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Abstract. This document contains numerical experiments performed to illustrate the effect of
the scaling techniques introduced in the accompanying paper on the accuracy of computed eigenvalues
of pencils.

SM1. Introduction. These supplementary materials complete the numerical
experiments presented in Section 6 of the accompanying paper. Thus, they should be
read after reading that paper since we use the same notations, which are not defined
again here for brevity. We often refer to equations and tables in the accompanying
paper. These references are easily identified because they do not start with “SM”, in
contrast to references to tables or equations in these supplementary materials which
all start with “SM”. These materials are organized as follows: Section SM2 presents
examples on the accuracy of computed eigenvalues of singular pencils, both square
and rectangular, and Section SM3 considers the accuracy of the computed eigenvalues
of a pencil arising in the solution of a real-world quadratic eigenvalue problem.

SM2. Numerical examples for singular pencils.

SM2.1. Examples on the accuracy of computed eigenvalues of singular
square pencils. In this section, we discuss tests for two families of singular square
pencils. The first family includes dense pencils for which the regularization in Section
5 is not needed, while the second one corresponds to sparse pencils for which the
regularization is necessary. For completeness, Ward’s method [SM11, SM12] is also
considered in the comparisons, because, although it was developed for regular pencils, it
has worked on the singular ones of this subsection. As in Subsection 6.2, we generated
random singular pencils whose “exact” eigenvalues are known and we used the vectors
of chordal distances, c := ∥[c1, . . . , cn]∥2 for the original pencil (λB − A) (corig), for
the balanced pencil Dℓ(λB −A)Dr constructed by the methods in either Section 3 or
5 (cbal), and for the balanced pencil constructed by Ward’s method (cward), in order
to check the improvements that the different scalings produced on the accuracy of the
computed eigenvalues.

The first family of dense pencils considered in this subsection is constructed in
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the same way as the pencils in Table 9, but we replaced one of the diagonal pairs of
the 500× 500 pencil (λΛB − ΛA) generated in the regular example by two zeros, thus
creating a singular pencil. Each transformed pencil (λB −A) := Tℓ(λΛB − ΛA)Tr is
therefore also singular, but its left and right rational null spaces are both of dimension
1 and their minimal bases are formed by constant vectors [SM10]. For that reason, the
regular part of that singular pencil has dimension 499× 499 and its eigenvalues are the
remaining 499 eigenvalues of (λΛB − ΛA). If we follow the same procedure as in the
regular experiment, the QZ-algorithm applied to (λB −A) should in principle yield
arbitrary eigenvalues, since it is known that the QZ-algorithm is backward stable and
that there exist arbitrarily small perturbations of square singular pencils that make
them regular, but with arbitrary spectrum in the complex plane [SM10]. However, it
has been shown that such perturbations are very particular, and that, generically, tiny
perturbations of a singular square pencil makes it regular with eigenvalues that are tiny
perturbations of the eigenvalues of the unperturbed singular pencil, together with some
other “arbitrary” eigenvalues determined by the perturbation [SM2, SM3]. Even more,
starting from these ideas, it has been shown very recently that it is possible to define
sensible and useful “weak” condition numbers for the eigenvalues of a singular square
pencil [SM8]. This explains the well-known fact that, in practice, the QZ-algorithm
applied to a singular square matrix pencil finds almost always its eigenvalues, albeit
with some loss of accuracy. Therefore, it makes sense to apply the QZ algorithm
to our generated singular pencils as well as to their scaled versions. The numerical
results are reported in Table SM1, where each row corresponds to a value of k taken
in increasing order from k = 1 : 5 : 41 as in Table 9. We generated the data just
as in the experiment for regular pencils in Table 9, except for the one eigenvalue
replaced by 0/0 or, in other words, by NaN. When comparing the “original” spectrum
with the computed one, we excluded NaN in the original set and looked for the best
matching 499 eigenvalues in the “computed” spectrum. It is clear from Table SM1
that the balancing proposed in Section 3 also improves the accuracy of the computed
eigenvalues of singular square pencils, both with respect to the original pencil and
with respect to the one balanced by Ward’s method, and that needs a small number
of steps to converge.

