2.

(b) The assumption Wm = BTVm implies that there exists a nonsingular matrix Qm ∈ Rpm×pm

such that BTVm =WmQm. This implies

WT
mAVm =WT

mAB
−TWmQm,

(VTmBWm)T =WT
mB

TVm =WT
mWmQm = Qm,

showing that the pencil (WT
mAVm) − λ(VTmBWm)T is strictly equivalent to the regular pencil

WT
mAB

−TWm − λI, and both pencils have the same eigenvalues. Since, F(WT
mAB

−TWm) ⊆
F(AB−T ), all eigenvalues of WT

mAB
−TWm are inside the open unit disk. Therefore, part (b) also

follows from Theorem 2.2.

The assumption that F(AB−T ) is inside the open unit disk is sufficient but by no means
necessary for ρ(AB−T ) = ρ(B−TA) < 1 and the unique solvability of the compressed equation. In
our numerical experience, we have regularly observed fast convergence of the projection method in
situations where ρ(B−TA) < 1, but F(AB−T ) is much larger than the open unit disk.

4.2 Algorithmic details of the block Krylov subspace method

In this section we describe the algorithm associated with the Petrov-Galerkin projection onto the
block Krylov subspaces (4.3)-(4.4). One can choose between two implementations: (i) use the
block Arnoldi method [34] to compute an orthonormal basis Vm of Vm and, then, an orthonormal
basis Wm of Wm by orthonormalizing BTVm; or (ii) take into account (4.5) to first compute an
orthonormal basis Wm of Wm with the block Arnoldi method, and, then, an orthonormal basis
Vm of Vm by orthonormalizing B−TWm. Observe that the implementation (ii) does not require
more linear system solves than (i), since the linear solves needed for computing B−TWm can be
re-used by the Arnoldi method in computing Wm+1. In fact, (ii) is a bit cheaper than (i), since the
matrix-vector products BTVm in (i) cannot be re-used by block Arnoldi to compute Vm+1. We will
describe in detail only implementation (i), which is similar to the one in Section 5, and leave to
interested readers the details of (ii). Observe that applying block Arnoldi twice for constructing Vm
and Wm independently requires more work and does not provide us with the connection between
both bases, which is needed to cheaply compute the coefficients of the compressed equations (see
Proposition 4.2).

After m steps of the block Arnoldi method the following block Arnoldi relation holds (see, e.g.,
[34, Section 6.5]):

B−TAVm = VmHm + Vm+1Hm+1,mE
T
m = Vm+1Hm. (4.9)

Here, Vm = [V1, V2, . . . , Vm] ∈ Rn×2mr is an orthonormal basis of Vm = Km(B−TA ,B−T [C1, C2]),
Em denotes the last 2r columns of the 2mr × 2mr identity matrix, and Hm ∈ R2mr×2mr, Hm ∈
R2(m+1)r×2mr are block Hessenberg matrices with

Hm =

[
Hm

Hm+1,mE
T
m

]
.
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The matrix Wm can be obtained from BTVm by means of the “skinny” QR decomposition,

WmZm = BTVm, Zm ∈ R2mr×2mr, (4.10)

where Wm = [W1, W2, . . . , Wm] ∈ Rn×2mr is an orthonormal basis of Wm = BTVm and Zm is
upper triangular. With these expressions, we can show that the matrices

HA,m :=WT
mAVm, HB,m := VTmBWm

can be cheaply obtained during the generation of the bases Vm,Wm. In particular, the two matrices
HA,m, HB,m can be expanded as the iteration proceeds.

Proposition 4.2. With the notation introduced above, the following relations hold:

HA,m = [I2mr , 02mr×2r]Zm+1Hm and HB,m = ZT
m . (4.11)

Proof. Using (4.9) and (4.10) for m+ 1, we obtain

HA,m =WT
mAVm =WT

mB
TVm+1Hm =WT

mWm+1Zm+1Hm = [I2mr, 02mr×2r]Zm+1Hm.

Using (4.10) we have HB,m = VTmBWm = ZT
mWT

mWm = ZT
m.

Algorithm 1 gives an overview of our proposed block Krylov subspace method for solving large-
scale T-Sylvester equations, which amounts to the projection method from Section 3 with the
subspaces Vm, Wm defined in (4.3)–(4.4).

Algorithm 1 Block Krylov method for solving T-Sylvester equation

Input: A,B ∈ Rn×n and C1, C2 ∈ Rn×r.
Output: Factors of approximate solution Xm of AX +XTB = C1C

T
2 .

Compute V1 orthonormal basis of range(B−T [C1, C2]) and set V0 =W0 = ∅.
for m = 1, 2, . . . do

1. Vm = [Vm−1, Vm].
2. Wm ← orthonormalize columns of BTVm with respect to Wm−1.
3. Wm = [Wm−1, Wm].
4. Expand HA,m =WT

mAVm, HB,m = VTmBWm, and C̃m = (WT
mC1)(WT

mC2)
T .

5. Compute Ym solution of HA,m Ym + Y T
mHB,m = C̃m via [13, Algorithm 3.1].

if converged then
Return Vm, Ym,Wm such that Xm = VmYmWT

m and stop.
end if
6. Vm+1 ← orthonormalize columns of B−TAVm with respect to Vm.

end for

Several comments concerning the implementation of Algorithm 1 are in order:

Step 2. The orthogonalization of BTVm with respect to the columns of Wm−1 in Step 2 is per-
formed by applying the classical Gram-Schmidt process twice.

Step 6. One step of the standard block Arnoldi method presented in [34, Algorithm 6.8] is used in
Step 6: it requires 2r matrix-vector multiplies with A, followed by 2r solves with BT . For a
sparse matrix B, the latter can be implemented efficiently by computing and storing a sparse
LU factorization of BT beforehand. Solves with BT then only require forward/backward
substitutions with the sparse LU factors. For simplicity, it is assumed that breakdowns do not
occur in the block Arnoldi method and hence the matrices Vm ∈ Rn×(2mr) andWm ∈ Rn×(2mr)

are of full rank and have orthonormal columns.

