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Abstract

Low-rank structured matrices have attracted much attention in the last decades, since they arise

in many applications and all share the fundamental property that can be represented by O(n)
parameters, where n × n is the size of the matrix. This property has allowed the development of

fast algorithms for solving numerically many problems involving low-rank structured matrices by

performing operations on the parameters describing the matrices, instead of directly on the matrix

entries. Among these problems the solution of linear systems of equations is probably the most

basic and relevant one. Therefore, it is important to measure, via structured computable condition

numbers, the relative sensitivity of the solutions of linear systems with low-rank structured coe�cient

matrices with respect to relative perturbations of the parameters representing such matrices, since

this sensitivity determines the maximum accuracy attainable by fast algorithms and allows us to

decide which set of parameters is the most convenient from the point of view of accuracy. To develop

and analyze such condition numbers is the main goal of this paper. To this purpose, a general

expression is obtained for the condition number of the solution of a linear system of equations whose

coe�cient matrix is any di�erentiable function of a vector of parameters with respect to perturbations

of such parameters. Since there are many di�erent classes of low-rank structured matrices and many

di�erent types of parameters describing them, it is not possible to cover all of them in a single work.

Therefore, the general expression of the condition number is particularized to the important case

of {1, 1}-quasiseparable matrices and to the quasiseparable and the Givens-vector representations,

in order to obtain explicit expressions of the corresponding two condition numbers that can be

estimated in O(n) operations. In addition, detailed theoretical and numerical comparisons of these

two condition numbers between themselves, and with respect to unstructured condition numbers are

provided, which show that there are situations in which the unstructured condition number is much

larger than the structured ones, but that the opposite never happens. The approach presented in this

manuscript can be generalized to other classes of low-rank structured matrices and parameterizations.
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1 Introduction

A low-rank structured matrix is, in plain words, a matrix such that large submatrices of it have ranks
much smaller than the size of the matrix. Banded matrices with small band-width are classical examples
of low-rank structured matrices, but many other examples corresponding to dense matrices and appearing
in many applications exist [9, 10, 16, 17]. Most of the classes of n×n low-rank structured matrices share
the key property that they can be described by di�erent sets of O(n) parameters, called representations
[16, Ch. 2], which may be used in the development of fast algorithms, i.e., algorithms with a smaller
exponent in the dependence on n of the computational cost than classical matrix algorithms. Many fast
algorithms for low-rank structured matrices have been developed in the last years and they are often very
sophisticated. However, all of them are based on the same simple and fundamental idea: they operate
on the parameters describing the matrices instead of directly on the entries of the matrix. We refer the
reader to the recent monographs [9, 10, 16, 17] and the survey paper [3], as well as to the huge amount
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of references therein, for a detail account of algorithms, properties, and applications of many di�erent
classes of low-rank structured matrices and their di�erent parameterizations.

Despite the large number of references available on fast algorithms for computations with low-rank
structured matrices, there exist very few references on the corresponding a priori rounding error analyses
[1, 2, 4, 14, 18, 19]. Some reasons of this might be that such fast algorithms are frequently complicated
and that some of them are potentially unstable, although work well in practice most of the times.
This situation makes necessary the development of structured condition numbers with respect to the
parameters on which fast algorithms operate and of reliable methods to estimate a posteriori the backward
errors on such parameters from the residuals of the computed outputs of the algorithms, because in this
way the forward errors committed by fast algorithms for low-rank structured matrices may be reliably
and optimally estimated a posteriori as the product of the structured condition numbers times the
backward errors on the parameters. This is a challenging research plan that has been initiated recently
in [5], where for the �rst time in the literature some structured condition numbers (for eigenvalues in
that case) with respect to some parameterizations of a certain class of low-rank structured matrices
were introduced and analyzed. Among many other results, it was proved in [5] that simple eigenvalues
of {1, 1}-quasiseparable matrices [6, 16] may be much less sensitive to perturbations of the parameters
describing the matrices than to perturbations of the entries of the matrix. In this paper, we extend
the development of structured condition numbers with respect to perturbations of the parameters to
the fundamental case of the solutions of linear systems of equations with low-rank structured coe�cient
matrices, and we will prove that, also in this case, the solutions may be much better conditioned with
respect to perturbations of the parameters than with respect to perturbations of the entries of the matrix,
but that the opposite can not happen. This work is in�uenced by the recent references [11, 5], which
deal with the sensitivity of eigenvalues of some low-rank structured matrices, but also by the classical
reference [13], in which the use of di�erential calculus for developing condition numbers was introduced.

Since there are many classes of low-rank structured matrices and many possible parameterizations,
or representations, describing them, we focus in this paper on the particular, but very relevant, subclass
of low-rank structured matrices known as {1, 1}-quasiseparable matrices (see De�nition 3.1 in Section 3)
and on two of their most important representations, the general quasiseparable representation, which is
non unique, and the essentially unique Givens-vector representation [6, 8, 15, 16]. One of the goals of
considering two di�erent representations is to illustrate another application of condition numbers with
respect to di�erent parameterizations for the solution of linear systems. Such application is to determine
which representation is better to use, from the point of view of accuracy, for developing a fast algorithm
for solving a linear system, since the most sensible choice is the one with smallest condition number.
In this work, we will prove that, as it happens in the case of the eigenvalues [5], the condition number
with respect to any quasiseparable representation is the same, and can not be too much larger than
the condition number with respect to the Givens-vector representation, which is always the smallest.
Moreover, we will show how these two condition numbers can be reliably estimated in O(n) �ops.

We emphasize that, although the results in this paper are particularized for {1, 1}-quasiseparable
matrices, the general framework established in Section 2 can be used to study structured condition
numbers of solutions of linear systems with respect to di�erent representations for many other classes of
low-rank structured matrices.

The rest of the paper is organized as follows. Section 2 presents general results on condition numbers
for the solutions of linear systems whose coe�cient matrices are di�erentiable functions of some param-
eters with respect to perturbations of such parameters. Section 3 refreshes very brie�y the de�nition of
quasiseparable matrices and some of their properties. Sections 4, 5, and 6 include the most important
results in this paper on the condition numbers for the solutions of linear systems of equations whose
coe�cient matrices are {1, 1}-quasiseparable with respect to the quasiseparable and the Givens-vector
representations and on the comparison between them. Section 7 discusses how these condition numbers
can be estimated in O(n) �ops. Numerical experiments are presented in Section 8 and conclusions and
lines of future research are established in Section 9.

Notation. Following a common notation in Numerical Linear Algebra, we will use capital Roman
letters A, B,. . . , for matrices and lower case bold Roman letters x,y, . . . for column vectors. We will
only consider real vectors and matrices. Given a real column vector y of size n, its transpose is denoted
by yT . The vector ∞-norm is used very often, so we recall its de�nition: ‖y‖∞ := max1≤i≤n |yi|, where
yi denotes the i-th coordinate of the vector y. The reader is referred to [12] for additional information
on vector and matrix norms. Standard MATLAB notation for submatrices is used, i.e., given a matrix
A ∈ Rm×n, the expression A(i : j, k : l), where 1 ≤ i ≤ j ≤ m and 1 ≤ k ≤ l ≤ n, denotes the submatrix
of A consisting of rows i up to and including j of A and of columns k up to and including l of A.
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2 Basics on condition numbers for linear systems

We start this section by presenting some well-known results about condition numbers for the solution of
a linear system of equations. Note �rst that any perturbation of a matrix A ∈ Rn×n can be expressed as
a sum A+ δA, where δA ∈ Rn×n is called the perturbation matrix.

Associated with a normwise backward error we have the condition number in De�nition 2.1 [12, Sec.
7.1], valid for any vector norm and the corresponding subordinate matrix norm.

De�nition 2.1. Let Ax = b, where A ∈ Rn×n is nonsingular, and 0 6= x ∈ Rn. Then, for E ∈ Rn×n

and f ∈ Rn, we de�ne

κE,f (A,x) := lim
η→0

sup

{
‖δx‖
η‖x‖

: (A+ δA) (x+ δx) = b+ δb, ‖δA‖ ≤ η‖E‖, ‖δb‖ ≤ η‖f‖

}
.

Observe that κE,f (A,x) is a normwise relative condition number, i.e., it measures the relative sen-
sitivity of the solution x of the linear system Ax = b with respect to relative normwise perturbations
of the matrix and the right-hand side (note that, in this case, the perturbations are measured against
the tolerances E and f). This condition number has the expression presented in the following theorem
proved in [12, Sec. 7.1].

Theorem 2.2. Under the same hypotheses of De�nition 2.1,

κE,f (A,x) =
‖A−1‖‖f‖
‖x‖

+ ‖A−1‖‖E‖.

Recall that the usual matrix condition number is given by κ(A) := ‖A‖‖A−1‖ and note that if we
take E = A and f = b, then we have κ(A) ≤ κE,f (A,x) ≤ 2κ(A), and therefore they are numerically
equivalent. On the other hand, it is well-known that considering normwise perturbations of the matrix
A and the vector b may lead to pessimistic bounds on the forward errors, since there are matrices and
vectors for which we may have a small relative normwise perturbation that produces some large relative
perturbations over their small entries, and that may a�ect the zero pattern of the matrix or the vector
(see, for instance, the numerical example in [12, pp. 121-124]). Therefore, it makes sense to consider
componentwise perturbations and the corresponding componentwise condition number. We denote by
|A| the matrix whose entries are the absolute values of the entries of A (i.e., |A|ij := |Aij |) and we adopt
a similar notation for vectors. In addition, inequalities |A| ≤ |B| mean |Aij | ≤ |Bij | for all i, j. De�nition
2.3 and Theorem 2.4 can both be found in [12, Sec. 7.2], together with a brief discussion on how to
choose the tolerances E and f .