Though the direct use of the QZ-algorithm is a simple option for computing the
eigenvalues of a singular square pencil when the accuracy requirements are moderate,
the correct handling of a singular pencil is to first “deflate” its left and right null
spaces, and then compute the spectrum of the regular part of that singular pencil, i.e.,
to apply the staircase algorithm (see [SM10]). In this experiment, it turns out that
the left and right null spaces are one-dimensional and are given, respectively, by the
left null vector of [A B ], and by the right null vector of [ AB ], which we both computed
using a singular value decomposition of these compound matrices. After this deflation
was applied to the original pencil (λB−A), to the pencil Dℓ(λB−A)Dr scaled by the
method in Section 3 and to the one balanced by Ward’s method, we again computed
the spectrum of the deflated pencils with the QZ-algorithm. The results for the same
data as reported in Table SM1 are now reported in Table SM2. The results in this
case are similar in both tables. We also added three columns with the sensitivities of
the deflation in the original pencil γorig and in the balanced ones by the method in
Section 3 and Ward’s method, γbal and γward. We measured the sensitivity of the left
and right null vectors defining the deflation of a singular pencil λB −A, by

(SM2.1) γ := max(
σn [ AB ]

σn−1 [ AB ]
,

σn [A B ]

σn−1 [A B ]
),
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Table SM1
Eigenvalue accuracy of the plain QZ-algorithm for singular 500 × 500 dense pencils: for the

original pencil, for the pencil balanced by applying the algorithm in Appendix A with r = c = n1n

and tol= 1 to M = |A|◦2 + |B|◦2, and for the pencil balanced by Ward’s method. The improvement
in the scaling of M produced by the algorithm in Appendix A is also shown in terms of qS(Morig)
and qS(Mscal) (see (5.6)), as well as the number of its steps until convergence

κ(Tℓ) κ(Tr) corig cbal cward cbal/corig cbal/cward

4.30e+03 4.10e+03 1.88e-12 1.88e-12 8.27e-12 1.00e+00 2.28e-01
1.69e+04 2.12e+04 1.77e-11 1.85e-12 6.17e-12 1.04e-01 2.99e-01
1.06e+06 9.83e+04 1.88e-11 1.19e-11 5.04e-12 6.34e-01 2.37e+00
7.47e+05 2.73e+06 1.98e-10 1.40e-10 7.13e-11 7.08e-01 1.97e+00
1.20e+08 6.49e+08 1.62e-08 4.13e-11 4.13e-09 2.55e-03 9.99e-03
2.32e+10 2.75e+09 5.20e-07 5.00e-09 2.15e-07 9.62e-03 2.33e-02
3.59e+13 2.59e+12 3.25e-03 2.83e-07 5.40e-05 8.71e-05 5.24e-03
1.63e+16 3.03e+13 3.46e-02 3.55e-05 3.84e-03 1.03e-03 9.25e-03
1.63e+18 1.48e+14 8.15e-02 9.12e-06 1.22e-02 1.12e-04 7.46e-04

qS(Morig) qS(Mscal) steps

1.57e+00 1.57e+00 1
1.09e+03 6.04e+00 3
1.40e+06 8.91e+00 7
2.66e+09 9.43e+00 8
1.10e+12 1.01e+01 13
1.31e+16 9.26e+00 13
1.13e+20 1.43e+01 16
1.72e+25 1.20e+01 17
2.11e+26 1.16e+01 18

i.e. the largest ratio between the two smallest singular values of the matrices that
define these null vectors. It is an indication about how much these vectors can rotate
when perturbing the pencil. It is easy to see from the data that the accuracy of the
computed eigenvalues of the deflated pencil is closely related to the sensitivity of the
deflation itself.

Table SM2
Eigenvalue accuracy of the staircase algorithm for exactly the same singular 500× 500 dense

pencils of Table SM1

corig cbal cward cbal/corig cbal/cward γorig γbal γward

2.23e-13 2.23e-13 2.33e-13 1.0e+00 9.57e-01 5.79e-13 5.79e-13 6.59e-13
4.53e-13 4.68e-13 2.89e-13 1.03e+00 1.62e+00 1.48e-11 4.96e-12 7.49e-12
6.92e-13 9.11e-13 2.00e-12 1.32e+00 4.56e-01 2.37e-10 2.33e-12 1.17e-10
8.36e-11 1.63e-11 9.76e-12 1.95e-01 1.67e+00 1.33e-07 5.10e-11 4.84e-08
6.49e-10 1.12e-11 8.46e-11 1.73e-02 1.33e-01 1.24e-06 2.02e-11 1.17e-07
1.41e-07 5.06e-09 2.03e-07 3.59e-02 2.49e-02 1.53e-03 2.02e-09 1.35e-04
7.22e-04 1.42e-06 1.03e-06 1.96e-03 1.38e+00 9.62e-01 3.43e-07 1.99e-01
3.33e-02 1.25e-06 9.17e-03 3.76e-05 1.36e-04 2.51e-01 2.18e-06 5.24e-01
1.08e-01 4.31e-07 1.84e-03 3.97e-06 2.34e-04 3.87e-01 4.59e-07 7.27e-01