10



Step 4. The matrices HA,m = WT
mAVm and HB,m = VTmBWm in Step 4 are cheaply updated

using the expressions presented in Proposition 4.2. Observe, in addition, that (4.5) implies
range[C1, C2] = W1 = range(W1), and hence WT

mCi = [(W T
1 Ci)

T , 0, . . . , 0]T , for i = 1, 2.

Stopping criterion. To check convergence, we use the stopping criterion

‖AXm +XT
mB − C1C

T
2 ‖F

(‖A‖F + ‖B‖F )‖Ym‖F + ‖C1CT
2 ‖F

< tol, (4.12)

where tol is a fixed user-specified tolerance, Xm = VmYmWT
m. Analogous stopping criteria

are used in other algorithms for matrix equations [37, p. 1275], see also [21, Chapter 16].

The residual norm ‖AXm + XT
mB − C1C

T
2 ‖F is calculated inexpensively via the relation

in Proposition 4.3 below, which again uses information obtained in Steps 2 and 6. The
calculation of the quantities ‖A‖F and ‖B‖F in (4.12) needs to be performed only once and
is inexpensive if A and B are sparse. To compute ‖C1C

T
2 ‖F , we use the expression

‖C1C
T
2 ‖2F = trace

(
(C1C

T
2 )TC1C

T
2

)
= trace

(
(CT

1 C1)(C
T
2 C2)

)
,

which involves the small r × r matrices CT
1 C1 and CT

2 C2 only.

The expressions (4.11) allow us to construct HA,m at the cost of a small matrix multiplication
and HB,m at no additional cost. The expressions (4.11) also show that HA,m is a block Hessenberg
matrix and HT

B,m is upper triangular. To a certain extent, this structure can be exploited to reduce
the cost of the QZ algorithm [19, Section 7.7] for computing the generalized Schur decomposition
needed when solving the compressed equation. A minor complication in the expression (4.11)
for HA,m is that it requires Zm+1, which only becomes available after the orthonormalization of
BTVm+1 has been performed. This issue, however, can be easily addressed by slightly reorganizing
Algorithm 1.

Finally, the following proposition gives an expression for the residual norm that requires the
computation of the Frobenius norm for a small 2r×2mr matrix only, in the spirit of a corresponding
result for Lyapunov equations [26, Theorem 2.1].

Proposition 4.3. With the notation introduced in Proposition 4.2, the following relation holds for
the residual norm:

‖AXm +XT
mB − C1C

T
2 ‖F = ‖Zm+1,m+1Hm+1,mE

T
mYm‖F ,

where Zm+1,m+1 is the trailing 2r × 2r principal submatrix of Zm+1.

Proof. Set Rm := AXm +XT
mB−C1C

T
2 = AVmYmWT

m +WmY
T
mVTmB−C1C

T
2 and let the columns

of Wm,⊥ form an orthonormal basis for W⊥m, such that the first 2r columns of Wm,⊥ coincide with
Wm+1. Then WT

m,⊥Wm = 0, WT
m,⊥C1 =WT

m,⊥C2 = 0 and the relations (4.9)–(4.10) imply

‖WT
m,⊥RmWm‖F = ‖WT

m,⊥AVmYm‖F = ‖WT
m,⊥B

TVm+1HmYm‖F
= ‖WT

m,⊥Wm+1Zm+1HmYm‖F = ‖ET
m+1Zm+1HmYm‖F

= ‖Zm+1,m+1Hm+1,mE
T
mYm‖F .

Similarly,
‖WT

mRmWm,⊥‖F = ‖Y T
mVTmBWm,⊥‖F = ‖Y T

mZ
T
mWT

mWm,⊥‖F = 0

and ‖WT
m,⊥RmWm,⊥‖F = 0. Using that the Petrov-Galerkin condition (3.5) implies ‖WT

mRmWm‖F =
0, we thus obtain

‖Rm‖2F = ‖WT
mRmWm‖2F + ‖WT

m,⊥RmWm‖2F + ‖WT
mRmWm,⊥‖2F + ‖WT

m,⊥RmWm,⊥‖2F
= ‖WT

m,⊥RmWm‖2F = ‖Zm+1,m+1Hm+1,mE
T
mYm‖2F ,

which completes the proof.
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5 Extended Krylov subspaces for the T-Sylvester equation

Extended Krylov subspaces are often used in modern algorithms for solving large-scale Sylvester
equations (see [37], [35, Section 4.4.1] and the references therein). One motivation for their use is to
attain spaces that have smaller dimension compared to standard Krylov spaces but contain equally
good approximations of the solution. This results in decreased storage requirements for the dense
matrices Vm and Wm needed to get the approximate solution (3.2). In addition, in the case of
standard Sylvester equations, it has been observed that these enriched spaces exhibit an impressive
performance despite the fact that multiplication by inverses, i.e., solution of large linear systems,
are involved in their construction, in contrast to standard Krylov spaces. In the case of the T-
Sylvester equation AX+XTB = C1C

T
2 the use of extended Krylov subspaces is even more natural,

since the standard block Krylov spaces (4.3) and (4.4) adapted to this equation already involve
inverses. Other methods using enriched Krylov subspaces suggest themselves, such as Rational
Krylov space and ADI methods (see, e.g., [35] and also the discussion in section 6); a complete
overview of all possible variants is clearly beyond this paper, although it may be interesting to
explore these alternatives further.

