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FERNANDO DE TERÁN† , FROILÁN M. DOPICO‡ , AND D. STEVEN MACKEY §

Abstract. A standard way of dealing with a matrix polynomial P (λ) is to convert it into an
equivalent matrix pencil – a process known as linearization. For any regular matrix polynomial, a
new family of linearizations generalizing the classical first and second Frobenius companion forms has
recently been introduced by Antoniou and Vologiannidis, extending some linearizations previously
defined by Fiedler for scalar polynomials. We prove that these pencils are linearizations even when
P (λ) is a singular square matrix polynomial, and show explicitly how to recover the left and right
minimal indices and minimal bases of the polynomial P (λ) from the minimal indices and bases of
these linearizations. In addition, we provide a simple way to recover the eigenvectors of a regular
polynomial from those of any of these linearizations, without any computational cost. The existence
of an eigenvector recovery procedure is essential for a linearization to be relevant for applications.
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1. Introduction. Throughout this work we consider n× n matrix polynomials
with degree k ≥ 2 of the form

P (λ) =
k∑

i=0

λiAi , A0, . . . , Ak ∈ Fn×n, Ak 6= 0 , (1.1)

where F is an arbitrary field and λ is a scalar variable in F. Our main focus is on
singular matrix polynomials, although new results are also obtained for regular poly-
nomials. An n×n polynomial P (λ) is said to be singular if det P (λ) is identically zero,
i.e., if all its coefficients are zero, otherwise it is regular. Square singular polynomials
appear in practice in a number of contexts; one well-known example is the study of
differential-algebraic equations (see for instance [7] and the references therein). Other
sources of problems involving singular matrix polynomials are control theory and lin-
ear systems theory [18, 29, 39], where the problem of computing minimal polynomial
bases of null spaces of singular matrix polynomials continues to be the subject of
intense research (see [3] and the references therein for an updated bibliography).

The standard way to numerically solve polynomial eigenvalue problems for regular
polynomials P (λ) is to first linearize P (λ) into a matrix pencil L(λ) = λX + Y
with X,Y ∈ Fnk×nk, and then compute the eigenvalues and eigenvectors of L(λ)
using well-established algorithms for matrix pencils [22]. The classical approach [21]
uses the first and second companion forms (3.5) and (3.6), sometimes known as the
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Frobenius companion forms of P (λ), as linearizations. However, these companion
forms usually do not share any algebraic structure that P (λ) might have. For example,
if P (λ) is symmetric, Hermitian, alternating, or palindromic, then the companion
forms won’t retain any of these structures. Consequently, the rounding errors inherent
to numerical computations may destroy qualitative aspects of the spectrum. This has
motivated intense activity towards the development of new classes of linearizations.
Several classes have been introduced in [4, 5] and [33], generalizing the Frobenius
companion forms in a number of different ways. Other classes of linearizations were
introduced and studied in [1, 2], motivated by the use of non-monomial bases for
the space of polynomials. The numerical properties of the linearizations in [33] have
been analyzed in [24, 25, 28], while the exploitation of these linearizations for the
preservation of structure in a wide variety of contexts has been extensively developed
in [16, 26, 27, 32, 34].

The linearizations introduced in [2], [4], and [33] were originally studied only for
regular matrix polynomials. Very recently, though, the pencils in the vector spaces
L1(P ) and L2(P ) defined in [33] were considered in [11] as potential linearizations for
square singular P (λ); it was shown in [11] that almost all pencils in L1(P ) and L2(P )
are linearizations even when P (λ) is singular. These linearizations were also shown
to allow the easy recovery of the complete eigenstructure of P (λ), i.e., the finite and
infinite elementary divisors together with the left and right minimal indices [18, 29],
and also the easy recovery of the corresponding minimal bases. Note that the results
in [11] apply to the important cases of the first and second companion forms of P (λ).

In this paper we study the pencils introduced in [4], with emphasis on the case
when P (λ) is singular. Since these pencils arise from the companion matrices intro-
duced by Fiedler [17] in the same way that the classical first and second companion
forms arise from the companion matrices of Frobenius, we refer to them as the Fiedler
companion pencils, or Fiedler pencils for short.

There are three main results in this work. The first is to show that the family of
Fiedler pencils, investigated in [4] only for regular matrix polynomials P (λ), are still
linearizations when P (λ) is a singular square matrix polynomial. This requires very
different techniques from those used in [4] for the regular case. Second we show how
these linearizations can be used to immediately recover the complete eigenstructure of
P (λ). Finally, we develop simple procedures to recover the eigenvectors of a regular
polynomial P (λ) from those of any Fiedler pencil, without any computational cost.
Recovery procedures for eigenvectors were not addressed in [4], but are very impor-
tant for practical applications, as well as in any numerical algorithm for polynomial
eigenvalue problems based on linearizations.

The results in this work expand the arena in which to look for linearizations
having additional useful properties. For singular polynomials P that are symmetric,
Hermitian, alternating, or palindromic, it was shown in [11] that none of the pencils
in L1(P ) or L2(P ) with structure corresponding to that of P (see [27, 34]) is ever
a linearization when P (λ) is singular. Hence for singular polynomials an expanded
palette of linearizations is essential for preserving structure. Using pencils closely
related to the Fiedler pencils, it is possible to develop structured linearizations for at
least some large classes of structured singular matrix polynomials [12, 35].

Apart from the preservation of structure, there is another property that poten-
tially may be useful; some Fiedler pencils have a much smaller bandwidth than the
classical Frobenius companion forms [17], e.g., see Example 3.2. It may be possible
to exploit this band structure to develop fast algorithms to compute the complete
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eigenstructure of high degree matrix polynomials. As far as we know, though, this
has not yet been addressed either for regular or for singular polynomials.

The numerical computation of minimal indices and bases is a difficult problem
that can be addressed in several different ways [3]; one of the most reliable of these
methods from a numerical point of view uses one of the Frobenius companion lin-
earizations [6, 38]. The results in this paper, together with those in [11], now allow
many other linearizations to be used for this purpose.

We begin in Section 2 by recalling some basic concepts that are used throughout
the paper, followed in Section 3 by the fundamental definitions and notation needed
for working effectively with Fiedler pencils. Section 4 then proves that Fiedler pencils
are always strong linearizations, even for singular matrix polynomials. In Section 5
we show how to recover the minimal indices and bases of a singular square matrix
polynomial from those of any Fiedler pencil; as a consequence, we are then able in
Section 6 to characterize which Fiedler pencils are strictly equivalent and which are
not. Section 7 provides a very simple recipe for recovering, without any computational
cost, the eigenvectors of a regular matrix polynomial from the eigenvectors of any of
its Fiedler companion linearizations. Finally, we wrap up in Section 8 with some
conclusions and discussion of ongoing related work.

2. Basic concepts. We present some basic concepts related to matrix polyno-
mials (singular or not), referring the reader to [11, Section 2] for a more complete
treatment. Note that 0d and Id are used to denote the d× d zero and identity matri-
ces, respectively. We emphasize that any equation in this paper involving expressions
in λ is to be understood as a formal algebraic identity, and not just as an equality of
functions on the field F. For finite fields F this distinction is important, and we will
always intend the stronger meaning of a formal algebraic identity.

Let F(λ) denote the field of rational functions with coefficients in F, so that F(λ)n

is the vector space of column n-tuples with entries in F(λ). The normal rank of a
matrix polynomial P (λ), denoted nrank P (λ) , is the rank of P (λ) considered as a
matrix with entries in F(λ), or equivalently, the size of the largest non-identically zero
minor of P (λ) [19]. A finite eigenvalue of P (λ) is an element λ0 ∈ F such that

rank P (λ0) < nrank P (λ) .

We say that P (λ) with degree k has an infinite eigenvalue if the reversal polynomial

revP (λ) := λkP (1/λ) =
k∑

i=0

λiAk−i (2.1)

has zero as an eigenvalue.
An n× n singular matrix polynomial P (λ) has right (column) and left (row) null

vectors, that is, vectors x(λ) ∈ F(λ)n×1 and y(λ)T ∈ F(λ)1×n such that P (λ)x(λ) ≡ 0
and y(λ)T P (λ) ≡ 0, where y(λ)T denotes the transpose of y(λ). This leads to the
following definition.

Definition 2.1. The right and left nullspaces of the n × n matrix polynomial
P (λ), denoted by Nr(P ) and N`(P ) respectively, are the following subspaces:

Nr(P ) :=
{
x(λ) ∈ F(λ)n×1 : P (λ)x(λ) ≡ 0

}
,

N`(P ) :=
{
y(λ)T ∈ F(λ)1×n : y(λ)T P (λ) ≡ 0T

}
.

Note that we have the identity

nrank(P ) = n− dimNr(P ) = n− dimN`(P ), (2.2)

and, in particular, dimNr(P ) = dimN`(P ).
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It is well known that the elementary divisors of P (λ) corresponding to its finite
eigenvalues (see definition in [19]), as well as the dimensions of Nr(P ) and N`(P ), are
invariant under unimodular equivalence [19], i.e., under pre- and post-multiplication
of P (λ) by unimodular matrices (matrix polynomials with nonzero constant determi-
nant). The elementary divisors of P (λ) corresponding to the infinite eigenvalue are
defined as the elementary divisors corresponding to the zero eigenvalue of the reversal
polynomial [23, Definition 1].