The second family of sparse singular pencils considered in this subsection is a
family of 400 × 400 permuted block diagonal pencils generated as follows. Set, for
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simplicity, m1 = 140 and n1 = 260. Then

(SM2.2) λB −A := P

[
λB1 −A1

λB2 −A2

]
Q,

with P,Q random 400× 400 permutation matrices and

λB1 −A1 = Tℓ1

[
λΛB1 − ΛA1

01×(n1−m1+1)

]
Tr1,

λB2 −A2 = Tℓ2

[
λΛB2 − ΛA2

0(n1−m1+1)×1

]
Tr2,

where λΛB1−ΛA1, λΛB2−ΛA2 are random (m1−1)×(m1−1) diagonal regular pencils
in standard normal form [SM7] which contain the “exact” eigenvalues of λB − A,
and the entries of Tℓ1 ∈ Rm1×m1 , Tr2 ∈ Rm1×m1 , Tℓ2 ∈ Rn1×n1 , Tr1 ∈ Rn1×n1 are kth
powers of normally distributed random numbers, for k = 1 : 5 : 41. Observe that the
normal rank [SM10] of these pencils is rg = 2(m1 − 1) = 278, that their left and right
rational null spaces are both of dimension 122 and that their minimal bases are formed
by constant vectors. This mean that they are given again, respectively, by the left
null vectors of [A B ], and by the right null vectors of [ AB ], which were computed again
using a singular value decomposition of these compound matrices. This allowed us to
deflate these right and left null spaces and to obtain the regular parts of such pencils by
multiplying λB −A on the left by the rg left singular vectors of [A B ] corresponding
to its rg largest singular values and on the right by the rg right singular vectors of [ AB ]
corresponding to its rg largest singular values. The application of the QZ algorithm
to these regular parts yielded the eigenvalues of these highly singular pencils and we
did it for the original pencil (λB − A), for the pencil Dℓ(λB − A)Dr scaled by the
regularized method in Section 5 and for the one balanced by Ward’s method. The
plain QZ algorithm can also be applied directly to the pencils in (SM2.2), but it
produces much larger errors than the staircase algorithm described above due to the
high singularity of these pencils. The results for the staircase algorithm are shown in
Table SM3, where each row corresponds to a value of k, and are discussed in the next
paragraph.

The matrices M corresponding to the pencils in (SM2.2) are very far from having
total support and the Sinkhorn-Knopp algorithm applied to them with tol= 1 did
not converge because it produced diagonal matrices Dℓ, Dr with zero diagonal entries
due to underflows. Then, we regularized the problem by applying the algorithm in
Appendix A with r = c = (2n)12n and tol= 1 to M◦2

α in (5.3) with α = 0.5. Observe,
that this yielded factors qS(Mscal) very far from 1 but much smaller than the factors
of the original matrices qS(Morig). Interestingly, the factors qS(Mscal) did not improve
by taking much smaller values of α. Despite this fact, the impact of the regularized
scaling on the accuracy of the computed eigenvalues is impressive both in comparison
with the original pencils and with the pencils scaled by Ward’s method. The new
regularized method leads to the computation of very accurate eigenvalues in a problem
which is extremely difficult in terms of the high singularity and of the high unbalancing
of the considered pencils. We do not know any other method in the literature that
can achieve such results. Moreover, the numbers of steps until convergence are still
moderate taking into account the sparsity and the strong unbalancing of the pencils,
and make the cost of the scaling considerably smaller than the cost of computing
the eigenvalues. Finally note that Table SM3 also includes the sensitivities of the
deflations γorig, γbal and γward as in Table SM2. They were computed replacing n− 1



SUPPLEMENTARY MATERIALS: DIAGONAL SCALINGS FOR PENCILS SM5

Table SM3
Eigenvalue accuracy of the staircase algorithm for singular 400 × 400 sparse pencils: for the

original pencil, for the pencil balanced by applying the algorithm in Appendix A with r = c = (2n)12n

and tol= 1 to M◦2
α in (5.3) with α = 0.5, and for the pencil balanced by Ward’s method. The

improvement in the scaling of M = |A|◦2 + |B|◦2 produced by the algorithm in Appendix A applied
to M◦2