Following [37, Section 3], in this section we propose the use of extended block Krylov subspaces
to implement the projection method in Section 3:

Vm = Km(B−TA ,B−T [C1, C2]) +Km+1((B
−TA)−1 , B−T [C1, C2]) , (5.1)

Wm = BTVm . (5.2)

Let CB = B−T [C1, C2] ∈ Rn×2r. The subspace Vm is iteratively expanded with two blocks of
vectors at the time by an Arnoldi-type process as

[CB, (B−TA)−1CB], [(B−TA)CB, (B−TA)−2CB], [(B−TA)2CB, (B−TA)−3CB], . . .

where for each pair, the first block of vectors expands the space in B−TA, while the second block
expands the space in (B−TA)−1 = A−1BT . The actual basis is computed by orthogonalizing the
newly built vectors by means of the Gram-Schmidt process [37]. Note that 2r + 2r vectors are
added to the basis during each iteration. In summary, after m iterations the following matrix
whose columns form an orthonormal basis of Vm is iteratively generated,

Vm = [V1, V2, . . . , Vm] ∈ Rn×4mr, Vj = [V
(1)
j , V

(2)
j ] ∈ Rn×4r, (5.3)

where the “odd” n × 2r matrices V
(1)
j originally stem from multiplications with B−TA, while the

“even” n × 2r matrices V
(2)
j stem from multiplications with A−1BT . In the following we shall

heavily rely on this type of partitioning to build key recurrences.
From the definition (1.2) and the identity BT (B−TA)kB−T = (AB−T )k, k ∈ Z, we obtain

Wm = Km(AB−T , [C1, C2]) +Km+1((AB
−T )−1 , [C1, C2]). (5.4)

From this equation, it is immediate to prove that

AB−T Wm ⊆Wm+1. (5.5)

These relations show that there is nothing special about the matrix equation (5.2), since the same
properties could be obtained by explicitly building the two extended spaces Vm, Wm as in (5.1)
and (5.4), respectively. On the other hand, as already mentioned, using (5.2) allows one to avoid
extra system solves, and provides us with the connection between orthonormal bases of both spaces
to cheaply compute the coefficients of the compressed equations. Observe also that (5.4) allows one
to construct first an orthonormal basis Wm of Wm and then use Vm = B−TWm for computing an
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orthonormal basis of Vm. However, this approach requires more system solves than the approach
we follow below, since only half of the solves in B−TWm can be re-used for expanding Wm to
Wm+1.

Denoting with Vm ∈ Rn×4mr the orthonormal basis of Vm in (5.3), we construct an orthonormal
basis Wm ∈ Rn×4mr of Wm by using again the “skinny” QR factorization

WmZm = BTVm , (5.6)

from which it readily follows that

HB,m := VTmBWm = ZT
m.

The derivation of an updating expression for HA,m :=WT
mAVm which does not involve multiplica-

tions with A may be obtained as follows. From (5.1), we get that B−TAVm ⊆ Vm+1 and this implies
that there exists a 4(m+ 1)r× 4mr block Hessenberg matrix Km such that B−TAVm = Vm+1Km.
The matrix Km is not obtained directly from the construction of the extended Krylov space Vm,
in contrast with the situation for standard Krylov spaces, but Km can be computed without extra
large matrix-vector multiplications and system solves via the recursion presented in [37, Proposition
3.2]. Therefore, with (5.6), we get:

HA,m =WT
mAVm =WT

mB
T (B−TAVm)

=WT
mB

T Vm+1Km =WT
mWm+1Zm+1Km

= [I4mr, 0]Zm+1Km .

This method for computing HA,m is very efficient since it only involves a small matrix product and
allows to easily expand HA,m as the iteration proceeds. Observe also that the expression above
shows that HA,m is block upper Hessenberg. In the appendix at the end of the paper, we include a
detailed description of another method for computing HA,m which is slightly more efficient, since
it adapts the recursion in [37, Proposition 3.2] to computing directly HA,m instead of Km. The
method in the appendix is the one we have used in all the numerical tests presented in Section 7.

Algorithm 2 outlines the projection algorithm in Section 3 for the subspaces defined in (5.1)
and (5.2). It is based on the algorithm introduced in [37, Section 3]. Technical comments similar
to those made after Algorithm 1 apply likewise to Algorithm 2. In particular, the same stopping

criterion (4.12) is used here. Note also that the product (B−TA)−1V
(2)
m = A−1BTV

(2)
m in step 6

is computed by first multiplying the columns of V
(2)
m with BT and then solving 2r linear systems

with A.
In the next proposition we show that, in the same manner as for the methods in Section 4, the

residual norm can be computed without explicitly storing the residual matrix.

Proposition 5.1. Let HA,m :=WT
mAVm ∈ R4mr×4mr be partitioned in blocks as HA,m = (hij)1≤i,j≤m,

where hij ∈ R4r×4r, and let Em be the matrix of the last 4r columns of I4mr. Then, with the notation
in Algorithm 2, the residual matrix Rm = AXm +XT

mB − C1C
T
2 satisfies

‖Rm‖F = ‖hm+1,mE
T
m Ym‖F .

Proof. We have Rm = AVmYmWT
m+WmY

T
mVTmB−C1C

T
2 . Combining (5.5) and (5.6) it follows that

range(AVm) ⊆Wm+1. In addition, range(Wm) ⊆Wm+1 and range(C1) ⊆Wm+1 by (5.4). There-
fore, range(Rm) ⊆ Wm+1. An analogous argument shows that range(RT

m) ⊆ Wm, by using again
(5.6) and (5.4). As a consequence we can write Rm = Wm+1R̂mWT

m. Thus, R̂m = WT
m+1RmWm

and by (3.5)

R̂m =

[
WT

mRmWm

W T
m+1RmWm

]
=

[
0

W T
m+1RmWm

]
.
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Algorithm 2 Extended block Krylov method for solving T-Sylvester equation

Input: A,B ∈ Rn×n and C1, C2 ∈ Rn×r.
Output: Factors of approximate solution Xm of AX +XTB = C1C

T
2 .