Next we recall the definition of linearization as introduced in [21], and also the
related notion of strong linearization introduced in [20] and named in [31].

Definition 2.2. A matrix pencil L(λ) = λX + Y with X, Y ∈ Fnk×nk is a lin-
earization of an n×n matrix polynomial P (λ) of degree k if there exist two unimodular
nk × nk matrices U(λ) and V (λ) such that

U(λ)L(λ)V (λ) =
[

I(k−1)n 0
0 P (λ)

]
, (2.3)

i.e., if L(λ) is unimodularly equivalent to diag
[
I(k−1)n , P (λ)

]
. A linearization L(λ)

is called a strong linearization if revL(λ) is also a linearization of revP (λ).
These definitions were introduced in [20, 21] only for regular polynomials, and

were extended in [11, Section 2] to square singular matrix polynomials. Lemma 2.3
shows why linearizations and strong linearizations are relevant in the study of both
regular and singular matrix polynomials. Note that this result appeared in [11] for
F = R or C, but with only slight modifications the proof given in [11] also holds for
matrix polynomials over an arbitrary field F.

Lemma 2.3. [11, Lemma 2.3] Let P (λ) be a regular or singular n × n matrix
polynomial of degree k, over an arbitrary field F, and let L(λ) be an nk × nk matrix
pencil over F. Consider the following conditions on L(λ) and P (λ):

(a) dimNr(L) = dimNr(P ) ,
(b) the finite elementary divisors of L(λ) and P (λ) are identical ,
(c) the infinite elementary divisors of L(λ) and P (λ) are identical .

Then L(λ) is
• a linearization of P (λ) if and only if conditions (a) and (b) hold,
• a strong linearization of P (λ) if and only if conditions (a), (b) and (c) hold.

Note that the issues addressed in Lemma 2.3 for general n × n matrix polynomials
were already considered for regular polynomials in [30].

We mention briefly that linearizations with smaller size than the ones in Definition
2.2 have been introduced recently in [7], and that their minimal possible size has been
determined in [10].

A vector polynomial is a vector whose entries are polynomials in the variable λ.
For any subspace of F(λ)n, it is always possible to find a basis consisting entirely of
vector polynomials; simply take an arbitrary basis and multiply each vector by the
denominators of its entries. The degree of a vector polynomial is the greatest degree
of its components, and the order of a polynomial basis is defined as the sum of the
degrees of its vectors [18, p. 494]. Then the following definition makes sense.

Definition 2.4. [18] Let V be a subspace of F(λ)n. A minimal basis of V is
any polynomial basis of V with least order among all polynomial bases of V.

It can be shown [18] that for any given subspace V of F(λ)n, the ordered list of
degrees of the vector polynomials in any minimal basis of V is always the same. These
degrees are then called the minimal indices of V. Specializing V to be the left and
right nullspaces of a singular matrix polynomial gives Definition 2.5; here deg(p(λ))
denotes the degree of the vector polynomial p(λ).
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Definition 2.5. Let P (λ) be a square singular matrix polynomial, and let the sets{
y1(λ)T , . . . , yp(λ)T

}
and {x1(λ), . . . , xp(λ)} be minimal bases of, respectively, the left

and right nullspaces of P (λ), ordered such that deg(y1) ≤ deg(y2) ≤ · · · ≤ deg(yp)
and deg(x1) ≤ deg(x2) ≤ · · · ≤ deg(xp). Let ηi = deg(yi) and εi = deg(xi) for
i = 1, . . . , p. Then η1 ≤ η2 ≤ · · · ≤ ηp and ε1 ≤ ε2 ≤ · · · ≤ εp are, respectively, the
left and right minimal indices of P (λ). For the sake of brevity, we call minimal bases
of the left and right nullspaces of P (λ) simply left and right minimal bases of P (λ).

It is not hard to see that the minimal indices of a singular polynomial P (λ) are
invariant under strict equivalence, i.e., under pre- and post-multiplication of P (λ)
by nonsingular constant matrices. However, unimodular equivalence can change any
(even all) of the minimal indices, as illustrated by the results in [11] and in this paper.

In the case of matrix pencils, the left (right) minimal indices can be read off
from the sizes of the left (right) singular blocks of the Kronecker canonical form
of the pencil [19, Chap. XII]. Consequently, the minimal indices of a pencil can be
stably computed through unitary transformations that lead to the GUPTRI form
[36, 8, 9, 15]. Therefore it is natural to look for relationships between the minimal
indices of a singular polynomial P and the minimal indices of a given linearization of
P , since this would lead to a numerical method for computing the minimal indices
of P . Such relationships were found in [11] for the pencils introduced in [33], and
will be developed in this work for the Fiedler pencils introduced in [4]. Note in this
context that Lemma 2.3 implies only that linearizations of P have the same number
of minimal indices as P , but does not provide the values of the minimal indices of P in
terms of the minimal indices of a linearization. In fact, it is known [11] that different
linearizations of the same polynomial P may have different minimal indices. For this
reason each family of linearizations of a singular polynomial requires a separate study
in order to establish the relationships (if any) between the minimal indices of the
polynomial and those of the linearizations in that family.

In this paper we adopt the following definition, which was introduced in [11,
Section 2] as an extension to matrix polynomials of the one given in [37] for pencils.

Definition 2.6. The complete eigenstructure of a matrix polynomial consists
of its finite and infinite elementary divisors, together with its left and right minimal
indices.

3. Definition of Fiedler companion pencils. Let P (λ) be the matrix poly-
nomial in (1.1). From the coefficients of P (λ), we first define the nk × nk matrices

Mk :=
[

Ak

I(k−1)n

]
, M0 :=

[
I(k−1)n

−A0

]
, (3.1)

and Mi :=




I(k−i−1)n

−Ai In

In 0
I(i−1)n


 , i = 1, . . . , k − 1 , (3.2)

which are the basic factors used to build all the Fiedler pencils. In [4] these pencils
are constructed as

λMk −Mi0Mi1 · · ·Mik−1 ,

where (i0, i1 . . . , ik−1) is any possible permutation of the n-tuple (0, 1, . . . , k − 1). In
order to better express certain key properties of this permutation and the resulting
Fiedler pencil, we have found it useful to index the product of the Mi-factors in a
slightly different way, as described in the following definition.
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Definition 3.1 (Fiedler Pencils). Let P (λ) be the matrix polynomial in (1.1),
and let Mi for i = 0, . . . , k be the matrices defined in (3.1) and (3.2). Given any
bijection σ : {0, 1, . . . , k− 1} → {1, . . . , k} , the Fiedler pencil of P (λ) associated with
σ is the nk × nk matrix pencil

Fσ(λ) := λMk −Mσ−1(1) · · ·Mσ−1(k) . (3.3)

Note that σ(i) describes the position of the factor Mi in the product Mσ−1(1) · · ·Mσ−1(k)

defining the zero-degree term in (3.3), i.e., σ(i) = j means that Mi is the jth factor
in the product. For brevity, we denote this product by

Mσ := Mσ−1(1) · · ·Mσ−1(k) , (3.4)
so that Fσ(λ) = λMk −Mσ .

Sometimes we will write the bijection σ using the array notation
σ = (σ(0), σ(1), . . . , σ(k− 1)). Unless otherwise stated, the matrices Mi, i = 0, . . . , k,
Mσ, and the Fiedler pencil Fσ(λ) refer to the matrix polynomial P (λ) in (1.1). When
necessary, we will explicitly indicate the dependence on a certain polynomial Q(λ) by
writing Mi(Q), Mσ(Q) and Fσ(Q). In this situation, the dependence on λ is dropped
in the Fiedler pencil Fσ(Q) for simplicity. Since matrix polynomials will always be
denoted by capital letters, there is no risk of confusion between Fσ(λ) and Fσ(Q).

The set of Fiedler pencils includes the well-known first and second companion
forms [21] of the polynomial in (1.1). They are

C1(λ) := λ




Ak

In
. . .

In


 +




Ak−1 Ak−2 · · · A0

−In 0 · · · 0
. . .

. . .
...

0 −In 0


 (3.5)

and

C2(λ) := λ




Ak

In
. . .

In


 +




Ak−1 −In 0

Ak−2 0
. . .

...
...

. . . −In

A0 0 · · · 0


 . (3.6)

More precisely, C1(λ) = Fσ1(λ) where σ1 = (k, k − 1, . . . , 2, 1), and C2(λ) = Fσ2(λ)
where σ2 = (1, 2, . . . , k − 1, k). These companion forms are well known to be strong
linearizations for any P (λ) [20, Prop. 1.1], [11].

The set of Fiedler pencils also includes several block-pentadiagonal pencils [17],
which have a smaller bandwidth than C1(λ) and C2(λ), indeed a much smaller band-
width if the degree of the polynomial is high. For these pencils the Mσ matrix (3.4)
is constructed as in the following example.