α is also shown in terms of qS(Morig) and qS(Mscal), as well as the number of its steps until
convergence. The last column of the second table shows that the plain QZ-algorithm produces much
larger errors for these pencils. For brevity this is only shown for the pencils balanced by the algorithm
in Appendix A, but the same happens for the other pencils

corig cbal cward cbal/corig cbal/cward γorig γbal γward

1.98e-14 2.25e-14 2.15e-14 1.14e+00 1.05e+00 1.10e-13 1.27e-13 9.51e-14
3.13e-14 2.10e-14 2.39e-14 6.71e-01 8.80e-01 4.29e-12 3.29e-13 1.38e-12
3.40e-12 4.49e-14 2.72e-13 1.32e-02 1.65e-01 3.80e-10 1.28e-12 5.64e-11
1.76e-11 4.76e-13 2.69e-12 2.71e-02 1.77e-01 3.70e-07 5.02e-11 1.01e-07
3.17e-08 9.47e-13 4.79e-11 2.99e-05 1.98e-02 2.26e-04 2.52e-10 1.90e-07
7.84e-03 7.43e-11 1.10e-08 9.48e-09 6.74e-03 1.0e+00 1.20e-09 1.11e-03
2.31e-04 1.21e-10 5.74e-07 5.23e-07 2.11e-04 1.0e+00 5.42e-08 1.34e-02
1.93e-02 3.32e-08 2.73e-02 1.72e-06 1.22e-06 1.0e+00 2.55e-06 1.0e+00
6.46e-01 4.64e-10 4.19e-03 7.17e-10 1.11e-07 1.0e+00 1.21e-07 1.0e+00

qS(Morig) qS(Mscal) steps cbal plain QZ

3.99e+00 9.08e+00 16 8.56e-07
9.51e+04 8.97e+01 30 8.93e-07
1.75e+09 2.85e+03 45 8.40e-07
5.84e+13 1.82e+05 66 7.01e-07
1.69e+17 5.18e+05 81 2.44e-07
5.26e+23 1.41e+07 100 2.57e-07
1.12e+22 7.74e+06 112 9.03e-08
1.49e+26 1.74e+09 130 5.02e-02
2.75e+36 1.58e+12 149 5.96e-03

and n in (SM2.1) by rg and rg+ 1, respectively, where rg = 278 is the normal rank of
the pencils. We also observe in Table SM3 a strong relation between the errors in the
eigenvalues and the deflation sensitivities.

The experiments in this section show that the balancing procedures of the paper
accompanying these supplementary materials improve the accuracy of the eigenvalue
computation of square singular pencils as well as the sensitivity of the deflation of the
regular part of a singular pencil. We briefly mention that recently an alternative robust
method to the staircase algorithm has been proposed for computing the eigenvalues of
singular pencils [SM4]. This new method is related to the ideas in [SM2, SM3, SM8]
and its accuracy should also improve by using our scaling strategies.

SM2.2. Examples on the accuracy of computed eigenvalues of rectan-
gular pencils. In this section we discuss briefly tests for two families of rectangular
pencils that are related to the families in Subsection SM2.1. The first family includes
dense pencils for which the regularization in Section 5 is not needed, while the second
one corresponds to sparse pencils for which the regularization is necessary. Ward’s
method is not considered since it does not work for rectangular pencils. All the consid-
ered pencils λB −A have the minimal bases of their left and right null spaces formed
by constant vectors. Thus, the computation of their eigenvalues is performed via the
variant of the staircase algorithm described in the previous subsection, i.e., computing
first the regular parts of these pencils with the singular value decompositions of the
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compound matrices [A B ] and [ AB ], and then applying the QZ-algorithm to the regular
parts. We use the same notation and test magnitudes as in Subsection SM2.1.

In the first family of tests of this subsection, we generated 150 × 450 random
pencils of the form λB − A = Tℓ diag(λΛB − ΛA, 01×301)Tr, where (λΛB − ΛA) is
diagonal, is in standard normal form [SM7], has dimension 149 × 149 and contains
the “exact” eigenvalues of λB −A. The elements of the random square nonsingular
matrices Tℓ ∈ R150×150 and Tr ∈ R450×450 are kth powers of normally distributed
random numbers for k = 1 : 5 : 41. These pencils are dense and then the regularization
in Subsection 5.1 was not needed. The results are shown in Table SM4 (each row
corresponds to a value of k) and illustrate the very positive effect of the scaling technique
of Section 4 on the accuracy of computed eigenvalues and its low computational cost.