Compute V1 orthonormal basis of range([B−T [C1, C2] , A
−1[C1, C2]]), and set V0 =W0 = ∅.

for m=1,2,..., do
1. Vm = [Vm−1, Vm].
2. Wm ← orthonormalize columns of BTVm with respect to Wm−1.
3. Wm = [Wm−1, Wm].
4. Set HA,m =WT

mAVm, HB,m = VTmBWm, and C̃m = (WT
mC1)(WT

mC2)
T .

5. Compute Ym solution of HA,mYm + Y T
mHB,m = C̃m via [13, Algorithm 3.1].

if converged then
Return Vm, Ym,Wm such that Xm = VmYmWT

m and stop.
end if
6. V ′m+1 = [B−TAV

(1)
m , (B−TA)−1V

(2)
m ] where Vm = [V

(1)
m , V

(2)
m ].

7. Vm+1 ← orthonormalize columns of V ′m+1 with respect to Vm.
end for

Since W T
m+1Wm = 0 and W T

m+1C1 = 0, because range(C1) ⊆ W1 = range(W1) by (5.4), we have
W T

m+1RmWm = W T
m+1AVmYm = hm+1,1:mYm. Besides, HA,m+1 is block upper Hessenberg, which

implies that hm+1,1:m = hm+1,mE
T
m, which proves the result, since ‖Rm‖F = ‖R̂m‖F .

6 Relation to a T-Stein equation and a fixed point iteration

In this section, we provide another motivation for choosing the Krylov subspaces (4.3) and (4.4),
which offers some intuition on the expected convergence of Algorithm 1. This intuition is fully
confirmed by the numerical tests presented in Section 7.

Since B is assumed to be nonsingular, the T-Sylvester equation (3.1) is equivalent to XT =
C1C

T
2 B
−1 −AXB−1. Transposing this equation yields the fixed point equation

X = B−TC2C
T
1 −B−TXTAT . (6.1)

Matrix equations of this form are sometimes called T-Stein equations [10]. The following theorem
shows that the iterates produced by the fixed point iteration applied to (6.1) are contained in the
tensor product Vm ⊗Wm of the block Krylov subspaces in (4.3) and (4.4).

Theorem 6.1. Let A,B ∈ Rn×n, C1, C2 ∈ Rn×r, and assume that B is nonsingular. Consider the
sequence of matrices {X̃m}∞m=0 defined by the fixed point iteration

X̃0 = 0, X̃m+1 = B−TC2C
T
1 −B−T X̃T

mA
T , for m = 0, 1, 2, . . . (6.2)

Then it holds that X̃m+1 ∈ Vm ⊗Wm for m = 2, 3, . . ., where Vm = Km(B−TA,B−T [C1, C2]) and
Wm = Km(AB−T , [C1, C2]).

Proof. We will show by induction that range(X̃m+1) ⊆ Vm and range(X̃T
m+1) ⊆ Wm; these two

conditions taken together are equivalent to X̃m+1 ∈ Vm ⊗Wm.
The first three iterates of (6.2) are given by

X̃1 = B−TC2C
T
1 ,

X̃2 = B−TC2C
T
1 −B−TC1C

T
2 (AB−T )T ,

X̃3 = B−TC2C
T
1 −B−TC1C

T
2 (AB−T )T − (B−TA)B−TC2C

T
1 (AB−T )T .
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By inspection, range(X̃3) ⊆ V2 and range(X̃T
3 ) ⊆W2.

Suppose now that range(X̃m) ⊆ Vm−1 and range(X̃T
m) ⊆Wm−1 hold for some m ≥ 3. Together

with (6.2), this implies

range(X̃T
m+1) ⊆ range(C1) + range(AX̃m) ⊆ range(C1) +AVm−1.

Using

AVm−1 = range
([
AB−T [C1, C2] , (AB−T )2[C1, C2], . . . , (AB

−T )m−1[C1, C2]
])
⊆Wm,

we therefore obtain
range(X̃T

m+1) ⊆W1 +Wm = Wm.

Analogously,

range(X̃m+1) ⊆ range(B−TC2) + range(B−T X̃T
m)

⊆ V1 +B−TWm = V1 +Vm = Vm,

where we have used (4.4). We have thus shown that the statement of the theorem holds for m+ 1,
which completes the induction proof.

Theorem 6.1 shows that there is a 2mr × 2mr matrix Ỹm such that

X̃m+1 = VmỸmWT
m,

for orthonormal bases Vm,Wm of Vm,Wm, respectively. In particular, X̃m+1 has rank at most
2mr. Although the iteration (6.2) itself operates with full n × n matrices, it is certainly possible
to develop a low-rank variant, similar to the low-rank Smith method [30] for Lyapunov equations.
More importantly, X̃m+1 is in general different from the approximation Xm obtained when applying
the projection method from Section 3 with the same block Krylov subspaces Vm,Wm. Although,
X̃m+1 and Xm are both contained in Vm⊗Wm, the Petrov-Galerkin condition (3.5) will usually pick
an approximation different from X̃m+1. Still we believe that the established link to the fixed point
iteration (6.2) also offers some intuition on the expected convergence of the projection method.

Establishing sufficient conditions that guarantee fast convergence of the projection method is
likely a difficult problem, which is not considered in this work. In contrast, the convergence analysis
of fixed point iterations like (6.2) is very simple. Note that although we use in Theorem 6.2 the
spectral norm, any other submultiplicative matrix norm may be also used.

Theorem 6.2. Let A,B ∈ Rn×n, C1, C2 ∈ Rn×r, and assume that B is nonsingular and ρ(B−TA) <
1. Then the following statements hold:

(a) the T-Sylvester equation (3.1) (or, equivalently, the T-Stein equation (6.1)) has a unique
solution X;

(b) the sequence of matrices {X̃m}∞m=0 defined by the fixed point iteration (6.2) converges to X;

(c) the error matrix Em = X − X̃m satisfies ‖E2`‖2 ≤
∥∥∥(B−TA)`∥∥∥

2

∥∥∥(B−1AT
)`∥∥∥

2
‖X‖2 for

` = 0, 1, 2, . . ..