Example 3.2 (Low bandwidth Fiedler pencils). Let O = M1M3 · · · be the prod-
uct of the odd Mi factors, and let E = M2M4 · · · be the product of the even Mi factors,
excluding M0 and Mk. Clearly O and E are block-tridiagonal and M0 is block-diagonal,
so the product of O, E, and M0 in any order yields a block-pentadiagonal Mσ. For
example if deg P = 6, then Mσ = OM0E = M1M3M5M0M2M4 is

Mσ =




−A5 −A4 In 0 0 0
In 0 0 0 0 0
0 −A3 0 −A2 In 0
0 In 0 0 0 0
0 0 0 −A1 0 −A0

0 0 0 In 0 0




.



FIEDLER LINEARIZATIONS 7

Note that the matrices O and E are nonsingular with simple block-tridiagonal inverses,
so appropriately pre- or post-multiplying one of these block-pentadiagonal Fiedler pen-
cils by one of either E−1 or O−1 will yield a block-tridiagonal pencil that is strictly
equivalent to a Fiedler pencil. For example : F P

σ (λ) = λMk −OM0E is strictly equiv-
alent to the block-tridiagonal pencils λMkE−1 −OM0 and λO−1Mk −M0E.

The commutativity relations

MiMj = MjMi for |i− j| 6= 1, (3.7)

are easily checked. They imply that some Fiedler pencils associated with different
bijections σ are equal. For instance, for k = 3, the Fiedler pencils λM3 −M0M2M1

and λM3−M2M0M1 are equal. These relations suggest that the relative positions of
the matrices Mi and Mi+1 in the product Mσ are of fundamental interest in studying
Fiedler pencils. This motivates Definition 3.3.

Definition 3.3. Let σ : {0, 1, . . . , k − 1} → {1, . . . , k} be a bijection.
(a) For i = 0, . . . , k − 2, we say that σ has a consecution at i if σ(i) < σ(i + 1)

and that σ has an inversion at i if σ(i) > σ(i + 1).
(b) We denote by c(σ) the total number of consecutions in σ, and by i(σ) the

total number of inversions in σ.
(c) The consecution-inversion structure sequence of σ, denoted by CISS(σ), is

the tuple (c1, i1, c2, i2, . . . , c`, i`), where σ has c1 consecutive consecutions at
0, 1, . . . , c1 − 1; i1 consecutive inversions at c1, c1 + 1, . . . , c1 + i1 − 1 and so
on, up to i` inversions at k − 1− i`, . . . , k − 2.

Remark 3.4. The following simple observations on Defn. 3.3 will be used freely:
1. σ has a consecution at i if and only if Mi is to the left of Mi+1 in Mσ, while

σ has an inversion at i if and only if Mi is to the right of Mi+1 in Mσ.
2. Either c1 or i` in CISS(σ) may be zero (in the first case σ has an inversion

at 0, in the second it has a consecution at k − 2), but i1, c2, i2, . . . , i`−1, c`

are all strictly positive. These conditions uniquely determine CISS(σ) and,
in particular, the parameter `.

3. c(σ) =
∑`

j=1 cj , i(σ) =
∑`

j=1 ij , and c(σ) + i(σ) = k − 1.
Example 3.5. For the block-pentadiagonal Fiedler pencil F P

σ (λ) = λM6−OM0E
defined in Example 3.2 we have σ−1 = (1, 3, 5, 0, 2, 4), σ = (4, 1, 5, 2, 6, 3) and struc-
ture sequence CISS(σ) = (0, 1, 1, 1, 1, 1). By contrast the block-pentadiagonal Fiedler
pencil F P

τ (λ) = λM6 − M0OE has τ−1 = (0, 1, 3, 5, 2, 4), τ = (1, 2, 5, 3, 6, 4) and
structure sequence CISS(τ) = (2, 1, 1, 1).

In Section 5 we will use the concept of reversal bijection: the reversal revσ
of a given bijection σ : {0, 1, . . . , k − 1} → {1, 2, . . . , k} is another bijection from
{0, 1, . . . , k−1} into {1, 2, . . . , k}, defined by revσ(i) := k+1−σ(i) for 0 ≤ i ≤ k−1.
Note that revσ reverses the order of the factors Mj in the zero degree term Mσ of the
Fiedler pencil Fσ(λ) in (3.3). More precisely, the pencil Frevσ(λ) = λMk − Mrevσ

satisfies
Mrevσ = Mσ−1(k)Mσ−1(k−1) · · ·Mσ−1(1) . (3.8)

We will also use the block-transpose operation. More information on this opera-
tion can be found in [32, Chapter 3]. Here we simply recall the definition.

Definition 3.6. Let A = (Aij) be a block r × s matrix with m × n blocks Aij.
The block transpose of A is the block s × r matrix AB with m × n blocks defined by(
AB

)
ij

= Aji.
Remark 3.7. It is interesting to note that Frevσ(λ) ≡ FBσ (λ). Since this fact is

not needed for the development in this paper, though, it will not be proved here.
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4. Fiedler pencils are strong linearizations. We prove in this section that
every Fiedler pencil Fσ(λ) of a square matrix polynomial P (λ), regular or singular,
is a strong linearization for P (λ). This fact was proved only for regular polynomials
in [4]. A general proof including the singular case requires different techniques, in
particular the systematic use of the Horner shifts of P (λ), which are fundamental
throughout the rest of the paper.

Definition 4.1. Let P (λ) = A0 + λA1 + · · · + λkAk be a matrix polynomial of
degree k. For d = 0, . . . , k, the degree d Horner shift of P (λ) is the matrix polynomial
Pd(λ) := Ak−d + λAk−d+1 + · · ·+ λdAk . Observe that these Horner shifts satisfy :

P0(λ) = Ak ,

Pd+1(λ) = λPd(λ) + Ak−d−1 for 0 ≤ d ≤ k − 1 , (4.1)
Pk(λ) = P (λ) .

Our explicit construction of the unimodular equivalence (2.3) showing Fσ(λ) to be
a linearization of P (λ) proceeds in a stepwise fashion. Keeping Mσ in factored form,
we eliminate one factor Mj at a time, going from highest to lowest index j, while at
the same time building up higher degree Horner shifts of P (λ) in the λ-term, finally
ending up with diag

[
I, P (λ)

]
. The tools needed to implement this proof strategy

are introduced and developed in the next section.

4.1. Auxiliary matrices and equivalences. We begin with the auxiliary ma-
trices that appear repeatedly throughout the following development.

Definition 4.2. For an n×n matrix polynomial P (λ) =
∑k

i=0 λiAi, let Pi(λ) be
the degree i Horner shift of P (λ). For 1 ≤ i ≤ k− 1, we define the following nk× nk
matrix polynomials :

Qi(λ) :=




I(i−1)n

In λIn

0n In

I(k−i−1)n


 ,

Ri(λ) :=




I(i−1)n

0n In

In Pi(λ)
I(k−i−1)n


 = RBi (λ) ,

Ti(λ) :=




0(i−1)n

0n λPi−1(λ)
λIn λ2Pi−1(λ)

0(k−i−1)n


 ,

Di(λ) :=




0(i−1)n

Pi−1(λ) 0n

0n In

I(k−i−1)n


 ,

and Dk(λ) := diag
[
0(k−1)n, Pk−1(λ)

]
.

For the sake of brevity, we will sometimes omit the dependence on λ in these matrices
and write just Qi, Ri, Ti or Di. Note that D1(λ) = Mk, and that Qi(λ) and Ri(λ) are
unimodular for all i = 1, . . . , k − 1.

The following unimodular equivalences are now easily verified by straightforward
computations and use of the recurrence relation (4.1) for Horner shifts.
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Lemma 4.3. Let Qi, Ri, Ti and Di be the matrices introduced in Definition 4.2,
and Mj the matrices in (3.1) and (3.2). Then the following unimodular equivalences
hold for i = 1, . . . , k − 1.

(a) QBi
(
λDi

)
Ri = λDi+1 + Ti , and QBi

(
Mk−(i+1)Mk−i

)
Ri = Mk−(i+1) + Ti .

(b) RBi
(
λDi

)
Qi = λDi+1 + TBi , and RBi

(
Mk−iMk−(i+1)

)
Qi = Mk−(i+1) + TBi .

The following relations also hold for i = 1, . . . , k − 1.

(c) TiMj = Mj Ti = Ti and TBi Mj = Mj TBi = TBi for all j ≤ k − i− 2.
The next definition introduces the pencils which will form the intermediate steps

in the unimodular transformation of a Fiedler pencil Fσ(λ) into diag
[
I(k−1)n , P (λ)

]
.

Definition 4.4. Let P (λ) =
∑k

i=0 λiAi, and let Fσ(λ) = λMk − Mσ be the
Fiedler pencil of P (λ) associated with the bijection σ. For i = 1, . . . , k define

M (i)
σ :=

∏

σ−1(j)≤ k−i

Mσ−1(j) ,

where the factors Mσ−1(j) are in the same relative order as they are in Mσ. Equiva-
lently, M

(i)
σ is obtained from Mσ by deleting all factors M` with index ` > k− i. Note

that M
(1)
σ = Mσ and M

(k)
σ = M0. Also for i = 1, . . . , k define the nk × nk pencils

F (i)
σ (λ) := λDi(λ) − M (i)

σ .

Observe that F
(1)
σ (λ) = Fσ(λ) and F

(k)
σ (λ) = diag

[ − I(k−1)n, P (λ)
]
.

The final technical lemma shows explicitly how to transform each F
(i)
σ (λ) into

F
(i+1)
σ (λ) by unimodular transformations.