De�nition 2.3. Let Ax = b, where A ∈ Rn×n is nonsingular, and 0 6= x ∈ Rn. Then, for 0 ≤ E ∈ Rn×n

and 0 ≤ f ∈ Rn, we de�ne the relative componentwise condition number as

condE,f (A,x) := lim
η→0

sup

{
‖δx‖∞
η‖x‖∞

: (A+ δA) (x+ δx) = b+ δb, |δA| ≤ ηE, |δb| ≤ ηf

}
.

Theorem 2.4. Under the same hypotheses of De�nition 2.3,

condE,f (A,x) =
‖|A−1|E|x|+ |A−1|f‖∞

‖x‖∞
.

A proof of this theorem is provided in [12, Sec. 7.2], but it can be seen as a consequence of the more
general Theorem 2.9 that we introduce below, and, so, we will present a proof of Theorem 2.4 at the end
of this section.

From the expression in Theorem 2.4, if we consider E = |A| and f = |b|, then it is straightforward
to prove that the condition number cond|A|,|b|(A,x) is invariant under row scaling. This useful property
is stated in the following proposition.

Proposition 2.5. Let Ax = b, where A ∈ Rn×n is nonsingular and 0 6= x ∈ Rn, and let K ∈ Rn×n be
an invertible diagonal matrix. Then, for KAx = Kb, we have

cond|A|,|b|(A,x) = cond|KA|,|Kb|(KA,x).
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Since many interesting classes of matrices can be represented by sets of parameters di�erent from their
entries (see Theorem 4.1, for example), we generalize the de�nitions above to these representations and,
following the ideas in [5], we will focus on componentwise relative condition numbers for representations.

De�nition 2.6. Let Ax = b, where A ∈ Rn×n is a nonsingular matrix whose entries are di�erentiable
functions of a vector of parameters Ω = (ω1, ω2, . . . , ωm)T ∈ Rm, this is denoted by A(Ω), and 0 6= x ∈
Rn. Let 0 ≤ f ∈ Rn and E = (e1, e2, . . . , em)T ∈ Rm with nonnegative entries. Then, we de�ne

condE,f (A(Ω),x) := lim
η→0

sup

{
‖δx‖∞
η‖x‖∞

: (A(Ω + δΩ)) (x+ δx) = b+ δb, |δΩ| ≤ ηE, |δb| ≤ ηf

}
.

The main goal of this section is to �nd an explicit expression for the componentwise relative condition
number with respect to a general representation introduced in De�nition 2.6. For such a purpose we will
use di�erential calculus and we will need Lemma 2.7. In Lemma 2.7, ei denotes the ith vector of the
canonical basis of Rn.

Lemma 2.7. Let Ax = b, where A ∈ Rn×n is an invertible matrix whose entries are di�erentiable
functions of a vector of real parameters Ω = (ω1, ω2, . . . , ωm)T , and 0 6= x ∈ Rn. Then, the following
equalities hold:

(a)
∂A−1

∂ωk
= −A−1 ∂A

∂ωk
A−1, for k ∈ {1, 2, . . . ,m},

(b)
∂x

∂bi
= A−1ei, for i ∈ {1, 2, . . . , n},

(c)
∂x

∂ωk
= −A−1 ∂A

∂ωk
x, for k ∈ {1, 2, . . . ,m}.

Proof. (a) Derivating in both sides of AA−1 = In, we get

∂A

∂ωk
A−1 +A

∂A−1

∂ωk
= 0.

(b) It follows trivially from derivating x = A−1b.

(c) From derivating x = A−1b and using (a), we obtain

∂x

∂ωk
=
∂A−1

∂ωk
b = −A−1 ∂A

∂ωk
A−1b = −A−1 ∂A

∂ωk
x.

Remark 2.8. In Lemma 2.7, we have used that the entries of A−1 are also di�erentiable functions of
(ω1, . . . , ωm). This follows from the facts that (1) each entry of A−1 is a quotient of a cofactor of A
divided by det(A) and that (2) products, sums, and quotients of di�erentiable functions are di�erentiable
whenever the denominators are not zero.

In Theorem 2.9, we provide the desired explicit expression of the componentwise relative condition
number introduced in De�nition 2.6.

Theorem 2.9. Let Ax = b, where A ∈ Rn×n is an invertible matrix whose entries are di�erentiable
functions of a vector of real parameters Ω = (ω1, ω2, . . . , ωm)T and 0 6= x ∈ Rn. Let 0 ≤ f ∈ Rn and
E = (e1, e2, . . . , em)T ∈ Rm with nonnegative entries. Then,

condE,f (A(Ω),x) =

∥∥∥∥∣∣A−1∣∣f +
∑m
k=1

∣∣∣∣A−1 ∂A∂ωkx
∣∣∣∣ ek∥∥∥∥

∞
‖x‖∞

.

Proof. Since the entries of the matrix A are di�erentiable functions of the parameters in Ω and, from
x = A−1b, it is clear that x is a function of Ω and b, we can use di�erential calculus to obtain the
following result:

δx =

n∑
i=1

∂x

∂bi
δbi +

m∑
k=1

∂x

∂ωk
δωk +O(‖(δΩ, δb)‖2),
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where ‖(δΩ, δb)‖ := max{‖δΩ‖∞, ‖δb‖∞}. Using (b) and (c) from Lemma 2.7 in the previous equation,
we obtain:

δx =

n∑
i=1

(
A−1ei

)
δbi +

m∑
k=1

(
−A−1 ∂A

∂ωk
x

)
δωk +O(‖(δΩ, δb)‖2). (2.1)

From (2.1), using standard properties of the ∞-norm and the inequalities |δb| ≤ ηf and |δΩ| ≤ ηE,
we get

‖δx‖∞ ≤ η

∥∥∥∥∥
n∑
i=1

∣∣A−1ei∣∣ fi + m∑
k=1

∣∣∣∣A−1 ∂A∂ωkx
∣∣∣∣ ek
∥∥∥∥∥
∞

+O(‖(δΩ, δb)‖2)

= η

∥∥∥∥∥∣∣A−1∣∣f +

m∑
k=1

∣∣∣∣A−1 ∂A∂ωkx
∣∣∣∣ ek
∥∥∥∥∥
∞

+O(‖(δΩ, δb)‖2). (2.2)

Then, if η tends to zero, from (2.2) and from De�nition 2.6, it is straightforward to get

condE,f (A(Ω),x) ≤

∥∥∥∥∥∣∣A−1∣∣f +

m∑
k=1

∣∣∣∣A−1 ∂A∂ωkx
∣∣∣∣ ek
∥∥∥∥∥
∞

‖x‖∞
. (2.3)

On the other hand, if we consider the perturbations:

δb = ηDf ,

where D is a diagonal matrix such that D(j, j) = sign (A−1(l, j)), for j = 1, 2, . . . , n, and

δωk = −η
[
sign

(
A−1

∂A

∂ωk
x

)
l

]
ek, for k = 1, . . . ,m,

where l is such that∥∥∥∥∥∣∣A−1∣∣f +

m∑
k=1

∣∣∣∣A−1 ∂A∂ωkx
∣∣∣∣ ek
∥∥∥∥∥
∞

=

(∣∣A−1∣∣f +

m∑
k=1

∣∣∣∣A−1 ∂A∂ωkx
∣∣∣∣ ek
)
l

,

we can obtain, from (2.1) and from De�nition 2.6, the desired equality in (2.3).

As a consequence of Theorem 2.9 we can deduce the very well-known expression in Theorem 2.4 for
the condition number condE,f (A,x) by considering Ω as the entries of A. Therefore, we conclude this
section by providing its proof.

Proof. (of Theorem 2.4 ) Note �rst that, in this case, we can rewrite the expression in Theorem 2.9 as:

condE,f (A,x) =

∥∥∥∥∥∥∣∣A−1∣∣f +

n∑
j,k=1

∣∣∣∣A−1 ∂A∂ajkx
∣∣∣∣ ejk

∥∥∥∥∥∥
∞

‖x‖∞
.

Then, since it is obvious that ∂A/∂ajk = eje
T
k , we have:

n∑
j,k=1

∣∣∣∣A−1 ∂A∂ajkx
∣∣∣∣ ejk =

n∑
j,k=1

∣∣A−1(:, j)∣∣ |xk| ejk =

n∑
k=1

 n∑
j=1

∣∣A−1(:, j)∣∣ ejk
 |xk|

=

n∑
k=1

∣∣A−1∣∣E(:, k) |xk| =
∣∣A−1∣∣ n∑

k=1

E(:, k) |xk| =
∣∣A−1∣∣E |x| ,

and the proof follows trivially.
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3 Quasiseparable matrices

The class of quasiseparable matrices is a particular case of low-rank structured matrices and it was
introduced for the �rst time in [6]. Next, we refresh its de�nition

De�nition 3.1. A matrix A ∈ Rn×n is called an {nL, nU}-quasiseparable matrix, with nL ≥ 0 and
nU ≥ 0, if the following two properties are satis�ed:

• every submatrix of A entirely located in the strictly lower triangular part of A has rank at most nL,
and there is at least one of these submatrices which has rank equal to nL, and

• every submatrix of A entirely located in the strictly upper triangular part of A has rank at most
nU , and there is at least one of these submatrices which has rank equal to nU .

