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Abstract. Several relative eigenvalue condition numbers that exploit tridiagonal form are derived. Some of them
use triangular factorizations instead of the matrix entries and so they shed light on when eigenvalues are less sensitive
to perturbations of factored forms than to perturbations of the matrix entries. A novel empirical condition number is
used to show when perturbations are so large that the eigenvalue response is not linear. Some interesting examples
are examined in detail.
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1. Introduction. A thoughtful look at Figure 2.1 should persuade the reader that it is not
sufficient to produce software to compute eigenvalues; instead each eigenvalue should be acompanied
by an estimate of its sensitivity to uncertainty in the matrix. This measure should be realistic, not
pessimistic. To this end our measure should respect the zero structure of the matrix and, in line
with today’s high aspirations, should measure the relative, not absolute, sensitivity in an eigenvalue,
that is, it should measure the ratio between the relative variation of an eigenvalue and the largest
of the relative variations of each of the parameters defining the matrix.

This paper is mainly focused on infinitesimal perturbations of matrices and their effect on simple
eigenvalues. Therefore, we will use derivatives of eigenvalues. For a simple eigenvalue λ of a given

matrix A = (aij), the absolute sensitivity with respect to an entry is

∣∣∣∣ ∂λ

∂aij

∣∣∣∣, whereas the relative

sensitivity is

∣∣∣∣aijλ ∂λ

∂aij

∣∣∣∣, for λ and aij nonzero. The relative sensitivity of λ to the whole matrix is

the sum of the above sensitivities over the nonzero entries. See section 6.1 for details.
We mention previous work in a later section but here we list what our paper offers: several

simple relative eigenvalue condition numbers, a novel empirical condition number which tells us the
largest perturbation level at which the response of the eigenvalue is linear in the perturbation, a
detailed study of a few challenging matrices. In addition we present some theoretical results that
relate our condition numbers to each other. Our main results are given in: (a) Theorem 6.1, where
a relative eigenvalue condition number with respect to infinitesimal perturbations of the matrix
entries is presented; (b) Theorems 6.3, 6.4 and 6.5, where relative eigenvalue condition numbers
with respect to infinitesimal perturbations of the entries of several triangular factorizations of the
matrix are presented; (c) Lemmas 6.2 and 6.6, where it is proved that several of the condition
numbers that we present are in fact equivalent and that, as a consequence, some representations
of tridiagonals do not represent any improvement from the point of view of relative sensitivity of
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eigenvalues; and (d) equation (7.1), where the novel empirical condition number is defined.

2. Notation and basic results. We try to follow a widespread practice in Numerical Linear
Algebra of reserving capital Roman letters, A,B, . . ., for matrices, (boldfaced) lower case Roman
letters, x,y, . . ., for column vectors and lower case Greek letters, α, β, . . ., for scalars. We consider
real matrices only but some eigenvalues and eigenvectors may be complex. Given a complex column
vector y we will be using both yT and y∗ := ȳT , where ᾱ is the conjugate of α. In order to have
vector and matrix norms consistent,

∥y∥∞ = max
i

|yi| but ∥y∗∥∞ = ∥yT ∥∞ = ∥y∥1 =
∑
i

|yi|.

We assume that the reader has some knowledge of matrix eigenvalue problems. We write the
eigenvalue/eigenvector equation for an n× n matrix M as

Mx = xλ, y∗M = λy∗.

Some authors prefer to write the second equation as

M∗y = yλ̄ (or MT ȳ = ȳλ)

but that seems unnatural to us because λ has been replaced by λ̄. When λ is simple then y∗x ̸= 0
and this case will be our main focus. The (oblique) spectral projector onto λ’s eigenspace is

Pλ = x(y∗x)−1y∗ (2.1)

and its spectral norm is the Wilkinson condition number for λ,

κλ := ∥Pλ∥2 =
∥x∥2∥y∥2
|y∗x|

=
1

| cos∠(x, y)| . (2.2)

It can be proved [6] that

κλ = lim
η→0

sup

{
|δλ|
η

: (λ+ δλ) is an eigenvalue of (M + δM), ∥δM∥2 ≤ η

}
. (2.3)

This equality explicitly shows that the Wilkinson condition number measures the absolute sensitivity
of a simple eigenvalue with respect to absolute normwise perturbations of the matrix. Since our
studies concern relative changes, the standard Wilkinson condition number needs to be replaced by
a relative measure with respect to relative normwise perturbations of the matrix, the one used by
Bini, Gemignani and Tisseur in [1],

BGT (λ;M) := κλ
∥M∥2
|λ|

, λ ̸= 0. (2.4)

Note that κλ is invariant under translation M → M − σI, while BGT is not.
Multiple eigenvalues can occur and we will discuss one case later. The spectrum of M is its set

of eigenvalues and complex eigenvalues occur in conjugate pairs, M x̄ = x̄λ̄. In exact arithmetic the
spectrum of real M and MT are identical; but see Figure 2.1 for a shock. For our special topic of
tridiagonal matrices we can use methods that guarantee this spectral identity for M and MT but
we do not know how to achieve it in the general case.
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Figure 2.1. Eigenvalues of a generalized Bessel matrix of order n = 20, B
(−4.5,2)
20 : exact (◦) by Mathematica,

approximations by Matlab using the matrix (·) and its transpose (+).

3. Relevant studies. There has been a lot of work on relative eigenvalue perturbation theory
in the last decades. Some works [7, 10] have developed global bounds for the variation of eigenvalues
under finite perturbations of nonsymmetric matrices. In these papers the condition number, for
inversion, of the eigenvector matrix plays a crucial role in the bounds. However, our desire is to pro-
duce a posteriori sensitivity measures under infinitesimal perturbations for individual eigentriples,
i. e., after computing them. These measures are linked to the concept of eigenvalue condition num-
bers. Formulae for structured condition numbers, both absolute and relative, have been produced by
several authors [6, 8, 12] but our goal is to exploit specifically the tridiagonal property, both in terms
of the entries of the matrix and in terms of its triangular factors, and the resulting simplifications.

The interesting paper [12] also considers structured relative condition numbers with respect to
perturbations of the entries that preserve the zero pattern of the matrix but covers very general
patterns. The consequence is that their formulae are less transparent and, in fact, the authors
produce code that computes their condition numbers given any pattern of zero entries and so cannot
exploit the tridiagonal form explicitly. A novel feature of their paper is the use of λ’s spectral
projector (see (2.1)) to point to entries to which λ is sensitive. Their framework does not permit
them to study the factored representation of the matrix.

In the last section of [13] the entries of the relative gradient vector relgrad, defined in (6.3), are
exhibited but the 1-norm was not taken and so no condition number was defined.