Lemma 4.5. For each i = 1, . . . , k − 1, F
(i)
σ (λ) is unimodularly equivalent to

F
(i+1)
σ (λ). Specifically, if Qi and Ri are the unimodular matrices introduced in Defi-

nition 4.2, then :
(a) If σ has a consecution at k − i− 1, then F

(i+1)
σ (λ) = QBi F

(i)
σ (λ) Ri,

(b) If σ has an inversion at k − i− 1, then F
(i+1)
σ (λ) = RBi F

(i)
σ (λ)Qi.

Proof. We prove only part (a), using Lemma 4.3(a,c); part (b) is proved similarly
using Lemma 4.3(b,c). Suppose, then, that σ has a consecution at k − i − 1, i.e.,
Mk−i−1 is to the left of Mk−i in the product M

(i)
σ . Since Mk−i has the highest index

among all factors in M
(i)
σ , by the commutativity relations (3.7) we may shift Mk−i

leftwards until it is adjacent to Mk−i−1, that is M
(i)
σ = · · ·Mk−i−1 Mk−i · · · . Now QB

i

and Ri commute with Mj for all j ≤ k − i− 2, so we have

QBi M (i)
σ Ri = · · · (QBi Mk−i−1Mk−iRi

) · · ·
= · · · (Mk−i−1 + Ti

) · · · by Lemma 4.3(a) ,

= M (i+1)
σ + Ti by Lemma 4.3(c) .

Hence
QBi F (i)

σ (λ)Ri = QBi
(
λDi − M (i)

σ

)
Ri

= QBi
(
λDi

)
Ri − QBi

(
M (i)

σ

)
Ri

=
(
λDi+1 + Ti

) − (
M (i+1)

σ + Ti

)
by Lemma 4.3(a) ,

= λDi+1 − M (i+1)
σ = F (i+1)

σ (λ) ,

as desired.
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4.2. Strong linearizations via explicit unimodular equivalences. We are
now in a position to prove the main result of Section 4, i.e., that every Fiedler pencil is
a strong linearization. Note that the explicit unimodular equivalence constructed for
this purpose is extracted from the proof and presented as Corollary 4.7, to facilitate
the development of recovery formulas for minimal indices and bases in Section 5.

Theorem 4.6. Let P (λ) be an n × n matrix polynomial (singular or regular ).
Then any Fiedler companion pencil Fσ(λ) of P (λ) is a strong linearization for P (λ).

Proof. To prove that Fσ(λ) is a linearization for P (λ), we need a unimodular
equivalence of the form (2.3) between Fσ(λ) and diag

[
I(k−1)n , P (λ)

]
. Such an equiv-

alence can be explicitly constructed from Lemma 4.5 as the composition of a sequence
of k − 1 unimodular equivalences

Fσ(λ) = F (1)
σ (λ) −→ F (2)

σ (λ) −→ · · · −→ F (k)
σ (λ) = diag

[− I(k−1)n , P (λ)
]

(4.2)

where F (i+1)
σ (λ) =

{
QB

i F
(i)
σ (λ) Ri if σ has a consecution at k − i− 1

RBi F
(i)
σ (λ)Qi if σ has an inversion at k − i− 1 ,

together with a final pre-multiplication by diag
[ − I(k−1)n , In

]
. This completes the

proof that Fσ(λ) is a linearization for P (λ).
To see why Fσ(λ) is a strong linearization for P (λ), all that remains is to prove

that revFσ(λ) is a linearization for revP (λ). The crux of the argument is to show
that the pencil −revFσ(λ) is strictly equivalent to one of the Fiedler pencils of the
polynomial −revP (λ). By the argument in the first paragraph it would then follow
that −revFσ(λ) is unimodularly equivalent to diag

[− I(k−1)n ,−revP (λ)
]
, and hence

that revFσ(λ) is unimodularly equivalent to diag
[
I(k−1)n , revP (λ)

]
, thus completing

the proof of the theorem.
So let us consider −revFσ(λ). If Fσ(λ) is given by (3.3), then we may write

−revFσ(λ) = λ(Mσ−1(1) · · ·Mσ−1(s−1)M0Mσ−1(s+1) · · ·Mσ−1(k))−Mk ,

where s = σ(0). Pre and post-multiplying in the appropriate order by the inverses of
M1,M2, . . . , Mk−1, we see that −revFσ(λ) is strictly equivalent to

λM0 −
(
M−1

σ−1(s−1) · · ·M−1
σ−1(1)MkM−1

σ−1(k) · · ·M−1
σ−1(s+1)

)
,

which in turn is strictly equivalent to

λ(BM0B)−B
(
M−1

σ−1(s−1) · · ·M−1
σ−1(1)MkM−1

σ−1(k) · · ·M−1
σ−1(s+1)

)
B , (4.3)

where
B :=

[
In

. . .
In

]

is the block k × k backwards “identity” matrix, satisfying B2 = Ikn. Now define

M̂0 := BM0B =
[ −A0

I(k−1)n

]
, M̂k := BMkB =

[
I(k−1)n

Ak

]
,

and

M̂i := BM−1
i B =




I(i−1)n

Ai In

In 0
I(k−i−1)n


 , for i = 1, . . . , k − 1 .
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With these definitions, the pencil (4.3) can be written as

λM̂0 −
(
M̂σ−1(s−1) · · · M̂σ−1(1)M̂kM̂σ−1(k) · · · M̂σ−1(s+1)

)
,

which is a Fiedler pencil for the polynomial −revP (λ). This completes the proof.
In Corollary 4.7 we accumulate the k − 1 unimodular equivalences in (4.2), as a

first step in developing recovery formulas for minimal indices and bases. Note that
the (somewhat unexpected?) indexing of the Ui and Vi factors in U(λ) and V (λ) has
been chosen here in order to simplify the notation in Section 5.

Corollary 4.7. Let P (λ) be the matrix polynomial in (1.1), let Fσ(λ) be the
Fiedler pencil of P (λ) associated with the bijection σ, and let Qi and Ri for i =
1, . . . , k − 1 be the matrices introduced in Definition 4.2. Then

U(λ)Fσ(λ)V (λ) =
[ −I(k−1)n 0

0 P (λ)

]
, (4.4)

where U(λ) and V (λ) are the following nk × nk unimodular matrix polynomials :

U(λ) := U0U1 · · ·Uk−3Uk−2 , with Ui =

{
QBk−(i+1) , if σ has a consecution at i

RBk−(i+1) , if σ has an inversion at i ,

V (λ) := Vk−2Vk−3 · · ·V1V0 , with Vi =
{

Rk−(i+1) , if σ has a consecution at i

Qk−(i+1) , if σ has an inversion at i .

Example 4.8. Consider again the block-pentadiagonal pencil F P
τ (λ) defined in

Example 3.5. By Corollary 4.7, a unimodular equivalence that will transform this pen-
cil to the block-diagonal form in (4.4) is

(
QB5 QB

4 RB3 QB2 RB1
)
F P

τ (λ)
(
Q1R2Q3R4R5

)
.

5. Recovery of minimal indices and bases. In this section we deal only
with singular square matrix polynomials, since regular polynomials do not have any
minimal indices or bases. The recovery of the minimal indices and bases of a singular
polynomial from those of any of its Fiedler pencils is based on Lemma 5.1, which is
valid for any linearization, not just for Fiedler pencils.

Lemma 5.1. Let the nk × nk pencil L(λ) be a linearization of an n × n matrix
polynomial P (λ), and let U(λ) and V (λ) be unimodular matrices such that

U(λ)L(λ)V (λ) =
[ ±I(k−1)n 0

0 P (λ)

]
. (5.1)

Viewing U(λ) and V (λ) as block k× k matrices with n×n blocks, let UL = UL(λ) be
the last block-row of U(λ), and V R = V R(λ) the last block-column of V (λ). Then:

(a) The linear map L : N`(P ) −→ N`(L)
wT (λ) 7−→ wT (λ) · UL

is an isomorphism of F(λ)-vector spaces.
(b) The linear map R : Nr(P ) −→ Nr(L)

v(λ) 7−→ V R · v(λ)
is an isomorphism of F(λ)-vector spaces.

Proof. We prove only (b); part (a) is similar. For v ∈ Nr(P ), let ṽ := [0T vT ]T ∈
F(λ)nk and P̃ (λ) := diag

[± I(k−1)n , P (λ)
]
. Then the map R is well-defined because

P (λ)v = 0 ⇒ P̃ (λ)ṽ = 0 ⇒ U(λ)L(λ)V (λ)ṽ = 0 ⇒ L(λ)(V Rv) = 0. The columns
of V R are linearly independent in F(λ)nk since V (λ) is unimodular, which implies
that R is injective. Since dimNr(P ) = dimNr(L) from (5.1), R is an isomorphism.
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Lemma 5.1 implies that every basis ofNr(L) is of the form Br = {V Rv1, . . . , V
Rvp},

where Er = {v1, . . . , vp} is a basis of Nr(P ) that is uniquely determined by Br. How-
ever, this does not in general mean either that Er may be easily obtained from Br, or
that Er is a minimal basis of P (λ) whenever Br is a minimal basis of L(λ), or that
the minimal indices of P (λ) are simply related to those of L(λ). In the particular
case of Fiedler linearizations, though, we will see that Er is immediately recoverable
from Br, because one of the blocks of V R(λ) will always be equal to In. Furthermore,
we will prove that Er is a minimal basis whenever Br is, and we will show that the
minimal indices of P (λ) are simply obtained from the ones of Fσ(λ), by the uniform
substraction of a constant that is easily determined from σ. To show all of this will
require a careful analysis of the last block column V R(λ) of the unimodular matrix
V (λ) specified in Corollary 4.7. Analogous results also hold for left minimal indices
and bases.