This is obviously equivalent to maxi rank A(i+1 : n, 1 : i) = nL, and maxi rank A(1 : i, i+1 : n) = nU .

A {1, 1}-quasiseparable matrix is often referred to as a {1}-quasiseparable matrix or simply as a
quasiseparable matrix.

An important property of {nL, nU}-quasiseparable matrices is given by the relation existing among
them and their inverses. This is stated in the following theorem (see [16, p. 316]).

Theorem 3.2. The inverse of an invertible {nL, nU}-quasiseparable matrix is again an {nL, nU}-
quasiseparable matrix.

On the other hand, any matrix in the class of quasiseparable matrices can be represented by some set
of parameters di�erent from the set of its entries (for a rigorous de�nition of a representation, see [16, p.
56]), and, therefore, the class of quasiseparable matrices is often de�ned in terms of such representations.
In [16, Ch. 2, Sec. 8.5], the reader can �nd an extensive description of di�erent useful representations
for quasiseparable matrices and for some other low-rank structured matrices.

4 Condition number of the solution of {1, 1}-quasiseparable linear
systems in the quasiseparable representation

In this section we will deduce an explicit expression for the condition number of the solution of a linear
system of equations with a {1, 1}-quasiseparable matrix of coe�cients with respect to the quasiseparable
representation introduced in [6]. This representation will be brie�y described in Section 4.1, while in
Section 4.2 (and also in Section 6) we include our original results for the structured condition number
with respect to this representation. The techniques used in Section 4.2 are based on the techniques used
in [5, Sec. 4.2] for structured eigenvalue condition numbers, and will be used again in further sections in
order to obtain analogous results for the other structured condition numbers introduced in this paper.

4.1 The quasiseparable representation for {1, 1}-quasiseparable matrices

The general quasiseparable representation was introduced in [6] for general {nL, nU}-quasiseparable ma-
trices. This representation is presented in Theorem 4.1 only for the particular case of {1, 1}-quasiseparable
matrices, because they are the only ones studied in this paper.

Theorem 4.1. A matrix A ∈ Rn×n is a {1, 1}-quasiseparable matrix if and only if it can be parameterized
in terms of the following set of 7n− 8 parameters, all of which are real numbers,

ΩQS = ({pi}ni=2, {ai}n−1i=2 , {qi}
n−1
i=1 , {di}

n
i=1, {gi}n−1i=1 , {bi}

n−1
i=2 , {hi}

n
i=2),

as follows,

A =



d1 g1h2 g1b2h3 · · · g1b2 . . . bn−1hn
p2q1 d2 g2h3 · · · g2b3 . . . bn−1hn

p3a2q1 p3q2 d3 · · · g3b4 . . . bn−1hn
p4a3a2q1 p4a3q2 p4q3 · · · g4b5 . . . bn−1hn

...
...

...
. . .

...
pnan−1an−2 . . . a2q1 pnan−1 . . . a3q2 pnan−1 . . . a4q3 · · · dn


,
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or, in a more compact notation,

A =


d1

d2 gib
×
ijhj

pia
×
ijqj

. . .

dn

 ,
where a×ij = ai−1ai−2 · · · aj+1, for i− 1 ≥ j+1, b×ij = bi+1bi+2 · · · bj−1, for i+1 ≤ j− 1, a×j+1,j = 1, and

b×j,j+1 = 1 for j = 1, . . . , n− 1.

We call the vector of parameters ΩQS in Theorem 4.1 a quasiseparable representation of the quasisep-
arable matrix A. Let us see the following 5× 5 example for a more clear view of this representation.

Example 4.2. Let A be a {1, 1}-quasiseparable matrix of size 5 × 5 and consider a quasiseparable
representation of A:

ΩQS = ({pi}5i=2, {ai}4i=2, {qi}4i=1, {di}5i=1, {gi}4i=1, {bi}4i=2, {hi}5i=2).

Then,

A =


d1 g1h2 g1b2h3 g1b2b3h4 g1b2b3b4h5

p2q1 d2 g2h3 g2b3h4 g2b3b4h5

p3a2q1 p3q2 d3 g3h4 g3b4h5

p4a3a2q1 p4a3q2 p4q3 d4 g4h5

p5a4a3a2q1 p5a4a3q2 p5a4q3 p5q4 d5

 .

From Theorem 4.1 we see how any square {1, 1}-quasiseparable matrix of size n×n can be represented
with O(n) parameters instead of its n2 entries. This fact is crucial for developing fast algorithms for
performing computations with these matrices. There exist several fast algorithms, with cost O(n) op-
erations, and working with di�erent representations, for performing computations such as matrix-vector
multiplication, solution of linear systems, and matrix inversion for quasiseparable matrices [6, 7, 9, 10, 16],
and even for computing structured eigenvalue condition numbers [5, Secs. 4.3, 4.4].

On the other hand note that the quasiseparable representation is not unique as we can see in the
following 5× 5 example.

Example 4.3. Let A be a 5× 5 quasiseparable matrix with a quasiseparable representation ΩQS as in

Example 4.2 and consider a real value α ∈ R/{0, 1}, then Ω′QS = ({αpi}5i=2, {ai}4i=2, {qi/α}
4
i=1 , {di}5i=1,

{gi}4i=1, {bi}4i=2, {hi}5i=2) is also a quasiseparable representation of A.

Taking into account that our goal is to obtain explicit expressions of structured condition numbers
for the solution of a linear system involving a quasiseparable matrix in the quasiseparable representation
by using di�erential calculus, the next lemma will become useful. The easy proof is omitted since it can
be found inside the proof of [5, Theorem 4.4].

Lemma 4.4. Let A ∈ Rn×n be a {1, 1}−quasiseparable matrix and A = AL + AD + AU , with AL
strictly lower triangular, AD diagonal, and AU strictly upper triangular. Let ΩQS be a quasiseparable
representation of A, where ΩQS = ({pi}ni=2, {ai}

n−1
i=2 , {qi}

n−1
i=1 , {di}ni=1, {gi}

n−1
i=1 , {bi}

n−1
i=2 , {hi}ni=2). Then

the entries of A are di�erentiable functions of the parameters in ΩQS and:

a)
∂A

∂di
= eie

T
i , for i = 1, . . . , n.

b) pi
∂A

∂pi
= eiAL(i, :), for i = 2, . . . , n.

c) ai
∂A

∂ai
=

[
0 0

A(i+ 1 : n, 1 : i− 1) 0

]
, for i = 2, . . . , n− 1.

d) qi
∂A

∂qi
= AL(:, i)e

T
i , for i = 1, . . . , n− 1.

e) gi
∂A

∂gi
= eiAU (i, :), for i = 1, . . . , n− 1.
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f) bi
∂A

∂bi
=

[
0 A(1 : i− 1, i+ 1 : n)
0 0

]
, for i = 2, . . . , n− 1.

g) hi
∂A

∂hi
= AU (:, i)e

T
i , for i = 2, . . . , n.

4.2 The condition number for {1, 1}-quasiseparable matrices in the quasisep-

arable representation: expression and properties

Since from Lemma 4.4 we have that the entries of a quasiseparable matrix A are di�erentiable functions
of the parameters in a quasiseparable representation of A, we can deduce relative-relative component-
wise condition numbers of the solution of linear systems with respect to these representations by using
Theorem 2.9. This leads to Theorem 4.5.

Theorem 4.5. Let Ax = b, where 0 6= x ∈ Rn, A ∈ Rn×n is a nonsingular {1, 1}-quasiseparable matrix
with a quasiseparable representation ΩQS, and such that A = AL + AD + AU , with AL strictly lower
triangular, AD diagonal, and AU strictly upper triangular. Let 0 ≤ f ∈ Rn and 0 ≤ EQS ∈ R7n−8. Then

condEQS ,f (A(ΩQS),x) =
1

‖x‖∞

∥∥∥∥∥ ∣∣A−1∣∣f + |A−1||Qd||x|+ |A−1||Qp||ALx|+ |A−1AL||Qq||x|

+ |A−1||Qg||AUx|+ |A−1AU ||Qh||x|

+

n−1∑
i=2

∣∣∣∣A−1 [ 0 0
A(i+ 1 : n, 1 : i− 1) 0

]
x

∣∣∣∣ ∣∣∣∣eaiai
∣∣∣∣

+

n−1∑
j=2

∣∣∣∣A−1 [ 0 A(1 : j − 1, j + 1 : n)
0 0

]
x

∣∣∣∣ ∣∣∣∣ebibi
∣∣∣∣
∥∥∥∥∥
∞

,

where:

ΩQS = ({pi}ni=2, {ai}n−1i=2 , {qi}
n−1
i=1 , {di}

n
i=1, {gi}n−1i=1 , {bi}

n−1
i=2 , {hi}

n
i=2),

EQS = ({epi}ni=2, {eai}n−1i=2 , {eqi}
n−1
i=1 , {edi}

n
i=1, {egi}n−1i=1 , {ebi}

n−1
i=2 , {ehi}ni=2),

Qd = diag(ed1 , . . . , edn), Qp = diag

(
1,
ep2
p2
, . . . ,

epn
pn

)
, Qq = diag

(
eq1
q1
, . . . ,

eqn−1

qn−1
, 1

)
,

Qg = diag

(
eg1
g1
, . . . ,

egn−1

gn−1
, 1

)
, Qh = diag

(
1,
eh2

h2
, . . . ,

ehn

hn

)
,

and each quotient whose denominator is zero must be understood as zero if the numerator is also zero
and, otherwise, the zero parameter in the denominator should be formally cancelled out with the same
parameter in the corresponding piece of A.