4. Tridiagonal matrices. For such matrices the (i, j) entry vanishes when |i − j| > 1. We
shall insist that no entry with |i−j| = 1 vanishes. Such matrices are said to be unreduced. It follows
that there is only one linearly independent column (or row) eigenvector for each eigenvalue λ even
when λ has eigenvectors vj of higher grade, i. e., (M − λI)j−1vj ̸= 0, (M − λI)jvj = 0, j > 1.
In other words, only one Jordan block per eigenvalue. A useful property of tridiagonals is that an
eigenvector (grade 1) has nonzero first and last entries. This follows from the fact that the entries
in an eigenvector are linked by a three term recurrence. If Cx = xλ, C tridiagonal, then

Ci,i−1xi−1 + (Ci,i − λ)xi + Ci,i+1xi+1 = 0, i = 2, . . . , n− 1.
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4.1. Balancing. When no off-diagonal entry of a tridiagonal matrix C vanishes then it can
be “balanced” easily to give the matrix B shown below, which has the property that, for all i, the
ith row and the ith column have the same norm (∥ · ∥1, ∥ · ∥2, or ∥ · ∥∞). In practice balancing is
done using only changes in the exponent, so there are no rounding errors. See [14]. We show three
unreduced tridiagonal matrices, all related by diagonal similarity transformations,

C =


a1 c1
b1 a2 c2

. . .
. . .

. . .

bn−2 an−1 cn−1

bn−1 an

 , J =


a1 1
b1c1 a2 1

. . .
. . .

. . .

bn−2cn−2 an−1 1
bn−1cn−1 an

 (4.1)

and

B =



a1
√

|b1c1|

γ1
√
|b1c1| a2

√
|b2c2|

. . .
. . .

. . .

γn−2

√
|bn−2cn−2| an−1

√
|bn−1cn−1|

γn−1

√
|bn−1cn−1| an


(4.2)

where γi = sign(bici), i = 1, . . . , n− 1. It is a good exercise to find the matrices F that specify the
transformation. For general applications, C is the input matrix and J uses the fewest parameters.

4.2. Multiple eigenvalues. For most of this paper we will assume that each eigenvalue differs
from its neighbors in most of the digits used in the computer. For example, if the precision is 16
decimals then we assume that the nearest neighbors agree to not more than 8. Computing accurate
eigenvectors when eigenvalues are much closer than that is a difficult research area and beyond the
scope of this paper. These eigenvectors are needed to compute condition numbers. However we
must mention that innocent looking unreduced tridiagonals can have multiple eigenvalues and, at
the extreme, the spectrum may contain just one eigenvalue. Because the matrix is unreduced that
eigenvalue belongs to one n× n Jordan block.

This extreme case is so sensitive as to defy satisfactory computation using, say, Matlab. Figure
4.1 shows Matlab’s output for the following one-point spectrum Liu matrix (n = 14) with 0 as its
only (multiple) eigenvalue:

Liu14 =diag(0, 0, 0, 0, 0, 0,−1, 1, 0, 0, 0, 0, 0, 0) + diag−1(1, 1, . . . 1, 1)+

+ diag+1(−1, 1, 1,−1, 1,−1,−1,−1, 1,−1, 1, 1,−1).

See Liu [11]. The output shows exactly what is predicted by perturbation theory. See Golub and Van
Loan [4], Wilkinson [19] or Stewart and Sun [18]. The computed eigenvalues lie evenly distributed
on quite a large circle centered on the exact single eigenvalue, a circle of radius close to ε1/n with ε
the roundoff unit. The mean of the computed eigenvalues would be a good approximation - if only
we knew that the input matrix had this special property.

It is interesting, and little known, that, in the tridiagonal case, such eigenvalues can be computed
in an efficient and accurate way. See Section 3.2 of [3]. We compute the 0 eigenvalue of Liu14 exactly
and determine its multiplicity. We cannot do this for general matrices.
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Figure 4.1. Matlab’s eigenvalues of the Liu matrix (n = 14) and the circle of radius n
√
ε.

5. Factored forms. A salient property of real tridiagonal matrices is that they can be balanced
so easily. See (4.2). However once the matrix is balanced it is not hard to see that it can be made
real symmetric simply by changing the signs of certain rows in a clever way. This is not a similarity
transformation and would not preserve the eigenvalues. However changing the signs of certain rows
is accomplished by premultiplying by a so-called signature matrix ∆,

∆ = diag(δ1, δ2, . . . , δn), δi = ±1.

Note that ∆ is its own inverse, ∆2 = In.
Let B in (4.2) denote the balanced real tridiagonal matrix. Then we have

∆B = T,

T is real symmetric tridiagonal. Consider

(B − λI)x = 0

and premultiply by ∆ to find

(T − λ∆)x = 0. (5.1)

If B has complex eigenvalues then both T and ∆ are indefinite, i.e., vTTv and uT∆u are positive
for some vectors u and v and negative for others. Often, but not always, T admits triangular
factorization as

T = LDLT (5.2)

where L is unit lower bidiagonal,

L =


1
l1 1

. . .
. . .

ln−2 1
ln−1 1

 ,
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and D = diag(d1, d2, . . . , dn) is often called the matrix of pivots. See [5]. This gives a new represen-
tation,

B = ∆T = ∆LDLT , (5.3)

BT = T∆ = LDLT∆. (5.4)

Even when the factorization (5.2) does not breakdown there can be large element growth, i.e.,

∥D∥2 ≫ ∥T∥2, ∥L∥2 ≫ ∥T∥2.

Such growth can be avoided by allowing D to have 2× 2 blocks on the diagonal but we don’t pursue
this technique here.

Recall that B has the same eigenvalues (in exact arithmetic) as the input matrix C and their
eigenvectors are simply related.

B = FCF−1 and Bx = xλ

imply

C
(
F−1x

)
= F−1Bx =

(
F−1x

)
λ, F is diagonal.

It is not obligatory to balance a matrix and so we consider a related representation. We call J in
(4.1) the J-form of C. Suppose that J admits triangular factorization

J = LU

where L ( ̸= L above) and U are lower and upper bidiagonals, respectively, of the form

L =


1
l1 1

. . .
. . .

ln−2 1
ln−1 1

 , U =


u1 1

u2 1
. . .

. . .

un−1 1
un

 . (5.5)

Warning. The difference between the symbols for the parameters in L and in L is subtle.

Among other questions, we ask when do the parameters in L and U determine J ’s eigenvalues
better than the entries in J .

We could derive relative condition numbers for eigenvalues of C, J and B with respect to tiny
relative perturbations of each entry but they turn out to be equal (see Lemma 6.2). It also turns out
that the relative condition numbers for the various factored forms (J = LU , B = ∆T = ∆LDLT )
are equivalent. See Section 6.6. So we only derive relative condition numbers for C and for the
factors L, U and present the formulae for the other factored forms.