Proof. Part (a) follows immediately from Theorem 2.2; the condition ρ(B−TA) < 1 implies that
the spectrum of A− λBT is reciprocal free.

By the definition (6.2) of X̃m, we get E0 = X and Em+1 = −B−TET
mA

T . Then a simple
induction argument shows

E2` = (B−TA)`X(B−1AT )` and E2`+1 = −B−T (AB−T )`XT (ATB−1)`AT , (6.3)
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for ` = 0, 1, 2, . . .. Observe that ρ(B−TA) = ρ(AB−T ) = ρ(B−1AT ) = ρ(ATB−1). Hence,
ρ(B−TA) < 1 implies

lim
`→∞

(B−TA)` = lim
`→∞

(AB−T )` = lim
`→∞

(B−1AT )` = lim
`→∞

(ATB−1)` = 0,

see [22, Theorem 5.6.12], and limm→∞Em = 0. This proves (b). Part (c) follows from the first
equation in (6.3).

Standard properties of the spectral radius [22, Theorem 5.6.14] and Theorem 6.2(c) show that
asymptotically

‖E2`‖2 .
(
ρ(B−TA)

)2` ‖X‖2, `→∞ . (6.4)

Therefore fast convergence of the fixed point iteration (6.2) for the T-Stein equation is expected if
ρ(B−TA) < 1 and this spectral radius is not too close to one. By Theorem 6.1, this implies that
Vm ⊗Wm contains an approximation to X that rapidly becomes more accurate as m increases.
Numerically, we have observed this behavior as well for the approximation Xm picked by the Petrov-
Galerkin condition; the experiments in Section 7 demonstrate that the projection method with
the block Krylov subspaces Vm,Wm in (4.3)-(4.4) converges always quickly when ρ(B−TA) < 1,
although, sometimes, it converges also in other situations.

7 Numerical experiments

In this section we report on numerical experiments with the new Algorithms 1 and 2. All reported
experiments were performed using Matlab R2012a on a PC with processor Intel (R) Core (TM) 2
Quad CPU Q9400 @2.66GHz (4CPUs), with 4096 MB of RAM, and with operating system Windows
7 Enterprise 64 bits. Both CPU time (in seconds) and the dimension of the approximation space
Vm (equal to the dimension of Wm) are used to measure the cost of the different methods. We
also report on the number of iterations for completeness.

We compare our algorithms with the extended block Krylov subspace method applied to the
standard Sylvester equation (2.3) (see [35, Section 4.4.1] and the references therein for details).
Some remarks are in order concerning this comparison. In view of the eventual goal, we use the
relative residual defined in (4.12) for the T-Sylvester equation (instead of the Sylvester equation) for

monitoring the convergence of the approximate solution X̂m ≈ V̂mŶmŴT
m provided by the extended

block Krylov subspace method. To compute this residual norm, we note that

R̂m = AX̂m + X̂T
mB − C1C

T
2 =

[
AV̂m Ŵm C1

] Ŷm
Ŷ T
m

Ir

 ŴT
m

V̂TmB
−CT

2

 .
Therefore, if [AV̂m, Ŵm, C1] = QmSm and [Ŵm, B

T V̂m, −C2] = UmGm are two “skinny” QR
factorizations then ‖R̂m‖F = ‖Sm diag(Ŷm, Ŷ

T
m , Ir)G

T
m‖F . Although this computation is cheap, it

is far more expensive than the methods for computing residual norms presented in Propositions 4.3
and 5.1 for Algorithms 1 and 2, respectively. To take this into account, we will report CPU times
with and without the computation of the relative residual in every iteration. One motivation for
reporting both times is that it usually suffices to verify the stopping criterion (4.12) only every few
(say 5 or 10) iterations and hence the actual time will be in between.

The following table summarizes the algorithms that will be compared.

BK Algorithm 1
BK-TR Algorithm 1 applied to the transposed equation (4.6)
EK Algorithm 2
EK-woR EK without time for residual computation
EK-SYLV extended block Krylov subspace method applied to Sylvester equation (2.3)
EK-SYLV-woR EK-SYLV without time for residual computation
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Before presenting the numerical tests in detail, let us summarize the main conclusions we have
obtained, since they offer a clear guidance on the selection of algorithm for solving a given problem.
EK is the most reliable method as it succeeds to converge more often than any other method;
indeed, we have not found any example where EK does not converge but one of the other methods
does. However, for problems satisfying ρ(B−TA) < 1 we recommend the use of BK, which we
have observed to be much faster than the other methods in this situation. On the other hand,
if ρ(A−1BT ) < 1 then BK-TR is the fastest method. This is in accordance with the discussions
in Section 6 and in the paragraphs after (4.6). The method EK-SYLV based on the standard
Sylvester equation (2.3) is not recommended since it fails to converge in situations where other
methods succeed and even when it works, it is almost always slower than EK.

We report only on a small sample of the many numerical tests we have performed. In particular,
we only show results for right-hand sides C1C

T
2 with vectors C1, C2 ∈ Rn×1 generated by the

command randn in Matlab, although we have also performed tests with random matrices C1, C2 ∈
Rn×r with r = 2 : 7.

We present three types of numerical tests. In the first type of tests (7.1–7.3) the coefficient
matrices A and B are finite difference discretizations of certain differential operators. In the second
type of tests (7.4–7.9), we construct structured matrices A and B with prescribed eigenvalues for
B−TA. Finally, we discuss tests with block diagonal matrices built from the previous tests; see (7.1)
and the numerical test 7.10.