5.1. The last block column of V (λ). Corollary 4.7 shows that V (λ) is built
up out of products of Qi and Ri matrices. Lemma 5.2 is a first step in seeing what
such products can look like, focusing on the especially simple case of products of Qi’s
(or Ri’s) with consecutive indices. The proof is a straightforward induction on the
number of factors, and so is omitted. Note that in this section, identity and zero
blocks of size n× n will be denoted simply by I and 0.

Lemma 5.2. Let Pd(λ) for d = 0, . . . , k be the Horner shifts of the matrix polyno-
mial P (λ) in (1.1), and let Qi and Ri for i = 1, . . . , k − 1 be the matrices introduced
in Definition 4.2. Then for each i = 1, . . . , k − 1 and j = 1, . . . , k − i, the product of
j consecutively indexed Q’s starting at Qi is

Q(i, j) := QiQi+1 · · ·Qi+j−1 =




I(i−1)n

I λI . . . λjI
. . .

. . .
.... . . λI
I

I(k−(i+j))n




,

while the product of j consecutively indexed R’s starting at Ri is

R(i, j) := RiRi+1 · · ·Ri+j−1 =




I(i−1)n

0 0 . . . 0 I
I 0 . . . 0 Pi(λ)

. . .
. . .

...
.... . . 0 Pi+j−2(λ)

I Pi+j−1(λ)
I(k−(i+j))n




.

By grouping together consecutively indexed runs of Qi’s (and Ri’s) in the product
expression for V (λ), we can analyze the last block column of V (λ) in terms of the
simple block matrices in Lemma 5.2. Each Qi (resp., Ri) factor in V (λ) corresponds
to an inversion (resp., consecution) in the bijection σ, so the pattern of consecutively
indexed runs of Qi’s and Ri’s in V (λ) is encoded in the consecution-inversion structure
sequence introduced in Definition 3.3; the CISS(σ) will thus be used frequently in this
section. In particular, the individual entries (c1, i1, . . . , c`, i`) as well as the partial
sums

s0 := 0 , sj :=
j∑

p=1

(cp + ip) for j = 1, . . . , `
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will play a key role. Recall that s` = k − 1. We will also need the quantities

m0 := 0 , mj := i1 + i2 + · · ·+ ij , for j = 1, . . . , ` . (5.2)

Note that m` = i(σ) , that is, the total number of inversions in σ.
In order to write down a reasonably simple formula for the last block column of

V (λ) from Corollary 4.7, we need to define some block column matrices associated
with the matrix polynomial P (λ) in (1.1) and the bijection σ. These matrices are
denoted Λσ,j(P ) for j = 1, . . . , `, and Λ̂σ,j(P ) for j = 1, . . . , `− 1, and are defined in
terms of the Horner shifts of P (λ) and CISS(σ) = (c1, i1, . . . , c`, i`) as follows:

Λσ,j(P ) :=




λij I
...

λI
I

Pk−sj−1−cj

...
Pk−sj−1−2

Pk−sj−1−1




and Λ̂σ,j(P ) :=




λij−1I
...

λI
I

Pk−sj−1−cj

...
Pk−sj−1−2

Pk−sj−1−1




if c1 ≥ 1 , (5.3)

but if c1 = 0 then Λσ,1(P ) := [λi1I, . . . , λI, I]B, Λ̂σ,1(P ) := [λi1−1I, . . . , λI, I]B, with
Λσ,j(P ), Λ̂σ,j(P ) as in (5.3) for j > 1. Here for simplicity we omit λ from the Horner
shifts Pd(λ). Note that Λσ,j(P ) and Λ̂σ,j(P ) are associated with the entries (cj , ij)
of CISS(σ), and that Λ̂σ,j(P ) is just a “truncated” version of Λσ,j(P ), with one less
block at the top. Note also that Λ̂σ,j(P ) is defined only for j < `, so that ij − 1 ≥ 0.

Lemma 5.3. Let P (λ) be the matrix polynomial in (1.1), let Fσ(λ) be the Fiedler
pencil of P (λ) associated with the bijection σ, and let V (λ) be the nk×nk unimodular
matrix polynomial in Corollary 4.7, viewed as a k× k block matrix with n× n blocks.
If CISS(σ) = (c1, i1, . . . , c`, i`), then the last block-column V R(λ) of V (λ) is

ΛR
σ (P ) :=




λm`−1Λσ,`(P )
λm`−2Λ̂σ,`−1(P )

...

λm1Λ̂σ,2(P )
Λ̂σ,1(P )




if ` > 1 , (5.4)

and V R(λ) = Λσ,1(P ) =: ΛR
σ (P ) if ` = 1.

Proof. First observe that, using the information in CISS(σ) = (c1, i1, . . . , c`, i`),
the factors defining V (λ) in Corollary 4.7 can be grouped together into the form
V (λ) = Ṽ` · · · Ṽ2Ṽ1, where

Ṽj := Q(k − sj , ij) ·R(k − sj + ij , cj)

is associated with the pair (cj , ij) from CISS(σ), and consists of ij consecutive Q-
factors and cj consecutive R-factors as in Lemma 5.2. A direct multiplication gives

Ṽj =




I(k−sj−1)n

∗ ∗ · · · ∗ Λσ,j(P )
I(sj−1) n


 . (5.5)

In the block-diagonal partitioning of Ṽj in (5.5), let us from now on refer to the large
non-identity diagonal block

[ ∗ ∗ · · · ∗ Λσ,j(P )
]

as the “central part” of Ṽj . Then
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the central part of Ṽj is a (cj + ij + 1)× (cj + ij + 1) block matrix with n× n blocks.
Note that the first cj + ij block-columns are of no relevance to the last block column
of V (λ), and so are denoted by ∗ .

Next observe that the central part of Ṽj overlaps the central part of the adjacent
grouped factors Ṽj+1 and Ṽj−1. For example, the last block row and last block column
of the central part of Ṽj have the same block index as the first block row and first block
column of the central part of Ṽj−1. This overlap causes some nontrivial interaction
when multiplying all the Ṽj factors together to get the last block column of V (λ).
Multiplying out this product from right to left, i.e.,

V (λ) = Ṽ`

(
Ṽ`−1 · · ·

(
Ṽ3(Ṽ2Ṽ1)

) · · ·
)

,

using (5.5), and taking into account the overlap of the central parts, it is straightfor-
ward to see (inductively) that for j = 1, . . . , ` we have

Ṽj Ṽj−1 · · · Ṽ1 =




I(k−sj−1)n

∗ . . . ∗ λmj−1Λσ,j(P )
∗ . . . ∗ λmj−2Λ̂σ,j−1(P )
...

...
...

∗ . . . ∗ λm1Λ̂σ,2(P )
∗ . . . ∗ Λ̂σ,1(P )




.

The desired result now follows by taking j = ` in this identity.

Remark 5.4. It is important to highlight two key features of the matrix ΛR
σ (P )

in (5.4) that are essential in the recovery of right minimal indices and bases of P (λ)
from those of Fσ(λ):

(a) ΛR
σ (P ) always has exactly one block equal to In; it resides in the block segment

Λ̂σ,1(P ) (or in Λσ,1(P ) if ` = 1) at block index k − c1, i.e., in the (c1 + 1)th

block counting from the bottom of ΛR
σ (P ).

(b) The topmost block of ΛR
σ (P ) is always equal to λi(σ)In. This is because the

topmost block of λm`−1Λσ,`(P ) is λm`−1λi`In = λm`In = λi(σ)In .
These features of ΛR

σ (P ) can be clearly seen in the following example.
Example 5.5. Consider the pencil F P

τ (λ) from Examples 3.5 and 4.8 for a poly-
nomial P (λ) of degree k = 6. This pencil has CISS(τ) = (c1, i1, c2, i2) = (2, 1, 1, 1),
so ` = 2, s`−1 = s1 = 3, m`−1 = m1 = i1 = 1, and i(τ) = 2. Thus we have
Λ̂τ,1(P ) =

[
In Pk−2 Pk−1

]B, Λτ,2(P ) =
[
λIn In Pk−4

]B, and hence

ΛR
τ (P ) =

[
λm1Λτ,2(P )

Λ̂τ,1(P )

]
=

[
λ2In λIn λP2(λ) In P4(λ) P5(λ)

]B
.

5.2. Horner shifts of singular polynomials. One final technical lemma is
needed to establish the relationship between the right minimal indices and bases of a
matrix polynomial and those of its Fiedler pencils. This result concerns the action of
the Horner shifts Pd(λ) of a singular matrix polynomial P (λ) on any right null vector
v(λ) of P (λ). We show that either v(λ) is also a null vector of Pd(λ), or else that at
the very least the action of Pd(λ) reduces the degree by at least one.