6. Derivatives and condition numbers. A simple eigenvalue λ is a smooth function of the
matrix entries [18, Ch IV, Theorem 2.3] and the natural measure of λ’s sensitivity is some suitable
norm of the gradient vector. See (6.1) for the tridiagonal case. In [16] J. Rice published a very
abstract theory of condition, both absolute and relative, but, as far as we can tell, it fails to explain
why, for the relative condition of λ, we need the 1-norm of the relative gradient vector relgrad (see
(6.3)). For this reason we have included the natural derivation of relcond(λ), the relative condition
number for λ, which depends strongly on (6.4).
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6.1. Relative versus absolute. Entries versus norms. The classical viewpoint suggests
that the best that can be expected in numerical practice is “absolute” sensitivity, i.e., a measure of
the absolute variation of an eigenvalue with respect to the norm of the matrix. This is what the
Wilkinson condition number reflects according to (2.3). We develop here a measure of “relative”
sensitivity, i.e., a measure of the relative variation of an eigenvalue with respect to the largest relative
perturbation of each of the nonzero entries of the matrix. If the three diagonals defining tridiagonal
C are in arrays a, b and c (see (4.1)), then for a simple eigenvalue λ one considers all the partial

derivatives

{
∂λ

∂ai
,
∂λ

∂bi
,
∂λ

∂ci

}
and forms the absolute gradient vector

gradC(λ) =

(
∂λ

∂a1
, . . . ,

∂λ

∂an
,
∂λ

∂b1
, . . . ,

∂λ

∂bn−1
,
∂λ

∂c1
, . . . ,

∂λ

∂cn−1

)T

. (6.1)

For infinitesimal absolute changes (δa1, . . . , δan, δb1, . . . , δbn−1, δc1, . . . , δcn−1)
T
=: δC, we have

δλ = gradC(λ)
T · δC + higher order terms (h.o.t.). (6.2)

In order to turn (6.2) into relative terms we want to relate |δλ/λ| to |δpj/pj |, j = 1, . . . , 3n − 2,
p =

(
a1, . . . , an, b1, . . . , bn−1, c1, . . . , cn−1

)
. Assuming no zeros, rewrite (6.2) as

δλ

λ
=

(
a1
λ

∂λ

∂a1
, . . . ,

cn−1

λ

∂λ

∂cn−1

)
·
(
δa1
a1

, . . . ,
δcn−1

cn−1

)T

+ h.o.t.

=: relgradC(λ)
T · rel δC + h.o.t., (6.3)

defining the relative gradient and the relative perturbation. When a parameter vanishes we should
omit the corresponding term in the inner product.

The perturbations we consider are of the form |δpi| ≤ η|pi|. As a matrix, entry by entry,

|δC| ≤ η|C|, 0 < η ≪ 1, (6.4)

and

| rel δC| ≤ η (1, 1, . . . 1)
T
.

Recall that |C|ij = |Cij |. We say that the level of relative perturbation is η.
To avoid unnecessary factors of n we use ∥ · ∥∞ for rel δC. Thus

∥ rel δC∥∞ ≤ η.

and, since |uTv| ≤ ∥u∥1∥v∥∞ (Hölder inequality),∣∣∣∣δλλ
∣∣∣∣ ≤ ∥ relgradC(λ)∥1∥ rel δC∥∞ + h.o.t. ≤ η∥ relgradC(λ)∥1 + h.o.t. (6.5)

and we define the structured relative condition number for λ as a function of C by

relcond(λ;C) := ∥ relgradC(λ)∥1, λ ̸= 0.

There is no reason to expect relcond(λ;C) > 1; any value in [0,+∞[ could occur. For representations
other than the matrix entries we also use (6.3) with the appropriate relgrad including derivatives
with respect to the parameters defining the representation.
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Observe that standard properties of norms [5] guarantee that there exist particular vectors rel δC
with ∥ rel δC∥∞ = η such that | relgradC(λ)T · rel δC| = ∥ relgradC(λ)∥1∥ rel δC∥∞. For these vectors
rel δC, the bound (6.5) is attained to first order in η, and this allows us to prove immediately that

relcond(λ;C) := ∥ relgradC(λ)∥1

= lim
η→0

sup

{
|δλ|
η|λ|

: (λ+ δλ) is an eigenvalue of (C + δC), |δC| ≤ η|C|
}
. (6.6)

The expression in (6.6) is often given as definition of componentwise condition number for simple
eigenvalues [6]. Our contribution here has been to prove that the abstract expression (6.6) is equal
to ∥ relgradC(λ)∥1, which is easily computable. This property extends directly to representations
different than the matrix entries.

Should C ̸= O be singular then appropriate independent relative changes to the entries will
destroy singularity. So we set relcond(0;C) = ∞. Our other representations will have finite values
for ∥ relgrad(λ)∥1 and thus will define tiny eigenvalues to high relative accuracy, a very desirable
property.

Warning. We do not know in advance when η is small enough to warrant the neglect of h.o.t..
Our numerical examples shed light on this topic. We know of no other study that addresses it.

6.2. Representation 1 - entries of C. We now derive an explicit expression for relcond(λ;C).
We treat each component of C as an independent variable. Thus, with I =

(
e1, . . . ,en

)
,

∂C

∂aj
= eje

T
j ,

∂C

∂bj
= ej+1e

T
j and

∂C

∂cj
= eje

T
j+1.

Let λ be a simple nonzero eigenvalue of C and

Cx = xλ, y∗C = λy∗.

Then, for pj = aj , bj , cj , we differentiate Cx = xλ to get

∂C

∂pj
x+ C

∂x

∂pj
=

∂x

∂pj
λ+ x

∂λ

∂pj
.

Multiply by y∗ and cancel equal terms to find

∂λ

∂pj
y∗x = y∗ ∂C

∂pj
x, pj = aj , bj , cj .

Thus,

∂λ

∂aj
=

yjxj

y∗x
,

∂λ

∂bj
=

yj+1xj

y∗x
,

∂λ

∂cj
=

yjxj+1

y∗x

and

relgradC(λ) =
1

λy∗x

(
a1y1x1, . . . , anynxn, b1y2x1, . . . , bn−1ynxn−1, c1y1x2, . . . , cn−1yn−1xn

)T
.

Finally, observe that

∥ relgradC(λ)∥1 =
1

|λ||y∗x|

 n∑
j=1

|aj ||yj ||xj |+
n−1∑
j=1

(
|bj ||yj+1||xj |+ |cj ||yj ||xj+1|

) =
|y|T |C||x|
|λ||y∗x|

.
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According to equation (6.6), the arguments above prove Theorem 6.1 that provides an eigenvalue
relative condition number for C.

Theorem 6.1. Let λ ̸= 0 be a simple eigenvalue of an unreduced real tridiagonal matrix C with
left eigenvector y and right eigenvector x. Then relcond(λ;C) := ∥ relgradC(λ)∥1 is equal to

relcond(λ;C) = lim
η→0

sup

{
|δλ|
η|λ|

: (λ+ δλ) is an eigenvalue of (C + δC), |δC| ≤ η|C|
}

=
|y|T |C||x|
|λ||y∗x|

.

Note that the numerator of relcond(λ;C) is of the form (row) · (matrix) · (column). If λ = 0,
relcond(λ;C) = ∞. This expression for relcond(λ;C) turns out to be an instance of Theorem 3.2 in
Higham and Higham [6]. A rather similar expression has also appeared in [12].