Numerical test 7.1. A and B are 104 × 104 matrices obtained by finite-difference discretizations
in [0, 1]× [0, 1] of the differential operators

a(u) = −uxx − uyy + y(1− x)ux + γu ,

b(u) = −uxx − uyy ,

respectively, where γ = 104. The vectors C1, C2 have been multiplied by 104 to match the magnitude
of the entries of the matrices A and B. The following table displays the obtained results.

tol = 10−10 EK BK BK-TR EK-SYLV EK-SYLV-woR EK-woR

iterations 14 70 15 15 15 14

dim. approx. space 56 140 30 60 60 56

time (seconds) 4.277 50.856 1.684 6.255 2.901 3.666

The convergence history is shown in Figure 7.1(a). In this test, all eigenvalues of B−TA are well
outside the unit circle; the smallest absolute value of the eigenvalues is approximately equal to
1.1226. All methods converge, with BK-TR being the fastest by far and BK the slowest. In this
test, the use of extended Krylov spaces in EK does not add any essential information compared to
BK-TR and therefore EK wastes half of the space.

Numerical test 7.2. A and B are 104 × 104 matrices obtained by finite-difference discretizations
in [0, 1]× [0, 1] of the differential operators

a(u) = (−exp(−xy)ux)x + (−exp(xy)uy)y + 100xux + γ u

b(u) = −uxx − uyy,

where γ = 5 · 104. The vectors C1, C2 have been multiplied by 104 to match the magnitude of the
entries of the matrices A and B.
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(a) Numerical test 7.1. (b) Numerical test 7.3.

Figure 7.1: Convergence histories for numerical tests 7.1 and 7.3.

tol = 10−10 EK BK BK-TR EK-SYLV EK-SYLV-woR EK-woR

iterations 8 83 8 8 8 8

dim. approx. space 32 166 16 32 32 32

time (seconds) 1.716 58.175 0.764 2.496 1.784 1.6160

The results are similar to the numerical test 7.1, only that the convergence (except for BK) is
faster due to the fact that the eigenvalues of B−TA are even further outside the unit circle. The
eigenvalue of smallest absolute value is approximately equal to 1.6159.

Numerical test 7.3. A and B are 104× 104 matrices obtained via finite-difference discretizations
in [0, 1]× [0, 1] of the differential operators

a(u) = (−exp(−xy)ux)x + (−exp(xy)uy)y + 100xux + γu ,

b(u) = −uxx − uyy + 100xux ,

where γ = 5 · 104. The vectors C1, C2 have been multiplied by 104 to match the magnitude. It
turns out that only EK converges for this example. BK, BK-TR, and EK-SYLV do not converge
within 100 iterations and their relative residuals remained essentially constant around 10−3. This
lack of convergence is marked with a star in the following table.

tol = 10−10 EK BK* BK-TR* EK-SYLV* EK-SYLV-woR* EK-woR

iterations 29 100 100 100 100 29

dim. approx. space 116 200 200 400 400 116

time (seconds) 10.920 70.715 63.835 521.214 71.807 9.158

The convergence history of EK is plotted in Figure 7.1(b), which shows stagnation until the
dimension of the approximation subspace is 90, after which quick convergence sets in. A key
difference to the previous tests 7.1 and 7.2 is that the eigenvalues of B−TA are now located inside
and outside the unit circle, with the magnitudes of the eigenvalues varying between 0.8679 and
1.4563. This fact has drastic effects on the convergence of the methods making EK the only valid
method.

Tests 7.1, 7.2, and 7.3 clearly show that the eigenvalue distribution of B−TA plays an important
role in the behavior of the algorithms. To investigate this further, we prescribe the eigenvalues of
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(a) Eigenvalues of B−TA and unit circle (dashed line). (b) Convergence history.

Figure 7.2: Distribution of eigenvalues of B−TA and convergence history for numerical test 7.4.

B−TA in the numerical tests 7.4-7.9. We construct these matrices as follows: let A1 be a block
diagonal real matrix with 1 × 1 or 2 × 2 blocks, whose eigenvalues are, respectively, the real and
complex eigenvalues that are prescribed for B−TA. We consider in addition the following tridiagonal
matrices P and Q

P =


1 1

3

1
2 1

. . .

. . .
. . . 1

3
1
2 1

 , Q =


1 1

6

1
4 1

. . .

. . .
. . . 1

6
1
4 1

 .

Next, we define the matrices A = PA1Q and B = QTP T . The eigenvalues of A1 and B−TA are
equal because

B−TA = (QTP T )−TPA1Q = (PQ)−1PA1Q = Q−1P−1PA1Q = Q−1A1Q.

Note that B is pentadiagonal and that A has at most 7 nonzero diagonals.

Numerical test 7.4. A and B are 105 × 105 matrices such that the eigenvalues of B−TA are
distributed as in Figure 7.2(a). Observe that all eigenvalues of B−TA are well inside the unit circle.
BK-TR did not converge in 70 iterations; it was not even close to.

tol = 10−10 EK BK BK-TR* EK-SYLV EK-SYLV-woR EK-woR

iterations 13 13 70 15 15 13

dim. approx. space 52 26 140 60 60 52

time (seconds) 14.227 6.474 179.416 107.796 15.568 11.776

The convergence history is shown in Figure 7.2(b). BK is the fastest method by far, which is in
full agreement with the discussion in Section 6. The behaviors of BK and BK-TR are opposite to
what has been observed in the tests 7.1 and 7.2, while EK and EK-SYLV behave the same.

Numerical test 7.5. A and B are 105 × 105 matrices such that the eigenvalues of B−TA are
distributed as in Figure 7.3(a). Observe that all eigenvalues of B−TA are well outside the unit
circle. BK did not converge in 70 iterations; it was not even close to.
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tol = 10−10 EK BK* BK-TR EK-SYLV EK-SYLV-woR EK-woR

iterations 13 70 13 13 13 13

dim. approx. space 52 140 26 52 52 52

time (seconds) 14.024 168.041 6.489 73.492 12.448 11.965

All results are very similar to the ones in test 7.1, except that the CPU times increase as a
consequence of the larger size. However, we emphasize that the distributions of eigenvalues of
B−TA are very different in both cases, even though the eigenvalues are well outside the unit circle
in both cases.