Lemma 5.6. Let P (λ) be an n×n matrix polynomial of degree k as in (1.1), with
degree j Horner shift Pj(λ). Suppose v(λ) ∈ Nr(P ) is a vector polynomial such that
Pj(λ)v(λ) 6= 0. Then

deg
(
Pj(λ)v(λ)

) ≤ deg
(
v(λ)

)− 1 . (5.6)
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Proof. If deg
(
v(λ)

)
= 0, then v(λ) = v would be a constant vector such that

v ∈ Nr(Ai) for all 0 ≤ i ≤ k, and so Pj(λ)v = 0 for all 0 ≤ j ≤ k. Thus Pj(λ)v(λ) 6= 0
implies that deg

(
v(λ)

) ≥ 1, and hence that the right-hand side of (5.6) is non-negative.
Also note that Pj(λ)v(λ) 6= 0 implies that j < k.

By Definition 4.1 we have Pj(λ)v(λ) =
(
λjAk + λj−1Ak−1 + · · · + Ak−j

)
v(λ) ,

and so
λk−jPj(λ)v(λ) =

(
λk−jPj(λ)− P (λ)

)
v(λ)

= −(
λk−j−1Ak−j−1 + · · ·+ λA1 + A0

)
v(λ) .

Since Pj(λ)v(λ) 6= 0 we have

(k − j) + deg
(
Pj(λ)v(λ)

)
= deg

(
λk−jPj(λ)v(λ)

)

= deg
(
(λk−j−1Ak−j−1 + · · ·+ λA1 + A0)v(λ)

)

≤ (k − j − 1) + deg
(
v(λ)

)
,

and hence deg
(
Pj(λ)v(λ)

) ≤ deg
(
v(λ)

)− 1 , as desired.

5.3. Right minimal indices and bases. We first establish a degree-shifting
isomorphism between Nr(P ) and Nr(Fσ) in Theorem 5.7. Then as an immediate
consequence, we obtain in Corollary 5.8 the simple recovery formulas for right minimal
indices and bases, one of the main results in this paper.

Theorem 5.7. Let P (λ) be an n× n matrix polynomial as in (1.1), let Fσ(λ) be
the Fiedler pencil of P (λ) associated with bijection σ, let i(σ) be the total number of
inversions of σ, and let ΛR

σ (P ) be the nk×n matrix defined in (5.4). Then the linear
map Rσ : Nr(P ) −→ Nr(Fσ)

v 7−→ ΛR
σ (P ) v

(5.7)

is an isomorphism of F(λ)-vector spaces with uniform degree-shift i(σ) on the vector
polynomials in Nr(P ). More precisely, Rσ induces a bijection between the subsets of
vector polynomials in Nr(P ) and Nr(Fσ), with the property that

degRσ(v) = i(σ) + deg v (5.8)

for every nonzero vector polynomial v ∈ Nr(P ). Furthermore, for any nonzero vector
polynomial v, degRσ(v) is attained only in the topmost n× 1 block of Rσ(v).

Proof. The fact thatRσ is an isomorphism is a special case of Lemma 5.1(b), since
by Lemma 5.3 the matrix ΛR

σ (P ) is the last block-column of V (λ) in Corollary 4.7.
The form of ΛR

σ (P ) guarantees that Rσ(v) is a vector polynomial whenever v
is, and, because of the identity block in ΛR

σ (P ) at block index k − c1, that Rσ(v) is
a non-polynomial vector rational function whenever v is non-polynomial. Thus Rσ

restricts to a bijection between the vector polynomials in Nr(P ) and those in Nr(Fσ).
To see why the uniform degree-shifting property (5.8) holds, first observe that

there are only two different types of blocks in ΛR
σ (P ):

λpI with 0 ≤ p ≤ i(σ) , and λqPj(λ) with 0 ≤ q ≤ m`−1 ≤ i(σ) .

Thus Rσ(v) is made up of blocks of the form λpv and λqPj(λ)v. Clearly for a nonzero
vector polynomial v ∈ Nr(P ) the maximum degree among all blocks of the form λpv
is i(σ) + deg v, attained only in the topmost block of Rσ(v). Blocks of the form
λqPj(λ)v are either 0 (if Pj(λ)v = 0), or by Lemma 5.6 have degree bounded by

deg
(
λqPj(λ)v

) ≤ i(σ) + (deg v)− 1 < i(σ) + deg v .

Thus degRσ(v) = i(σ) + deg v, with equality attained only in the topmost block of
Rσ(v).
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Corollary 5.8 (Recovery of right minimal indices and bases).
Let P (λ) be an n×n singular matrix polynomial with degree k ≥ 2, and let Fσ(λ) be the
Fiedler pencil of P (λ) associated with a bijection σ having CISS(σ) = (c1, i1, . . . , c`, i`)
and total number of inversions i(σ). Also let nk × 1 vectors be partitioned as k × 1
block vectors with n× 1 blocks.

(a) If z(λ) ∈ Nr(Fσ) ⊆ F(λ)nk×1, and x(λ) ∈ F(λ)n×1 is the (k − c1)th block of
z(λ), then x(λ) ∈ Nr(P ) .

(b) If Br = {z1(λ), . . . , zp(λ)} is a right minimal basis of Fσ(λ), and xj(λ) is the
(k − c1)th block of zj(λ) for each j = 1, . . . , p, then Er = {x1(λ), . . . , xp(λ)}
is a right minimal basis of P (λ).

(c) If 0 ≤ ε1 ≤ ε2 ≤ · · · ≤ εp are the right minimal indices of P (λ), then
ε1 + i(σ) ≤ ε2 + i(σ) ≤ · · · ≤ εp + i(σ)

are the right minimal indices of Fσ(λ).
Note that these results hold for the first companion form of P (λ) by taking c1 = 0 and
i(σ) = k − 1, and for the second companion form using c1 = k − 1 and i(σ) = 0.

Proof. Since Rσ in (5.7) is an isomorphism, and the (k − c1)th block of ΛR
σ (P ) is

In, therefore x(λ) in part (a) is just R−1
σ

(
z(λ)

)
, and hence in Nr(P ). For part (b), Rσ

being an isomorphism immediately implies that Er = R−1
σ (Br) is a vector polynomial

basis for Nr(P ), but why is it a minimal basis? Suppose there was another polynomial
basis Ẽr = {x̃1(λ), . . . , x̃p(λ)} of Nr(P ) with order lower than Er. Then the uniform
degree-shift property (5.8) would imply that the polynomial basis Rσ(Ẽr) had order
lower thanRσ(Er) = Br, a contradiction to Br being a minimal basis of Fσ(λ). Part (c)
follows immediately from part (b) together with (5.8).

We cannot overemphasize the utter simplicity of the final “recipe” for recovering
right minimal indices and bases described in Corollary 5.8, as contrasted with the
long, hard work needed to develop it. In the end none of the rather complicated
structure of ΛR

σ (P ) is used, and recovery can be achieved almost without effort; only
the constants c1 and i(σ) from the bijection σ need to be determined.

5.4. Left minimal indices and bases. For the recovery of the left minimal
indices and bases of P (λ), we develop results analogous to Theorem 5.7 and Corol-
lary 5.8 in Theorem 5.9 and Corollary 5.11, respectively. One obvious strategy for
accomplishing this takes its lead from Lemma 5.1(a), and tries to find an expression
for the last block-row of U(λ) in Corollary 4.7 by doggedly imitating the construction
of the last block-column of V (λ) in Lemmas 5.2 and 5.3. Instead we adopt a different
strategy, one that uses less brute force and gives more insight into the dual nature
of left vs. right minimal index/basis recovery. This strategy builds up an appropriate
isomorphism between N`(P ) and N`(Fσ) as the composition of simpler maps, one of
which is based on applying Theorem 5.7 to relate the right nullspaces of PT (λ) and
the Fiedler pencil Frevσ(PT ), where revσ is the reversal bijection of σ introduced in
Section 3.

Theorem 5.9. Let P (λ) be an n × n matrix polynomial as in (1.1), let Fσ(λ)
be the Fiedler pencil of P (λ) associated with bijection σ, let c(σ) be the total number
of consecutions of σ, and let ΛR

revσ(P ) be, for the reversal bijection revσ, the nk × n
matrix defined in (5.4). Then the linear map

Lσ : N`(P ) −→ N`(Fσ)
uT 7−→ uT ΛL

σ (P ) ,

where ΛL
σ (P ) :=

[
ΛR

revσ(P )
]B

, is an isomorphism of F(λ)-vector spaces with uniform
degree-shift c(σ) on the vector polynomials in N`(P ). More precisely, Lσ induces a
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bijection between the subsets of vector polynomials in N`(P ) and N`(Fσ), with the
property that

degLσ(uT ) = c(σ) + deg(uT ) (5.9)

for every nonzero vector polynomial uT ∈ N`(P ). Furthermore, for any nonzero vector
polynomial uT , degLσ(uT ) is attained only in the leftmost 1× n block of Lσ(uT ).

Proof. We claim that Lσ can be expressed as a composition of three maps

N`(P )
Ψ1−−−→ Nr

(
PT

) Ψ2−−−→ Nr

(
Frevσ(PT )

) Ψ3−−−→ N`

(
Fσ(P )

)
,

each of which is an F(λ)-vector space isomorphism that induces a bijection on vector
polynomials. Furthermore, each of these polynomial bijections has its own uniform
degree-shifting property.