Table SM4
Eigenvalue accuracy of the staircase algorithm for rectangular 150× 450 dense pencils: for the

original pencil and for the pencil balanced by applying the algorithm in Appendix A with r = n1m,
c = m1n and tol= 1 to M = |A|◦2 + |B|◦2. The improvement in the scaling produced by the
algorithm in Appendix A is also shown in terms of qS(Morig) and qS(Mscal), as well as the number
of its steps until convergence.

corig cbal cbal/corig γorig γbal qS(Morig) qS(Mscal) steps

9.96e-15 9.96e-15 1.00e+00 1.01e-13 1.01e-13 2.29e+00 2.29e+00 2
1.95e-14 1.08e-14 5.52e-01 7.97e-13 1.97e-13 4.94e+03 7.77e+00 4
2.62e-13 1.06e-14 4.03e-02 3.03e-10 1.57e-13 1.22e+08 9.66e+00 7
2.27e-12 1.29e-14 5.68e-03 1.31e-08 7.73e-13 4.32e+11 1.06e+01 9
5.61e-09 1.97e-13 3.52e-05 1.39e-04 1.72e-11 1.36e+16 1.17e+01 12
1.51e-05 1.20e-13 7.97e-09 1.95e-01 5.78e-12 8.19e+23 1.07e+01 14
6.03e-05 1.08e-12 1.79e-08 8.08e-03 9.12e-12 3.51e+22 1.27e+01 21
5.49e-02 1.72e-11 3.13e-10 1.00e+00 1.36e-09 2.39e+29 1.17e+01 16
9.76e-02 8.40e-12 8.60e-11 1.00e+00 8.24e-10 1.24e+31 1.32e+01 24

Table SM5
Eigenvalue accuracy of the staircase algorithm for singular 700 × 450 sparse pencils: for the

original pencil and for the pencil balanced by applying the algorithm in Appendix A with r = c = v in
(5.8) and tol= 1 to M◦2

α in (5.3) with α = 0.5. The improvement in the scaling of M = |A|◦2+ |B|◦2
produced by the algorithm in Appendix A applied to M◦2

α is also shown in terms of qS(Morig) and
qS(Mscal), as well as the number of its steps until convergence.

corig cbal cbal/corig γorig γbal qS(Morig) qS(Mscal) steps

1.43e-14 1.26e-14 8.86e-01 8.91e-14 8.70e-14 5.54e+01 3.27e+01 7
1.73e-14 1.39e-14 8.06e-01 4.05e-12 1.25e-13 4.64e+06 9.30e+03 13
2.81e-13 3.75e-14 1.34e-01 2.74e-10 1.30e-12 3.10e+11 1.80e+06 26
1.77e-11 1.98e-14 1.12e-03 3.28e-08 4.72e-12 5.14e+19 1.42e+10 32
2.42e-06 6.23e-14 2.58e-08 1.81e-03 1.27e-11 5.87e+28 1.09e+13 46
2.42e-02 1.15e-10 4.77e-09 1.00e+00 1.85e-08 4.53e+29 1.11e+18 46
1.69e-04 2.24e-11 1.32e-07 9.84e-01 1.07e-07 6.95e+37 1.42e+20 68
4.10e-03 2.83e-11 6.88e-09 1.00e+00 4.18e-06 9.32e+39 4.30e+22 84
9.91e-01 6.07e-11 6.13e-11 1.00e+00 1.03e-07 2.72e+44 9.90e+22 87

For describing the second considered family of sparse rectangular pencils, we need
the parameters m1 = 100, n1 = 400,m2 = 600 and n2 = 50. Then, the pencils have
the structure of those in (SM2.2) but with the following changes in λB2 − A2: the
dimension of λΛB2−ΛA2 becomes (n2− 1)× (n2− 1) and 0(n1−m1+1)×1 is replaced by
0(m2−n2+1)×1. This implies that Tℓ2 ∈ Rm2×m2 and Tr2 ∈ Rn2×n2 . For these pencils
the algorithm in Appendix A with r = n1m, c = m1n and tol= 1 applied to M did
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not converge and we used the scaling described in Subsection 5.1 wit α = 0.5. The
results are shown in Table SM5 (each row corresponds to a value of k = 1 : 5 : 41)
and illustrate again the impressive positive effect of the new scaling technique on
the accuracy of computed eigenvalues and its low computational cost. The values of
qS(Mscal) did not improve by considering very small values of α.