Numerical test 7.6. A and B are 105 × 105 matrices such that the eigenvalues of B−TA are
distributed as in Figure 7.3(b). Observe that B−TA has eigenvalue inside and outside the unit
circle and near 1. The behaviors of the methods are as in test 7.3, with EK being the only
converging method. All other methods were not close to convergence in 70 iterations.

tol = 10−10 EK BK* BK-TR* EK-SYLV* EK-SYLV-woR* EK-woR

iterations 21 70 70 70 70 21

dim. approx. space 84 140 140 280 280 84

time (seconds) 35.427 178.722 192.536 3041.208 296.339 32.569

Numerical test 7.7. A and B are 105 × 105 matrices such that the eigenvalues of B−TA are
distributed as in Figure 7.4(a). In this test, the eigenvalues of B−TA are outside the unit circle
and close to the real interval [3, 5]. This test illustrates a situation that we have not seen before:
both BK-TR and BK exhibit fast convergence, which is surprising in the light of the discussion in
Section 6 and the results of the previous tests. As expected, BK-TR is the fastest method, but the
difference is not as large as in the other tests.

tol = 10−10 EK BK BK-TR EK-SYLV EK-SYLV-woR EK-woR

iterations 3 9 4 3 3 3

dim. approx. space 12 18 8 12 12 12

time (seconds) 1.435 8.190 1.092 3.135 1.544 1.382

(a) Numerical test 7.5 (unit circle-dashed line). (b) Numerical test 7.6 (unit circle-dashed line).

Figure 7.3: Distribution of eigenvalues of B−TA for numerical tests 7.5 and 7.6.
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(a) Numerical test 7.7 (unit circle-dashed line). (b) Numerical test 7.8 (unit circle-dashed line).

Figure 7.4: Distribution of eigenvalues of B−TA for numerical tests 7.7 and 7.8.

Numerical test 7.8. The tests presented so far may give the impression that EK converges well
for any real T-Sylvester equation; however, this is not true. In fact, when B−TA has eigenvalues
inside and outside the unit circle, often none of the methods presented in this paper can be expected
to work well. This test is an example of such a situation. A and B are 105 × 105 matrices such
that the eigenvalues of B−TA are distributed as in Figure 7.4(b). With tol = 10−10 none of
the methods converged in 200 iterations, at which they reached relative residuals in the order of
10−2 − 10−3. We have performed other tests with eigenvalues of B−TA distributed as in Figure
7.4(b) but with matrices of size 1000 × 1000. These small sized cases can be solved directly with
the dense solver [13, Algorithm 3.1] and we have observed that the solution is very far from having
low-rank. As a consequence, the relative residuals for all methods remain constant around 10−3

until the dimensions of the approximation spaces are equal to 1000, i.e., they are the whole space.

Numerical test 7.9. In this example, the eigenvalues of B−TA are prescribed to lie all inside
the unit circle, but some of them are close to 1, see Figure 7.5(a). This test illustrates a situation
where EK-SYLV does not converge in 100 iterations, while EK and BK do converge. The failure of
BK-TR is expected from the discussion in Section 6 and the failure of EK-SYLV from the discussion
after Theorem 2.3. After 100 iterations BK-TR and EK-SYLV were far from satisfying the stopping
criterion. All methods have difficulties with this example and the convergence history for EK and
BK differs from the other examples, see Figure 7.5(b).

tol = 10−7 EK BK BK-TR* EK-SYLV* EK-SYLV-woR* EK-woR

iterations 57 57 100 100 100 57

dim. approx. space 228 114 200 400 400 228

time (seconds) 261.566 112.351 336.915 6785.715 567.110 217.339

Finally, we have considered matrices A and B from the previous tests such that BK or BK-TR
performs well but the other methods do not, and then we construct the new pair of matrices

Ã = diag(A,B) and B̃ = diag(B,A) . (7.1)

When proceeding in this way for the matrices from tests 7.1, 7.2, and 7.4, only EK is observed to
perform well. For brevity we report only the case coming from test 7.4.
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(a) Eigenvalues of B−TA and unit circle (dashed line). (b) Convergence history.

Figure 7.5: Distribution of eigenvalues of B−TA and convergence history for numerical test 7.9.

Numerical test 7.10. We construct matrices A and B of size (2 · 105) × (2 · 105) applying (7.1)
to the matrices from test 7.4. BK, BK-TR and EK-SYLV do not converge in 70 iterations and
they are by no means close to satisfying the stopping criterion. In contrast, EK converges in 44
iterations, see also Figure 7.6.

tol = 10−10 EK BK* BK-TR* EK-SYLV* EK-SYLV-woR* EK-woR

iteration 44 70 70 70 70 44

dim. approx. space 176 140 140 280 280 176

time (seconds) 305.621 352.733 372.358 6750.553 675.375 289.663

(a) Eigenvalues of B−TA. (b) Convergence history.

Figure 7.6: Distribution of eigenvalues of B−TA and convergence history for numerical test 7.10.

8 Conclusions and future work

We have introduced two new projection algorithms based on Krylov spaces for solving large-scale
T-Sylvester equations and we have tested them extensively in many different situations. In these
tests, we have compared the new methods with an extended Krylov method applied to the standard
Sylvester equation (2.3). As far as we know, the connection we have established between the T-
Sylvester equation and the standard Sylvester equation (2.3) is also new. Our experiments show
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that the new extended Krylov method we have introduced in Algorithm 2 works very well in many
situations and that if it fails then all the other methods also fail. However, if the eigenvalues of
B−TA are inside the unit circle then the new non-extended Krylov method introduced in Algorithm
1 is much faster and it is the most recommended method. Similar comments hold if the eigenvalues
of B−TA are outside the unit circle and Algorithm 1 is applied to the transposed equation (4.6).
The extended Krylov method applied to the standard Sylvester equation (2.3) fails more often than
the new methods and it is never faster, therefore, we do not recommended its use. With this work,
we solve the last relevant open problem concerning the T-Sylvester equation, namely, its numerical
solution in the large-scale setting. The convergence analysis of the proposed methods remains an
open problem.