(1) For uT ∈ N`(P ), define the first map by Ψ1(uT ) := u. Since uT P (λ) = 0T if
and only if PT (λ)u = 0, we see immediately that Ψ1 is an isomorphism, while
the form of Ψ1 clearly implies that it induces a degree-preserving bijection on
vector polynomials.

(2) The map Ψ2 is obtained by applying Theorem 5.7 to the transpose polynomial
PT (λ) and the associated Fiedler pencil defined by the bijection revσ, i.e.,
Ψ2(v) := ΛR

revσ(PT )v. Then by Theorem 5.7, Ψ2 is an isomorphism inducing
a bijection on vector polynomials with uniform degree-shift i(revσ) = c(σ).
Furthermore, deg Ψ2(v) is attained only in the topmost block of Ψ2(v).

(3) The third map Ψ3 is, like Ψ1, just transpose of vectors, i.e., Ψ3(w) := wT .
The same kind of argument as given above for Ψ1 in step (1) shows that
Ψ3, viewed as a map Ψ3 : Nr

(
Frevσ(PT )

) −→ N`

([
Frevσ(PT )

]T )
, is an

isomorphism inducing a degree-preserving bijection on vector polynomials.
All that remains is to see why

[
Frevσ(PT )

]T is the same pencil as Fσ(P ).
From (3.8) we know that

Frevσ(PT ) = λMk(PT )−Mσ−1(k)(PT ) · · ·Mσ−1(2)(PT ) Mσ−1(1)(PT ) ,

and so
[
Frevσ(PT )

]T = λ
[
Mk(PT )

]T − [
Mσ−1(1)(PT )

]T [
Mσ−1(2)(PT )

]T · · · [Mσ−1(k)(PT )
]T

= λMk(P )−Mσ−1(1)(P )Mσ−1(2)(P ) · · ·Mσ−1(k)(P )

= Fσ(P ) .

Thus we see that the composition Ψ3Ψ2Ψ1(uT ) =
[
ΛR

revσ(PT )u
]T = uT

[
ΛR

revσ(PT )
]T

is the desired isomorphism Lσ, since
[
ΛR

revσ(PT )
]T =

[
ΛR

revσ(P )
]B.

To be able to write down the final “recipe” for left minimal index and basis recov-
ery, we first need to find the position of the unique In block in ΛL

σ (P ) :=
[
ΛR

revσ(P )
]B.

Although elementary, this requires some care, and is done in the next lemma.
Lemma 5.10. Let ΛL

σ (P ) =
[
ΛR

revσ(P )
]B be the n × nk matrix in Theorem 5.9,

viewed as a block 1× k matrix with n×n blocks, and let CISS(σ) = (c1, i1, . . . , c`, i`).
Then ΛL

σ (P ) has exactly one block equal to In, residing at block index
{

k if c1 > 0 ,
k − i1 if c1 = 0 .

Proof. First recall from Remark 5.4 that ΛR
σ (P ) has exactly one block equal to

In at block index k − c1. Observe that σ has a consecution (resp., an inversion) at j
if and only if revσ has an inversion (resp., a consecution) at j for j = 0, . . . , k − 2.
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Therefore, if c1 > 0 then the c1 initial consecutions of σ correspond to c1 initial
inversions in revσ, which implies CISS(revσ) = (0, c1, . . .), and hence that ΛR

revσ(P )
has exactly one block equal to In at block index k. On the other hand, if c1 = 0
then the i1 initial inversions of σ correspond to i1 initial consecutions in revσ, which
implies CISS(revσ) = (i1, . . .), and hence that ΛR

revσ(P ) has exactly one block equal
to In at block index k − i1 .

Combining Theorem 5.9 with Lemma 5.10 now allows us to state the recovery
procedures for left minimal indices and bases in Corollary 5.11. Since the proof is
similar to that of Corollary 5.8, it is omitted.

Corollary 5.11 (Recovery of left minimal indices and bases).
Let P (λ) be an n×n singular matrix polynomial with degree k ≥ 2, and let Fσ(λ) be the
Fiedler pencil of P (λ) associated with a bijection σ having CISS(σ) = (c1, i1, . . . , c`, i`)
and total number of consecutions c(σ). Also let 1× nk vectors be partitioned as 1× k
block vectors with 1× n blocks.

(a) If z(λ)T ∈ N`(Fσ) ⊆ F(λ)1×nk, and

y(λ)T is the
{

kth block of z(λ)T if c1 > 0
(k − i1)th block of z(λ)T if c1 = 0 ,

then y(λ)T ∈ N`(P ).
(b) If {z1(λ)T , . . . , zp(λ)T } is a left minimal basis of Fσ(λ), and

yj(λ)T is the
{

kth block of zj(λ)T if c1 > 0
(k − i1)th block of zj(λ)T if c1 = 0 ,

for j = 1, . . . , p, then {y1(λ)T , . . . , yp(λ)T } is a left minimal basis of P (λ).
(c) If 0 ≤ η1 ≤ η2 ≤ · · · ≤ ηp are the left minimal indices of P (λ), then

η1 + c(σ) ≤ η2 + c(σ) ≤ · · · ≤ ηp + c(σ)

are the left minimal indices of Fσ(λ).
Note that these results also hold for the first companion form using (c1, i1) = (0, k−1)
and c(σ) = 0, and for the second companion form taking (c1, i1) = (k − 1, 0) and
c(σ) = k − 1.

Example 5.12. Here we bring back the pencil F P
τ (λ) from Examples 3.5, 4.8, and

5.5 for one final bow, this time to illustrate all that we have proved about left and right
minimal index and basis recovery. Recall that τ = (1, 2, 5, 3, 6, 4), so that CISS(τ) =
(2, 1, 1, 1). Thus revτ = (6, 5, 2, 4, 1, 3), and hence CISS(revτ) = (0, 2, 1, 1, 1, 0). For
revτ we then have ` = 3, s1 = 2, s`−1 = s2 = 4, and m1 = 2, m`−1 = m2 = 3. For a
polynomial P (λ) of degree k = 6, this then results in

ΛL
τ (P ) =

[
ΛR

revτ (P )
]B =

[
λ3In λ3P1(λ) λ2In λ2P3(λ) λIn In

]

and ΛR
τ (P ) =

[
λ2In λIn λP2(λ) In P4(λ) P5(λ)

]B
.

Observe how complementary Horner shifts of P (λ) appear in complementary positions
in ΛL

τ (P ) and ΛR
τ (P ).

The relationships between the minimal indices and bases of F P
τ (λ) and those of

P (λ) may now be summarized as follows:
• Right minimal indices of F P

τ (λ) are shifted from those of P (λ) by i(τ) = 2.
• Left minimal indices of F P

τ (λ) are shifted from those of P (λ) by c(τ) = 3.
• A right minimal basis of P (λ) is recovered from the 4th = (k − c1)th blocks

(of size n× 1) of any right minimal basis of F P
τ (λ).

• A left minimal basis of P (λ) is recovered from the 6th = kth blocks (of size
1× n) of any left minimal basis of F P

τ (λ). ¤
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6. Strict equivalence of Fiedler pencils. It is now very simple to determine
which Fiedler pencils of a square singular matrix polynomial are strictly equivalent
and which are not, as a consequence of the relationships we have established between
the minimal indices of a polynomial and those of its Fiedler pencils.

Theorem 6.1. Let P (λ) be a singular square matrix polynomial of degree k ≥ 2.
Then two Fiedler pencils Fσ1(λ) and Fσ2(λ) of P (λ) are strictly equivalent if and only
if c(σ1) = c(σ2) (or equivalently, if i(σ1) = i(σ2)).

Proof. It is well known [19, Chapter XII, Thm. 5] that two pencils are strictly
equivalent if and only if they have the same finite and infinite elementary divisors
and the same left and right minimal indices. Since every Fiedler pencil is a strong
linearization of P (λ) by Theorem 4.6, Fσ1(λ) and Fσ2(λ) always have the same finite
and infinite elementary divisors (see Lemma 2.3). By Corollary 5.8 (resp., Corollary
5.11) the right (resp., left) minimal indices of Fσ1(λ) and Fσ2(λ) are equal if and only
if i(σ1) = i(σ2)

(
resp., c(σ1) = c(σ2)

)
. But c(σ1) + i(σ1) = k − 1 = c(σ2) + i(σ2),

so c(σ1) = c(σ2) is a necessary and sufficient condition for the equality of both the
left and the right minimal indices of Fσ1(λ) and Fσ2(λ), and hence also for the strict
equivalence of Fσ1(λ) and Fσ2(λ).

For regular polynomials P (λ), it is well known that any two strong linearizations
of P (λ) are strictly equivalent, since they are regular pencils with the same finite
and infinite elementary divisors as P (λ) (see [19, Chapter XII, Thm. 2] or [20, Prop.
1.2]). This is in stark contrast with the situation for square singular P (λ), where from
Theorem 6.1 it is now clear that there are always Fiedler pencils of P (λ) that are not
strictly equivalent. Indeed, among all Fiedler pencils of P (λ) the companion forms
always stand in strict equivalence classes of their own, as we show in the next result.