Proof. We will proceed by calculating the contribution of each subset of parameters to the expression
for condEQS,f

(A(ΩQS),x) given in Theorem 2.9 as follows.
Derivatives with respect to {di}ni=1. By using a) in Lemma 4.4 we get:

κd :=

n∑
i=1

∣∣∣∣A−1 ∂A∂dix
∣∣∣∣ edi = n∑

i=1

∣∣A−1eieTi x∣∣ edi = n∑
i=1

∣∣A−1(:, i)∣∣ |xi| edi = ∣∣A−1∣∣ |Qd| |x| .
Derivatives with respect to {pi}ni=2. From b) in Lemma 4.4 we have:

κp :=

n∑
i=2

∣∣∣∣A−1 ∂A∂pix
∣∣∣∣ |epi | = n∑

i=2

∣∣∣∣A−1pi ∂A∂pix
∣∣∣∣ ∣∣∣∣epipi

∣∣∣∣ = n∑
i=2

∣∣A−1eiAL(i, :)x∣∣ ∣∣∣∣epipi
∣∣∣∣

=

n∑
i=2

∣∣A−1(:, i)AL(i, :)x∣∣ ∣∣∣∣epipi
∣∣∣∣ = n∑

i=2

∣∣A−1(:, i)∣∣ ∣∣∣∣epipi
∣∣∣∣ |AL(i, :)x| = ∣∣A−1∣∣ |Qp| |ALx| .

Derivatives with respect to {ai}n−1i=2 . From c) in Lemma 4.4 we have:

κa :=

n−1∑
i=2

∣∣∣∣A−1ai ∂A∂aix
∣∣∣∣ ∣∣∣∣eaiai

∣∣∣∣ = n−1∑
i=2

∣∣∣∣A−1 [ 0 0
A(i+ 1 : n, 1 : i− 1) 0

]
x

∣∣∣∣ ∣∣∣∣eaiai
∣∣∣∣.
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Derivatives with respect to {qj}n−1j=1 . From d) in Lemma 4.4 we have:

κq :=

n−1∑
j=1

∣∣∣∣A−1 ∂A∂qj x
∣∣∣∣ ∣∣eqj ∣∣ = n−1∑

j=1

∣∣∣∣A−1qj ∂A∂qj x
∣∣∣∣ ∣∣∣∣eqjqj

∣∣∣∣ = n−1∑
j=1

∣∣A−1AL(:, j)eTj x∣∣ ∣∣∣∣eqjqj
∣∣∣∣

=

n−1∑
j=1

∣∣A−1AL(:, j)∣∣ |xj | ∣∣∣∣eqjqj
∣∣∣∣ = ∣∣A−1AL∣∣ |Qq| |x| .

Analogously, we can �nd the contribution to the condition number condEQS ,f (A(ΩQS),x) of the deriva-

tives of A with respect to the parameters {gi}n−1i=1 , {bi}
n−1
i=2 , and {hi}ni=2, which describe the strictly upper

triangular part of A. The results are the following.
Derivatives with respect to {gi}n−1i=1 . By using e) in Lemma 4.4 we obtain:

κg :=

n−1∑
i=1

∣∣∣∣A−1 ∂A∂gix
∣∣∣∣ |egi | = ∣∣A−1∣∣ |Qg| |AUx| .

Derivatives with respect to {bi}n−1i=2 . By using f) in Lemma 4.4 we obtain:

κb :=

n−1∑
i=2

∣∣∣∣A−1 ∂A∂bix
∣∣∣∣ |ebi | = n−1∑

i=2

∣∣∣∣A−1 [ 0 A(1 : i− 1, i+ 1 : n)
0 0

]
x

∣∣∣∣ ∣∣∣∣ebibi
∣∣∣∣ .

Derivatives with respect to {hj}nj=2. By using g) in Lemma 4.4 we obtain:

κh :=

n∑
j=2

∣∣∣∣A−1 ∂A∂hj x
∣∣∣∣ ∣∣ehj

∣∣ = ∣∣A−1AU ∣∣ |Qh| |x| .
This proof is completed by observing that according to Theorem 2.9 we have:

condEQS ,f (A(ΩQS),x) =

∥∥∣∣A−1∣∣f + κd + κp + κa + κq + κg + κb + κh
∥∥
∞

‖x‖∞
.

As it is easy to see from its explicit expression in Theorem 4.5, condEQS ,f (A(ΩQS),x) depends in
general on the quasiseparable representation ΩQS of the matrix A. More speci�cally, that condition
number depends on the ratios between the parameters in the representation and the corresponding
tolerances in EQS . Next, we will restrict ourselves to the case EQS = |ΩQS | in Theorem 4.6, which is
the most natural election for EQS . In this situation we adopt for brevity in the rest of the paper, the
following notation:

condf (A(ΩQS),x) ≡ cond|ΩQS |,f (A(ΩQS),x),

since the parameters ΩQS are already shown in A(ΩQS).

Theorem 4.6. Let Ax = b, where 0 6= x ∈ Rn and A ∈ Rn×n is a nonsingular {1, 1}-quasiseparable
matrix such that A = AL + AD + AU , with AL strictly lower triangular, AD diagonal, and AU strictly
upper triangular. Let 0 ≤ f ∈ Rn. Then

condf (A(ΩQS),x) =
1

‖x‖∞

∥∥∥∥∥ ∣∣A−1∣∣f + |A−1||AD||x|+ |A−1||ALx|+ |A−1AL||x|+ |A−1||AUx|

+ |A−1AU ||x|+
n−1∑
i=2

∣∣∣∣A−1 [ 0 0
A(i+ 1 : n, 1 : i− 1) 0

]
x

∣∣∣∣
+

n−1∑
j=2

∣∣∣∣A−1 [ 0 A(1 : j − 1, j + 1 : n)
0 0

]
x

∣∣∣∣
∥∥∥∥∥
∞

.

Proof. It follows directly from the expression in Theorem 4.5 for condEQS ,f (A(ΩQS),x) by observing
that, in this case, we are considering EQS = |ΩQS | and, therefore, using the notation in Theorem 4.5, the
following equalities hold: Qd = |AD|, |Qp| = |Qq| = |Qg| = |Qh| = I, and |eai/ai| = |ebi/bi| = 1.
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Proposition 4.7 proves that condf (A(ΩQS),x) depends only on A, x and f , but not on the particular
choice of quasiseparable parameters.

Proposition 4.7. Let Ax = b, where 0 6= x ∈ Rn and A ∈ Rn×n is a nonsingular {1, 1}-quasiseparable
matrix. Let 0 ≤ f ∈ Rn. Then, for any two vectors ΩQS and Ω′QS of quasiseparable parameters of A,

condf (A(ΩQS),x) = condf (A(Ω
′
QS),x).

Proof. It is obvious from the fact that the expression in Theorem 4.6 does not depend on the parameters
of the representation ΩQS but on the entries of the matrix A and the entries of the vectors x and f .

Proposition 4.8 states another important property of this relative componentwise condition number
that arises from the natural comparison with the unstructured relative entrywise condition number for
the solution of linear systems de�ned in De�nition 2.3 and further developed in Theorem 2.4.

Proposition 4.8. Let Ax = b, where 0 6= x ∈ Rn and A ∈ Rn×n is a nonsingular {1, 1}-quasiseparable
matrix, and let ΩQS be a quasiseparable representation of A. Then, for 0 ≤ f ∈ Rn, the following relation
holds,

condf (A(ΩQS),x) ≤ n cond|A|,f (A,x).

Proof. From Theorem 4.6 and using standard properties of absolute values and norms we obtain:

condf (A(ΩQS),x) ≤
1

‖x‖∞

∥∥∥∥∥ ∣∣A−1∣∣f +
∣∣A−1∣∣ |AD| |x|+ ∣∣A−1∣∣ |AL| |x|

+
∣∣A−1∣∣ |AL| |x|+ ∣∣A−1∣∣ |AU | |x|+ ∣∣A−1∣∣ |AU | |x|

+

n−1∑
i=2

∣∣A−1∣∣ |AL| |x|+ n−1∑
i=2

∣∣A−1∣∣ |AU | |x|
∥∥∥∥∥
∞

=
1

‖x‖∞

∥∥∥∥ ∣∣A−1∣∣f +
∣∣A−1∣∣ |AD| |x|

+ n
∣∣A−1∣∣ |AL| |x|+ n

∣∣A−1∣∣ |AU | |x|∥∥∥∥
∞

≤ n

‖x‖∞

∥∥∥∥ ∣∣A−1∣∣f +
∣∣A−1∣∣ |A| |x|∥∥∥∥

∞
= n cond|A|,f (A,x).

According to this proposition, the structured condition number condf (A(ΩQS),x) is smaller than
the unstructured condition number cond|A|,f (A,x), except for a factor n. In addition, we will see in the
numerical experiments presented in Section 8 that it can be much smaller.