The form of relcond(λ;C) yields the following result.
Lemma 6.2. For any scaling matrix S invertible and diagonal,

relcond(λ;SCS−1) = relcond(λ;C).

Proof. Let G = SCS−1 so that, in the notation above,

y∗ = y∗
GS and x = S−1xG.

Consequently, |y∗x| = |y∗
GxG| and

|y∗||C||x| = |y∗
GS||C||S−1xG| = |y∗

G||S||C||S−1||xG| = |y∗
G||G||xG| = |yG|T |G||xG|,

because S is diagonal and no additions occur in SCS−1.
This result shows that the relative condition number we derive is invariant under diagonal sim-

ilarity transformations. In contrast, neither κλ nor BGT are invariant under these transformations.
Thus, for matrices J and B in Section 4.1,

relcond(λ;C) = relcond(λ; J) = relcond(λ;B)

and there is no improvement in the relative condition number by balancing a tridiagonal matrix C to
get B. It does not follow that it is a waste of time to balance a tridiagonal matrix before computing
its eigentriples [14]. Some tridiagonal test matrices (for example, Lesp and Clement matrices [9, 2])
have big Wilkinson condition numbers but are symmetrizable. Eigenvalue techniques for symmetric
tridiagonals are more efficient and accurate than those for general tridiagonals.

6.3. Representation 2 - L, U representation of J. Assume that J permits triangular
factorization J = LU (see (5.5)) and λ is a simple eigenvalue,

LUx = xλ, y∗LU = λy∗, λ ̸= 0.

Recall that L = I + L̊ and U = diag(u) +N with

L̊ =


0
l1 0

. . .
. . .

ln−2 0
ln−1 0

 and N =


0 1

0 1
. . .

. . .

0 1
0

 .
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The perturbations at level η are given by

|δli| ≤ η|li|, 0 < η ≪ 1,
|δui| ≤ η|ui|, 0 < η ≪ 1.

The 1’s are not changed.
Next we derive an explicit expression for the relative condition number for J = LU ,

relcond(λ;L,U) := ∥ relgradL,U (λ)∥1.

For uj we find

∂λ

∂uj
y∗x = y∗L ∂U

∂uj
x = y∗LejeTj x = (y∗L)jxj , j = 1, . . . , n,

and for lj ,

∂λ

∂lj
y∗x = y∗ ∂L

∂lj
Ux = y∗ej+1e

T
j Ux = yj+1(Ux)j , j = 1, . . . , n− 1.

Then

gradL,U (λ) =

(
∂λ

∂u1
, . . . ,

∂λ

∂un
,
∂λ

∂l1
, . . . ,

∂λ

∂ln−1

)T

(6.7)

and, inserting the parameters lj and uj appropriately,

λ(y∗x) relgradLU (λ) =
(
(y∗L)1u1x1, . . . , (y

∗L)nunxn, y2l1(Ux)1, . . . , ynln−1(Ux)n−1

)T
=
(
(y∗L)1u1x1, . . . , (y

∗L)nunxn, (y
∗L̊)1(Ux)1, . . . , (y∗L̊)n−1(Ux)n−1

)T
.

So, observing that |y∗L̊||Ux| = |y|T |L̊Ux| in the last line below,

|λ||y∗x|∥ relgradL,U (λ)∥1 =

n∑
j=1

|(y∗L)jujxj |+
n−1∑
j=1

|(y∗L̊)j(Ux)j |

= |y∗L||diag(u)x|+ |y∗L̊||Ux|
= |y∗Ldiag(u)||x|+ |y|T |L̊Ux|. (6.8)

As we did in Theorem 6.1, we can summarize the arguments above in Theorem 6.3.
Theorem 6.3. Let J be an unreduced real tridiagonal matrix that permits a triangular fac-

torization J = LU with factors as in (5.5), let L̊ = L − I, and let diag(u) = diag(u1, . . . , un).
Let λ ̸= 0 be a simple eigenvalue of J with left eigenvector y and right eigenvector x. Then
relcond(λ;L,U) := ∥ relgradL,U (λ)∥1 is equal to

relcond(λ;L,U) = lim
η→0

sup

{
|δλ|
η|λ|

: (λ+ δλ) is an eigenvalue of (L+ δL)(U + δU),

|δL| ≤ η|L̊|, |δU| ≤ η|diag(u)|
}

=
|y∗Ldiag(u)||x|+ |y|T |L̊Ux|

|λ| |y∗x|
.
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Observe that neither the 1’s nor the 0’s of L and U are changed in the perturbations.

Next, we express relcond(λ;L,U) in a form that is more convenient for computing it. To this
end, write

U = diag(u)
(
I + Ů

)
where

Ů =


0 u−1

1

0 u−1
2

. . .
. . .

0 u−1
n−1

0

 .

In order to extract a factor of |λ| on the right in (6.8), use

y∗LU = λy∗, Ux = L−1xλ, λ ̸= 0,

to find

y∗Ldiag(u) = λy∗
(
I + Ů

)−1

, L̊Ux = L̊L−1xλ, λ ̸= 0. (6.9)

Also use L̊ = L− I to see that L̊L−1 = I −L−1 = L−1L̊. Substitute this relation in (6.9) to obtain

y∗Ldiag(u) = λy∗
(
I + Ů

)−1

, L̊Ux = L−1L̊xλ, λ ̸= 0. (6.10)

If LU exists, uj ̸= 0, j = 1, . . . , n − 1. Fortunately un does not appear in Ů . Substitute the
expressions in (6.10) into (6.8) and cancel |λ| (̸= 0) to find

|y∗x|∥ relgradLU (λ)∥1 =

∣∣∣∣y∗
(
I + Ů

)−1
∣∣∣∣ |x|+ |y|T |L−1L̊x|.

For the cost of solving two bidiagonal linear systems

v∗
(
I + Ů

)
= y∗ for v∗ and Lw = L̊x for w

we obtain the following expression of the relative condition number for J = LU

relcond(λ;L,U) := |v|T |x|+ |y|T |w|
|y∗x|

. (6.11)

Although the right hand side of (6.11) is a nonzero finite number for a simple eigenvalue
λ = 0, observe that the perturbations we consider for U , that is, |δui| ≤ η|ui|, produce un + δun = 0
whenever un = 0. This means that singularity is preserved or, equivalently, that the zero eigenvalue
is preserved. Therefore, it seems appropriate to set relcond(0;L,U) = 0.
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6.4. Other representations. We now present the sensitivity of a simple eigenvalue λ w.r.t.
D and L, keeping ∆ constant. Assume that ∆T admits triangular factorization ∆T = ∆LDLT and
let λ be a simple eigenvalue,

∆LDLTx = xλ, y∗∆LDLT = λy∗, λ ̸= 0.

Recall that x, y and λ may be complex, D = diag(d1, d2, . . . , dn) and L = I + L̊ with

L̊ =


0
l1 0

. . .
. . .

ln−2 0
ln−1 0

 .