SM3. A numerical example related to the dynamic behavior of a nuclear
power plant. In this last numerical example, we consider the regular quadratic
polynomial eigenvalue problem power plant included in the MATLAB toolbox [SM1].
This problem is defined by an 8×8 quadratic matrix polynomial Q(λ) = λ2M+λD+K
describing a simple model for the dynamic behavior of a nuclear plant [SM6, SM9].
The mass matrix M ∈ R8×8 and the damping matrix D ∈ R8×8 are real symmetric
and the stiffness matrix is of the form K = (1 + iµ)K0, with K0 = KT

0 ∈ R8×8, i
the imaginary unit and µ a real parameter describing the hysteretic damping of the
problem. The matrices M,D and K are badly scaled.

The standard way of solving quadratic eigenvalue problems is via linearizations,
i.e., constructing from the coefficients of Q(λ) = λ2M + λD +K a matrix pencil that
has exactly the same eigenvalues as the polynomial [SM5, SM9] and, then, applying
the QZ or the staircase algorithm to the linearization. The most popular linearization
is the first Frobenius companion form, which is defined as follows:

(SM3.1) λB −A =

[
λM +D K

−I λI

]
.

Another popular linearization is the one used by the command of MATLAB for
computing the eigenvalues of a matrix polynomial, polyeig, which is given by

(SM3.2) λBMAT −AMAT =

[
λD +K λM
−λI I

]
.

In this example, we consider four instances of the power plant quadratic poly-
nomial for the values of the parameter µ = 0.2, 0.5, 0.8, 1.1 (0.2 is the default value
in the toolbox). For each of these quadratic matrix polynomials, we take as “exact”
eigenvalues those computed with the variable precision arithmetic facility of MATLAB
vpa with 64 decimal digits, which corresponds to a unit roundoff ≈ 10−64. Then, we
compute in standard double precision the eigenvalues of Q(λ) by three methods and
compute the norm c of their vectors of chordal distances to the “exact” eigenvalues.
These methods are: (a) the QZ-algorithm applied to the pencil λB − A in (SM3.1)
(corig); (b) the QZ-algorithm applied to the scaled pencil Dℓ(λB−A)Dr (cbal) obtained
by applying the algorithm in Appendix A with r = c = n1n to M = |A|◦2 + |B|◦2,
i.e., without regularization; (c) the polyeig command of MATLAB, which amounts
to QZ applied to (SM3.2) (cMAT ). The results are shown in Table SM6, where each
line corresponds to one value of µ = 0.2, 0.5, 0.8, 1.1. The improvement in accuracy
obtained via the scaling in Appendix A applied to M is spectacular, yielding for this
highly unbalanced real-world pencil eigenvalues with full machine accuracy, in contrast
with the poor accuracy obtained by working directly on the unscaled linearizations.
Moreover, the convergence of the algorithm is very fast due to the use of the relaxed
stopping criterion tol = 1, taking just 5 iterations.

This example illustrates that the commands polyeig and eig(A,B) of MATLAB
would greatly benefit of including by default a scaling technique, as it is done in the
command eig(A).
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Table SM6
Eigenvalue accuracies for four instances of the power plant quadratic matrix polynomial. The

eigenvalues were computed via (a) the original Frobenius companion form (SM3.1), (b) the Frobenius
companion form balanced by applying the algorithm in Appendix A with r = c = n1n and tol= 1 to
M = |A|◦2 + |B|◦2, and (c) the command polyeig of MATLAB. The improvement in the scaling of
M produced by the algorithm in Appendix A is also shown in terms of qS(Morig) and qS(Mscal), as
well as the number of its steps until convergence.

corig cbal cMAT cbal/corig cbal/cMAT qS(Morig) qS(Mscal) steps

1.5e-05 1.8e-16 1.6e-06 1.2e-11 1.1e-10 7.6e+25 8.7 5
1.6e-05 1.1e-16 4.1e-05 6.6e-12 2.6e-12 9.2e+25 8.7 5
2.0e-04 2.0e-16 1.0e-05 1.0e-12 2.0e-11 1.2e+26 4.6 5
6.3e-05 1.3e-16 1.9e-06 2.1e-12 6.9e-11 1.6e+26 9.6 5
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