Corollary 6.2. For a singular square matrix polynomial P (λ) of degree k ≥ 2,
the first companion form is never strictly equivalent to any other Fiedler pencil of
P (λ). The same holds for the second companion form. In particular, the first and
second companion forms of P (λ) are never strictly equivalent to each other.

Proof. We consider only the first companion form C1(λ). Recall from Section 3
that C1(λ) = Fσ1(λ) with bijection σ1 = (k, k − 1, . . . , 2, 1); note that c(σ1) = 0. It
is not hard to see inductively that σ1 is the only bijection σ with c(σ) = 0. Thus by
Theorem 6.1 there is no other Fiedler pencil that is strictly equivalent to C1(λ).

Remark 6.3. In [4, Thm. 2.3] it was shown that every Fiedler pencil Fσ(λ) of
a regular polynomial P (λ) is a strong linearization by proving that Fσ(λ) is always
strictly equivalent to C1(λ). Corollary 6.2 shows that it is impossible to extend this
proof strategy to singular polynomials. Note that a different proof that the first
and second companion forms of square singular matrix polynomials are never strictly
equivalent was presented in [11, Cor. 5.11].

7. Recovery of eigenvectors of regular matrix polynomials. A polynomial
P (λ) that is regular has no minimal indices or minimal bases, of course, but recovery
of the eigenvectors of P (λ) from those of any of its linearizations is still an important
task. In this section we show how to recover the eigenvectors of a regular P (λ) from
those of its Fiedler pencils. Since these recovery procedures follow easily from the
results in Sections 4 and 5, we only sketch the main ideas and state the results; the
reader can easily fill in the details. Recall that a finite eigenvalue of a regular P (λ) is
a number λ0 ∈ F such that detP (λ0) = 0, equivalently a λ0 ∈ F such that there exist
nonzero vectors x0 ∈ Fn×1 and yT

0 ∈ F1×n satisfying P (λ0)x0 = 0 and yT
0 P (λ0) = 0;

x0 is a right eigenvector and yT
0 a left eigenvector of P (λ) corresponding to λ0, i.e.,

elements of the right and left nullspaces Nr

(
P (λ0)

)
and N`

(
P (λ0)

)
, respectively.
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The first key idea for recovering eigenvectors of P (λ) from any of its linearizations,
not just from a Fiedler pencil, starts from the defining equation (2.3) for linearizations,
then evaluates λ at the finite eigenvalue λ0 of interest to give

U(λ0)L(λ0)V (λ0) = diag
[
I(k−1)n , P (λ0)

]
,

where U(λ0) and V (λ0) are nonsingular constant matrices. Letting UL
0 and V R

0 denote
the last block-row of U(λ0) and the last block-column of V (λ0), respectively, then the
same kind of argument as used in Lemma 5.1 shows that

L0 : N`

(
P (λ0)

) −→ N`

(
L(λ0)

)

wT 7−→ wT · UL
0

and
R0 : Nr

(
P (λ0)

) −→ Nr

(
L(λ0)

)

v 7−→ V R
0 · v

are isomorphisms of F-vector spaces.
This can now be applied to recovering eigenvectors specifically from the Fiedler

pencils, by taking as V R
0 the last block-column ΛR

σ (P ) of V (λ) found in Lemma 5.3,
evaluated at λ = λ0. Similarly we can use as UL

0 the matrix polynomial ΛL
σ (P ) found

in Theorem 5.9, evaluated at λ = λ0. Since the unique In block in each of ΛR
σ (P )

and ΛL
σ (P ) will still be present (in the same positions) after evaluating at λ0, we are

led to the following eigenvector recovery procedures, which are direct analogs of the
minimal basis recovery procedures in Corollaries 5.8 and 5.11.

Corollary 7.1 (Eigenvector recovery from Fiedler pencils).
Let P (λ) be an n × n regular matrix polynomial with degree k ≥ 2, let Fσ(λ) be the
Fiedler pencil of P (λ) associated with a bijection σ having CISS(σ) = (c1, i1, . . . , c`, i`),
and suppose that λ0 is a finite eigenvalue of P (λ).
Right eigenvectors: (partition nk×1 vectors as k×1 block vectors with n×1 blocks)

(a) If z ∈ Fnk×1 is a right eigenvector of Fσ(λ) with finite eigenvalue λ0 ∈ F,
and x is the (k − c1)th block of z, then x is a right eigenvector of P (λ) with
finite eigenvalue λ0.

(b) If {z1, . . . , zp} is a basis of Nr

(
Fσ(λ0)

)
, and xj is the (k − c1)th block of zj

for j = 1, . . . , p, then {x1, . . . , xp} is a basis of Nr

(
P (λ0)

)
.

Left eigenvectors: (partition 1×nk vectors as 1×k block vectors with 1×n blocks)
(c) If wT ∈ F1×nk is a left eigenvector of Fσ(λ) with finite eigenvalue λ0 ∈ F,

and
yT is the

{
kth block of wT if c1 > 0

(k − i1)th block of wT if c1 = 0 ,

then yT is a left eigenvector of P (λ) with finite eigenvalue λ0.
(d) If {wT

1 , . . . , wT
p } is a basis of N`

(
Fσ(λ0)

)
, and

yT
j is the

{
kth block of wT

j if c1 > 0
(k − i1)th block of wT

j if c1 = 0

for j = 1, . . . , p, then {yT
1 , . . . , yT

p } is a basis of N`

(
P (λ0)

)
.

Note that these results hold for the first companion form of P (λ) by taking (c1, i1) =
(0, k − 1), and for the second companion form taking (c1, i1) = (k − 1, 0).

Finally we consider the recovery of left and right eigenvectors corresponding to
the eigenvalue ∞, which for Fiedler pencils turns out to be very simple. Recall that
a regular matrix polynomial P (λ) has an infinite eigenvalue if and only if revP (λ)
has eigenvalue zero, and the corresponding left and right eigenvectors of P (λ) at the
eigenvalue ∞ are just the left and right null vectors of (revP )(0) = Ak, the leading
coefficient of P (λ). Since the leading coefficient of every Fiedler pencil for P (λ) is
Mk = diag

[
Ak, I(k−1)n

]
, we see immediately that there is a very simple relationship
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between the left and right eigenvectors of P (λ) at ∞ and those of any of its Fiedler
pencils, as expressed in the following theorem.

Theorem 7.2 (Eigenvector recovery at ∞ from Fiedler pencils).
Suppose P (λ) is an n× n regular matrix polynomial with degree k ≥ 2, and let Fσ(λ)
be any Fiedler pencil of P (λ).
Right eigenvectors at ∞:

(a) z ∈ Fnk×1 is a right eigenvector of Fσ(λ) for the eigenvalue ∞ if and only if
z = [ xT 0T

(k−1)n×1 ]T , where x is a right eigenvector of P (λ) at ∞.
(b) {z1, . . . , zp} ⊂ Fnk×1 is a basis of the right eigenspace of Fσ(λ) at ∞ if and

only if zj = [ xT
j 0T

(k−1)n×1 ]T for j = 1, . . . , p, where {x1, . . . , xp} is a basis
of the right eigenspace of P (λ) at ∞.

Left eigenvectors at ∞:
(a) wT ∈ F1×nk is a left eigenvector of Fσ(λ) for the eigenvalue ∞ if and only

if wT = [ yT 01×(k−1)n ], where yT is a left eigenvector of P (λ) at ∞.
(b) {wT

1 , . . . , wT
p } ⊂ F1×nk is a basis of the left eigenspace of Fσ(λ) at ∞ if and

only if wT
j = [ yT

j 01×(k−1)n ] for j = 1, . . . , p, where {yT
1 , . . . , yT

p } is a basis
of the left eigenspace of P (λ) at ∞.

8. Conclusions and future work. We have proved that every Fiedler pencil
of a given square matrix polynomial P (λ) is always a strong linearization of P (λ),
even in the case that P (λ) is singular. In addition, we have derived an extremely
simple procedure to recover the minimal indices and bases of a singular square matrix
polynomial from the minimal indices and bases of any of its Fiedler pencils, at no
computational cost. This simple procedure has been further extended to the recovery
of the eigenvectors of a regular matrix polynomial from the eigenvectors of its Fiedler
pencils. These results now make it possible to use well-established numerical algo-
rithms on any Fiedler pencil [6, 8, 9, 15, 36] to obtain the complete eigenstructure of
a square matrix polynomial (regular or singular).

This paper continues the work initiated by the authors in [11], with the aim of
creating for singular matrix polynomials a wider arena of linearizations that allow the
easy recovery of the complete eigenstructure of the polynomial. Note that the mere
definition of linearization does not guarantee that the minimal indices and bases of
P (λ) can be easily recovered, or even that they have any simple relationship at all to
those of a given linearization. Consequently each family of linearizations requires a
separate study in order to establish convenient recovery procedures.

Another goal of our continuing work on linearizations for singular polynomials is
to create more possibilities for finding linearizations that preserve any structure that
a matrix polynomial might possess. The results of [11] show that for many types
of structure, this cannot be achieved using any of the linearizations defined in [33].
Thus the next steps in our investigation are to modify Fiedler pencils with the aim of
finding structured linearizations for singular structured matrix polynomials [12, 13],
and also to extend Fiedler pencils to deal with the very important case of (non-square)
rectangular matrix polynomials [14].
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