When the matrix is balanced y∗ is determined by x. Transpose ∆LDLTx = xλ and insert I = ∆2

to find (
xT∆

) (
∆LDLT

)
= λ

(
xT∆

)
and compare with y∗∆LDLT = λy∗ to see that y∗ = xT∆. Recall that x and λ may be complex
and, since λ is simple, 0 ̸= y∗x = xT∆x.

Following the analysis of (6.8) but using partial derivatives of λ with respect to d1, . . . , dn and
l1, . . . , ln−1 for this case, we find

|λ||xT∆x|∥ relgradL,D(λ)∥1 =
n∑

j=1

∣∣dj [(LTx)j ]
2
∣∣+ 2

n−1∑
j=1

|(xT L̊)j(DLTx)j |

= |LTx|T |DLTx|+ 2|xT L̊||DLTx|

=
(
|xTL|+ 2|xT L̊|

)
|DLTx|. (6.12)

As we did in Theorems 6.1 and 6.3, we express formally this result in Theorem 6.4.
Theorem 6.4. Let B be a balanced unreduced real tridiagonal matrix that permits a triangular

factorization B = ∆LDLT with factors as in (5.3) and let L̊ = L − I. Let λ ̸= 0 be a simple
eigenvalue of B with right eigenvector x. Then relcond(λ;L,D) := ∥ relgradL,D(λ)∥1 is equal to

relcond(λ;L,D) = lim
η→0

sup

{
|δλ|
η|λ|

: (λ+ δλ) is an eigenvalue of ∆(L+ δL)(D + δD)(L+ δL)T ,

|δL| ≤ η|L̊|, |δD| ≤ η|D|
}

=

(
|xTL|+ 2|xT L̊|

)
|DLTx|

|λ| |xT∆x|
.

Observe that neither the 1’s nor the 0’s of L and D are changed in the perturbations.

Next we express relcond(λ;L,D) in a form that is more convenient for computations. To this
purpose, we can extract a factor |λ| on the right side of (6.12) using, from ∆LDLTx = xλ,

DLTx = L−1∆xλ. (6.13)
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Substitute (6.13) in (6.12) and cancel |λ| ( ̸= 0) to obtain

|xT∆x|∥ relgradL,D(λ)∥1 =
(
|xTL|+ 2|xT L̊|

)
|L−1∆x|.

For the cost of solving one bidiagonal linear system (L is unit bidiagonal)

Lv = ∆x for v,

we obtain the following expression of the relative condition number for ∆T = ∆LDLT

relcond(λ;L,D) :=

(
|xTL|+ 2|xT (L− I)|

)
|v|

|xT∆x|
. (6.14)

Note that, in general, |xTL|+ 2|xT L̊| ̸= |x|T |L+ 2L̊| even though L = I + L̊.
Again, the right hand side of (6.14) is a finite nonzero number for a simple eigenvalue λ = 0, but

the perturbations we consider for D preserve the singularity of D and the zero eigenvalue. Therefore,
we set relcond(0;L,D) = 0.

Closely related to the factorization T = LDLT is the factorization T = L̄ΩL̄T where
L̄ = L|D|1/2 is lower bidiagonal, D = |D|1/2Ω|D|1/2, Ω = diag(sign(di)) with sign(dn) = 1 if
dn = 0. This factorization is the closest to the Cholesky factorization that we can get. Now our
tridiagonal eigenproblem is associated with two independent signature matrices, ∆,Ω. Thus,

∆L̄ΩL̄Tx = xλ. (6.15)

There is a related eigenproblem dual to (6.15):

ΩL̄T∆L̄z = zλ (6.16)

obtained by taking a LU transform of (6.15). This gives, for us, the most elegant (symmetric) form
of our problem as

L̄ΩL̄Tx = ∆xλ, L̄T∆L̄z = Ωzλ,

with just a single bidiagonal matrix L̄.

Now we may keep ∆ and Ω fixed and ask how sensitive λ is to changes in L̄. We follow an
analysis similar to those in Theorems 6.1, 6.3 and 6.4, but here based on the partial derivatives of λ
with respect to the entries (1, 1), . . . , (n, n) and (2, 1), . . . , (n, n− 1) of L̄. This allows us to find the
relative condition number for ∆T = ∆L̄ΩL̄T in Theorem 6.5.

Theorem 6.5. Let B be a balanced unreduced real tridiagonal matrix that permits a trian-
gular factorization B = ∆L̄ΩL̄T , where ∆ and Ω are diagonal signature matrices and L̄ is a
lower bidiagonal matrix. Let λ ̸= 0 be a simple eigenvalue of B with right eigenvector x. Then
relcond(λ; L̄) := ∥ relgradL̄(λ)∥1 is equal to

relcond(λ; L̄) = lim
η→0

sup

{
|δλ|
η|λ|

: (λ+ δλ) is an eigenvalue of ∆(L̄+ δL̄)Ω(L̄+ δL̄)T , |δL̄| ≤ η|L̄|
}

=
2 |xT | |L̄| |L̄Tx|

|λ| |xT∆x|
.

Observe that neither the 1’s nor the 0’s of L̄ are changed in the perturbations.
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For computational purposes, it is more convenient to express relcond(λ; L̄) as follows:

relcond(λ; L̄) :=
2|xT ||L̄||w|
|xT∆x|

, (6.17)

where

L̄w = ∆x for w. (6.18)

The relative condition number for ΩL̄T∆L̄ can be obtained in the same manner and is given by

relcond(λ; L̄T ) :=
2|zT ||L̄T ||u|

|zTΩz|
, (6.19)

where

L̄Tu = Ωz for u. (6.20)

Note that x = ∆L̄z, zλ = ΩL̄Tx and it may be verified that |xT∆x| = |zTΩzλ|, if λ ̸= 0 is simple.
Thus the relative sensitivity of λ in (6.15) and (6.16) is the same,

relcond(λ; L̄) =
2|xT ||L̄||z|
|xT∆x|

. (6.21)

Note the bidiagonal linear systems (6.18) and (6.20) are consistent when L̄ is singular.
Once again the right hand side of (6.21) is a nonzero finite number for a simple eigenvalue λ = 0

but we set relcond(0; L̄) = 0, since the zero eigenvalue or, equivalently, the singularity of the matrix
B, is preserved by the perturbations that we have considered.

6.5. Harmless element growth. The following example shows that element growth in the
factored form can be harmless. For ϵ close to the roundoff unit, the matrix

T =

ϵ 1 0
1 1 1
0 1 ϵ


has eigenvalues λ1 = ϵ, λ2 ≃ −1 and λ3 ≃ 2. An eigenvector for λ1 is x =

(
1 0 −1

)T
. Omitting

O(ϵ2) terms, the factored form for T = LDLT is given by

T =

 1
ϵ−1 1

−ϵ 1

ϵ
1− ϵ−1

2ϵ

1 ϵ−1

1 −ϵ
1

 .