From Proposition 2.5 we know that the unstructured componentwise condition number is invariant
under row scaling, which is a very convenient property (see [12, Secs. 7.2 and 7.3]). Therefore, it makes
sense to study the behavior of the structured condition number under row scaling for the natural choice
f = |b| as well. This is done in Proposition 4.10, for which we will need Lemma 4.9. Proposition 4.10
proves that the structured componentwise condition number is also invariant under row scaling.

Lemma 4.9. Let K = diag (k1, k2, · · · , kn) be an invertible diagonal matrix and A ∈ Rn×n be a
{1, 1}-quasiseparable matrix with a quasiseparable representation ΩQS =

(
{pi}ni=2, {ai}

n−1
i=2 , {qi}

n−1
i=1 ,

{di}ni=1, {gi}
n−1
i=1 , {bi}

n−1
i=2 , {hi}ni=2

)
, as in Theorem 4.1. Then, the matrix KA is also a {1, 1}-quasiseparable

matrix and Ω′QS = ({kipi}ni=2, {ai}
n−1
i=2 , {qi}

n−1
i=1 , {kidi}ni=1, {kigi}

n−1
i=1 , {bi}

n−1
i=2 , {hi}ni=2) is a quasisepara-

ble representation of KA.

Proof. It follows from Theorem 4.1 and from (KA)(i, j) = kiA(i, j).

Proposition 4.10. Let Ax = b, where 0 6= x ∈ Rn and A ∈ Rn×n is a nonsingular {1, 1}-quasiseparable
matrix with a quasiseparable representation ΩQS, such that A = AL + AD + AU , with AL strictly lower
triangular, AD diagonal, and AU strictly upper triangular. Let K ∈ Rn×n be an invertible diagonal
matrix. Then

cond|Kb|((KA)(Ω
′
QS),x) = cond|b|(A(ΩQS),x),

where Ω′QS is any quasiseparable representation of KA.
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Proof. Since K is a diagonal matrix, all the following equalities are straightforward:

1)
∣∣(KA)−1∣∣ |Kb| =

∣∣A−1∣∣ ∣∣K−1∣∣ |K| |b| = ∣∣A−1∣∣ |b|,
2)
∣∣(KA)−1∣∣ |(KAD)| |x| = ∣∣A−1∣∣ ∣∣K−1∣∣ |K| |AD| |x| = ∣∣A−1∣∣ |AD| |x|,

3)
∣∣(KA)−1∣∣ |(KAL)x| = ∣∣A−1∣∣ ∣∣K−1∣∣ |K| |ALx| = ∣∣A−1∣∣ |ALx|,

4)
∣∣(KA)−1(KAL)∣∣ |x| = ∣∣A−1AL∣∣ |x|,

5)
∣∣(KA)−1∣∣ |(KAU )x| = ∣∣A−1∣∣ ∣∣K−1∣∣ |K| |AUx| = ∣∣A−1∣∣ |AUx|,

6)
∣∣(KA)−1(KAU )∣∣ |x| = ∣∣A−1AU ∣∣ |x|,

7) (KA)−1
[

0 0
(KA)(i+ 1 : n, 1 : i− 1) 0

]
x = A−1

[
0 0

A(i+ 1 : n, 1 : i− 1) 0

]
x,

8) (KA)−1
[

0 (KA)(1 : j − 1, j + 1 : n)
0 0

]
x = A−1

[
0 A(1 : j − 1, j + 1 : n)
0 0

]
x.

The result follows trivially from 1)-8), KA = KAL +KAD +KAU , Theorem 4.6, and the fact that
condf (A(ΩQS),x) does not depend on the particular quasiseparable parameterization used.

5 Condition number of the solution of {1, 1}-quasiseparable linear
systems in the Givens-vector representation

Another important representation for quasiseparable matrices is the Givens-vector representation, which
was introduced for the �rst time in [15] and that will be described in Section 5.1, along with its minor
variant called tangent-Givens-vector representation, which has been introduced in [5]. The original
contributions of this paper to the study of structured condition numbers for the solution of linear systems
with respect to this representation are presented in Sections 5.2 and 6.

5.1 The Givens-vector representation for {1, 1}-quasiseparable matrices

The Givens-vector representation for {1, 1}-quasiseparable matrices was introduced in [15] in order to
improve the numerical stability in numerical computations with respect to other representations, but
the �rst rigorous contributions that show that the Givens-vector representation is indeed �more stable�
than other representations, appear in [5] in the context of eigenvalue problems. In this paper, these
�stability contributions� are extended to the area of linear systems. Theorem 5.1 (see [16, Sections 2.4
and 2.8 ]) shows how the class of {1, 1}-quasiseparable matrices can be represented by using Givens-vector
parameters.

Theorem 5.1. A matrix A ∈ Rn×n is a {1, 1}-quasiseparable matrix if and only if it can be parameterized
in terms of the following set of parameters,

• {ci, si}n−1i=2 , where (ci, si) is a pair of cosine-sine with ci
2 + si

2 = 1 for every i ∈ {2, 3, · · · , n− 1},

• {vi}n−1i=1 , {di}
n,
i=1{ei}

n−1
i=1 all of them independent real parameters,

• {ri, ti}n−1i=2 , where (ri, ti) is a pair of cosine-sine with ri
2 + ti

2 = 1 for every i ∈ {2, 3, · · · , n− 1},

as follows:

A =



d1 e1r2 e1t2r3 · · · e1t2 . . . tn−2rn−1 e1t2 . . . tn−1
c2v1 d2 e2r3 · · · e2t3 . . . tn−2rn−1 e2t3 . . . tn−1

c3s2v1 c3v2 d3 · · · e3t4 . . . tn−2rn−1 e3t4 . . . tn−1
...

...
...

. . .
...

...
cn−1sn−2 . . . s2v1 cn−1sn−2 . . . s3v2 cn−1sn−2 . . . s4v3 · · · dn−1 en−1
sn−1sn−2 . . . s2v1 sn−1sn−2 . . . s3v2 sn−1sn−2 . . . s4v3 · · · vn−1 dn


.

This representation is denoted by ΩGVQS , i.e., Ω
GV
QS :=

(
{ci, si}n−1i=2 , {vi}

n−1
i=1 , {di}ni=1, {ei}

n−1
i=1 , {ri, ti}

n−1
i=2

)
.
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Example 5.2. Let A ∈ R5×5 be a {1, 1}-quasiseparable matrix, and let

ΩGVQS :=
(
{ci, si}4i=2, {vi}4i=1, {di}5i=1, {ei}4i=1, {ri, ti}4i=2

)
be a Givens-vector representation of A. Then,

A =


d1 e1r2 e1t2r3 e1t2t3r4 e1t2t3t4

c2v1 d2 e2r3 e2t3r4 e2t3t4
c3s2v1 c3v2 d3 e3r4 e3t4

c4s3s2v1 c4s3v2 c4v3 d4 e4
s4s3s2v1 s4s3v2 s4v3 v4 d5

 .
Note that if we consider the following relations between the parameters in Theorems 4.1 and 5.1,

respectively, {pi, ai}n−1i=2 = {ci, si}n−1i=2 , {qi}
n−1
i=1 = {vi}n−1i=1 , {di}ni=1 = {di}ni=1, {gi}

n−1
i=1 = {ei}n−1i=1 ,

{bi, hi}n−1i=2 = {ti, ri}n−1i=2 , and pn = hn = 1, then it is obvious that the Givens-vector representation is
a particular case of a quasiseparable representation for {1, 1}-quasiseparable matrices. This fact can be
better observed by comparing the expressions in Examples 4.2 and 5.2. Note also that the Givens-vector
representation can be made unique if ci and ri are taken to be nonnegative numbers (if ci = 0, take
si = 1 and if ri = 0, take ti = 1) [16, p.76].

On the other hand, since the Givens-vector representation is a particular case of the quasiseparable
representation, one might think that it makes no sense to study structured condition numbers for this
representation, since we know from Proposition 4.7, that the condition number for a quasiseparable
matrix is independent of the particular choice of the quasiseparable representation ΩQS when the natural
choice EQS = |ΩQS | is made. However, the subtle point here is that the Givens-vector representation has
correlated parameters since the pairs {ci, si} are not independent parameters and the same happens for
{ri, ti}. In fact, independent componentwise perturbations of ΩGVQS destroy in general the pairs cosine-
sine. Therefore, if we only consider perturbations that preserve the pairs cosine-sine then a di�erent
condition number is obtained. In De�niton 5.3, introduced in [5], an additional parameterization by
using tangents is provided in order to make explicit the correlations between {ci, si} and {ri, ti}.

De�nition 5.3. For any Givens-vector representation

ΩGVQS =
(
{ci, si}n−1i=2 , {vi}

n−1
i=1 , {di}

n
i=1, {ei}n−1i=1 , {ri, ti}

n−1
i=2

)
of a {1, 1}-quasiseparable matrix A ∈ Rn×n, we de�ne the Givens-vector representation via tangents as

ΩGV :=
(
{li}n−1i=2 , {vi}

n−1
i=1 , {di}

n
i=1, {ei}n−1i=1 , {ui}

n−1
i=2

)
, where

ci =
1√
1 + l2i

, si =
li√
1 + l2i

, and ri =
1√

1 + u2i
, ti =

ui√
1 + u2i

, for i = 2, . . . , n− 1.