Appendix: Efficient computation of HA,m in Algorithm 2

In this appendix, we include a new method for computing the compressed matrix HA,m in Algorithm
2. This method adapts the recursion in [37, Proposition 3.2] for computing Km to yield directly a
recursion for HA,m. To this end, we need to introduce some additional notation, which completes
the one used in Section 5. First, we partition the upper triangular matrix Zm = (Zij)1≤i,j≤m ∈
R4mr×4mr with Zij ∈ R4r×4r as Zij = [Z

(1)
ij , Z

(2)
ij ], with Z

(1)
ij , Z

(2)
ij ∈ R4r×2r, and define the two

block upper triangular matrices

Z(1)
m = (Z

(1)
ij )1≤i,j≤m, Z(2)

m = (Z
(2)
ij )1≤i,j≤m ∈ R4mr×2mr. (8.1)

Second, we observe that the orthonormalization process associated with the construction of Vm
generates the block upper Hessenberg matrix

Hm = (Hij) ∈ R4(m+1)r×4mr, where Hij ∈ R4r×4r, (8.2)

which satisfies

[B−TAV
(1)
1 , (B−TA)−1V

(2)
1 , . . . , B−TAV (1)

m , (B−TA)−1V (2)
m ] = Vm+1Hm. (8.3)

The subdiagonal blocks Hj+1,j are upper triangular and we consider them partitioned as follows

Hj+1,j =

[
χ
(j)
11 χ

(j)
12

0 χ
(j)
22

]
, with χ

(j)
11 , χ

(j)
12 , χ

(j)
22 ∈ R2r×2r. (8.4)

Submatrices H
(1)
m = (H

(1)
ij ) and H

(2)
m = (H

(2)
ij ) of Hm analogous to those in (8.1) will also be used.

Proposition 8.1. Let HA,m :=WT
mAVm ∈ R4mr×4mr be partitioned in blocks as HA,m = (hij)1≤i,j≤m,

where hij ∈ R4r×4r. Let each block hij be partitioned as hij =
[
h
(1)
ij , h

(2)
ij

]
, where h

(1)
ij , h

(2)
ij ∈ R4r×2r,

and define the following submatrices of HA,m (separating the odd and even block columns of HA,m)

h(1) =
(
h
(1)
ij

)
1≤i,j≤m

∈ R4mr×2mr and h(2) =
(
h
(2)
ij

)
1≤i,j≤m

∈ R4mr×2mr.

By using the matrices defined in (5.3)-(5.6)-(8.2), the following results hold.

(a) h(1) = Z1:m,1:(m+1)H
(1)
m .

(b) With E1 = [I2r; 0]T ∈ R4mr×2r, let w1 =WmE1 be the matrix of the first 2r columns of Wm,
and let

[B−T [C1, C2] , A
−1[C1, C2]] = V1

[
χ
(0)
11 χ

(0)
12

0 χ
(0)
22

]
, χ

(0)
11 , χ

(0)
12 , χ

(0)
22 ∈ R2r×2r (8.5)
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be the QR decomposition of the matrix in the left-hand side. Then

h
(2)
1:m,1 =

(
E1w

T
1 [C1, C2] − h

(1)
1:m,1 χ

(0)
12

) (
χ
(0)
22

)−1
, (8.6)

h
(2)
1:m,k+1 =

(
Z

(2)
1:m,k − h1:m,1:kH

(2)
1:k,k − h

(1)
1:m,k+1 χ

(k)
12

) (
χ
(k)
22

)−1
, k = 1, . . . ,m− 1. (8.7)

Proof. To prove (a), let V(1)m := [V
(1)
1 , . . . , V

(1)
m ] and notice that (8.3) impliesB−TAV(1)m = Vm+1H

(1)
m

andAV(1)m = BTVm+1H
(1)
m . Therefore, h(1) =WT

mAV
(1)
m =WT

mB
TVm+1H

(1)
m =WT

mWm+1Zm+1H
(1)
m ,

by using (5.6) for m+ 1. So h(1) = [I4mr 04mr×4r]Zm+1H
(1)
m , and the result follows.

Let us prove (b). To obtain (8.6), we start by equating the second block columns in (8.5) to

get A−1[C1, C2] = V
(1)
1 χ

(0)
12 + V

(2)
1 χ

(0)
22 , which implies AV

(2)
1 =

(
[C1, C2]−AV (1)

1 χ
(0)
12

) (
χ
(0)
22

)−1
.

Therefore
(h(2))1:m,1 =WT

mAV
(2)
1 = (WT

m[C1, C2]−WT
mAV

(1)
1 χ

(0)
12 ) (χ

(0)
22 )−1 .

Equation (8.6) follows from observing thatWT
mAV

(1)
1 = (h(1))1:m,1 and that, from (5.6), range(w1) =

BT range(V
(1)
1 ) = range([C1, C2]). Next, we focus on (8.7). From (8.3), we obtain

(B−TA)−1V
(2)
k = Vm+1H

(2)
1:(m+1),k = VkH

(2)
1:k,k + Vk+1H

(2)
k+1,k = VkH

(2)
1:k,k + [V

(1)
k+1 V

(2)
k+1]

[
χ
(k)
12

χ
(k)
22

]
,

where (8.4) has been used. This equation implies, after some manipulations,

AV
(2)
k+1 = (BT V

(2)
k −AVkH

(2)
1:k,k −AV

(1)
k+1 χ

(k)
12 ) (χ

(k)
22 )−1

= (Wm Z
(2)
1:m,k −AVkH

(2)
1:k,k −AV

(1)
k+1 χ

(k)
12 ) (χ

(k)
22 )−1 , (8.8)

where we used again (5.6). Equation (8.7) follows from combining (8.8) with h
(2)
1:m,k+1 =WT

mAV
(2)
k+1,

and the definition of HA,m.
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