The relative condition number relcond(ϵ;L,D) for the smallest eigenvalue λ1 = ϵ shows that
despite element growth this eigenvalue is robust. In fact, solving Lv = x for v, we obtain

v =
(
1 −ϵ−1 −2

)T
, xTL =

(
1 ϵ −1

)
, xT L̊ =

(
0 ϵ 0

)
and

relcond(ϵ;L,D) =

(
|xTL|+ 2|xT L̊|

)
|v|

∥x∥2
=

1

2

(
1 3ϵ 1

) 1
ϵ−1

2

 = 3.
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Also, we have the representation T = L̄ΩL̄T with

L̄ =

 ϵ1/2

ϵ−1/2
∣∣1− ϵ−1

∣∣1/2
−ϵ

∣∣1− ϵ−1
∣∣1/2 (2ϵ)1/2

 and Ω = diag(1,−1, 1).

Solving L̄v1 = x for v1, we obtain v1 =
(
ϵ−1/2 −ϵ−1

∣∣1− ϵ−1
∣∣−1/2 −2

(
2ϵ
)−1/2

)T

,

2|xT ||L̄| = 2
(
ϵ1/2, ϵ

∣∣1− ϵ−1
∣∣1/2, (2ϵ)1/2) and

relcond(ϵ; L̄) =
2|xT ||L̄||v1|

∥x∥2
=

(
ϵ1/2, ϵ

∣∣1− ϵ−1
∣∣1/2, (2ϵ)1/2)

 ϵ−1/2

ϵ−1
∣∣1− ϵ−1

∣∣−1/2

2(2ϵ)−1/2

 = 4.

In contrast, relcond(λ2;L,D) and relcond(λ3;L,D) are O(1/ϵ). The factored form of the given
T is bad for computing (λ2,x2) and (λ3,x3) but excellent for computing (λ1,x1). When T is shifted
close to λ2 or λ3 there is no element growth and the eigenvectors may be computed accurately.

We can destroy symmetry via a diagonal similarity transform T → STS−1. The eigenvectors
change in a simple way but the relcond’s remain the same.

6.6. Equivalence of relcond(λ;L,U), relcond(λ;L,D), relcond(λ; L̄). There is no need to
compare numerically the three representations J = LU , ∆T = ∆LDLT and ∆T = ∆L̄ΩL̄T since
the relative condition numbers are equivalent as shown in the next result.

Lemma 6.6.

relcond(λ;L,U) ≤ relcond(λ;L,D) ≤ 3 relcond(λ;L,U)

and

1

2
relcond(λ; L̄) ≤ relcond(λ;L,D) ≤ 3

2
relcond(λ; L̄).

Proof. For S invertible and diagonal, let J = SBS−1 = S∆TS−1 and consider the triangular
factorizations J = LU and B = ∆T = ∆LDLT . Then we have

LU = S∆LDLTS−1.

Uniqueness of LU factorization guarantees that

L = S∆LS−1∆ and U = ∆SDLTS−1

and

L̊ = S∆L̊S−1∆ and diag(u) = ∆D.

The eigenvectors, in the usual notation, satisfy

xB = S−1xJ and xT
B∆ = y∗

B = y∗
JS.

Consequently, |y∗
JxJ | = |y∗

BxB | = |xT
B∆xB | and, from (6.8),

|λ||y∗
JxJ | relcond(λ;L,U) = |y∗

JLdiag(u)||xJ |+ |yJ |T |L̊UxJ |,
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we obtain

|λ||xT
B∆xB | relcond(λ;L,U) =

(
|xB |T + |xT

BL̊|
)
|DLTxB |.

Compared with (6.12) in the derivation of relcond(λ;L,D),

|λ||xT
B∆xB | relcond(λ;L,D) =

(
|xT

BL|+ 2|xT
BL̊|

)
|DLTxB |,

to conclude that, since

|xT
BL| = |xT

B(I + L̊)| ≤ |xB |T + |xT
BL̊|, (6.22)

we have

|xT
BL|+ 2|xT

BL̊| ≤ 3
(
|xB |T + |xT

BL̊|
)

and

relcond(λ;L,D) ≤ 3 relcond(λ;L,U).

Also, since

|xB |T = |xT
B(L− L̊)| ≤ |xT

BL|+ |xT
BL̊|, (6.23)

relcond(λ;L,U) ≤ relcond(λ;L,D).

The derivation of the second part of the lemma is similar and is omitted.

7. Preparation for case studies.

7.1. Sampling the perturbations. Let ν denote the number of real parameters in the rep-
resentation of a matrix (ν = 3n − 2 for C, ν = 2n − 1 for LU and ∆LDLT ). For the perturbation
level η we change each parameter p in turn to p(1 ± η) and calculate the new spectrum. This will
give a sample of 2ν perturbations for each λ and one can find the greatest change. The size depends
on λ and on η. We define an empirical sensitivity function

emp(λ, η) :=
max |δλ|
η|λ|

where max |δλ| is the max over our 2ν samples.
We want to know the values of η for which |δλ/λ| is proportional to η, i.e., the perturbations

are small enough to make the h.o.t. negligible, so we define η∗ by

η∗ = max{η : emp(λ, η) has at least one decimal digit in common with emp(λ, τ), τ < η,

until roundoff in computing the perturbed eigenvalues interferes}.

Finally we define our relative empirical sensitivity measure by

emp(λ) := emp(λ, η∗) (7.1)

and record the perturbation level η∗ for each λ, η∗(λ) in our studies.
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7.2. Finding |δλ|. To determine |δλ| is not as straightforward as it seems at first glance. A big
challenge lies in pairing up correctly the new spectrum with the original one. If one new eigenvalue
is incorrectly paired then our computed |δλ| will not give us correct information. What we do is
to order the eigenvalues of the original matrix by increasing relcond(λ) (i.e. take the easiest cases
first). We find the closest new λ to the first old λ and remove each from its list. Then we find the
closest remaining new λ to the second old λ and remove each from its list and so on until each list is
empty. Easier ordering, by real part or magnitude, do not resolve the difficulties. This can be seen,
by eye, in Figure 2.1.

We have to be concerned about perturbations to a complex conjugate pair of eigenvalues giving
rise to two real eigenvalues (and the opposite). See Figure 2.1 to see the challenge of pairing even
when eigenvalues are distinct. What complex “+” should be paired with the real “·” furthest from
the origin? In addition, when the perturbed eigenvalue regions for two distinct eigenvalues overlap
then we have to be concerned about some perturbations giving rise to a multiple eigenvalue. At this
stage of our studies we avoid such difficult cases.

7.3. Finding η∗. Another difficulty is the size of η∗. Our decision to use Matlab and compute
with roundoff unit ε ≃ 2 × 10−16 confined our η values to the range 10−1, 10−2, . . . , 10−14 and we
try them all. We can not know η∗(λ) in advance. When examining the other condition numbers
that we compute we ignore any values corresponding to η > η∗(λ). Clearly if η∗(λ) = 10−14 then
λ is too sensitive to permit a study using Matlab. In the same line of thinking, log10 relcond(λ)
tells us roughly how many decimal digits of λ are “lost” through finite precision computation. If
relcond(λ) = 108 then the best we can hope for from an algorithm executed in Matlab is that the
leading 16 − 8 = 8 will be correct. We are not aware of any previous studies that indicate when
perturbations are small enough to neglect higher order terms.