Observe, from the expressions in De�nition 5.3 for the cosine-sine parameters {ci, si} and {ri, ti} in
terms of the tangents li and ui, respectively, that tiny relative perturbations of those tangents produce
tiny relative perturbations of those cosine-sine parameters. This suggests the convenience of using the
tangent-Givens-vector representation in practical numerical situations as was explained and motivated
in [5].

In order to use di�erential calculus to deduce an explicit expression of the structured condition number
of the solution of a linear system with respect to the tangent-Givens-vector representation, we will need
Lemma 5.4 (see the simple proof inside the proof of [5, Theorem 5.4]).

Lemma 5.4. Let A ∈ Rn×n be a {1, 1}-quasiseparable matrix and let ΩGV be the tangent-Givens-vector
representation of A, where ΩGV =

(
{li}n−1i=2 , {vi}

n−1
i=1 , {di}ni=1, {ei}

n−1
i=1 , {ui}

n−1
i=2

)
. Then the entries of A

are di�erentiable functions of the parameters in ΩGV and

a) li
∂A

∂li
=

 0 0
−s2iA(i, 1 : i− 1) 0

c2iA(i+ 1 : n, 1 : i− 1) 0

, for i = 2, . . . , n− 1,

b) ui
∂A

∂ui
=

[
0 −t2iA(1 : i− 1, i) r2iA(1 : i− 1, i+ 1 : n)
0 0 0

]
, for i = 2, . . . , n− 1.

Remark 5.5. For the partial derivatives with respect to the parameters in {di}ni=1, {vi}
n−1
i=1 , and {ei}

n−1
i=1

see a), d), e) in Lemma 4.4 (recall that those parameters can also be respectively seen as the parameters
{di}ni=1, {qi}

n−1
i=1 , and {gi}

n−1
i=1 in a quasiseparable representation of A).
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5.2 The condition number for {1, 1}-quasiseparable matrices in the Givens-

vector representation

Theorem 5.6 is the main result of Section 5 and it presents an explicit expression of the component-
wise condition number for the solution of a linear system of equations with a quasiseparable matrix of
coe�cients with respect to the Givens-vector representation via tangents.

Theorem 5.6. Let Ax = b, where 0 6= x ∈ Rn and A ∈ Rn×n is a nonsingular {1, 1}-quasiseparable
matrix with a tangent-Givens-vector representation ΩGV , and such that A = AL + AD + AU , with
AL strictly lower triangular, AD diagonal, and AU strictly upper triangular. Let 0 ≤ f ∈ Rn and
0 ≤ EGV ∈ R5n−6. Then

condEGV ,f (A(ΩGV ),x) =
1

‖x‖∞

∥∥∥∥∥ ∣∣A−1∣∣f + |A−1||Qd||x|+ |A−1AL||Qv||x|

+ |A−1||Qe||AUx|+
n−1∑
i=2

∣∣∣∣∣∣A−1
 0 0

−s2iA(i, 1 : i− 1) 0
c2iA(i+ 1 : n, 1 : i− 1) 0

x

∣∣∣∣∣∣
∣∣∣∣elili

∣∣∣∣
+

n−1∑
j=2

∣∣∣∣A−1 [ 0 −t2jA(1 : j − 1, j) r2jA(1 : j − 1, j + 1 : n)
0 0 0

]
x

∣∣∣∣ ∣∣∣∣euj

uj

∣∣∣∣
∥∥∥∥∥
∞

,

where

ΩGV =
(
{li}n−1i=2 , {vi}

n−1
i=1 , {di}

n
i=1, {ei}n−1i=1 , {ui}

n−1
i=2

)
, as in De�nition 5.3,

EGV =
(
{eli}n−1i=2 , {evi}

n−1
i=1 , {edi}

n
i=1, {eei}n−1i=1 , {eui

}n−1i=2

)
,

Qd = diag (ed1 , . . . , edn) , Qv = diag

(
ev1
v1
, . . . ,

evn−1

vn−1
, 1

)
, Qe = diag

(
ee1
e1
, . . . ,

een−1

en−1
, 1

)
,

and each quotient whose denominator is zero must be understood as zero if the numerator is also zero
and, otherwise, the zero parameter in the denominator should be formally cancelled out with the same
parameter in the corresponding piece of A.

Proof. The proof is straightforward from Theorem 2.9, Lemma 5.4, Remark 5.5, and the proof of Theorem
4.5. Therefore, we omit the proof.

For the most natural choice EGV = |ΩGV |, we adopt the shorter notation

condf (A(ΩGV ),x) ≡ cond|ΩGV |,f (A(ΩGV ),x),

and get Theorem 5.7 as a corollary of Theorem 5.6.

Theorem 5.7. Let Ax = b, where 0 6= x ∈ Rn and A ∈ Rn×n is a nonsingular {1, 1}-quasiseparable
matrix with a tangent-Givens-vector representation ΩGV , and such that A = AL + AD + AU , with AL
strictly lower triangular, AD diagonal, and AU strictly upper triangular. Let 0 ≤ f ∈ Rn. Then

condf (A(ΩGV ),x) =
1

‖x‖∞

∥∥∥∥∥ ∣∣A−1∣∣f + |A−1||AD||x|+ |A−1AL||x|+ |A−1||AUx|

+

n−1∑
i=2

∣∣∣∣∣∣A−1
 0 0

−s2iA(i, 1 : i− 1) 0
c2iA(i+ 1 : n, 1 : i− 1) 0

x

∣∣∣∣∣∣
+

n−1∑
j=2

∣∣∣∣A−1 [ 0 −t2jA(1 : j − 1, j) r2jA(1 : j − 1, j + 1 : n)
0 0 0

]
x

∣∣∣∣
∥∥∥∥∥
∞

.

Note, from the expressions in Theorem 5.7 and 4.6, that there exists an important di�erence between
the structured condition number in the Givens-vector representation and the structured condition number
in the quasiseparable representation for a given {1, 1}-quasiseparable matrix A, since condf (A(ΩGV ),x)
depends not only on the entries of the matrix A but on the parameters {ci, si} and {ri, ti} as well, while
condf (A(ΩQS),x) only depends on the matrix entries. Furthermore, since the cosine-sine parameters in
the Givens-vector representation do not change trivially under diagonal scalings, we have that, for the
natural choice f = |b|, condf (A(ΩGV ),x) is not invariant under row scaling while condf (A(ΩQS),x) is
invariant under row scaling (recall Proposition 4.10).

13



6 Comparison of condf(A(ΩGV ),x) and condf(A(ΩQS),x)

In [5, Section 6] it was proved that the Givens-vector representation via tangents is a more stable
representation than the general quasiseparable representation for eigenvalue computations for {1, 1}-
quasiseparable matrices, in the sense that the Givens-vector representation leads to smaller eigenvalue
condition numbers. This was a natural result to expect, as it is in the case of computing the solution of a
quasiseparable linear system of equations, since any Givens-vector representation is also a quasiseparable
representation and the perturbations considered in the condition numbers preserve the structure of the
tangent-Givens-vector parametrization. In Theorem 6.1, the corresponding result is proved for linear
systems, that is, condf (A(ΩGV ),x) can not be larger than condf (A(ΩQS),x).

Theorem 6.1. Let Ax = b, where 0 6= x ∈ Rn and A ∈ Rn×n is a nonsingular {1, 1}-quasiseparable
matrix, and let ΩGV be the vector of tangent-Givens-vector parameters of A. Then, for 0 ≤ f ∈ Rn, and
for any vector ΩQS of quasiseparable parameters of A, the following inequality holds:

condf (A(ΩGV ),x) ≤ condf (A(ΩQS),x).

Proof. Throughout the proof, we use the decomposition A = AL+AD+AU introduced in Theorems 4.5
and 5.6. For the sums in the last two terms of the expression for condf (A(ΩGV ),x) we have,

S1 :=

n−1∑
i=2

∣∣∣∣∣∣A−1
 0 0

−s2i A(i, 1 : i− 1) 0
c2i A(i+ 1 : n, 1 : i− 1) 0

x

∣∣∣∣∣∣
≤

n−1∑
i=2

∣∣∣∣∣∣A−1
 0 0
A(i, 1 : i− 1) 0

0 0

x

∣∣∣∣∣∣+
n−1∑
i=2

∣∣∣∣∣∣A−1
 0 0

0 0
A(i+ 1 : n, 1 : i− 1) 0

x

∣∣∣∣∣∣
=

n−1∑
i=2

∣∣A−1(:, i)∣∣ |AL(i, :)x|+ n−1∑
i=2

∣∣∣∣A−1 [ 0 0
A(i+ 1 : n, 1 : i− 1) 0

]
x

∣∣∣∣
≤

∣∣A−1∣∣ |ALx|+ n−1∑
i=2

∣∣∣∣A−1 [ 0 0
A(i+ 1 : n, 1 : i− 1) 0

]
x

∣∣∣∣ (6.1)

and, in an analogous way,

S2 :=

n−1∑
j=2

∣∣∣∣A−1 [ 0 −t2j A(1 : j − 1, j) r2j A(1 : j − 1, j + 1 : n)
0 0 0

]
x

∣∣∣∣
≤

∣∣A−1AU ∣∣ |x|+ n−1∑
j=2

∣∣∣∣A−1 [ 0 A(1 : j − 1, j + 1 : n)
0 0

]
x

∣∣∣∣. (6.2)

From (6.1) and (6.2) the proof is straightforward by comparing the expressions in Theorem 4.6 and
Theorem 5.7 for condf (A(ΩQS),x) and condf (A(ΩGV ),x), respectively.