7.4. Checking the eigenvectors. All condition numbers use the eigenvectors and we need
both column and row eigenvectors:

Cx = xλ, y∗C = λy∗.

We do not normalize our eigenvectors. Figure 2.1 shows that Matlab often produces a different
spectrum for CT and C. Hence we are reluctant to accept Matlab’s eigenvectors for CT as the
partners of the eigenvectors for C. In exact arithmetic the two spectra are the same but Matlab,
and any other method based on similarities, returns the eigenvalues of C+E where ∥E∥ = O(ε∥C∥)
and the matrix E for CT differs from the E for C, in general. How do we make sure that the
computed right and left eigenvectors are correctly paired?

Instead we have used a code developed by J. Slemons as part of his Ph.D thesis at the University
of Washington in Seattle [17]. This code exploits tridiagonal form and automatically produces
the same approximations for C and CT . It accepts an (accurate) eigenvalue approximation and
then performs a Rayleigh quotient iteration using both column and row eigenvectors. It returns
an eigenpair (x,y∗) together with an improved eigenvalue estimate of y∗Cx/y∗x, the generalized
Rayleigh quotient. We compute column and row residual norms relative to the eigenvalue,

∥Cx− xλ∥
|λ|∥x∥

and
∥y∗C − λy∗∥

|λ|∥y∗∥
, (7.2)

and record them both. This is a much stricter measure than the usual
∥Cx− xλ∥
∥x∥∥C∥

. If either row or

column residual norms rises above 10−6 we abort this numerical example.
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We assemble all the eigenvectors, correctly paired, and compute

G = (Row eigenvectors) · (Column eigenvectors) = Y ∗X

We checked the diagonality of G by displaying

max
i̸=j

(
|gij |2

|gii||gjj |

)
.

If this exceeds
√
ε ≃ 10−8 then we abort this numerical example.

7.5. Element growth. Representations J = LU and T = LDLT can break down and, more
commonly, can produce factors far greater than J and T . We compare the maximum entry in the
factors with the maximum entry in J or T . If this exceeds 1/ε ≃ 1016 we abort this case.

It must be stressed that in the symmetric case large element growth does not necessarily prevent
small eigenvalues from being relatively robust (See example in Section 6.5). In these cases it is the
large eigenvalues that may be more sensitive to the parameters in L and U than to the entries in J .
In such cases it is better to shift (J −→ J − µI) to a point close to the large eigenvalue and then

factor once again: J −→ J − µI = L̃Ũ .
For these reasons we allow a growth tolerance as large as 1/ε. Indeed, one reason for our studies

is to see if features of eigenvalue computation extend from the symmetric case to the unsymmetric
case. They do, in our examples.

8. Numerical studies.

8.1. Questions. Below are the questions that shaped our study.

• Representation 1 (C given by a, b, c)
How much does the relative Wilkinson condition number BGT (λ) overestimate the sensi-
tivity of an eigenvalue?

• Representation 2 (J = LU)
Are the very small eigenvalues less sensitive to relative changes in L, U than to the same
relative changes in the entries of J?
Does element growth in L and U affect the sensitivity with respect to L and U?

• How can one find out the perturbation level η∗ above which the second order effects dominate
the first order (linear) effects? Before we began this study we never asked ourselves this
question. See section 7.3.

8.2. Study 1 - Graded matrix. This matrix C was created in ∆T form with

T = diag(a1, . . . , an−1, an) + diag−(b1, . . . , bn−1) + diag+(c1, . . . , cn−1),

aj = bj = cj = 3−(j−1), j = 1, . . . , n− 1,

an = 3−(n−1),

and ∆ = diag(δ), δj = (−1)⌊(j+1)/2⌋, j = 1, . . . , n.

The result is a balanced matrix with eigenvalues of different magnitude.
Our numerical study has n = 20. The eigenvalues range from 10−9 to 1.7 in magnitude. There

are 6 real eigenvalues. The maximum of the strict relative residual norms, see (7.2), was 10−12 and
the closeness of the computed Y ∗X to diagonal form was 10−29.
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Our purpose is to show how misleading the BGT condition number can be. All the eigenvalues
are determined to high relative accuracy using both representations C and J = LU . The smallest
value of η∗ is 10−2 and this indicates the robust nature of the eigenvalues.

Remarks.

1. For the representation C (matrix entries) and for the eigenvalues with minimum and maxi-
mum absolute values, λmin and λmax, respectively,

BGT (λmin;C) = 8.4× 108, relcond(λmin;C) = 14.5
BGT (λmax;C) = 1.05, relcond(λmax;C) = 1.05.

For all the other eigenvalues,

6.0 ≤ BGT (λ;C) ≤ 7.0× 108,

3.8 ≤ relcond(λ;C) ≤ 61.6.

2. When C is put into J form the condition number of the similarity is 4 × 1081. The LU
factorization incurred no element growth and all relcond(λ;L,U) values dropped below 6.5,

1.3 ≤ relcond(λ;L,U) ≤ 6.5.

3. For both the representations

relcond(λ) ≤ 40 emp(λ),

but in most cases the factor was 2.

Results for n = 50, 100 are the same for C = ∆T but the condition number of the similarity
transform to J quickly escalates to overflow and spoils the eigenvector computation thus preventing
the calculation of relcond(λ;L,U). However, the computation of relcond(λ;L,D) went through
without difficulty and the values are small, which, together with Lemma 6.6, guarantees that also
the values of relcond(λ;L,U) are small.

8.3. Study 2 - Generalized Bessel matrix. Bessel matrices, associated with generalized
Bessel polynomials, are nonsymmetric tridiagonal matrices defined by

B(a,b)
n = diag(α1, . . . , αn−1, αn) + diag−(β1, . . . , βn−1) + diag+(γ1, . . . , γn−1)

with

α1 = − b

a
, αj := −b

a− 2

(2j + a− 2)(2j + a− 4)
, j = 2, . . . , n,

β1 =
α1

a+ 1
, βj := −b

j

(2j + a− 1)(2j + a− 2)
, j = 2, . . . , n− 1,

γ1 = −α1, γj := b
j + a− 2

(2j + a− 2)(2j + a− 3)
, j = 2, . . . , n− 1.

Parameter b is a scaling factor and most authors take b = 2 and so do we. The case a ∈ R is the most

investigated in literature. The eigenvalues of these matrices B
(a,b)
n suffer from ill-conditioning that

increases with n - close to a defective matrix. In Pasquini [15] it is mentioned that the ill-conditining
seems to reach its maximum when a ranges from −8.5 to −4.5.
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Our example takes a = −4.5, b = 2 and n = 10, C = B
(−4.5,2)
10 . This matrix has well separated

complex eigenvalues, far from small (for all λ, 0.19 ≤ |λ| ≤ 0.27), that are sensitive to small relative
changes in the matrix entries. All our representations reflect this sensitivity - but in milder form. The
maximum of the eigenvector relative residuals was 10−13 and the departure of Y ∗X from diagonality
10−23.