On the other hand, as we prove in Theorem 6.3 below, the Givens-vector representation via tangents
can only improve the relative condition number for the solution of a {1, 1}-quasiseparable linear system of
equations up to a factor of 3n with respect to the quasiseparable representation. Therefore, we conclude
that, when computing solutions of {1, 1}-quasiseparable linear systems of equations, these representations
can be considered numerically equivalent in terms of expected accuracy.

In order to prove Theorem 6.3, we follow the ideas in [5, Section 6] and develop a proof based on
De�nition 2.6. Recall that from the Givens-vector representation via tangents ΩGV of A we can obtain
the Givens-vector representation ΩGVQS of A as in De�nition 5.3, and that ΩGVQS is also a quasiseparable
representation of A. Therefore, in order to use the componentwise relative condition numbers for rep-
resentations in De�nition 2.6, let us consider a quasiseparable perturbation δΩGVQS of the parameters in

ΩGVQS such that |δΩGVQS | ≤ η|ΩGVQS |, and the resulting quasiseparable matrix Ã = A(ΩGVQS + δΩGVQS ) (note

that the perturbations δΩGVQS do not respect in general the pairs cosine-sine of ΩGVQS ). We will refer to

η as the level of the relative perturbation of the parameters in the representation ΩGVQS . Moreover, note

that Ã can also be represented by a vector

Ω′GV :=
(
{l′i}n−1i=2 , {v

′
i}n−1i=1 , {d

′
i}ni=1, {e′i}n−1i=1 , {u

′
i}n−1i=2

)
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of tangent-Givens-vector parameters and let us consider the perturbations δ′ΩGV := Ω′GV −ΩGV . Then,
Lemma 6.2, proved inside the proof of Theorem 6.3 in [5], states a bound for the level η′ of the respective
relative perturbation over the parameters in Ω′GV produced by a relative perturbation of level η over the
quasiseparable parameters in ΩGVQS .

Lemma 6.2. Let A be a {1, 1}-quasiseparable matrix with Givens-vector representation via tangents
ΩGV . Then, using the notation in the previous paragraph, and for η su�ciently small, we have:

|δΩGVQS | ≤ η|ΩGVQS | =⇒ |δ′ΩGV | ≤ (3(n− 2)η +O(η2))|ΩGV |.

Theorem 6.3. Let Ax = b, where 0 6= x ∈ Rn and A ∈ Rn×n is a nonsingular {1, 1}-quasiseparable
matrix with tangent-Givens-vector representation ΩGV . Let 0 ≤ f ∈ Rn. Then, for any quasiseparable
representation ΩQS of A:

condf (A(ΩQS),x)

condf (A(ΩGV ),x)
≤ 3(n− 2).

Proof. Note that from De�nition 2.6 and from Lemma 6.2 we have

condf (A(ΩQS),x) ≤ lim
η→0

sup

{
‖δx‖∞
η‖x‖∞

: (A(ΩGV + δΩGV )) (x+ δx) = b+ δb,

|δΩGV | ≤ (3(n− 2)η +O(η2))|ΩGV |, |δb| ≤ (3(n− 2)η +O(η2))f
}
.

By considering the change of variable η′ = (3(n− 2)η +O(η2)), we obtain

condf (A(ΩQS),x) ≤ lim
η′→0

sup

{
3(n− 2)‖δx‖∞

η′‖x‖∞
: (A(ΩGV + δΩGV )) (x+ δx) = b+ δb,

|δΩGV | ≤ η′|ΩGV |, |δb| ≤ η′f
}

= 3(n− 2)condf (A(ΩGV ),x).

7 Fast estimation of condition numbers: the e�ective condition

number

To compute condf (A(ΩQS),x) and condf (A(ΩGV ),x) fast, i.e., in O(n) �ops, is not easy because of
the two sums that appear in the expressions in Theorems 4.6 and 5.7, respectively, which require to
compute a sum of n vectors, which cost O(n2) �ops, in addition to other computations. Then, a natural
question now is to determine whether or not the contributions of these sums to the condition numbers
in which they arise are signi�cant. This question is answered in Theorems 7.2 and 7.3, in which we
provide upper and lower bounds for condf (A(ΩQS),x) and condf (A(ΩGV ),x) respectively, in terms of
the e�ective condition number in De�nition 7.1. We will show in this way that such e�ective condition
number contains the essential terms in the expressions given in Theorems 4.6 and 5.7.

De�nition 7.1. Let Ax = b, where 0 6= x ∈ Rn and A ∈ Rn×n is a nonsingular {1, 1}-quasiseparable
matrix such that A = AL + AD + AU , with AL strictly lower triangular, AD diagonal, and AU strictly
upper triangular. Let 0 ≤ f ∈ Rn. Then, for any quasiseparable representation ΩQS of A, we de�ne the
e�ective relative condition number conde�f (A(ΩQS),x) for the solution of Ax = b as

conde�f (A(ΩQS),x) :=
1

‖x‖∞

∥∥∥∥∥ ∣∣A−1∣∣f + |A−1||AD||x|+ |A−1||ALx|

+ |A−1AL||x|+ |A−1||AUx|+ |A−1AU ||x|

∥∥∥∥∥
∞

.

Recall from Proposition 4.7 that the condition number condf (A(ΩQS),x) does not depend on the
choice of a quasiseparable representation ΩQS , and note from De�nition 7.1 that the same holds for
conde�f (A(ΩQS),x). Therefore, this e�ective condition number is always the same for any vector of
quasiseparable parameters representing the matrix.
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Theorem 7.2. Let Ax = b, where 0 6= x ∈ Rn and A ∈ Rn×n is a nonsingular {1, 1}-quasiseparable
matrix. Let 0 ≤ f ∈ Rn. Then, for any quasiseparable representation ΩQS of A, the following relations
hold:

conde�f (A(ΩQS),x) ≤ condf (A(ΩQS),x) ≤ (n− 1)conde�f (A(ΩQS),x).

Proof. Throughout the proof, we use the decomposition A = AL+AD+AU introduced in Theorems 4.5
and 5.6. Note �rst that the left hand side of the inequality is trivial from the respective expressions of
conde�f (A(ΩQS),x) and condf (A(ΩQS),x). On the other hand, note that∣∣∣∣A−1 [ 0 0

A(i+ 1 : n, 1 : i− 1) 0

]
x

∣∣∣∣ = ∣∣∣∣A−1 [ 0 0
AL(i+ 1 : n, 1 : i− 1) 0

]
x

∣∣∣∣
=

∣∣∣∣A−1 [ 0 0
AL(i+ 1 : n, 1 : i− 1) AL(i+ 1 : n, i : n)

]
x

+ A−1
[

0 0
0 −AL(i+ 1 : n, i : n)

]
x

∣∣∣∣
≤
∣∣A−1∣∣ ∣∣∣∣[ 0

AL(i+ 1 : n, :)

]
x

∣∣∣∣
+

∣∣∣∣A−1 [ 0 0
0 AL(i+ 1 : n, i : n)

]∣∣∣∣ |x|
≤
∣∣A−1∣∣ |ALx|+ ∣∣A−1AL∣∣ |x| ,

from where we obtain:

n−1∑
i=2

∣∣∣∣A−1 [ 0 0
A(i+ 1 : n, 1 : i− 1) 0

]
x

∣∣∣∣ ≤ (n− 2)
∣∣A−1∣∣ |ALx|+ (n− 2)

∣∣A−1AL∣∣ |x| . (7.1)

In an analogous way, it can be proved that

n−1∑
j=2

∣∣∣∣A−1 [ 0 A(1 : j − 1, j + 1 : n)
0 0

]
x

∣∣∣∣ ≤ (n− 2)
∣∣A−1∣∣ |AUx|+ (n− 2)

∣∣A−1AU ∣∣ |x| . (7.2)

Finally, note that from the inequalities in (7.1) and (7.2), it is straightforward that

condf (A(ΩQS),x) ≤(n− 1)

∥∥∥∥∥ ∣∣A−1∣∣f + |A−1||AD||x|+ |A−1||ALx|

+ |A−1AL||x|+ |A−1||AUx|+ |A−1AU ||x|

∥∥∥∥∥
∞

/‖x‖∞

= (n− 1) conde�f (A(ΩQS),x).

Theorem 7.3. Let Ax = b, where 0 6= x ∈ Rn and A ∈ Rn×n is a nonsingular {1, 1}-quasiseparable
matrix with tangent-Givens-vector representation ΩGV . Let 0 ≤ f ∈ Rn. Then, for any quasiseparable
representation ΩQS of A, the following relations hold:

conde�f (A(ΩQS),x)

3(n− 2)
≤ condf (A(ΩGV ),x) ≤ (n− 1)conde�f (A(ΩQS),x).

Proof. It follows trivially from Theorems 6.1, 6.3 and 7.2.