In [1] the authors take n = 18. Here is where our empirical sensitivity measure is useful. With
n = 18 the most sensitive eigenvalues (those furthest from the imaginary axis) have η∗ ≤ 10−14 and
we cannot assume that Matlab function eig will yield any correct digits. With n = 10, η∗ = 10−10

for the most sensitive eigenvalue and we get at least one correct digit in all the eigenvalues we
compute in studying sensitivity. In other words, in addition to relcond(λ) it is nice to know for what
values of η the relative change |δλ/λ| is majorized by η relcond(λ).

We were disappointed, at first, that the factored representation LU gave smaller relcond’s only
by factors between 10 and 100. Fortunately, η∗ rises to the range [10−9, 10−6] from [10−10, 10−7] for
C, the matrix entries. Relative changes of level 10−5 are too large to enjoy a linear response in the
eigenvalues.

The BGT is more realistic (since there are no small eigenvalues). For all λ,

7.7× 106 ≤ BGT (λ;C) ≤ 1.8× 109,

as against

2.1× 106 ≤ relcond(λ;C) ≤ 7.0× 108,

9.8× 104 ≤ relcond(λ;L,U) ≤ 3.8× 107.

Also, for both representations,

relcond(λ) ≤ 5 emp(λ).

When we shift by real parts of λ’s none of the condition numbers change dramatically but the
factored form is about 100 times more robust.

Now we turn to the usefulness of the factored form. When we shift by σ chosen very close to
any eigenvalue λ then BGT (λ−σ;C −σI) and relcond(λ−σ;C −σI) increase greatly, as expected.

However, with L̃Ũ = C − σI, relcond(λ; L̃, Ũ) remains approximately the same as before shifting.
For example, for λ = 3.20× 10−3 ± 1.85× 10−1i we obtain

BGT (λ,C) = 7.7× 106, relcond(λ;C) = 2.1× 106, relcond(λ;L,U) = 9.8× 104,

and with σ = λ(1 + 103 ∗ ε) we find

BGT (λ−σ;C−σI) = 3.5×1019, relcond(λ−σ;C−σI) = 9.3×1018, relcond(λ−σ; L̃, Ũ) = 5.8×104.

So here is an example that the known benefits of factoring in the symmetric case can extend to
the unsymmetric case. This is one of the questions which gave rise to our study.

8.4. Study 3 - Matrix with clusters. At the end of section 7.2 we said that we would avoid
examples in which the eigenvalues were too close to each other, to admit unique paring. Yet matrix
Test 5 in [1] was designed to have large, tight clusters,

C = D−1
[
diag(α1, . . . , αn−1, αn) + diag−(1, . . . , 1) + diag+(1, . . . , 1)

]
,

D = diag(β1, . . . , βn),

αk = 105(−1)k · (−1)⌊k/4⌋, βk = (−1)⌊k/3⌋, k = 1, . . . , n
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and the excuse for discussing it is our surprise at finding that all the relcond’s with n = 100 are
small (two are 586, the rest are less than 12) despite BGT values up to 1010 for the eigenvalues near
0. How is this possible?

The eigenvectors supplied the explanation. The matrix has a repetitive structure and the diago-
nal entries are a good guide to the eigenvalues. For the large real eigenvalues near ±105 the eigenvec-
tors have spikes (−10−5,−1, 10−5) (complex conjugate pairs have spikes (10−5, 1,−10−7,−1, 10−5)),
at the appropriate places, and negligible elsewhere. Hence the numerical supports for many eigen-
vectors are disjoint. The essential structure of the matrix is exhibited with n = 10 and we show
details for this case in table 8.1. The matrix is

C =



10−5 1
1 105 1

−1 −10−5 −1
−1 105 −1

−1 10−5 −1
1 −105 1

1 −10−5 1
1 105 1

−1 −10−5 −1
−1 −105


and it has 5 eigenvalues near 0, 3 eigenvalues near 105 and 2 near −105. The diagonal entries are a
good guide to the eigenvalues. This accounts for values 1.00 in the table.

λ η∗ emp(λ) BGT (λ,C) relcond(λ,C)

5.76× 10−6 10−1 2.12 2.5× 1010 12.9
−1.83× 10−6 + 1.03× 10−5i 10−1 0.76 1.2× 1010 7.5
−1.83× 10−6 − 1.03× 10−5i 10−1 0.76 1.2× 1010 7.5
−1.11× 10−5 + 5.95× 10−6i 10−2 1.58 1.8× 1010 14.1
−1.11× 10−5 − 5.95× 10−6i 10−2 1.00 1.8× 1010 14.1
1.00× 105 10−1 1.00 1.00 1.00

−1.00× 105 10−1 1.00 1.00 1.00
1.00× 105 10−1 1.00 685 685

−1.00× 105 10−1 1.00 1.00 1.00
1.00× 105 10−1 1.00 685 685

Table 8.1
Study 3 - details for size n = 10

8.5. Study 4 - Modified shifted Wilkinson matrix. This example illustrates again the fact
that representations LU and ∆LDLT can determine a very tiny eigenvalue to high relative accuracy
while the matrix entries deliver large relcond’s. Our shift σ is the computed λmin(W

+
21) ≃ −1.25

where W+
21 is the well-known Wilkinson matrix,

W+
21 = diag(10, 9, . . . , 2, 1, 0, 1, 2, . . . , 9, 10) + diag−1(1, 1, . . . 1, 1) + diag+1(1, 1, . . . 1, 1),
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and our matrix is

C = ∆(W+
21 − λmin)

where ∆ = diag(δ), δj = (−1)⌊(j+1)/2⌋, j = 1, . . . , 21.
The tiny eigenvalue is λ = λ(C) = 2.55× 10−15, LU = J and ∆LDLT = B. The pleasing result

is

relcond(λ;C) = 2.3× 1015 and relcond(λ;L,U) = relcond(λ;L,D) = 20.7.

For all the other eigenvalues, all relcond’s for these representations are less than 6.5.

9. Conclusion. Many unsymmetric tridiagonal matrices define all their eigenvalues to high
relative accuracy. This is surprising. The only counter-example in our test bed are the generalized
Bessel matrices. Even a matrix from Bini, Gemignani and Tisseur in [1] with 3 extremely tight
clusters had this nice property.

We reported on a procedure for measuring η∗, the relative perturbation level above which higher
order terms interfere with standard perturbation theory.

The main goal was to show that, after shifting close to an eigenvalue, the factored form can
define the tiny eigenvalues very well and thus allow the possibility of accurate computation of the
eigenvectors. It just happened that in none of our examples was there excessive element growth in
factoring these nearly singular unsymmetric matrices. In addition, the example discussed in Section
6.5 indicates that element growth may be harmless for the sensitivity of tiny eigenvalues in most
cases. The usefulness of our new relative condition numbers with respect to factored forms is evident
in our examples.
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