Note that from Theorems 7.2 and 7.3 we can conclude that the structured condition numbers
condf (A(ΩQS),x) and condf (A(ΩGV ),x) can be both estimated, �up to a factor of order n�, by com-
puting the easier expression in De�nition 7.1 for the e�ective condition number. Next, we prove in
Proposition 7.4 that this e�ective condition number can be computed fast by using, for instance, some
previous results from [6] and [7].
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Proposition 7.4. Let Ax = b, where 0 6= x ∈ Rn and A ∈ Rn×n is a nonsingular {1, 1}-quasiseparable
matrix with a quasiseparable representation ΩQS which is assumed to be known. Let 0 ≤ f ∈ Rn. Then,
the e�ective condition number conde�f (A(ΩQS),x) can be computed in O(n) operations, i.e., with linear
complexity.

Proof. This assertion is a consequence of the results in [6] and [7]. Using [7, Algorithm 5.1] we can
obtain in O(n) �ops the quasiseparable representation for the inverse of the {1, 1}-quasiseparable ma-
trix A which is also {1, 1}-quasiseparable ([6, Theorem 5.2]). In addition, in [6, Algorithm 4.4] it is
shown how to compute the matrix-vector product y = Rz for the general case when R is an {nL, nU}-
quasiseparable matrix with a given quasiseparable representation, with linear complexity in the size
n of the vector. Therefore, we can use this algorithm (twice when necessary) for computing each of
the products

∣∣A−1∣∣f , ∣∣A−1∣∣ (|AD| |x|), ∣∣A−1∣∣ (|ALx|), and ∣∣A−1∣∣ (|AUx|) (in practice, the contribution

of these terms to conde�f (A(ΩQS),x) is computed as
∣∣A−1∣∣ (f + |AD| |x| + |ALx| + |AUx|)). On the

other hand in [6, Theorem 4.1] it is proved that the product R1R2 of an {n1,m1}-quasiseparable matrix
R1 times an {n2,m2}-quasiseparable matrix R2 is, in general, an {n1 + n2,m1 + m2}-quasiseparable
matrix, and in [6, Algorithm 4.3] it is shown how to compute with linear complexity a quasiseparable
representation for this product given the representations of the factors. Therefore, since our matrix A is
a {1, 1}-quasiseparable matrix, we have that the products A−1AL and A−1AU are both quasiseparable
matrices of orders {2, 1} and {1, 2}, respectively, at most, and we can compute via [6, Algorithm 4.3]
their quasiseparable representations. Then, once we have obtained such representations, we can use
again [6, Algoritm 4.4] for calculating the products

∣∣A−1AL∣∣ |x| and ∣∣A−1AU ∣∣ |x| also with a linear cost.
Then, from De�nition 7.1, it is straightforward that conde�f (A(ΩQS),x) can be computed with linear
complexity.

Finally, note that from De�nition 7.1 and from the proof of Proposition 4.10, it is straightforward to
prove that the e�ective condition number is invariant under row scaling for f = |b|, as cond|b|(A(ΩQS),x).
This is stated without proof in Proposition 7.5.

Proposition 7.5. Let Ax = b, where 0 6= x ∈ Rn and A ∈ Rn×n is a {1, 1}-quasiseparable matrix, and
let K ∈ Rn×n be an invertible diagonal matrix. Then

conde�|b|(A(ΩQS),x) = conde�|Kb|((KA)(Ω
′
QS),x),

where ΩQS is any quasiseparable representation of A and Ω′QS is any quasiseparable representation of
KA.

8 Numerical experiments

This section is devoted to describe brie�y some numerical experiments that have been performed in order
to complete our comparison between the structured e�ective condition number conde�|b|(A(ΩQS),x) in
De�nition 7.1 and the unstructured one cond|A|,|b|(A,x) in De�nition 2.3. We have used MATLAB for
running several random numerical tests. First, the command randn from MATLAB has been used for
generating the random parameters in a quasiseparable representation for a {1, 1}-quasiseparable matrix
of size n× n, i.e., the following random vectors of parameters are generated:

p ∈ Rn−1,a ∈ Rn−2, q ∈ Rn−1,d ∈ Rn, g ∈ Rn−1, b ∈ Rn−2, and h ∈ Rn−1. (8.1)

We also generate the random right-hand side vector b ∈ Rn by using the command randn. Then, we con-
struct the matrix A described by the parameters in (8.1), obtain the vector of solutions x using the com-
mand A\b from MATLAB, and compute the structured e�ective condition number conde�|b|(A(ΩQS),x)
and the unstructured condition number cond|A|,|b|(A,x) by using direct matrix-vector multiplication and
the inv command of MATLAB.

In general, when using just random parameters, we have obtained similar, often moderate, values for
the e�ective condition number and the unstructured condition number for the solution of linear systems,
i.e., conde�|b|(A(ΩQS),x) ≈ cond|A|,|b|(A,x). Therefore, following the experiments in [5, Section 7], we
have performed several tests using di�erent kinds of scalings over the generated quasiseparable parameters
in order to obtain unbalanced quasiseparable matrices which may be very ill conditioned.

In particular, after generating the vectors of parameters in (8.1) and the vector b, we have modi�ed
p and h as follows

p = k1 ∗ p and h = k2
−1 ∗ h,
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where k1 and k2 are �xed natural numbers not greater than 103. This scaling, combined with the random-
ness of p and h and the rest of parameters, produces sometimes matrices with unbalanced lower left and
upper right corners (see the matrix at the end of this section for an example), for which the unstructured
condition number cond|A|,|b|(A,x) can be much larger than the structured one conde�|b|(A(ΩQS),x).
In fact, for n = 5, n = 10, n = 50, and n = 100, we have obtained vectors of parameters generating
particular matrices A and vectors b such that:

n
cond|A|,|b|(A,x)

conde�|b|(A(ΩQS),x)
cond|A|,|b|(A,x) conde�|b|(A(ΩQS),x)

5 1.6139 · 104 6.5318 · 104 4.0471
10 1.9980 · 106 3.1788 · 107 15.8768
50 1.4107 · 107 8.7762 · 108 62.2104
100 1.6804 · 109 6.0297 · 1010 35.8823

,

where x = A\b in each case.
From these numerical experiments we conclude that the structured e�ective condition number

conde�|b|(A(ΩQS),x) may be indeed much smaller than the unstructured one cond|A|,|b|(A,x), in other
words, that there exist linear systems of equations with {1, 1}-quasiseparable matrices of coe�cients
that have solutions which are very ill conditioned with respect to perturbations of the entries of the
matrix, but that are very well conditioned with respect to perturbations on the quasiseparable parameters
representing the matrix. The particular structure observed in the matrices that produced such huge
di�erences between the structured and the unstructured condition numbers is illustrated in the following
matrix and the respective vector b, which are the ones that produced the results in the table above for
n = 5:

A =


−7.8876 · 10−2 −1.3485 · 10−2 −7.8066 · 10−3 2.7951 · 10−3 5.1089 · 10−5
3.0423 · 10−1 −5.6399 · 10−1 1.6206 · 10−1 −5.8026 · 10−2 −1.0606 · 10−3
5.5451 · 101 −2.5873 · 10−1 1.3525 · 100 −1.5088 · 10−3 −2.7578 · 10−5
−3.8947 · 105 1.8172 · 103 −1.7047 · 100 3.0944 · 10−3 −6.7069 · 10−3
1.7714 · 108 −8.2653 · 105 7.7535 · 102 8.3875 · 10−1 −2.0998 · 100

 ,

b =
[
−8.8528 · 10−1 −1.3154 · 10−1 −1.5711 · 100 −7.8284 · 10−1 −1.0898 · 100

]T
.

Note that there is an obvious unbalance in the matrix entries, since the absolute values of the entries
near the lower left corner are large compared with the absolute values of the entries in the opposite upper
right corner of the matrix (compare the absolute values of the entries of the submatrix A(4 : 5, 1 : 2)
versus those from A(1 : 2, 4 : 5)).

9 Conclusions

A general expression for the condition number of the solution of a linear system of equations whose coef-
�cient matrix is a di�erentiable function of a vector of parameters with respect to relative componentwise
perturbations of such parameters has been presented. This expression involves the partial derivatives of
the matrix with respect to the parameters. This result is related to results presented recently in [5] for
eigenvalue condition numbers and both papers make use of di�erential calculus. This general expression
has been used to deduce formulas for the componentwise condition numbers of the solutions of linear
systems whose coe�cient matrices are {1, 1}-quasiseparable of size n×n with respect to perturbations of
the parameters in any quasiseparable representation and in the tangent-Givens-vector representation of
the coe�cient matrices. We have compared theoretically these two structured condition numbers and we
have proved that they di�er at most by a factor 3n and, therefore, that they are numerically equivalent,
though the one with respect to the tangent-Givens-vector representation is always the smallest. More-
over, it has been shown that these structured condition numbers can be estimated in O(n) operations via
an e�ective condition number. We have also proved rigorously that these structured condition numbers
are always smaller, up to a factor n, than the componentwise unstructured condition number. In addi-
tion, the performed numerical experiments illustrate that the structured condition numbers can be much
smaller than the unstructured one in practice. This means that the structure of {1, 1}-quasiseparable
matrices may play a key role in the accuracy of computed solutions of linear systems of equations, since
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these solutions can be much less sensitive to relative perturbations of the parameters representing the
matrices than to relative perturbations of the matrix entries. The techniques used in this paper can
be generalized to obtain structured condition numbers for the solution of linear systems involving other
classes of low-rank structured matrices and they can be extended to study the structured conditioning
of other problems involving low-rank structured matrices like, for instance, least squares problems.
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